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Abstract. A new operational semantics for “pure” CCS is proposed that considers the parallel
operator as a first class one, and permits a description of the calculus in terms of partial orderings.
The new semantics (also for unguarded agents) is given in the SOS style via the partial ordering
derivation relation. CCS agents are decomposed into sets of sequential subagents. The new
derivations relate sets of subagents, and describe their actions and the causal dependencies among
them. The computations obtained by composing partial ordering derivations are “‘observed” either
as interleaving or partial orderings of events. Interleavings coincide with Milner’s many step
derivations, and “linearizations” of partial orderings are all and only interleavings. Abstract
semantics are obtained by introducing two relations of observational equivalence and congruence
that preserve concurrency. These relations are finer than Milner’s in that they distinguish interleav-
ing of sequential nondeterministic agents from their concurrent execution.
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1. Introduction

Many different models have been proposed to describe systems whose subparts
can progress in parallel, synchronize and exchange messages. These models can be
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compared by examining the way in which they describe the fact that events (atomic
actions, synchronizations, communications) can be performed concurrently by sub-
parts of a system, i.e., independently from one to another. If we take this standpoint,
the various models of concurrency can be divided into two broad groups: those
based on interleaving and those based on true concurrency.

Models based on interleaving express concurrency among events by saying that
they may occur in any order. Thus, a total ordering among possibly spatially
separated and causally independent events is imposed: a global clock and global
states are assumed. The proposers of such models, which include [27, 28, 32, 25,
1,3, 4, 15, 30, 22], stress the simplicity of the underlying mathematics as a sufficient
reason to advocate this approach, since it permits easier reasoning about concurrent
systems and proving most of their properties.

On the other hand, models based on true concurrency use partial ordering of
events where concurrency is represented as absence of ordering. Within this
framework, no global clock is assumed and the behaviour of a system is expressed
in terms of the causal relations between the events performed by subparts of its
distributed state. Their proposers (see for example [26, 24, 36, 40, 31, 39, 16, 20, 5,
38, 2, 17, 18]) claim that these models offer a more faithful picture of reality, and
that certain liveness properties of concurrent systems can be better understood and
studied within this framework.

A classical representative of models based on interleaving is Milner’s Calculus
of Communicating Systems (CCS) [27]. It relies on a small number of operators
which are used to build terms. These are considered as agents which, by performing
certain actions, will become other agents. The operational semantics of the calculus
is given through labelled transition systems, and the fact that agent E, evolves to
E, by performing an action w is rendered by E,—* E,. The technique used
(Structured Operational Semantics or SOS [37]) relies on the well-known idea of
describing the behaviour of systems by sequences of transitions between con-
figurations. Transitions of compound systems are defined in a syntax-driven way,
via axioms and inference rules.

Since the original version of CCS was geared towards the interleaving approach,
its semantics does not consider the operator for parallel composition of processes
“”” as primitive: given any finite process containing |, there will always exist another
process without | which exhibits the same behaviour.

This paper proposes a new operational semantics for CCS that considers the
parallel operator as a first class operator, and offers a partial ordering semantics
for the calculus. The operational semantics is still given in the SOS style, but a
different transition relation, called the partial ordering derivation relation, is defined.
This relates subparts of CCS agents, rather than their whole global state, and carries
information about causal dependencies. CCS agents are decomposed into sets of
sequential processes, called grapes, and the new transitions not only describe the
actions agents may perform when in a given state, but they also express the causal
relation among subparts of agents when the global state changes. The partial ordering
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derivation relation is defined via inference rules which directly correspond to those
of [27]. Consequently, the deduction of both transitions follows the same pattern.

The new transitions have the form I, —"*1 [, where I, and I, represent sets of
grapes, and % is a relation providing additional information about the causal
relations among agents. The grapes in I, perform the action w and evolve to those
in I,. We thus say that the grapes of I, cause those in I,, through w. Information
about other grapes caused by grapes in I;, but not through g, is recorded in %. The
intended dynamic meaning is that, after showing an event labelled by pu, the set of
grapes I,, occurring in the current state, can be replaced by the grapes in I, and
by those related to I, via &, thus obtaining the new state.

As an example, consider the CCS agent (a.NIL|B.NIL)+v.NIL, which may
evolve to NIL|B.NIL after resolving the nondeterministic choice (expressed by +)
in favour of «. In the interleaving approach, this will be rendered as

(a.NIL|B.NIL)+ y.NIL = NIL|g.NIL. (%)
We will write it as

[ {(@.NIL|B.NIL)+ . NiL=<id|8.NIL}}

{(a.NIL|B.NIL)+ v.NIL}

{NIL|id}
(o)

where (@.NIL|B.NIL)+ y.NIL, NIL|id and id|8.NIL are grapes.

In this way, we describe the fact that grape (a.NIL|B.NIL)+ y.NIL causes both
grape id|B.NIL and the event labelled by a which in turn causes grape NIL|id.
Note that the possibility that id|8.NIL may have to perform B independently of
the occurrence of « is implied by the absence of any causal relation between « and
id|B.NIL. The a-derivation of grape (a.NIL|B.NIL)+ y.NIL is shown in Fig. 1. It
should be noted that every derivation of the original calculus can always be recovered
from our partial ordering derivation simply by “putting together” its initial and
final sets of graphs. In the example above, we obtain NIL|B.NIL by putting together
the two grapes NIL|id and id|B8.NIL.

A transition of the above form may look a bit unnatural. We are used to conceiving
labelled transitions as relations between a set of processes and an action, and
between that action and all the new processes. Instead, in the transition (#*) above,

| (ot .NILIB.NIL) +¥.NIL]

| NiLtd | [idig Ni

Fig. 1. The transition of the partial ordering operational semantics {(a.NIL|B.NIL)+
¥.NIL)} — Lot NILIBNID +y NIL=idle. NI N T |id). Grapes are represented by labelled boxes, events by
labelled circles and the causal relation is expressed through its Hasse diagram growing downwards.
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grape id|B.NIL is directly related to grape («.NIL|B.NIL)+ y.NIL. This happens
because the evolution of this type of nondeterministic processes requires that first
one of the alternatives is chosen, and an action of the chosen grapes is performed.
A possible way of describing the above a-transition is illustrated in Fig. 2a. First,
a choice-event causes two concurrent grapes «.NIL|id and id|B8.NIL; the former
then performs an «. It is however important to note that, in order to be faithful to
the original semantics, the decision and the action can only be considered as a
single indivisible action. Since CCS has no mechanisms for defining atomic actions
from sequences, we are left with two alternatives. The first requires hiding inside
the source grape the decision to obtain transitions such as those of Fig. 1. We would
like to stress that this discussion is just for the sake of clarity and does not imply
at all introducing any invisible action whatsoever in our semantics. The second
alternative is to incorporate the decision into the action itself to obtain the usual
transitions (Fig. 2b). In [8, 10], we have followed the latter approach, but it results
in an operational semantics that does not take the possible parallelism of CCS
agents fully into account. For example, independencies are lost between some
concurrent actions in +-context; in the case of the agent (a.NIL|B.NIL)+ y.NIL,
a causal relation between « and B is enforced, thus identifying this agent with
a.B.NIL+ B.a.NIL+ y.NIL. A third approach, followed in [11] and [34] introduces
a new decomposition according to which the agent («.NIL|B.NIL)+ y.NIL origi-
nates two grapes, namely (a.NIL|id)+ y.NIL and (id|8.NIL) + y.NIL. These papers
will be further discussed later in this section and in the concluding one.

[ (o .NILIB NIL) + ¥ NIL | [ (o NILIg .NIL) + y.NIL|

[ NILIid | [idlg N1

b)

a)

Fig. 2. Alternative descriptions of the a-transition of agent («.NIL|B.NIL)+ v.NiL.

A computation is a sequence of sets of grapes (i.e., system states corresponding
to CCS agents), and of partial ordering derivations (i.e., system transitions). A
computation of agent (a.NIL|B8.NIL)+ y.NIL is

¢ ={(a.NIL|B.NIL)+ v.NIL}

[ {(a.NIL|B.NIL)+y. NIL=<id|8.NIL}]

{(a.NIL|B.NIL) + v.NIL} {NIL]id}
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{NIL|id, id| 8.NIL}

{id!ﬁ.NlL}ﬂ {id|NIL}

{NIL|id, id| NIL}.

From computations, we can extract either sequences or partial orderings of actions.
In the first case, we keep track of the temporal ordering in which the actions have
been performed (in our example a followed by B, i.e., aB8); while in the second case
we keep track of the causal dependencies among the actions (in our example «
concurrent with 8). By “observing” computations in either way and by taking into
account their initial and final sets of grapes, we obtain interleaving or partial ordering
many step derivations. Incidentally, we observe that our approach is indeed
operational since we build our many step derivations by composing elementary steps
and then abstracting. This differs from other approaches [e.g., 2, 5], in which
transition systems are used to directly associate partial orderings to agents: the
notion of elementary step and the possibility of growing computations from them
are lost in favour of a more denotational style.

These two kinds of derivations provide us with a firm ground for studying the
relationships between the interleaving and the partial ordering approaches. The
natural direct correspondence between our partial ordering derivation relation and
Milner’s allows us to prove that his many step derivations coincide with our
interleaving derivations. This result also guarantees that the original interleaving
operational semantics of CCS is immediately retrievable from the partial ordering
one. Furthermore, we will show that “linearizing” the causal relation of the partial
ordering many step derivation of a computation results in the set of sequences which
are all and only the interleaving many step derivations. In other words, given a
partial ordering of events (obtained from a computation) and a total ordering <
compatible with it, it is always possible to find a computation the events of which
are generated exactly as demanded by <. This property, which is called complete
concurrency in [10], plays a crucial role in relating the interleaving and partial
ordering semantics of CCS, namely in proving Theorems 4.9, 4.13, 4.14, 4.17.
Returning to our example, all and only the linearizations of the partial ordering of
the derivation obtained from ¢ (a concurrent with B) are exactly Milner’s many
step derivations associated with agent (a.NIL|B.NIL)+ y.NIL (when the same side
of the + is chosen), i.e., @B and Ba.

