
Ontology-based Representation of IFC EXPRESS rules: an enhancement
of the ifcOWL ontology

Walter Terkaj, Aleksandra Sojic

Institute of Industrial Technologies and Automation (ITIA-CNR), Milan, Italy

Abstract

Semantic Web technologies are becoming more and more appealing to the community of the Industry

Foundation Classes (IFC) users. The recent actions towards the development of an OWL version of the

IFC schema (named ifcOWL) evidence the effort of facing the community request to specify IFC in an

ontology language. This paper presents an enrichment of the EXPRESS to OWL conversion patterns with

OWL class expressions that specifically capture certain constraints of the IFC standard. The presented class

expressions can be used to improve the robustness of ifcOWL and support data integrity, consistency, and

applicability across various scenarios of industrial application. In particular, the rules defining the relation-

ships between non-abstract subtypes of IfcObject and corresponding subtypes of IfcTypeObject are

analysed and converted into novel class expressions. The proposed additions to the conversion pattern have

been implemented into a software tool and the resulting ontology was tested against a use case to show

the benefits of the new solution with respect to a basic ifcOWL. The novel conversion pattern enhances

usability of the ifcOWL ontology by enabling its direct instantiation, without necessarily going through the

intermediate generation of a STEP physical format that is then converted into an ontology.

Keywords: IFC-OWL conversion, EXPRESS rules, OWL Class Expression, ifcOWL instantiation

1. Introduction

Industry Foundation Classes (IFC) [1] is the accepted standard for Building Information Modelling

(BIM). It provides schemas for data management in building and construction, but its applicability extends

across numerous other domains that are dealing with industrial data modelling, including factory design,

construction, simulation and evaluation of manufacturing processes. The Semantic Web (SW) technologies5

provide a modelling environment that can deal with heterogeneous data, supporting interoperability across

diverse knowledge domains, integration of distributed data and employment of reasoning engines to infer

new knowledge automatically [2]. The appealing features of SW motivated work on conversion of the IFC

Email address: walter.terkaj@itia.cnr.it (Walter Terkaj, Aleksandra Sojic)

Preprint submitted to Automation in Construction April 15, 2015

W. Terkaj, A. Šojić (2015) Ontology-based representation of IFC EXPRESS rules: An enhancement of the
ifcOWL ontology.
Automation in Construction, Volume 57, Pages 188-201, ISSN 0926-5805.
https://doi.org/10.1016/j.autcon.2015.04.010
(https://www.sciencedirect.com/science/article/pii/S0926580515000886)

http://ees.elsevier.com/autcon/viewRCResults.aspx?pdf=1&docID=3745&rev=2&fileID=134651&msid={EBCF1DE6-4B48-4D4D-8564-8AF29A723BAE}

EXPRESS schema [3] into an OWL [4] ontology. In this paper, we take into consideration the existing

efforts in the direction of the IFC to OWL conversion. While taking an OWL version of IFC (named10

ifcOWL [5]) as a reference, we propose an enhancement of the conversion pattern in order to optimise

its applicability. In particular, the pattern deals with some of the rules defined in the IFC schema. The

conversion of these rules have been neglected so far, since the main application scenario addressed in the

literature consists in the conversion of IFC files (in the form of STEP physical file [6]) that were generated

by IFC-compliant software tools [7]. The conversion of the rules into the OWL version of IFC may enable15

the direct instantiation of the ontology without going through the generation of STEP files and afterwords

checking the consistency of IFC projects, whatever is their origin. Moreover, the enrichment of the ifcOWL

ontology allows both to safely use general purpose SW tools and to develop new ifcOWL-based software

tools while minimising inconsistencies and erroneous applications of the standard.

In this paper, we address the conversion of the EXPRESS schema [3] representing the IFC standard into20

an OWL ontology to exploit the features of SW technologies [2]. In particular, an OWL version of IFC

(named ifcOWL) can be better integrated with other ontologies to support interoperability, while making

use of data distribution capabilities; moreover, general purpose reasoning engines can be directly employed

to infer new knowledge.

This paper is organized as follows. We first outline the state of the art about the IFC to OWL conversion25

(Sect.2) and then we briefly present the adopted conversion pattern (Sect.3). Section 4 describes the pro-

posed enhancements to the conversion pattern, whereas its implementation is discussed in Sect.5. Section 6

presents an ontology-based software tool that is able to exploit the results of conversion pattern suggested

in the previous section, thus providing additional control for the assurance of the data quality. Finally, we

provide an example to demonstrate how the proposed pattern impacts on the results of both closed world30

assumption (CWA) integrity check and open world assumption (OWA) reasoning (Sect.7).

2. State of the Art

The Industry Foundation classes (IFC) standard by buildingSMART [1] is an object oriented data model

provided as an open specification for Building Information Modelling (BIM). IFC aims at supporting data

exchange and sharing among the various participants in a building construction or facility management35

projects. It consists of the data schema, represented as an EXPRESS schema specification [3], and ref-

erence data, represented as XML definitions of property and quantity definitions [1]. The IFC model is

structured into four layers: Resource layer (i.e. general purpose or low level concepts/objects), Core Layer

(where the most abstract concepts of the model are defined), Interoperability Layer defining concepts or

objects common to two or more domains, and the Domains/Application Layer [1]. Even if the standard40

2

was mainly conceived for the Architecture, Engineering and Construction (AEC) industry domains (e.g.