When the behaviour of concurrent systems is described through a relation between
their states, all their internal states must be taken into account. Frequently, however,
only some of these states are actually relevant for system analysis. Thus, operational
descriptions of this kind end up specifying too many details, and introducing
unnecessary and unnatural differentiations. A remedy advocated by Milner is to
consider concurrent systems as black boxes, to assume certain actions as internal,
thus invisible, and therefore to describe system behaviour only in terms of vibisible
actions. For this purpose, notions of observational equivalence and congruence
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based on experimentations are introduced which make it possible to abstract from
unwanted details [27, 29, 23]. Because of the intrinsically sequential nature of the
experiments allowed, concurrency is still not a primitive notion of the theory.
Here, we introduce a new notion of partial ordering observation which we can
use to define notions of observational equivalence and congruence that preserve
concurrency.

Like Milner, our starting point is the notion of bisimulation [35]: two agents are
equivalent if they are able to perform the same partial orderings of visible actions,
evolving to equivalent agents. The new relations of partial ordering observational
equivalence and congruence are finer than Milner’s in that they distinguish interleav-
ing of sequential nondeterministic processes from their concurrent execution. The
two equivalences and the two congruences coincide when dealing only with non-
deterministic sequential processes.

We began our investigation on a partial ordering approach to the semantics of
concurrent languages some years ago, and our intermediate results have been
reported in a number of papers [8,9, 10, 14, 17, 18]. However, as already mentioned,
the semantics for CCS proposed in the first three papers is not completely satisfactory.
In fact, we had kept a one-to-one correspondence between the set of grapes reachable
through derivations and agents, between the new rules and Milner’s, and between
the proofs of the derivations, but we did not always permit the concurrent execution
of intuitively independent actions. In [11] we solve this problem at the price of a
more complex notion of distributed state, and of a less natural set of rules. Actually,
due to a distributed treatment of the choice operator, a decomposition relation is
introduced which causes the loss of the one-to-one correspondence between states,
i.e., sets of grapes, and CCS agents. More detailed comments can be found in
Section 3, after Definition 3.2.

In this paper, we are able to give a full account of parallelism while maintaining
a syntactic one-to-one correspondence between the interleaving and partial ordering
approaches. We keep a centralized treatment of choice thus avoiding state explosion.
Hence, the solution proposed here is more suited when there is no real need for
distributing choices, and whenever there are space or time constraints. As a matter
of fact, a completely distributed implementation, as the one suggested in [11, 34],
will require introducing rather sophisticated protocols. Moreover, the present
approach straightforwardly deals with unguarded recursion. The causal relation
among events may in this case be infinitely branching, thus reflecting the possible
unbounded parallelism (see also Fig. 8).

The rest of the paper is organized as follows. Section 2 surveys the original
interleaving semantics of CCS which relies on the derivation relation and on the
notion of bisimulation. Section 3 defines the new partial ordering derivation relation
on sets of subagents rather than on whole agents. The partial ordering many step
derivation relation is introduced in Section 4 and compared with Milner’s. Using
this new relation, partial ordering observational equivalence and congruence are
defined in the same section, and shown to be finer than the originals, yet concident
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on sequential nondeterministic agents. Finally, Section 5 discusses the relationship
between this work and other proposals of truly concurrent semantics for CCS.

2. CCS and its interleaving semantics

This section contains a brief introduction to ““pure” CCS, i.e., the calculus without
value passing. First, we shall introduce the syntax of the calculus, then we will
present the traditional interleaving semantics and the observational equivalence and
congruence of [27] as refined in [29].

Definition 2.1 (agents). Let

® A={a,B,v,...} bea fixed set and A”={a"|a e A}, assuming (a”) = a;
® A=A40A" (ranged over by A) be the set of visible actions;

® 7¢Z A be a distinguished invisible action, and let A U {7} be ranged over by pu.
The CCS agents, ranged over by E, consists of all closed terms (i.e., terms without
free variables) which can be generated by the following BNF-like grammar

E:=x|NIL|u.E|E\a|E[¢]|E+E|E|E|recx. E,

where x is a variable and ¢ is a permutation of A U {7} which preserves = and the
operation =~ of complementation. We assume that the precedence among operators
is\a>[¢]>pu. >rec>+>|.

CCS has a two level semantics: the first level describes the behaviour of agents
through an abstract machine and the second level forgets their internal structure by
identifying those machines which all exhibit the same external behaviour.

The first level, i.e., the interleaving operational semantics, is based on a labelled
transition system with a transition relation defined via a set of transition rules. The
relation, called derivation relation and denoted by —*, relies on the intuition that
agent E, may evolve to become agent E, either by reacting to a A-stimulus from its
environment (E,—" E,) or by performing an internal action which is independent
of the environment (E,—" E,).

Definition 2.2 (transitions). Milner’s derivation relation Ey—" E, is defined as the
least relation satisfying the following axiom and inference rules.

(Act) wE —"E.

(Res) E,—"E, implies Ej\a =" E\a, uwZ{a, a”}.

(Rel) E,—* E, implies Ej[¢]—*"* E,[¢].

(Sum) E,—* E, implies E,+ E —* E, and E + E,—" E,.

(Com) E,—* E, implies Ej|E =" E||E and E|E,—" E|E,;

E,—"E, and E;—" E| implies E,| E)—"E,| E}.
(Rec) E[recx. E,/x]—" E, implies rec x. E,—" E,.
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Hereto, we will use the following conventions to talk about sequences of actions

and sequences of visible actions:

e E=*E’', ¢ being the null string of A*, stands for E —" E’, n=0;

® E =" E’', stands for there exist E, and E, such that E =° E, »" E,="E";

@ ES"E', s=A,...A,€ A", stands for there exist E;, 0<i<n, such that E =
E, =M E = - =ME, =E

the relation =°, se€ A™, will be referred to as many step derivation.

The derivation relation of Definition 2.2 completely specifies the operational
semantics of CCS; the second level of CCS semantics is obtained by abstracting
from unwanted details. To this purpose, a notion of bisimulation is introduced
which is then used to define an equivalence relation on agents. Agents which are
observationally equivalent can then be identified.

We can define a bisimulation relation R between CCS agents which consists of
all those pairs of agents related via =* to equal (up to R) agents. Loosely speaking,
two agents E, and E, are considered as equivalent, written E,= E,, if and only if
there exists a bisimulation R containing the pair (E,, E,) and guaranteeing that E,
and E, are able to perform equal sequences of visible actions evolving to equal (up
to R) agents.

Definition 2.3 (observational equivalence). (1) If R is a binary relation between CCS
agents, then V¥, a function from relations to relations, is defined as follows: (E,, E,) e
Y (R) if, for every se A ™,
(i) whenever E,=>" Ej there exists E{ such that E,=* E} and (E}, E})e R,
(ii) whenever E, =" E| there exists E{, such that E,=>* E}, and (E}, E})e R.
(2) A relation R is a bisimulation if R< ¥ (R).
(3) Relation ==|J{R|R< ¥(R)}, is called observational equivalence.

Proposition 2.4
® Function ¥ is monotonic on the lattice of relations under inclusion.
® Relation =~ is a bisimulation and an equivalence relation.

Below we present two pairs of equivalent processes. The first shows that the
equivalence based on bisimulation succeeds in ignoring the internal structure of

agents; the second shows that concurrent and nondeterministic processes may be
identified.

Example 2.5. (a) «.(B8.NIL+7.y.NIL)+ a.y.NIL= a.(8.NIL+ 7.y.NIL);
(b) a.NIL|B.NIL= «.8.NIL+ B.a.NIL.
Here, the relevant bisimulations are
(a) {(a.(B.NIL+7y.NIL)+ .y.NIL, a.(B.NIL+ 7.y.NIL)),
(B-NIL+ 7.9.NIL, B.NIL+ 7.y.NIL), (v.NIL, v.NIL), (NIL, NIL)},
(b) {{a.NIL|B.NIL, a.B.NIL+ B.a.NIL), (NIL|B.NIL, B.NIL),
(a.NIL|NIL, a.NIL), (NIL|NIL, NIL)}.
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Rather than equivalence relations we need congruences which guarantee that
equivalent agents can be interchangeably plugged into any context, without affecting
the overall behaviour. Itis well known that observational equivalence is not preserved
by +-contexts, and thus in [27] and [29] this relation is strengthened to a congruence.
The definition below characterizes observational congruence without making any
explicit use of contexts.

Definition 2.6 (observational congruence, Milner [29]). E,=°E, iff
(i) whenever E,—* Ej, there exists E} such that E, =" E} and E},~ E/,
(ii) whenever E, —" E, there exists E{ such that E,=>* E/ and E}~ Ei.

This definition shows exactly in what respect observational congruence differs
from observational equivalence; however, it has the disadvantage of needing explicit
concatenations of visible and invisible actions. We aim at giving a similar definition
of congruence where partial orderings of events are considered instead of interleav-
ings of events; while string concatenation is trivial, problems arise when a general
notion of concatenation on partial orderings is needed. Thus, we introduce below
a less elegant characterization of observational congruence, the pattern of which
will be followed in defining the partial ordering one in Section 4. The alternative
congruence again uses observational equivalence, but takes into account only non-
empty initial sequences of silent actions.

Definition 2.7 (another characterization of observational congruence). E,=°E, iff
(i) Eo=Ey,
(i) whenever E, =" E{, there exists E such that E, ="E}and Ey=E};,
(i) whenever E; =7 E{, there exists E{, such that E, =" E{and Ej=E}.

Proposition 2.8 (the two context independent equivalences are the same con-
gruence). E,=°E, if and only if E,=°E,.

Proof. Immediate, by definition of observational equivalence and by noticing that
E,—* E{ implies E,=" E{, and that E,=" E/, if and only if E,—"E ="E|, O

3. Defining the partial ordering derivation relation

In this section we define the partial ordering derivation relation I, —"1 [,
which generalizes Milner’s derivation relation E, —* E,, and allows us to obtain a
notion of many step derivation based on partial orderings.

We first need to single out those subagents of a given CCS agent which can be
considered as single entities, in that they may perform actions in isolation.
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Definition 3.1 (defining CCS sequential agents). A grape is a term defined by the
following BNF-like grammar

G:=NIL|u.E|E+ E|recx. E|id|G|G|id| G\a|G[¢]

where E, \a, [¢] have the standard CCS meaning.

Intuitively speaking, a grape represents either a sequential agent (expressed by
the first four alternatives, discussed after Definition 3.2) or a subagent of a CCS
agent, together with its access path. The latter is used to take into account the
context in which sequential processes operate. This information is crucial on many
occasions. For example, it allows us to differentiate the behaviour of processes like
(a.B.NIL|a " .NIL)\« and (a.8.NIL)\«|(a .NIL)\a. We have an operator on
grapes for each CCS operator and we keep the same name for all the operators
apart from that for parallel composition. This is replaced by two unary operators,
lid and id|, which are tags recording that there are other processes that can perform
actions concurrently with those of the given sequential process.

A CCS agent is decomposed by function dec into a set of grapes.

Definition 3.2 (decomposing a CCS agent into its sequential agents). Function dec
decomposes a CCS agent into a set of grapes and is defined by structural induction
as follows:

dec(NIL) = {NIL}, dec(u.E)={u.E},
dec(E\a)=dec(E)\a, dec(E[¢])=dec(E)[¢],
dec(E,+ E,) ={E,+ E,}, dec(E,| E;) =dec(E))|iduid|dec(E,),

dec(rec x. E)={recx. E}.

In this definition, and from now onwards, the application of a syntactic constructor
to a set of grapes is defined as applying the constructor elementwise, e.g., I\a =
{g\a|gel}.

The decomposition goes inside the structure of agents and stops when a process
prefixed by an action or the NIL process are encountered, since these cannot be
considered but atomic sequential processes. It also stops when a sum or a recursion
is encountered; this choice is debatable. For example, if we take agent
a.NIL|B.NIL+y.NIL it is not immediate whether it should be considered as a
single sequential process, or rather as two sequential processes, namely «.NIL|id+
v.NIL and id|B.NIL+ y.NIL. We take here the first standing and assume that, in
order to resolve the choice between the two sides of a +, all concurrent processes
on the same side must agree on being chosen. A similar situation arises with
recursively defined agents, where all concurrent agents in the rec body must unwind
at the same time.
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The above assumption of centralized control contrasts with that of [11]. There,
a decomposition relation decrel is defined which does not consider as sequential
those agents having + and rec as top-level operators, and goes always inside the
structure of agents. In the case of +, this results in a cartesian product of the
sequential components of the alternative agents, thus yielding a combinatorial
explosion of the number of generated grapes, and the loss of the one-to-one
correspondence between states and CCS agents. Indeed, the alternatives present in
all grapes are discarded by the occurrence of a transition only in those grapes
affected by it. Nevertheless, the alternatives still present in the remaining grapes are
meaningless and will never be taken. Decomposing the above agent a.NIL|B8.NIL+
v.NIL through decrel results in the set of grapes {e.NIL|id+ y.NIL, id|8.NIL+
¥.NIL}. When the action « is performed, state {NIL|id, id | 8.NIL+ v.NIL} is reached
where the y.NIL choice is still present, yet useless.

Example 3.3
dec((((rec x. a.x+ B.x) |rec x. a.x + y.x)|rec x. @ ".x)\ @)
={(((rec x. a.x+ B.x)|id) |id)\ e, ((id |rec x. a.x + y.x)|id)\ e,

(id|rec x. @ ".x)\a}.

Example 3.4
dec(((a.NIL|y.NIL+ 6.NIL)|(a ".NIL|8.NIL+ v.NIL))|8.NIL)
={((a.NIL|y.NIL+ 0.NIL)|id)|id,
(id|(@".NIL|8.NIL+u.NIL))|id, id| 8.NIL}.

We now define a correspondence between CCS agents and sets of grapes, more
precisely with the sets of their sequential subagents.

Definition 3.5. A set of grapes I is complete if there exists a CCS agent E such that
dec(E) =L

Full information about a CCS agent E is retained in dec( E), since the following
property holds.

Property 3.6. Function dec is injective and thus defines a bijection between CCS agents
and complete sets of grapes.

Proof. Immediate by induction. [J

Note that the inverse function of dec is standard unification, provided that distinct
variables are substituted for each occurrence of id, and {uE}, { E, + E,} and {rec x. E}
are considered atomic. In other words, the unique unifier of a complete set of grapes
is the CCS agent of which it is the decomposition; if a set is contained in a complete
set, its unifier is not unique; otherwise there is no unifier.
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Sets of grapes will play the role of states in our partial ordering derivations, which
are defined below. First, we need some notation used to describe the causal relation
between sets of grapes.

Notation 3.7. Let ® be a binary relation, by |1 we understand the set {x|3y such
that (x, y)e R} and by ®|2 the set {y|3x such that (x, y)e %}. Sometimes we will
write x <y if (x, y)€ &; moreover we will define a relation & by writing all and
only its pairs. Furthermore, we also consider operators to be extended to R, e.g.,

7 |id = {(x|id, y|id), |[(x, ) € R}

The partial ordering derivation relation I, —"“![, is defined via axioms and
inference rules in direct correspondence with those of Milner’s E, —* E,. In this
new relation, sets of grapes (I, and I,), rather than agents, are source and target of
the arrow, and & is a binary relation on grapes. Still, the intuitive meaning of
w21 1 is that I, may become I, by performing action w; thus, we say that the
grapes of I, cause through u those in I, (also written as I, < u < I,). The information
about other grapes which can be caused by I, but not by w is recorded in ®. More
precisely, if g, <g,e %R, we have that g, I,, g, I, and that g,, but not action wu,
causes grape g.. As a whole, we may say that the derivation I, —!*"1 I, replaces
the grapes of I, with those of I, U %2 while showing u. Thus, & records that there
are agents that may perform actions concurrently with w.

In order to make examples more readable, we now resort to a graphical representa-
tion of I, —*#1 [, already informally used in the introductory section. The causal
relation is represented through its Hasse diagram growing downwards (the lines
representing the transitive closure are omitted), and since sets I, and I, U #|2 may
be intersecting, distinct instances of grapes in I,, I, and ® |2 are considered. The
derivation {rec x. ax} —'*" {rec x. ax} is shown in Fig. 3a; notice that two instances
of the same grape are depicted. A formal account of the instantiation construction
is given in Definition 4.3. The derivation

I, —

[r{g,=g,.8,=g}]

{21, &} {8, g7}

is shown in Fig. 3b; for a denotation of the g;s, see Example 3.10.

©
w 8] [8s] [87] [&5]

Fig. 3. The graphical representation of {recx. ax}—!“"{recx ax} (in a), and of

{g., 8} — s =g g=asl] {86, g7} (in b).

(a)
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Definition 3.8 ( partial ordering derivation relation). The partial ordering derivation
relation T, ="V [, is defined as the least relation satisfying the following axiom
and inference rules

(act) {pE}—"""dec(E),

(res) I, —"71[, implies I,\\a =" L\« if u 2{e, a7},

(rel) [l____>[u‘-0/?] 1, implies Il[(b]_,)[(b(u),f"/l[dfl) 12[‘1"],

(sum) (dec(E,)~ I;) =71 I, implies

[nfE+E }=(1,09]2)]

{E+E,} I, and

[l B+ E}s(],u]2)]

{El + E} 12,
(com) I, =21 [ implies I,|id —"?i9 [,|id and id|I, =" id]| 1,
I, =71 [, and 17 —" "7 1} implies

2

[ ]iduid|g )

Iliduid| I} Lliduid]| I3,
(rec) (dec(E[rec x. E/x])— I;) ="} I, implies

[ {recx. El=i( lgut%’,lZ)]

{recx. E} — L.

We can now briefly comment on our axiom and rules. In axiom (act), a single
grape is rewritten as a set of grapes, since the firing of the action makes explicit the
(possible) parallelism of E. As every grape in dec(E) is caused by u, obviously
relation % is empty. Rules (res) and (rel) and the first two rules for (com) simply
state that if a set of grapes I, can be rewritten as I, via u, then we can combine the
access paths of the grapes in both sets with either path constructors \e, .[¢], .|id
orid|., and still obtain a derivation, labelled, say, by u'. When dealing with restriction
we have that u' is u, but the inference is possible only if w2 {a, @}; in (rel) u' is
¢ () and in the first two rules of (com) w' is simply w. Relation & is accordingly
modified. The third rule for (com) is the synchronization rule; of course it takes
care that relations R and &' are (modified and) unioned.

A derivation generated by the first implication of rule (sum) can be understood
as consisting of two steps. Starting from the singleton { E, + E} the first step discards
alternative E and decomposes E, into the union of suitable sets of grapes I, and
I5; the second step (the premise of the inference rule) rewrites I, as I,, leaving I,
idle (see also Fig. 2a). The grapes in /5 are originated by E,+ E but not caused by
w, so we add {E,|+ E} < I; to & Moreover, all the grapes which are caused by some
grape in dec(E,)—I; and not by u (namely, those in %}2) are still caused by
{E,+ E} and not by u, thus we also have that {E,+ E}< %2 is in R. The net effect
of these two steps is then rewriting the singleton { E, + E} into the set I, and labelling
the arrow with the pair [w, {E,+ E}=<(I; U %|2)]. Similarly for the second rule of
(sum).

The intuition behind rule (rec) is similar to that behind (sum). Obviously, the
first step consists now in unwinding the recursive agent in all the occurrences of
the bound variable, rather than discarding one of the alternatives.
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The way we deal with nondeterministic choice and recursion shows that our
transition rules still assume a centralized control. For instance, all the concurrent
sequential processes which occur in an argument of + must participate in and are
affected by the decision.

The following property clarifies the structure of the derivations and stresses the
asynchrony of the partial ordering derivation relation. Indeed, the underlying model
of standard CCS derivations is a transition system, while Definition 3.8 introduces
a rewriting system. E, —* E, is a transition, i.e., E, and E, are global states, while
I, =" [, can be interpreted as a rewriting rule, since the grapes involved there
are only those processes of the current state which are active in the step. The
correspondence between the two derivation relations is stated in Theorem 3.11.

Property 3.9. Given I, —'*#1 I, in the partial ordering derivation relation, we have
e Rll1c ],

® Rl2n1,=0,

® for every set of grapes I, 1,0 I is complete if and only if I, U R|20U I is complete.