Building Controls, Structural elements, Structural Analysis, etc.), its data structures can be specialised for

other industrial domains, such as the manufacturing domain [8].

The emergence of SW technologies led to several initiatives aimed at converting the IFC schema into an

ontology language that can provide a semantically rich and platform independent framework to support the45

integration and interoperability of software tools and exchange of data in a knowledge based system that

are human readable and processable by machines. In particular, Beetz and colleagues [9], as well as Krima

et al. [10, 11], emphasised the EXPRESS’s lack of formal semantics, arguing that a logic-based language

such as OWL brings modelling advantages in knowledge representation, semantic data sharing, and reuse

of existing ontologies and interoperability with the SW tools.50

The first conversion map from EXPRESS to OWL was presented by Schevers and Drogemuller [12],

while taking IFC as a reference example and highlighting some of the key issues to be addressed. Beetz

et al. [9] proposed a semi-automatic method for converting EXPRESS schemas to OWL files to enhance

the applicability and re-usability of the IFC standard. Barbau and colleagues specified the rules for the

automated conversion from EXPRESS to OWL within the OntoSTEP initiative [11] and implemented the55

system as an OWL plug-in for Protégé [13].

Several recent works dealing with the BIM domain have shown how useful SW technologies can be

to support the related business processes [14]. Zhang et al. [15] argued that the conversion of IFC into

OWL, beside enabling the exploitation of SW technologies for building information models, facilitates the

retrieval of information from IFC models. Pauwels et al. [16] showed how Semantic Web Rule Language60

(SWRL) [17] rules can be exploited to enrich an OWL version of IFC and create a semantic rule checking

environment. The use of rules was exemplified by the case of acoustic performance regulations. Similarly,

Beach et al. [18] developed a methodology to automatically check the compliance with regulations in the

building industry. The authors suggest the development of specific regulation ontologies consisting of

SWRL rules that can be linked with a core ontology representing the addressed industrial domain.65

Lee et al. [19] proposed to model the work conditions and work items needed during a tiling process

by means of ontologies. They made use of the XML version of IFC and reasoning was exploited to infer

which are the proper work items according to the work condition.

Terkaj et al. [20] proposed a modular OWL ontology for factory modelling and data sharing between

heterogeneous software tools. The ontology, named Virtual Factory Data Model (VFDM), was based on the70

integration of an OWL version of IFC with other ontologies derived from technical standards (e.g. STEP-

NC [21]), or defining basic concepts not included in IFC (e.g. probability distributions), or specializing IFC

for the manufacturing domain. The VFDM was exploited to enable interoperability between various soft-

ware tools, including both commercial (e.g. Plant Simulation by Siemens PLM [22]) and non-commercial

3

(e.g. GIOVE Virtual Factory [23]) applications.75

Zhang et al. [24] proposed a construction safety ontology to formalize the safety management knowl-

edge, while considering both construction elements and construction processes. SWRL rules were used to

express safety regulations and support the automatic generation of job hazard analysis (JHA) reports.

All the previous cases demonstrate that a recommended and complete ontology version of IFC would

be beneficial to ease the integration of data models, support the flow of data and enable the use of ontology-80

based tools. Indeed, recently Pauwels [5] proposed a conversion pattern that re-elaborates the previous

contributions (mainly [9] and [11]) and adds new features, aiming also at producing an officially recom-

mended OWL version of IFC ontology, named ifcOWL. The main conversion criteria were:

(A) keeping the ifcOWL ontology in the OWL DL profile [4] in order to enable reasoning;

(B) enriching the ifcOWL with axioms to match the original EXPRESS schema as closely as possible;85

(C) primarily supporting the conversion of IFC STEP physical files into equivalent RDF graphs, without

necessarily guaranteeing that an RDF graph can be modelled from scratch by directly instantiating

the ifcOWL ontology.

3. IFC to OWL conversion pattern

The previous section mentioned some of the key approaches to the conversion of IFC from EXPRESS to90

OWL that are well documented in the literature (cfr. [12, 9, 11]). This section instead focuses the attention

on the most recent development in this research field that was proposed by Pauwels [5]. The key features

of the conversion pattern are outlined together with a few examples that are relevant for the analysis carried

out in the following sections, especially for the core contribution of Sect. 4. The reference IFC EXPRESS

schema is IFC4 ADD1.exp [1].95

Table 1 reports the summary of the conversion pattern by Pauwels [5] in terms of EXPRESS state-

ments paired with the corresponding OWL axioms. EXPRESS ENTITY is converted into owl:Class, i.e.,

the OWL construct that specifies classes in general, including classes of particulars. The EXPRESS tax-

onomical relationship SUPERTYPE OF/SUBTYPE OF, holding between concepts classified by ENTITY, has

its OWL equivalent in rdfs:subClassOf, which holds between owl:Class concepts.100

The ABSTRACT characterization in EXPRESS rules out direct instantiation of certain entities. This con-

straint does not have a direct counterpart in OWL. The corresponding structural pattern is obtained by

declaring that the subclasses form a partition, where the OWL subclasses of the given class cover the ex-

tension of the concept. Analogously, the ONEOF construct is obtained by declaring that the OWL subclasses

of that class are disjoint.105

4

EXPRESS OWL

Schema Ontology

Simple data type OWL class with a restriction on an owl:DatatypeProperty

Defined data type OWL class

Constructed SELECT data type OWL class with equivalence to a unionOf collection of OWL classes