Proof. Immediate by induction. [

Example 3.10. Let us consider the agent of Example 3.4.
E,=((a.NIL|y.NIL+ 6.NIL)|(a".NIL|8.NIL+v.NIL))|8.NIL
and the agent E = n.NIL. Furthermore, let
g,=((a.NIL|y.NIL+ 6.NIL)|id) id,
g>=(id|(a".NIL|8.NIL+ v.NIL))|id,
g;=id|B.NIL,
ga= ((id| v.NIL) |id)|id,
gs=(if|(id| 6.NIL))|id,
gs=((NIL[id)]id) id,
g»=(id[(NIL]id)) id,
R={g <84, 82=gs}.
By using the first inference rule (sum), from the partial ordering derivation
{g:, 82} — {86, 87},
shown in Fig. 4a, we can deduce the derivation of Fig. 4b

T E,+E}=({g,}un12)]

{E,+E} [' {gs, g4}

In fact, we have that dec(E,) ={g,, g-, g3} (see Example 3.4), thus I; contains g;,
and #|2={g,, gs}.
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a) b)

Fig. 4. The partial ordering derivations dec(E,)~{g:} ={g,, g,} = ™" 878l {0 0.} (in a), and
{E\+ E}"'*[T'(E‘ﬂ‘AE)mg"'g"'g")'l{g(n g, (in b).

Theorem 3.11 (correspondence between Milner’s and partial ordering deriva-
tions). We have a derivation E,—" E, if and only if there exist a relation R and a
set of grapes I such that (dec(E,) —I) —""1 (dec(E,)— (20U I)).

Proof. Given a derivation of either kind, use the structure of its proof to obtain the
derivation of the other kind. [

4. Partial ordering many step derivations and equivalences

In this section we concatenate the derivations given in Section 3 to define
computations from which the partial ordering many step derivations for CCS are
obtained. The partial orderings of events of these derivations express the complete
causal dependencies among the performed events. In order to relate our many step
derivations with Milner’s, we also introduce total orderings on events that reflect
the temporal relation among them. Finally, the two relations of partial ordering
observational equivalence and congruence are defined which are based on bisimula-
tion and on the previously given many step derivations.

The next definition introduces three orderings of events which will be used to
capture the relevant information about behaviours of agents.

Definition 4.1 (orderings of events). Let A be a countable set of event labels.

(i) A partial ordering of events is a triple h=(S, I, <), where
® S is a finite set of events;
® [:S-> A is a labelling function;
® < is a partial ordering relation on S, called causal relation.

(ii) A rtotal ordering of events is a partial ordering of events t = (s, [, <) such that
< is total, called temporal relation.

(ii1) A mixed ordering of events is a quadruple d =(S, |, <, €), where (S, I, <) is
a partial ordering and (S, /, €) is a total ordering of events. ‘

Two events e, and e, are concurrent if neither e, < e, nor e, < e,. Two orderings
of events will be identified if isomorphic, i.e., if there is a label- and order-preserving
bijection between their events. A total ordering of events (defined up to isomorphism)
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will be identified with the sequence of the labels of its events. We will define an
ordering of events by explicitly writing all and only its pairs.

Figure 5 shows a partial ordering of events, with the conventions that events are
represented by circles with their labels inside, and that the partial ordering < is
represented by its Hasse diagram growing downwards. So, we have that event e,,
labelled by «, has no relation with all the others, thus it is concurrent with them
all. The event labelled by y dominates, i.e., causes the remaining events. Note that
the labelling function is not injective.

We will now introduce our notion of computation, defined as a finite sequence
of complete sets of grapes and of partial ordering derivations.

Definition 4.2 (computation). A sequence

Loy 92,1 [,
¢E={Gyl,— 11 G, -G, I, ——— I,G,}
is a computation if
(i) G; is a complete set of grapes, 0<i<n, and I, =1/ is in the partial
ordering derivation relation, 0 <i<n;
(ii) e Gi_y,and G, =(G,_,—LYuR |20 T, 0<i=n.

As noted in the previous section, the elements of the partial ordering derivation
relation are rewriting rules which are applied in the computation above. States are
(represented as) complete sets of grapes. This is essentially due to our assumption
of having a centralized control. Indeed, function dec induces and Theorem 3.11
establishes this natural one-to-one correspondence between the states of the original
interleaving and of the partial ordering computations. In the ith step, state G,_,
evolves to G; by applying I, =" I in such a way that the set of grapes I,
(contained in G,_;) is rewritten as %;J20U I;, while the grapes in G,_,—I,=
G, — (%2~ I}) stay idle.

Note also that our notion of computation coincides with Milner’s, when a single
step is performed, because of the correspondence between his and our derivation
relation established by Theorem 3.11.

From computations we generate a mixed ordering of events recording all their
temporal and causal dependences. This ordering is obtained in three steps; first an

»

(@) () €2
! e e4

®

®s

Fig. 5. A partial ordering of events.
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event is associated to every derivation and different instances for all the grapes in
the global states are created. Then, the causal dependencies among events and grape
instances are determined. Finally, all grape instances and all events labelled by
are removed to obtain the required ordering. The total ordering is determined at
once by the ordering in which the rewriting rules are applied during the computation.

Definition 4.3 (mixed many step derivation). Given two CCS agents E, and E,, we
define the mixed derivation, written E,=>" E,, iff there exists a computation

FIPRC A P 1
‘Uq |J [;1,”,.‘%,"

1
f={G0]1 IQGI'.'anl Irr_—"—)I::Gn}

where G,=dec(E,), G, =dec(E,), and d =(S, ], <, <) is the mixed ordering of
events labelled on A defined as follows
(i) let S'={e,,...,e,} and B={(g, i)|ge G;};

(ii) Let F* be the reflexive and transitive closure of the flow relation F defined
on S'U B by the following inference rules
® ge{G,,— I} implies (g,i—1) F (g, i),
® gc [ implies (g, i—1) Fe,
® gc || implies ¢, F (g, i),
®(g,, &) € R; implies (g,, i —1) F(g,, i);

(iii) S={e;|m;# 7}, l(e;)=p;, < is the restriction of F* to S, and ¢ <e¢,

Isisj=sn

A mixed derivation contains complete information about the evolution of agents.
In particular, it records the initial and final agents, the performed events, their
generation ordering (expressed through <), and their causal dependencies
(expressed through <). This information is extracted from a computation ¢ by
constructing two sets, the first consisting of events, the second of instances of grapes,
and then by determining the orderings over them. Index i in (g, i) is used to create
a fresh instance of the grape g which occurs in G;. The link between event ¢; and
the ith step of the computation I, —*" ! is crucial for determining the orderings.
Indeed, the indexes of events are used to recover at once the temporal ordering.
The causal relation between grape instances and events is obtained as the reflexive
and transitive closure of the causal dependencies expressed by the derivations. More
precisely, the first inference rule relates the two instances (g, i — 1) and (g, i) of the
grape g, which is idle in the ith step of the computation since it belongs to both
Gi.1—1I; and G, —(R;l20U I}). The second rule makes a grape instance greater than
the actual event it performs; the third one is symmetrical. The last rule sets the
causal dependencies between a grape instance and those grapes generated by it, but
not by the event. Actually, the mixed ordering of events of the mixed derivation is
determined by keeping only the events labelled by visible actions, and by restricting
the temporal and causal orderings accordingly. Below, Example 4.5 illustrates this
construction.
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Before giving the example, a further abstraction step is needed; derivations are
considered where only the temporal or the causal relations are kept.

Definition 4.4 ( partial ordering and interleaving many step derivations). Given two
CCS agents E; and E,, we have E, =" E, (called partial ordering many step deriva-
tion) and E,="E, (called interleaving many step derivation) iff there exists a mixed
derivation E,=“E,, with d =(S,, <, <), h=(S,, <) and 1 =(S, |, <).

Itis worth noting that we build our many step derivations by composing elementary
steps and then abstracting. The next example shows the role of relation & (see the
third derivation of the computation) and how causal dependencies are transmitted
through 7, and in general how partial ordering of events are obtained from computa-
tions.

Example 4.5. Consider the CCS agent

E = a.NIL| (8 .NIL|v.((8.8.NIL|%n.NIL+ 6.NIL)|8.NIL));

the grapes

go= a.NIL|id, g, =id|(B"NIL|id),

g,=id|(id]y.((B.8.NIL|7.NIL g;=NIL]id,
+6.NIL)|8.NIL)),

g.=1d|(id|((B.B8.NIL| n.NIL gs=id|(id|(id|8.NIL)),
+ 6.NIL)|id)),

ge=1id|(NIL|id), g;=id|(id| ((B.NIL|id)|id)),

gs =id|(id[((id| n.NIL)|id)), go=1d|(id|(id|NIL)),

210 =1d|(id|((NIL]id)]id)), g, =id|(id|(id| NIL)|id),

and the complete sets of grapes.

G()z{g(), gl’g?.}a Glz{g3a gl:g2}:
G2={g3s gl:g4n gS}a G3={g3: 86> g7s g8: gS})
Gy=1{g3, 86 &7, &, &9}> Gs=1{g3, 6> 10, &5, &o}>

Gs=1{g3, &> &10> 811 Lo}

We have that G,=dec(E), from which the following computation will start.
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[eth] [v9]
§={Go{g} —— {g;} G\ {gs} —— {g4, 85} G,

[rig,=ggt]

[8.4]
{81, 84} —— {86, 87} Gs {gs} —— {8} G4

{8 — {810} Gs {8} — > {g,,} G
Computation ¢ generates the mixed derivation
a.NIL|(B.NIL|7.((8.8.NIL|7.NIL+ 6.NIL)|5.NIL)
=< NIL|(NIL|((NIL|NIL)|NIL))

g0 g1 g,
[ 20|
(@
23

g3

g3

g3

&3

83 g6 g10 gg &9
©),

g3 g6 g10 €11 8

Fig. 6a. A graphical representation of the computation in Example 4.5.
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from which the following partial ordering and interleaving many step derivations
are extracted: h=(S, |, <) and t=(S, [, <), with

o S={e, e, e, es, €};

® [(e)=a, l(e)="7, I(e)) =38, I(es) =B, I(ec) =m;

® e, ey, 6,585, €, €,¢,

® ¢ e, e, Ke5%¢, €,5¢;.

Figure 6a depicts the computation £; Figure 6b is an intermediate snapshot in getting
the partial ordering many step derivation (after having determined the flow relation
F). Figure 7 shows h.

We can now state a fundamental theorem about our operational semantics of
CCS. The property expressed by Theorem 4.1 (called complete concurrency [18])

< , O) < s O> < s O>
¢] 91 92
e
1 ‘
< y 1> < , 1s ¢ s 1>
gs 91 2
é)‘@\
g 2 g 2 g ,2 g ,2
1 4 g
%3
g ,3 g .3 g_,3 g 3 g 3
% % 7 8 95
4 g .4 Cé) g
g, 4> < s 4 g, % < y ¢ , 4
3 9 7 9
e
@ 5
g ,5 g ,5 g 5 g ,5 . 5
e
| ‘
g, 6 < ’6, < 6> g ,6> < 38
3 gs 91 0 11 99’

Fig. 6b. The flow relation needed as an intermediate step to obtain its partial ordering of events.

(1) e
® o ©
35 e 84

Fig. 7. The partial ordering of the many step derivation of Example 4.5.

61@

2]
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relates the total and the partial orderings obtained from computations. More pre-
cisely, the first part of the theorem states that, given a computation, the events in
the derived mixed ordering of events (S, [, <, <) are generated in a total temporal
ordering that is, as expected, compatible with the causal ordering (< ¢ <). The
second and crucial part says that these events can be generated by different computa-
tions (with the same initial and final set of grapes) in all temporal orderings <’
compatible with the causal one (< < '), namely < is complete. Shortly, completeness
amounts to saying that any two concurrent events can be generated in either temporal
order. As we will see later, complete concurrency plays a crucial role in relating the
notions of partial ordering many step derivations with Milner’s and therefore in
proving that partial ordering observational equivalence and congruence are finer
than Milner’s.

Theorem 4.6 (complete concurrency). Given two CCS agents E, and E, and a mixed
ordering of events d =(S, I, <, €) such that E, = E,, we have that

e <c<x,

e V<' such that << <', there exists a mixed derivation E, =" E,, with d' =
(S, I, =<, €').

Proof. The proof of the first claim is immediate, the proof of the second one is
given in Appendix A. [

The next example shows how unguarded recursion is naturally dealt with in our
framework. It also gives evidence that unguardedness may lead to infinitely branch-
ing partial orderings that reflect unbounded parallelism.

Example 4.7. Consider the unguarded recursive agent rec x. a.NIL|x. It originates
the computation

&={{rec x. a.NIL|x}

[@,recx. a.NIL|x==id|rec. x. . NIL}x]

rec x. «.NIL|x NIL|id
{NIL}id, id|rec x. .NIL|x}

[a,id|recx. a.NIL|x=id]|(id|recx. a.NI1L|x}]

id|rec x. @.NIL|x id|(NIL[id)
{NIL]id, id|(NIL[id), id(id|rec x. a.NIL|x)}}.
(Note that, according to Milner, we would have
rec x. a.NIL|x = NIL|rec x. «.NIL|x —* NIL|NIL|rec x. a.NIL|x.)

We have that rec x. «.NIL|x =" NIL|(NIL|rec x. «.NIL|x), where the partial order-
ing of events h consists of two concurrent events labelled by «. Figure 8 shows an
intermediate step in getting h, i.e., the flow relation.
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«arec x.o NILIx, O»
ddlrec x.o0 .NILIx, 1>

<NILlid, 1> <dl(idlrec x.oc NILIx), 2>

ddi(NILlid), 2>

Fig. 8. The flow relation needed as an intermediate step in getting the partial ordering of the many step
derivation of Example 4.7.

We have already noted that, due to the assumption of centralized control, there
is a natural bijection between the states of the interleaving and of the partial ordering
computations: the states of partial ordering computations are all and only complete
sets of grapes, i.e., decompositions of CCS agents. The following theorem shows
that interleaving many step derivations coincide with Milner’s, since total orderings
of events are considered as the sequences of the labels of their events.

Theorem 4.8 (deriving Milner’s many step derivations from mixed ones). Given two
CCS agents E and E’, we have Milner’s many step derivation E =° E' if and only if
there exists an interleaving many step derivation E =>° E’.

Proof. Let

leo2] (e,2,0
fz{Goll’__"-’ neG Gy I, —— I,,G,,}

be a computation such that E =’ E’ holds. We build, by inducing on the length of
¢, a sequence of Milner’s derivation rules

E=E—" > E E,—2>F, - E, ,—" . E =E'
such that E="E'.

When there is no step, the claim follows trivially. Assume inductively that the
thesis holds at the ith step: we have then that there exists an agent E,_, such that
G;.y=dec(E;_,). By Theorem 3.11 and by definition of computation, there exists a
set of grapes I such that G, —L=1, Gi—(Rl20 L)=1, and I, =" [ if
E; ,—" E,;, with dec(E;) = G,. Since both many step derivations forget s, the proof
of the inductive step follows. The proof of the only if part is symmetric. [

A consequence of Theorems 4.6 and 4.8 is that Milner’s many step derivations
can be easily recovered from partial ordering many step derivations, the former
being just linearizations of the latter. In other words, the original interleaving
operational semantics for CCS is immediately retrievable from ours, since there is
a syntactical bijection between the two kinds of derivation.
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Theorem 4.9 (Milner’s many step derivations are interleavings of partial ordering
many step derivations). Given two CCS agents E, and E,,

(i) if there exists a partial ordering many step derivation E,="E,, where h=
(S, I, =), then, for all s=(S, 1, ) such that << <, we have Milner’s many step
derivation Ey="E,;

(ii) for all Milner’s many step derivation E,=>"E,, there exists a partial ordering
of events h =(8S, I, <), with < < < (s is considered as total ordering of events (S, I, <)),
such that E,=" E,.

Proof. Theorem 4.8 relates Milner’s many step derivations with our interleaving
many step derivation. Then, Theorem 4.6 suffices to prove the claim. []

So far, we have abstracted from actual computations to obtain many step deriva-
tions by forgetting the intermediate states of computations, the actual temporal
ordering in which their events have been generated, and the events labelled by
However, we have not yet defined any (semantic) equivalence on CCS agents. Now,
we will further abstract from the syntactic structure of agents by defining an
equivalence relation over them. The very basic correspondence established by the
above theorem makes it possible to carry over the partial ordering approach to the
extensional semantics for CCS defined so far (e.g., see [27, 29, 15]). In what follows,
we will extend the approach of [29] and define an observational equivalence based
on the notion of bisimulation, but this time we rely on partial orderings (") rather
than on sequences of actions (=>"). The following definition thus rephrases
Definition 2.3.

Definition 4.10 ( partial ordering observational equivalence). (1) If R is a binary
relation between CCS agents and h is a partial ordering of events, then @, a function
from relations to relations, is defined as follows: (E,, Ey)e @(R) if
(i) whenever E, " E/ there exists E} such that E,=" E} and (E}, E))e R,
(ii) whenever E, =" E/, there exists E| such that E, =" E| and (E}, E)€R.
(2) A relation R is a bisimulation if R< O(R).
(3) Relation ==|J{R|R< O(R)}, is called partial ordering observational
equivalence.

Proposition 4.11.
® Function O is monotonic on the lattice of relations under inclusion.
® Relation = is a bisimulation and equivalence relation.

Example 4.12. 1t is easy to verify, for every agent E, that
(a) the following equivalences hold
(i) a.E=a.71.E,
(ii) «.E=r1.0a.E,




246 P. Degano, R. De Nicola, U. Montanari

(iii) a.(B.E'+7.v.E)tayvE=a(B.E'+7.v.E)
(note that (i) and (iii) are two of the 7-laws of [27]);
(b) it is not true that «.NIL|B.NIL= o.8.NIL+ B.a.NIL.

Not suprisingly, the above defined partial ordering observational equivalence is
finer than observational equivalence.

Theorem 4.13 (partial ordering equivalence is finer than observational
equivalence). Given two CCS agents E, and E,, we have that Ey= E| implies E,~ E,,
but not vice versa.

Proof. To show that = implies = it suffices to prove that, given any bisimulation
relation R, based on partial ordering of events and such that (E,, E;)e R, it is
possible to define a new relation R;,, based on total ordering of events and such
that (E,, E,)€ R;,, and R;, < @(R;,). This is easily done, since E =" E’ implies
E ='E’, for all t2h, by Theorem 4.6. Thus, we can choose R;, to be R,, itself.
The claim follows, by applying Theorem 4.8 which establishes the one-to-one
correspondence between interleaving many step derivations and Milner’s. Example
4.12(b) shows that E,~ E, does not imply E,=E,. [

Theorem 4.14. Partial ordering observational equivalence is preserved by operators
NIL, 4, \a, [¢] and |.

Proof. See Appendix B. [

We will now refine the notion of partial ordering observational equivalence so
that the new relation is preserved under all contexts. The following definition follows
the pattern of the context independent characterization of observational congruence
given in Section 2. Again, two agents are congruent if they are equivalent and,
whenever one may perform at least one 7, the other may do so as well, becoming
equivalent agents. We need a definition first.

Definition 4.15 (nonempty sequences of silent transitions). We write E =" E’ if and
only if there exists a computation with at least one step involving only partial
ordering derivations labelled by r.

Definition 4.16 ( partial ordering congruence). Two CCS agents E, and E, are partial
ordering observational congruent, written as E, =° E,, if and only if
(i) Eo=E,,
(ii) whenever E, =" E, there exists an agent E | suchthat E,=" E{and E,=E/,
(iii) whenever E, =" E{, there exists an agent E} such that E,=" E} and
Ei=E].
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Theorem 4.17 (=° is preserved by all contexts). Relation =° is a congruence.

Proof. Let E, E,, E, be CCS agents. The proof proceeds by case analysis on the
operators of CCS, under the hypothesis that there exists a bisimulation relation R
containing the pair (E,, E,) i.e., E, =°E,.

The proof in cases (act), (res), (rel) and (com) is immediate since item (i) has
been established by Theorem 4.14, and proving items (ii) and (iii) is trivial.