Constructed ENUMERATION

data type

OWL class with equivalence to a oneOf collection of owl:NamedIndividual items

Entity data type OWL class

Attribute of entity data type Functional object property with specified domain and range; owl:AllValuesFrom re-

striction; owl:qualifiedCardinality or owl:maxQualifiedCardinality restriction

Attribute of entity data type as a

SET

Non-functional object property with specified domain and range; owl:AllValuesFrom

restriction; owl:minQualifiedCardinality and/or owl:maxQualifiedCardinality restric-

tion or owl:qualifiedCardinality restriction

INVERSE attribute object property with a specified owl:inverseOf

DERIVE attribute N/A

WHERE rule N/A

FUNCTION N/A

RULE N/A

Table 1: Summary of the adopted conversion pattern [5], where owl: stands for the namespace ’http://www.w3.org/2002/07/owl#’.

In EXPRESS the properties of the entities are modelled via attributes. By default, an attribute listed

in the class definition is mandatory for each element of that class. When this is not so, the attribute is

labelled OPTIONAL: if a class C1 has optional attribute A1, then it is a matter of choice whether A1 should be

instantiated by a particular value. EXPRESS attributes are converted into OWL class restrictions by means

of object properties, using a universal quantification (owl:AllValuesFrom) and, if necessary, cardinality110

constraints.

One of the novelties introduced in the proposal by Pauwels consists in the automatic conversion of

INVERSE attributes that were neglected or not thoroughly addressed in previous literature contributions.

However, it can be noted that some EXPRESS statements, in particular WHERE rules, have not been con-

verted (see Table 1) since they are considered irrelevant according to the conversion criteria mentioned115

before.

The case of entity IfcObject (defined in Fragment 1 using EXPRESS language) can be used as an

example to show how the conversion pattern can be applied. An IfcObject is “the generalization of any

semantically treated thing or process. Objects are things as they appear - i.e. occurrences. Examples of

IfcObject include physically tangible items such as wall, beam or covering, physically existing items such120

as spaces, or conceptual items such as grids or virtual boundaries” [1].

5

ENTITY IfcObject

ABSTRACT SUPERTYPE OF (ONEOF (IfcActor ,IfcControl ,IfcGroup ,IfcProcess ,IfcProduct ,IfcResource))

SUBTYPE OF (IfcObjectDefinition);

ObjectType : OPTIONAL IfcLabel;

INVERSE

IsDeclaredBy : SET [0:1] OF IfcRelDefinesByObject FOR RelatedObjects;

Declares : SET [0:?] OF IfcRelDefinesByObject FOR RelatingObject;

IsTypedBy : SET [0:1] OF IfcRelDefinesByType FOR RelatedObjects;

IsDefinedBy : SET [0:?] OF IfcRelDefinesByProperties FOR RelatedObjects;

WHERE

UniquePropertySetNames : IfcUniqueDefinitionNames(IsDefinedBy);

END_ENTITY;

Fragment 1: Definition of entity IfcObject

The conversion of IfcObject into OWL is given by the conjunction of the statements from (1) to (11),

whereas statements from (12) to (22) define the object properties that are used in the restrictions. These

ontology fragments are defined according to the Manchester Syntax [25] that is mapped to the traditional125

DL Syntax in Table 2.

In addition, for each subclass of IfcObject there will be an axiom specifying that such class is disjoint

with the other subclasses. The OWL statements capture the EXPRESS abstract construct because every

instance of IfcObject must be an instance of one and only one of its subclasses, since statement (2)

declares IfcObject as a subclass of the union of its disjoint subclasses. For example, it cannot be the130

case that a particular object (e.g. ObjectX) instantiates both a subclass of IfcGroup and a subclass of

IfcProcess.

Some of the object properties are named differently from the corresponding EXPRESS attribute (e.g.

ObjectType) to guarantee their uniqueness in ifcOWL.

Class: IfcObject (1)135

SubClassOf:

IfcActor or IfcControl or IfcGroup or IfcProcess or IfcProduct or IfcResource, (2)

IfcObjectDefinition, (3)

ObjectType of IfcObject only IfcLabel, (4)

ObjectType of IfcObject max 1 IfcLabel, (5)140

IsDeclaredBy only IfcRelDefinesByObject, (6)

IsDeclaredBy max 1 IfcRelDefinesByObject, (7)

Declares of IfcObject only IfcRelDefinesByObject, (8)

IsTypedBy only IfcRelDefinesByType, (9)

IsTypedBy max 1 IfcRelDefinesByType, (10)145

DisjointWith: IfcTypeObject, IfcContext (11)

6

OWL Constructor DL Syntax Manchester OWL Syntax

intersectionOf C ∩ D C and D

unionOf C ∪ D C or D

complementOf ¬ C not C

oneOf {a} ∪ {b} ... {a b ...}

someValuesFrom ∃ R C R some C

allValuesFrom ∀ R C R only C

minCardinality ≥ N R R min N

maxCardinality ≤ N R R max N

cardinality = N R R exactly N

hasValue ∃ R {a} R value a

Table 2: Mapping between the DL Syntax and Manchester OWL Syntax [25]

ObjectProperty: ObjectType of IfcObject (12)

Characteristics: Functional (13)

ObjectProperty: IsDeclaredBy (14)

Characteristics: Functional (15)150

InverseOf: RelatingObject of IfcRelDefinesByObject (16)

ObjectProperty: Declares of IfcObject (17)

Characteristics: Functional (18)

InverseOf: RelatingObject of IfcRelDefinesByObject (19)

ObjectProperty: IsTypedBy (20)155

Characteristics: Functional (21)

InverseOf: RelatedObjects of IfcRelDefinesByType (22)

The OWL statements (9) and (10) involve the class IfcRelDefinesByType standing for the IFC objecti-

fied relationship entity that is meant to “define the relationship between an object type (see IfcTypeObject)

and object occurrences (see IfcObject). The IfcRelDefinesByType is a 1-to-N relationship as it al-160

lows for the assignment of one type information to a single or to many objects. Those objects then share

the same object type, and the property sets and properties assigned to the object type” [1]. The entity

IfcTypeObject in turn “defines the specific information about a type, being common to all occurrences

of this type. It refers to the specific level of the well recognized generic - specific - occurrance modeling

paradigm. The IfcTypeObject gets assigned to the individual object instances (the occurrences) via the165

IfcRelDefinesByType relationship. The object type is represented by a set of property set definitions” [1].

Practically, objectified relationships are used in IFC to separate the properties specific to relationships from

the object attributes. This allows the development of a separate subtype tree for the relationship seman-

7

tics [1].

According to the adopted conversion pattern, the core definition of classes IfcTypeObject and170

IfcRelDefinesByType is reported in statements (23)-(28) and statements (29)-(34), respectively. Finally,

statements (35)-(44) define the object properties that are needed to formulate the restrictions. The complete

definitions of classes and properties can be found in [5].

Class: IfcTypeObject (23)175

SubClassOf:

IfcObjectDefinition (24)

HasPropertySets only IfcPropertySetDefinition, (25)

Types only IfcRelDefinesByType, (26)

Types max 1 IfcRelDefinesByType (27)180

DisjointWith: IfcObject, IfcContext (28)

Class: IfcRelDefinesByType (29)

SubClassOf:

IfcRelDefines, (30)185

RelatingType only IfcTypeObject, (31)

RelatingType exactly 1 IfcTypeObject, (32)

RelatedObjects of IfcRelDefinesByType only IfcObject, (33)

RelatedObjects of IfcRelDefinesByType min 1 IfcObject (34)

190

ObjectProperty: HasPropertySets (35)

InverseOf: DefinesType (36)

ObjectProperty: Types (37)

Characteristics: Functional (38)

InverseOf: RelatingType (39)195

ObjectProperty: RelatingType (40)

Characteristics: Functional (41)

InverseOf: Types (42)

ObjectProperty: RelatedObjects of IfcRelDefinesByType (43)

InverseOf: IsTypedBy (44)200

The class IfcPropertySetDefinition used in statement (25) plays a key role in IFC together with

IfcObject and IfcTypeObject. Indeed it is “a generalization of all individual property sets that can

be assigned to an object or type object. The property set definition can be specified either as dynamically

8

extendable property sets or as statically defined property sets. Property set definitions define information205

that is shared among multiple instances of objects, either object types (via a direct relationship) or object

occurrences (via the objectified relationship IfcRelDefinesByProperties)” [1].

Again according to the adopted conversion pattern, the core definition of classes

IfcPropertySetDefinition and IfcRelDefinesByProperties is reported in statements (45)-(49) and

statements (50)-(55), respectively, whereas statements (56)-(63) define the object properties that are needed210

to formulate their restrictions.

Class: IfcPropertySetDefinition (45)

SubClassOf:

IfcPreDefinedPropertySet or IfcPropertySet or IfcQuantitySet, (46)215

IfcPropertyDefinition, (47)

DefinesType only IfcTypeObject, (48)

DefinesOccurrence only IfcRelDefinesByProperties, (49)

Class: IfcRelDefinesByProperties (50)220

SubClassOf:

IfcRelDefines, (51)

RelatingPropertyDefinition only IfcPropertySetDefinitionSelect, (52)

RelatingPropertyDefinition exactly 1 IfcPropertySetDefinitionSelect, (53)

RelatedObjects of IfcRelDefinesByProperties only IfcObjectDefinition, (54)225

RelatedObjects of IfcRelDefinesByProperties min 1 IfcObjectDefinition (55)

ObjectProperty: DefinesType (56)

InverseOf: HasPropertySets (57)

ObjectProperty: DefinesOccurrence (58)230

InverseOf: RelatingPropertyDefinition (59)

ObjectProperty: RelatingPropertyDefinition (60)

Characteristics: Functional (61)

InverseOf: DefinesOccurrence (62)

ObjectProperty: RelatedObjects of IfcRelDefinesByProperties (63)235

Finally, Fig.1 shows the OWL universal quantification restrictions linking IfcObjectDefinition,

IfcObject, IfcTypeObject, IfcPropertySetDefinition, IfcRelDefinesByType and

IfcRelDefinesByProperties, which are depicted by dashed lines. IfcPropertySetDefinitionSelect,

used in statements (52) and (53), is defined as equivalent to the union of IfcPropertySetDefinition and240

9

IfcPropertySetDefinitionSet; for the sake of simplicity, IfcPropertySetDefinitionSelect is not

included in Fig.1 and is instead replaced by IfcPropertySetDefinition.