(sum) The only difficult part of proving that E,+ E = E,+ E (and symmetrically
that E+ E, =° E+ E,) is showing that E,+ E = E,+ E, i.e., when E,+ E =" E} also
E,+ E =" E} with E{= E}; and vice versa. When E, moves via visible actions, the
proof is trivial. When E,=" Ej, also E,=" E;, for E,=°E, by hypothesis (in
particular, note that item (ii) holds); and vice versa.

(rec) The proof can be carried on by following step by step the corresponding
proof for the original interleaving semantics (Proposition 2.7 of [29]). We need
extending observational congruence to open terms in order to prove that, given two
open terms E, and E,, E, =° E, implies rec x. E, =°rec x. E,. The only difference
with the proof of [29] is due to the definition of bisimulation. There, it is based on

single-step derivations, while in our case it relies on computations of arbitrary length.
" Thus, an additional induction on the length of computations is needed. [

As expected, partial ordering congruence is finer than observational congruence;
furthermore they concide when dealing with nondeterministic sequential processes
only.

Corollary 4.18 (partial ordering congruence is finer than observational con-
gruence). Given two CCS agents E, and E,, we have that E, =° E, implies E, = E,,
but not vice versa.

Proof. The implication follows from Theorems 4.8, 4.9 and 4.13. Example 4.12(b)
shows also that the reverse implication does not hold. [J

Not surprisingly, the partial ordering equivalence and congruence relations
coincide with the original relations introduced in [29] when they are restricted to
sequential nondeterministic processes.

Theorem 4.19 (partial ordering congruence and observational congruence coincide
on sequential processes). Let SEQ be the set of CCS agents in which | does not occur.
The restriction of =° to SEQ x SEQ coincides with the restriction of =° to SEQ X SEQ.

Proof. If E, is in SEQ and E,=°"E,, Then dec(E,) is a singleton and such are all
the intermediate sets of grapes in the computation. All partial ordering many step
derivations E,=‘""* E, are such that < is a total ordering of events. Thus, we
have that E,=°E, iff E,=“E,. [
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5, Conclusions and related work

A partial ordering semantics for CCS has been presented which is based on a set
of rewriting rules given in the SOS style, and on a notion of observational congruence.
A rewriting rule describes the evolution of sets of sequential subagents which are
obtained by decomposing CCS agents, and expresses the causal relation among the
initial subagents, the performed action, and the resulting subagents. The congruence
abstracts from internal behaviour but still distinguishes concurrent execution of
actions from their nondeterministic interleavings, and preserves information about
the causal relation among them.

To make the choice of a particular true concurrent semantics less arbitrary, in
[11] we state two criteria we consider essential to assess any new partial ordering
semantics of a language previously equipped with an interleaving one:

(i) the interleaving semantics must be retrievable from the partial ordering
semantics;

(ii) the partial ordering semantics must capture all and only the parallelism
present in the language, as expressed, for example, through a multiset operational
semantics.

In this section, we will discuss the adequacy of our semantics and its relationship
with other work with the same objectives, by checking whether they satisfy the
above criteria, and by discussing the discriminating power of the proposed
behavioural equivalences.

Theorem 4.9 guarantees that our semantics satisfies criterion (i), i.e., there exists
a Milner’s many step derivation if and only if it corresponds to a linearization of
the events of a many step partial ordering derivation. It should be noted that there
indeed exists a direct syntactic correspondence between agents and the sets of grapes
reachable through derivations, between Milner’s rules and ours, and, finally, between
the proofs of either derivations. In fact, criterion (i) is shown to hold by a straight-
forward structural induction. We should like to stress that another by-product of
the direct correspondence is that proof techniques developed for the interleaving
approach can be borrowed, as done, e.g., in the proofs of Theorems 4.14 and 4.17.

We have not proved criterion (ii), but we claim it. The proof, as shown in [11],
would require the introduction of a multiset transition system in which transitions
are labelled by multisets of actions, rather than by single actions. The new transition
system makes the concurrency of CCS agents explicit by describing the effect of
performing concurrent actions simultaneously. The multiset operational semantics
can be defined by extending and modifying the inference rule for communication
between agents, so that a multiset of actions could be performed and pairs of
complementary actions could be synchronized (see [28, 1]‘for something in this
line). Once multiset transitions have been defined, criterion (ii) can be stated as
follows. A partial ordering obtained from a computation of an agent contains a set
of concurrent events S if and only if there is a multiset derivation the label of which
contains all and only the labels of S. The proof of this fact is omitted here since it
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requires long and tedious work, similar to that used to establish the relationship
between the partial ordering and interleaving semantics. More precisely, a mixed
ordering which also contains sequences of multisets of actions must be defined; the
multiset counterpart of complete concurrency must be proved; and eventually it
should be shown that the partial ordering equivalence implies the multiset one.

It is important to note that the criteria (i) and (ii) express the minimal requirements
for a partial ordering semantics. Indeed, they only guarantee that the proposed
semantics is not in contrast with the interleaving one and that no potential concur-
rency is lost; nothing is required for ensuring that all and only the causal relations
conveyed by terms are made explicit. A possible way of gaining more confidence
in a partial ordering semantics could be checking it against a denotational semantics,
based for example on Event Structures [41]. In [12], we have pursued this line by
using the distributed operational semantics of [11] to associated Labelled Event
Structures to CCS terms. This construction enabled us to prove the consistency of
the operational semantics with the denotational one. We have not yet investigated
the possiblity of taking a similar approach when starting from the operational
semantics of this paper. Certainly, the construction of Labelled Event Structures
will be more involved, due to the centralized treatment of choice and recursion.

Once criterion (ii) has been established, it is not difficult to see that multiset
equivalence is coarser than our partial ordering equivalence, whichever abstraction
mechanism is chosen. Indeed, a multiset equivalence does not respect causal depen-
dencies, as shown by the following example. The agents

a.NIL|8.NIL+ a.8.NIL and «.NIL|B.NIL

are multiset equivalent, but they are not partial ordering equivalent.

Although the example above and Theorem 4.17 may support the choice of partial
ordering congruence as the basis for truly concurrent semantics, there are also
situations in which this congruence is not completely satisfactory. Indeed, it does
not completely respect branching time. For example, the following agents are partial
ordering congruent

a.(yv.NIL+8.NIL)+ @.NIL|y.NIL+ a.v.NIL

a.(y.NIL+ 8.NIL) + «.NIL|v.NIL.

Nevertheless, the first agent may cause via an a either (y.NIL+ 8.NIL) or just
v.NIL, while the second has no choice.

When branching time is felt to be important, alternative approaches can be
followed, still using as a starting point the rewriting rules used in this paper.

In [9] we introduced a néw partial ordering equivalence which, like the one
of this paper, is based on bisimulation but it does respect branching time. The
additional discriminating power is gained by resorting to so called Nondeterministic
Measurement Systems (NMS), a particular kind of node labelled trees which give
an integral representation of the computations of agents. More precisely, an NMS
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associated to an agent E is a tree the nodes of which are the computations of E,
ordered by prefix; its nodes are labelled by the relevant information about the
computation performed so far. Two agents are considered as equivalent whenever
their NMSs are bisimilar.

Clearly, we can use the labels of the mixed derivations obtained of Definition
4.3 to label NMSs and obtain an observational equivalence which fully respects
causality, nondeterminism and their interplay. This equivalence can easily be proved
finer than the equivalence of Definition 4.10; and can be proved equivalent to an
adaptation to our setting of the equivalence proposed in [43]. For example, the two
above agents would be differentiated by the new NMS equivalence, since they
generate two NMSs which are not bisimilar. The two NMSs are depicted in Fig. 9,
where the nodes are labelled by partial orderings only; both the computations
corresponding to the nodes and their generation orderings can be easily inferred.

Fig. 9.

There have been earlier attempts to define a partial ordering operational semantics
for CCS. However, either proper subsets of CCS have been considered or the
interleaving semantics is not the standard CCS one or a formal proof has not been
given. Our attempts [8, 9, 10, 11] have already been summarized in the Introduction.
We would like to add that in [8], we label every transition with that part of its proof
which is needed to recover causality; a similar approach has been followed by in
[44] where the whole proofs are used as labels instead. De Cindio et al. [13] map
into a subclass of Petri Nets a version of CCS which does not allow the generation
of unboundedly many agents in parallel, such as rec x. «.NIL|B.x. Goltz and Mycroft
[19] give a denotational semantics of CCS in terms of Occurrence Nets and an
operational semantics in terms of Place/Transitions Nets which does not satisfy
criterion (i) (see [10] for an example). Winskel [41, 42] proposes two partial ordering
denotational semantics for CCS based on Event Structures and on Petri Nets. He
claims that his semantics agrees with Milner’s without giving any formal statement
of the satisfaction of any criteria similar to (i) and (ii) above. The approach of [10]
is refined in [34] to give a distributed account of + and rec; Olderog uses a slightly
modified version of our decomposition function and proposes a set of derivation
rules very similar to those of [11] to obtain a partial ordering semantics of a language
(CCSP) with many similarities to CCS. Satisfaction of criterion (i) is proved, but
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more involved and less general conditions are stated in place of criterion (ii), and
not formally proved.

Recently, Darondeau and Degano [7] proposed a new interleaving-like
operational semantics which is nevertheless capable of expressing causality, and
provided a complete axiomatization (for finitary CCS) of a congruence based on
bisimulation which is as discriminating as the one based on NMSs when labelled
by mixed orderings of events.

There are also several papers which aim at providing languages traditionally
equipped with interleaving based semantics with partial ordering preserving
behavioural equivalences. Castellani and Hennessy [6] provide a fragment of CCS
with a semantics based on rewriting rules and bisimulation. Synchronization and
restriction are not considered and only single-step derivations are defined. Their
observational equivalence does not seem to be comparable with ours even for the
common sublanguge. However, the relationships have not yet been fully investigated.
In [21], van Glabbeek and Vaandrager propose a Petri Net semantics for finite ACP
processes and define two congruence relations (pomset and generalized pomset
bisimulation) which seem to coincide with our partial ordering and (partial ordering
labelled-) NMS equivalence, respectively. Boudol and Castellani [2] consider an
algebra of labelled event structures (without restriction and communication) and
define a complete set of axioms for a congruence relation which, we feel, coincides
with pomset bisimulation and with the congruence introduced in this paper. None
of the above operational approaches considers a language with operators for both
recursion and restriction. It is not clear to us how and whether their results could
be extended to cope with this significant mixture.