IfcTypeObject IfcObject

IsTypedBy only

IfcRelDefinesByType

RelatingType only
RelatedObjects_of_IfcRelDefinesByType

only

Types only

IfcPropertySetDefinition

IfcRelDefinesByProperties

DefinesType only

RelatingPropertyDefinition

only

IfcObjectDefinition

DefinesOccurrence

only

RelatedObjects_of_IfcRelDefinesByProperties

only

HasPropertySets

only

SubClassOf SubClassOf

Figure 1: OWL universal quantification restrictions linking IfcObjectDefinition, IfcObject, IfcTypeObject,

IfcPropertySetDefinition, IfcRelDefinesByType and IfcRelDefinesByProperties.

4. Conversion of IFC rules into OWL Class Expressions

The conversion pattern presented in the previous section is incomplete because there are still relevant

EXPRESS definitions that are not taken in due consideration, as reported in Table 1. In particular, the245

WHERE keyword can be used in the EXPRESS schema to specify rules and complex constraints; Zhao and

Liu [26, 27] proposed a mapping between WHERE rules and SWRL language, as was already suggested by

Beetz et al. [28].

In this section we propose an enhancement of the ifcOWL ontology by partially revising the conversion

criteria defined by Pauwels [5]. The criteria A and B (i.e. keeping ifcOWL in OWL DL profile and enriching250

the ifcOWL with axioms to match the original EXPRESS schema as closely as possible) are preserved, but

criterion C (i.e. primarily supporting the conversion of IFC STEP physical files into equivalent RDF files)

is excluded and replaced by the following one:

(D) Analysis of rules in the IFC schema and ensuing conversion into the ifcOWL to support the direct

instantiation of the ontology and guarantee its consistency, thus recalling the motivations presented255

in Sect. 1.

10

If key rules are not properly defined in the ifcOWL ontology, then it is necessary to introduce rule-like

constraints at a later time, e.g. during the development of an ontology-based software application. However,

this choice leads to at least two important drawbacks:

• The risk of introducing errors and misinterpretations by the software developers.260

• The development of rigid (hard-coded) applications that are not able to properly deal with changes in

domain ontologies, thus affecting the flexibility of the system and, in turn, the interoperability.

Herein, it is proposed to overcome these problems by enriching the ifcOWL ontology with OWL class

expressions1 representing rules of the IFC schema. Even if the use of class expressions is a standard practice

in ontology design, we are going to discuss their significance in the context of IFC conversion pattern, in265

particular with reference to typing relationships (Sect. 4.1) and pre-defined property sets (Sect. 4.2). We

propose the use of OWL class expressions and not SWRL in order to assure compliance with conversion

criterion A. Indeed, SWRL is not part of OWL and this language has not yet been approved after the

submission to the World Wide Web Consortium (W3C).

4.1. Typing relationships270

The objectified relationship entity IfcRelDefinesByType plays a key role in the IFC schema because

it allows to reduce unnecessary data redundancy inside a model, as explained in the definition quoted in

Sect.3. The correct use of this typing relationship is guaranteed by WHERE rules in the IFC schema that

constrain which instances can be linked via IfcRelDefinesByType. For example, taking in consideration

IfcWindow and IfcWindowType that are specializations of IfcObject and IfcTypeObject, respectively,275

the IFC definition of IfcWindow in Fragment 2 shows the WHERE rule named CorrectStyleAssigned;

such rule states that the instances of IfcWindow can be related only with an instance of IfcWindowType.

1Note that Manchester syntax supports the nesting of class constructors and complex class expressions that can be disambiguated

by bracketing, see e.g.[25]

11

ENTITY IfcWindow

SUPERTYPE OF (ONEOF (IfcWindowStandardCase))

SUBTYPE OF (IfcBuildingElement);

OverallHeight : OPTIONAL IfcPositiveLengthMeasure;

OverallWidth : OPTIONAL IfcPositiveLengthMeasure;

PredefinedType : OPTIONAL IfcWindowTypeEnum;

PartitioningType : OPTIONAL IfcWindowTypePartitioningEnum;

UserDefinedPartitioningType : OPTIONAL IfcLabel;

WHERE

CorrectStyleAssigned : (SIZEOF(IsTypedBy) = 0) OR

(’IFC4.IFCWINDOWTYPE ’ IN TYPEOF(SELF\IfcObject.IsTypedBy [1]. RelatingType));

END_ENTITY;

Fragment 2: Definition of entity IfcWindow

Based only on statements (9), (10), (26), (27), and (31)-(34), the ifcOWL ontology allows to cre-

ate links between an instance of a non-abstract IfcObject subclass and an instance of any non-abstract280

IfcTypeObject subclass. Thus the conversion criterion D is not met. Without restricting relations, it is

possible to (erroneously) relate, for example, an instance of IfcDoor with an instance of IfcWindowType,

implying that a door is modelled after a type of window. Therefore, it is relevant to convert the WHERE rules

defining the correct typing relationship into the OWL version of IFC, otherwise this lack would jeopardize

the consistency in the output of an ontology-based software application. As anticipated, it is possible to285

meet this goal by means of OWL class expressions.

Statement (65) shows how the WHERE rule CorrectStyleAssigned of IfcWindow (see Fragment 2)

can be converted into a class expression that consists in a more articulated restriction compared to the

restrictions used to convert the entity attributes according to the basic conversion pattern by Pauwels [5].

Class: IfcWindow (64)290

SubClassOf: IsTypedBy only (RelatingType only IfcWindowType) (65)

Moreover, we suggest to further constrain the link between non-abstract subclasses of

IfcTypeObject and corresponding subclasses of IfcObject by further characterizing also the

IfcTypeObject subclass, even if this type of rule is not defined in the IFC schema. Indeed, with ref-295

erence to the IfcWindowType example, Fragment 3 shows that no WHERE rule states that it can type only

instances of IfcWindow.

12

ENTITY IfcWindowType

SUBTYPE OF (IfcBuildingElementType);

PredefinedType : IfcWindowTypeEnum;

PartitioningType : IfcWindowTypePartitioningEnum;

ParameterTakesPrecedence : OPTIONAL IfcBoolean;

UserDefinedPartitioningType : OPTIONAL IfcLabel;

WHERE

CorrectPredefinedType : (PredefinedType <> IfcWindowTypeEnum.USERDEFINED) OR ((PredefinedType =

IfcWindowTypeEnum.USERDEFINED) AND EXISTS(SELF\IfcElementType.ElementType));

END_ENTITY;

Fragment 3: Definition of entity IfcWindowType

Statement (67) can be added to guarantee that an instance of IfcWindowType can be related only with

an instance of IfcWindow via a chain of properties including Types and300

RelatedObjects of IfcRelDefinesByType. Without this additional restriction it would be possible to

relate an instance of IfcWindowType with an instance of any non-abstract subclass of IfcObject that is

not characterized by a restriction similar to (65); this is the case of class IfcBuilding that is not paired

with a corresponding subclass of IfcTypeObject.

Class: IfcWindowType (66)305

SubClassOf: Types only (RelatedObjects of IfcRelDefinesByType only IfcWindow) (67)

Furthermore, it would be beneficial to extend also the EXPRESS specification of IFC, that could be

reviewed by adding a specific WHERE rule to all non-abstract sub-entities of IfcTypeObject. Statement

(68) shows an example of this new WHERE rule named CorrectOccurrenceAssigned for the case of

IfcWindowType.310

(SIZEOF(Types) = 0) OR (’IFC4.IFCWINDOW’ IN TYPEOF(SELF \IfcObject.Types[1].RelatedObjects)) (68)

It must be stressed that the definition of class expressions like (65) and (67) was possible thanks to the

conversion of INVERSE attributes like Types and IsTypedBy in the ifcOWL by Pauwels [5].

Figure 2 shows a specialization of Fig.1 and provides a graphical representation of the restrictions (65)

and (67) in bold dashed lines. An ontology-based application can also exploit these restrictions to correctly315

instantiate the class IfcWindowType and the class IfcWindow as well as to relate them via an instance of

the class IfcRelDefinesByType.

Overall, the OWL capability to capture class expressions, as sketched in the examples above, represents

an advantage over the IFC schema, since it is not needed to split the definitions into separate attributes and

rules. More importantly, by rephrasing the system in a logical language, one can make explicit the pattern320

of reasoning over classes that impacts the inferences about particulars. The following section examines

13

IfcProductIfcTypeProduct

IfcElement

IfcBuildingElement

IfcElementType

IfcBuildingElementType

IfcWindowIfcWindowType

IfcTypeObject IfcObject

IsTypedBy only

IfcRelDefinesByType

RelatingType only RelatedObjects_of_IfcRelDefinesByType

only

Types only

Types only (RelatedObjects_of_IfcRelDefinesByType only IfcWindow)

IsTypedBy only (RelatingType only IfcWindowType)

SubClassOf

SubClassOf

SubClassOf

SubClassOf

SubClassOf

SubClassOf

SubClassOf

SubClassOf

Figure 2: OWL restrictions linking IfcWindowType and IfcWindow.

the impact of class expressions to the representation and reasoning that involves instances, as Sect.7 will

discuss.

4.2. Pre-defined property sets

As already mentioned in Sect.3, the IFC schema allows to attach property sets defined as instances of325

IfcPropertySetDefinition to instances of IfcTypeObject and IfcObject. IfcPreDefinedPropertySet

and IfcPropertySet are subclasses of IfcPropertySetDefinition that can be used to represent stat-

ically defined property sets (i.e. pre-defined property sets) and dynamically extendible property sets, respec-

tively. The IFC schema includes only a few subclasses of IfcPreDefinedPropertySet (e.g.