The results presented in this paper certainly require further improvements and
extensions. Obviously, the relationships among the various partial ordering
equivalences should be assessed, and other notions of equivalence defined and
studied. For example, it should be worthwhile to extend to true concurrent models
those equivalence or pre-order relations already introduced and proved interesting
for interleaving models [15, 33]. More generally, criteria must be established to
judge the adequacy and feasibility of equivalence relations for concurrent systems.

Appendix A

The proof of complete concurrency is based on the following steps.

(i) Given a computation, we define its observation which extends the notion of
mixed derivation of Definition 4.3 in that it is labelled by mixed orderings of events
also containing events labelled by =

(ii) We show that, given two consecutive concurrent events originated by a
computation, there always exists another computation which generates them in the
reverse ~ order.  More  precisely, given a  two-step  computation
{Gol, =) [ G, I, =" [1G,}, the two events originated by it can also be
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generated in the reverse order, provided that no grape of I} is used by the second
partial ordering derivation, namely when IinI,=@ (note that %,|2n I, may be
nonempty).

(iii) We further extend the result above to any set of concurrent events.

(iv) We prove that discarding the events labelled by 7 does not affect the overall

result.
Recall that two isomorphic ordering of events will be considered identical.

Definition A.1 (observation). Given two CCS agents E; and E,, with dec(E,) = G,
and dec(E,)= G,, and the computation

[p,, 22,1 [m,. 2,1
E={Gol, ——5I'G, - - - G,_, I, ——" I,G,}

we call observation of ¢ the mixed ordering of events 0=(S, [, <, <), labelled on
A u{r}, defined by items (i) and (ii) of Definition 4.3, and by the following
(iii') S=S"={e}; I(e;) = p;; restrict F*to S; and ¢, ¢, I<i<j<n

Lemma A.2. Given a two-step computation

[p, 2] [y, 92,
{G()I]”‘“_"—"'}I Glz""’“""‘"‘““’I G’)} Wllh]lﬁl Q)
(i) its observation is 0 =(S, I, <, <), where
S={e,, e}, I(e)) =1, (&)= po, eyse, e, e Xe,
e., the two events are concurrent;
(ii) there always exists a computation

[pq, 2]

[m,,2,]
{Gol, ILG, I, —= I1Gy}

with observation o' =(S, [ <, €', where e, €' e,;

(iii) the same causal dependencies expressed by F* are obtained among the elements
of Gy, those of G, and events e, and e, while determining the mixed derivations of
either ¢ or &',

Proof. The proof of the first claim is immediate. Items (ii) and (iii) are proved by
induction on the maximal number of steps needed to infer I, —!*v?J ! and
1'2_>[N~2,%3] I},

The base case is when n = 2. Indeed, in order to have two concurrent events, the
deductions of both derivations must make use at least of the axiom (act) and of
the inference rule (com) of Definition 3.8 and G, can only be of the form
{p,.E,|id, id| u,.E,}. The proof of the base case is now immediate.

Let us prove the inductive step by case analysis on the syntatic structure of the
grapes in the complete set of grapes G, (notice that they have all the same structure).
For the sake of brevity, in the rest of the proof, we will call equivalent two
computations the observations of which differ only in the total ordering, and such
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that the same causal relation F* among the elements of G,, those of G,, and events
e, and e, holds.

(act): The axiom of Definition 3.8 can never be used in the last step of a proof
longer than 2.

(res): If, from

[se,, ] [y 9251
{Go I, ——— I} G, [, —2=

I; Gy}
we can generate the equivalent computation

(eey R,1 (1. 2,1
{Go 12—“‘“1—" 15 G, 11“”_1“‘2"" I Gz},

then from

[y \a] [y 2\ ]
{G\er I\a =" I\a G\a T\a —22% [\a Gy\a)
we generate the equivalent computation

fr B\l

AT ,
{Go\a L\a =255 e G\ I\« I'Ne G)\a}

where the length of the deductions of both I,—!M#d [\ and I, 1 s
increased by 1.

Analogously for (rel).

(sum): If, from

Luy 92,1 [rg, 2,1
{dec(E)T, — I G, I, —2

I/2 G2}9

with I, = dec(E, - I), we can generate the equivalent computation

(pye ] Loty 92,)
{dec(E, - L) I, — 16 I, ——— I} G},
with I, =dec(E,—I;), then from

[ JE+E}=(uR |2)] [rey.2,]

I; G, I, ——— I Gy}

{E+ EHE,+ E}

we generate the equivalent computation

2AEFEY=(1,u2,12)]

[ [pty 20,]
{E,+ ENE,+ E} — I, G, I, —25 1 Gy

(com): The inductive step for the two first (com) rules can be proved following
the same pattern of the proof of case (res). Let us consider the most complicated
case of the third implication: both events observed from the given computation are
labelled by 7. Two further cases may arise.

(i) In the first case we inductively assume that (indexes 1 and r stand for left and
right) from

(A1)

[A,,?1]
{Gy I 11 GV I —"— 1} GY)
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we can generate the equivalent computation

(A1 [r,.2)]
(G, I, —""= I} G\ I\, ——— I G}}

and that from

. Ay [A5.45]
{Go I} ——— I Gl I; ——— I3 G3}

we can generate the equivalent computation

2

(A7, r r
15 Gy I ——— I G3}

[A5.271

{Go I3
By applying the third case of rule (com), we obtain from

(r9lliduidi]]

{Gyliduid|Gj I]iduid| I} —————— I''liduid| I}

. X e or- . . [ralidwid|9]) e . - - i .
G\liduid| Gy Iyliduid| T IFiduid| Iy Ghliduid| Gy,

we generate the equivalent computation

[r.2 liduid|ge]

{Gyliduid| Gy Ih)iduid| 15— I}|iduid| Iy

e . E e ey g IElidoiden .
_G,hd\_ndlg, IllldUIdlI, —_— I Ilclund[Il Gzllduuile}.
(ii)) The proof is straightforward in the other case which occurs when we induc-
tively assume that from

[A [730

P el D)
{Go I, ——— I G, I,———— I} Gy}

we can generate the equivalent computation

4

Cor Daed o Dyl
{Go In——— 1, G\ I, ———— I} Gy}

and that

(A7.95]

[As, R0 ,
{(Gy IT —22 5 IF GY I — I G

(rec): Analogous to the proof of (sum).

Corollary A.3 (two consecutive concurrent events can be generated in either order-
ing). Given a computation ¢ with observation 0o =(S,l <, <), let e and ¢’ be two
concurrent events generated according to Definition 4.3 in correspondence to two
consecutive occurrences of partial ordering derivations. There always exist a computation
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& with observation o' = (S, I, =, £'), where

< =(€-{e<geufe' e}

Proof. Let

[I"ps%;] . [F“H. ~'(jﬁ3+ 1
E={Gy - Gy [;—> I Gi Iy, —_— i1 Gy - - G}
where events e and e’ are originated by the ith and (i+1)th partial ordering
derivations. By applying Lemma A.2 it is easy to construct the required computation
which is as follows.

TIN

1
§,={Go o Gi~1,1i”“"“"_>,” Giliv

Lo 2,0,

_;+1 Gi+1 e Gn}

The only check to be performed is that the partial ordering of the observation of
& is indeed =<. This follows immediately by noticing that the causal dependences
F* obtained among the elements of G,_;, those of Gi., and the events while
determining the mixed derivation of
[pio ] Tty #i0d
{Giy Ii”i-——) I Gi 1y EEALMLLN te1 Giatd

are, by Lemma A.2(iii), exactly the same causal dependencies set while determining
the mixed derivations of

(a4 2251 (2001

{Giwl.!i_—_——“"')_l; Gili4»1”;”;;*,§—r1 GH-I}- O

Lemma A.4 (two concurrent events can be generated in either ordering). Given two
CCS agents E, and E, and an observation 0 =(S, I, <, <) such that there exists a
computation from E, to E, with observation o, we have that for all <' such that << </,
there exists a computation from E, to E,, with observation o' =(S, I, <, <').

Proof. Let = be the set of all the computations from E, to E, originating the same
partial ordering of events (S, [, <) according to Definition 4.3. We have to prove
that, given the partial ordering of events (S, <) and a total ordering <'=
{e,<'eli<jl=eye, -+ - e on the events of S such that << <, there exists a
computation £ € = with observation o' = (S, I, <, <'). Let ¢° be a computation in
H. We construct a sequence of computations {£°, &', ..., ¢, all in E, with the
intuition that &" originates a total ordering the first h elements of which are the
same h first elements of <’ (of ¢').

Assume that &» € 5 has observation o’ = (S, [, <, /). If </» =</, the required
computation is found. Otherwise, assume inductively that </» has the same n first
elements <’ has, and that e, occurs as the (m+1)th element, i.e., </ =
Cp €1 "y y€hnCm_y e, e. Using Corollary A3 it is easy to construct a
computation &'  with  observation (S,I <,<”*')  where <M=
€0 € ...Cn 1 Ch... e €m_...e.lnTfacte, and e, _, are concurrent, for they appear
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in reverse order in <’» and <’, which both contain <. Performing a total of m—n
exchanges we obtain an observation the total ordering of which is </»"" ™" = </u*!
and the inductive step is proved. [J

Theorem 4.6 (complete concurrency). Given two CCS agents E, and E, and a mixed

ordering of events d =(S, I, <, <) such that E, = E,, we have that

& =c ¥;

® V<' such that <c <', there exist a mixed derivation E,=" E,, with d' =
(S, =, <),

Proof. Let £ be a computation, o =(S5° [°,<° <°) be its observation and d =
(S, I, <, <) be its mixed ordering of events. We have that S = S°—{e|l(e) = 7}, since
Definition A.1 is obtained from Definition 4.3 by modifying item (iii) only, used
there to discard events labelled by 7 and to accordingly restrict [, <, <. The first
claim is obvious. We are left to prove the second claim: a total ordering <’ on the
events of S is given such that < < <’, and we must find a computation &' with mixed
ordering of events d'= (S, [, =, <’). Tt suffices to find a total ordering < such that
<%c <% and its restriction to S is <'; this is because Lemma A.4 can then be
applied. Such a < does exist, since relation R = <'U <° is a partial ordering (only
the events labelled by 7 may be unrelated). In fact, a cycle in R would imply the
existence of a cycle either in <’ or in <°, for < < <'. Indeed, we can choose as <
any totalization of R, obtained by adding the necessary pairs u <° 7 or 7 < 4,
and removing reflexivity. [

Appendix B

Theorem 4.14. Partial ordering observational equivalence is preserved by operators
NIL, w., \a, [¢] and |.