IfcWindowPanelProperties can be used to characterize a window), whereas most of the property sets330

included in the IFC specification are not defined in the IFC EXPRESS schema, but are attached as XML files

(e.g. Pset WindowCommon.xml for common properties of a window) that can be used to lead the instanti-

ation of IfcPropertySet. Herein only IfcPreDefinedPropertySet and its subclasses are considered

because the attention is focused on the conversion from EXPRESS to OWL, but future developments could

address also the conversion of the XML property sets to OWL.335

The IFC schema defines the correct use of a pre-defined property set by means of WHERE rules that

constrain which specialization of IfcObject and IfcTypeObject can be linked to the property set. For

example, the IFC schema definition of IfcWindowPanelProperties in Fragment 4 shows the WHERE rule

14

named ApplicableToType. This rule states that an instance of IfcWindowPanelProperties must be

related with at least one instance of IfcWindowType or IfcWindowStyle via the attribute DefinesType.340

The rule can be converted into the OWL class expressions shown in statements (70) and (71).

ENTITY IfcWindowPanelProperties

SUBTYPE OF (IfcPreDefinedPropertySet);

OperationType : IfcWindowPanelOperationEnum;

PanelPosition : IfcWindowPanelPositionEnum;

FrameDepth : OPTIONAL IfcPositiveLengthMeasure;

FrameThickness : OPTIONAL IfcPositiveLengthMeasure;

ShapeAspectStyle : OPTIONAL IfcShapeAspect;

WHERE

ApplicableToType : (EXISTS(SELF\IfcPropertySetDefinition.DefinesType [1])) AND

((’IFC4.IFCWINDOWTYPE ’ IN TYPEOF(SELF\IfcPropertySetDefinition.DefinesType [1]))

OR (’IFC4.IFCWINDOWSTYLE ’ IN TYPEOF(SELF\IfcPropertySetDefinition.DefinesType [1])));

END_ENTITY;

Fragment 4: Definition of entity IfcWindowPanelProperties

Class: IfcWindowPanelProperties (69)345

SubClassOf:

DefinesType only (IfcWindowStyle or IfcWindowType), (70)

DefinesType min 1 (IfcWindowStyle or IfcWindowType), (71)

Moreover, even if not defined in the IFC schema, also the class expression (72) could be added to guar-

antee that an instance of IfcWindowPanelProperties can be related only with an instance of IfcWindow350

(and no other subclass of IfcObject) via a chain of properties including DefinesOccurrence and

RelatedObjects of IfcRelDefinesByProperties.

SubClassOf: DefinesOccurrence only (RelatedObjects of IfcRelDefinesByProperties only IfcWindow) (72)

Further specifications of class expressions do not include superclasses of

IfcWindowType and IfcWindow because of maintainability concerns. Indeed, other class expressions355

would need to be updated whenever a new property set for IfcWindowType and/or IfcWindow is created

in a domain ontology that extends ifcOWL, thus creating a conflict between the desired extendibility and

stability of a recommended ifcOWL.

360

15

5. Implementation of the conversion patterns

The conversion patterns presented in the previous section have been implemented into a C++ pro-

gram that makes use of programming libraries built on the Redland RDF libraries [29]. This program

implements a set of general purpose routines for the automatic generation of OWL class expressions that

are similar in structure to statements (65), (67), (70)-(72) defined for IfcWindow, IfcWindowType and365

IfcWindowPanelProperties.

The input data needed to run the C++ program consists in a list of paired classes being non-abstract

subclasses of IfcObject, IfcTypeObject, or IfcPreDefinedPropertySet. Having adopted a notation

where OccX, TypeY, and PsetZ stand for a generic non-abstract subclass of IfcObject, IfcTypeObject,

and IfcPreDefinedPropertySet, respectively, the input list can be obtained by parsing the WHERE rules370

in the IFC EXPRESS schema and applying the following rules:

• a pair OccX - TypeY is added to the list if a WHERE rule containing the expression (73) is found in the

definition of OccX;

• a pair PsetZ - TypeY is added to the list if a WHERE rule containing the expression (74) is found in

the definition of PsetZ;375

• a pair PsetZ - OccX is added to the list if a WHERE rule containing the expression (75) is found in the

definition of PsetZ.

(TypeY IN TYPEOF(SELF\IfcObject.IsTypedBy[1].RelatingType)) (73)

(TypeY IN TYPEOF(SELF\IfcPropertySetDefinition.DefinesType[1])) (74)

(OccX IN TYPEOF(SELF\IfcPropertySetDefinition.DefinesOccurrence[1].RelatedObjects)) (75)380

Alternatively, the user can directly provide an input list, if the class expressions will be used to enrich a

domain ontology that extends ifcOWL. The routines of the program provide the following functionalities:

• for each pair OccX - TypeY, the statements (76) and (77) are added to the definition of class OccX and

TypeY, respectively.

• for each pair PsetZ - TypeY, the statement (78) is added to the definition of class TypeY.385

• for each pair PsetZ - OccX, the statement (79) is added to the definition of class OccX.

SubClassOf: IsTypedBy only (RelatingType only TypeY) (76)

SubClassOf: Types only (RelatedObjects of IfcRelDefinesByType only OccX) (77)

SubClassOf: DefinesType only TypeY (78)

SubClassOf: DefinesOccurrence only (RelatedObjects of IfcRelDefinesByProperties only OccX) (79)390

16

The program allows to generate and store the additional class expressions in an ontology module that

is separated from the ontology containing the basic definitions of the classes. This is particularly useful if

the program has to enrich the ifcOWL ontology, because in this case the additional class expressions can

be stored in a new ontology module. This module, named ifcOWL rules, imports ifcOWL and exploits the395

advantages of data distribution and linked-data paradigm enabled by the SW approach. When an Abox

ontology must be created, the user decides to directly import ifcOWL rules or ifcOWL ontology according

to his/her needs.