Proof. Let E, E,, E, be CCS agents. The proof proceeds by case analysis on the
operators of CCS, under the hypothesis that there exists a bisimulation R containing
the pair (E,, E)), i.e., E,=E,.

(act): It suffices to prove that adding to R the pair the pair (uE,, nE,) results
in a bisimulation. We distinguish two cases. If u # 7, let us consider a computation
for which wE, =% E{, and call e the event corresponding to its first quadruple
{wEy} =" dec(E,). There exists then another computation such that
E, =YY" El  with §'=S-{e} and <'=<-({e<elufes< e'le’'e S'1). By
hypothesis, we can always grow a computation for which E, =" E{  with
Ey=E]; and from this the required computation such that uE, 2" E|. And
vice versa. If w =7, obvious.

(res): We have to prove that E;\a = E,\«a. The proof is easy: if there exists an
agent Ej (of the form E\«) such that E,\a =" E} (i.e., for whichever computation
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you choose from dec(E,) to dec(Ep) with no quadruples of the form I —!*% 1),
by hypothesis E,=E, we can always find an agent E} such that E,=E/ and
E\a =" E (i.e., there exists a computation from dec(E,) to dec(E}) with no
quadruples of the form I —'*! I}, And vice versa. Thus, the required bisimulation
is R'={(E\a, E\a)|(E, E"Ye R}.

(rel): Trivial, since ¢ is a permutation of A u {7} that preserves 7 and 7: the
required bisimulation is R'={(E,[¢], E,[¢1)|(E,, E,)€ R}.

(com): We only consider the case of right | context; the other case is symmetrical.
The required bisimulation is R'={(E,|E, E,| E)|(E,, E,Y€ R}. In order to support
our claim, we now prove that whenever Eo| E =" E{|E' then E,|E =" E||E’ and
EHE’EEHE'. By a symmetric argument, R’ is therefore a bisimulation. This is
the most difficult case to be proved, and, in order to guide the reader in understanding
the proof, we first consider the case when there is no communication between E,
and E. Then, we prove the thesis for a single-step computation consisting of a
synchronization. Finally, we extend this result to the general case.

In the first case, for every computation of E,|E with no communication

[ey.92,]
& ={dec(E,)|iduid|dec(E) I, —20, 11 g, ...

[m,. 2,1 ) .
G, I, —= s ! dec(Ej)|iduid|dec(E")}

with h = (S, [, <) as label of its partial ordering many step derivation, we must find
a computation of E,|E with no communication

& ={dec(E,)|iduid|dec(E)} I, —=21 11 G, - - -

o
[ Hopn "ﬁryx

1
..Gm*l ;.Im ——> .I:n deC(Ell)IldU ldldeC(El)}a

with the same h as label of the partial ordering many step derivation, and E)|E'=
Ei|E".

We can write each (occurrence of) complete set of grapes G, as G\ |iduid| G,
(index 1 is for left, r for right), where G (G%) is a(n occurrence of) complete set of
grapes to which dec(E,)(dec(E)) has evolved. Now, since there is no communication,
it is possible to partition &, in two parts: the first one contains those quadruples
involving only grapes in G| |id; the second part contains those quadruples involving
only grapes in id| G%. This can always be done, by looking whether I, < G} |id, or
I, <id| G.

The partition above induces a partition on h in h' and h", as well. The events of
h are then accordingly partitioned depending on whether they correspond to the
quadruples in the left or the right part of &, respectively. It is important to note
that, since I, N I; =, for all I, < G}|id, I < id| G}, all events of h' are concurrent
with those of h".
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Two computations can now be generated from &, by “splitting” each quadruple
in its premises, more precisely
o 1 Sl 1 with I < GY|id, originates I} —'"" I where R}|id =, I}|id =
L, I'id=1};
° I N #111 with [, <id| G?, originates It —"+%) [/", where id| &= %;, id| I =
L, id| IA;I_ IA;'
We obtain the following computations

'l'l
F’IU

ol
g() {deC(EO) Il ———— Ill G]] .« e Glp‘—l Ilp

[w). 9201

— " I dec(E})}

[i].2]) L 05

£o={dec(E) I I G- Gy f,~—--———>1”deC(E )}

which give rise to partial ordering derivations which are (isomorphic to) h' and h":

h* =(S* I, <™) (with x =1, r), where

® S*={¢c S|e is generated accordingly to Definition 4.3 in correspondence to
I =t 1y,

® [* is the restriction of 1 to S™;

o <"={¢=<e¢le, €S}

By hypothesis, E, and E, are partial ordering equivalent, thus we can find an agent
i partial ordering equivalent to Ej, such that E, = E. This partial ordering

derivation is obtained by a computation, say

[u]. 2]} [, 2]

= {dec(E,) I} IVGY - G 1 T 1 dec(ED)).

Eventually, we can “‘put Humpty together again” first by inferring from quadruple
o I\ >l [ j<j<z the quadruple

[u) 2t lid] [1.R;]

I'id —L— [Mid=] —2— 1,
o [l [r 1<j<g, the quadruple

(whuid;) [w}.92;]

id] 1 — | 1= s

and then by generating the following computation.

={dec(E,)|iduid|dec(E) I, e I, Guid|dec(E) - - -

(2,1 . .
L dec(E})|iduid|dec(E) (coming from &}),

Loy 92,]

I,——— I, G.lidnid|G} - - -

(g9, ]

-1, — I, dec(E)|iduid|dec(E’)} (coming from &5).

Computation ¢, is indeed such that E,| E =" E|| E’, and thus the proof is completed
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in the case of no communication. Actually, Theorem 4.6 stating complete concur-
rency makes it possible to compose computations &) and &, because the quadruples
in the former generate events which are concurrent with all those generated by the
quadruples in the latter.

We now consider a computation containing only a single quadruple resulting
from a synchronization, i.e.,

[r, R}

& ={dec(E,)|iduid|dec(E) I —— I' dec(E})|id uid|dec(E’)}
with empty partial ordering as label of its derivation. We must find a computation
of E\|E

[r2]
& ={dec(E,)|iduid|dec(E) 1 ——— I' dec(E})|iduid|dec(E")},

with the same empty partial ordering labelling its derivation, E,\|E'=E}|E". Again,
two computations can be generated, by “splitting” the quadruple in its premises,
more precisely I =1 " originates I' = 1" and I' =727 17 where I'lidu
id|I"=1 I"|iduid|I"=1I', and ®'[iduid| %"= %.

We obtain the following computations

AR
£ = {dec( Ey) I' ——— I" dec(ED)};

- Rr

¢ = {dec(E) I'——2L, 1" dec(E")},

that generate one new event each, say, e' and e, and have the following partial
ordering derivations

hi={e}, {l(e) =), {e'= e
hi={e}, {l(e) =17}, {e"< e}

By inductive hypothesis E, and E, are congruent, thus we can find an agent E|
equivalent to Ej{, such that E, =" E!. This partial ordering derivation is obtained
by a computation, say

v 1 A2 " '
& ={dec(E\) I ———1 dec(E})}.

We can now “put Humpty together again™ first by inferring from quadruples

[A,%'id] [r-.idlo"]
I'fid — 1")id and id|I" 2% id| 1"
the quadruple

R\ R (R
R L e §
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and then by generating the following computation

[n2]
& ={dec(E))|iduid|dec(E) I ——— I’ dec(E})|iduid|dec(E")}.

Obviously E,|E =" E{|E".

Now we can better face the general case, by using the facts proved above. Suppose
we are given the following computation

[ry,9,] , [75,9,] , [r,.9,] ,
o=, — I hL——— 15 - I, ———— I, 4,

where &y, A, ..., o, denote (possibly empty) segments of computation without
communications, and the invisible actions due to the n communications carry indexes
in order to uniquely pick them up. We can split &, as we did in the two cases
above, obtaining the following computations.

(A1) [A;.4)
£y= A\ ——— I, ——— 1] .- I,

int
(r,.2,1

I".szi'

r royr (A7, Io_groyr ~or] /r r (A9, ro_gr
§o=&¢011m->11&¢112—> 1,4,
Computations &, and £} originate partial ordering derivations labelled by the partial
orderings h' and h", respectively. As done before, we can obtain the following

computation originating, by inductive hypothesis, a partial ordering derivation with
partial ordering h' as label.

A2l A e 23|
=41 ———-—> &412—————-——->I
[a,. 2]

| nn gl
.ln ‘gn'

We may now compose &) and £, to obtain £,, by iteratively interleaving their parts
without communication and “‘synchronizing” the quadruples with action A; and A;.
in doing so, two cases may arise, depending on whether the actions used for
synchronization are generated in the same order or not. More accurately, whether
Ai=(A7) orA; # (A7) In the first case, no trouble arises and the required computa-
tion is simply

L7y, 219}

. ;) . :
é=dosly Ii| [\ ———— I{| IV s\t - -

1 v L7, 2171 g gl r
In’In_—___-»_InlIn ‘an&qn

where I'| 15— 2% [ [ are obtained from I'—+%) [ and TL =081 1 a9
done above. Since computations &, and £, have the same label h and are sewed
with &, in the same manner, the recomposed computation £, originates the same
partial ordering derivation of &,.

When there exist quadruples with A; # (A7), we have to rearrange computation
¢, in order to go back to the previous case, and “put Humpty together again”
properly. This can always be done, since these quadruples generate the corresponding
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events in different total orderings, and thus these events are concurrent. Thus, we
can apply Theorem 4.6 to switch transitions in £} and still obtain a legal computation
originating the same partial ordering derivation with label h'. [
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