6. Ontology-based Software Tool exploiting additional OWL class expressions

This section presents OntoGUI, an ontology-based software tool that can be employed in the manage-400

ment and instantiation of Abox ontology modules. This tool mainly aims at supporting:

• The fast evaluation of ontology Tbox by concurrently instantiating a corresponding Abox, following

a Test-driven development approach.

• The generation of RDF data sets to be used as input for other ontology-based applications, without

needing to develop complex customized graphical user interfaces or data converters.405

OntoGUI was developed in the C++ language making use of wxWidgets Cross-Platform GUI Library

and another programming library named VfConnectorLib, based on the Redland RDF libraries [29]. The

VfConnectorLib library includes the following key features:

• A mapping between class definitions in the ifcOWL ontology and C++ classes and methods.

• Support for different solutions of data repository that can be implemented as file-based systems,410

relational databases or native triple stores [30].

The user interface of OntoGUI consists of a control panel for the creation and loading of ontologies from

a file-based repository or other more performing RDF stores. The control panel provides also access to a

set of functional modules, including Individuals Manager that is a general purpose tool for the exploration,

generation and characterization of OWL individuals. The user interface of Individuals Manager (Fig.3)415

is dynamically reconfigured every time a different OWL class is selected since the tool is able to extract

information related to the following axioms defined in the Tbox ontology:

• Equivalent classes, both defined as single classes or union of classes.

• Subclasses, both defined as single classes or union of classes.

• Restrictions of any degree if they involve universal quantifier (i.e. owl:allValuesFrom), existential420

quantifier (i.e. owl:someValuesFrom), or cardinality constraints (i.e. owl:qualifiedCardinality,

owl:maxQualifiedCardinality, owl:minQualifiedCardinality).

17

Figure 3: A view of Individuals Manager tool in OntoGUI

The characterisation of the classes with their restrictions is exploited by the Individuals Manager tool

both for exploring and generating relations between individuals and also for checking the consistency of

the individuals. After loading an ontology, Individuals Manager allows to select any OWL class defined in425

the corresponding Tbox and with respect to this class the following operations can be performed:

• Generation of a new individual belonging to the selected class.

• Listing of the individuals belonging to the selected class (and its subclasses if this option is flagged)

and selection of one of them.

• Navigation through all the possible relations involving the selected individual according to the re-430

strictions defined in the Tbox for the class(es) it belongs to. For each restriction it is possible to

visualise the target individuals or literals that can be found at the end of the property chain defined

by the restriction itself. The target individuals can be in turn explored by double clinking.

• Creation of new relations between the selected individual and already existing individuals or individ-

uals/literals generated on demand.435

• Integrity check of the selected individual by analysing one by one all the restrictions associated with

18

the classes the individual belongs to and checking if the restrictions are violated when interpreted as

Integrity Constraints according to the Closed World Assumption (see Sect. 7.3).

In particular, after querying which are the target individuals or literals at the end of the property chain

specified by the analysed restriction, the integrity check is able to identify the following violations:440

• At least one target does not belong to the class/datatype specified by a restriction using a universal

quantifier.

• There is no target belonging to the class/datatype specified by a restriction using an existential quan-

tifier.

• The number of targets belonging to the class/datatype specified by a restriction using a qualified445

cardinality does not respect the cardinality constraint.

• A functional property is used to link a specific individual with more than one individual/literal.

The basic functionalities of Individuals Manager can be provided for any ontology Tbox without re-

quiring specific adaptations. However, Individuals Manager can also be enhanced by introducing cus-

tomizations depending on a specific Tbox. In particular, taking into consideration the ifcOWL ontology,450

the following functionalities have been added:

• Customized window for the quick definition of an object placement.

• Automatic replication of the aggregation structure defined for an individual of type object class if

this individual is used to generate an instance of the corresponding occurrence object class that is

identified thanks to a class expression like (77).455

• Specific interface for the management of pre-defined property sets. If a non-abstract subclass of

IfcObject (e.g. OccX) or IfcTypeObject (e.g. TypeY) is selected, then the non-abstract subclasses

of IfcPreDefinedPropertySet are explored searching for class expressions like (78) and (79). If a

match is found in a subclass of IfcPreDefinedPropertySet (e.g. PsetZ), then this class is added to

the list of selectable pre-defined property sets.460

• Visualization of inherited property sets. If an instance of a non-abstract subclass of IfcObject is

typed by an instance of the corresponding type object class according to a class expression like (76),

then the property sets of the typing instance are inherited. The inheritance is disabled if the property

set is overridden by the object occurrence instance making use of IfcRelDefinesByProperties

(see Fig.1).465

• Visualization of the proper unit of measurement when numeric values are explored according to

definitions in the IFC project or library.

19

7. Benefits of additional OWL class expressions under CWA and OWA

7.1. Test case

The test case consists of an excerpt taken from an IFC model available on an open access reposi-470

tory [31] and it involves the instantiation of IFC entities IfcWindowType, IfcWindowPanelProperties,

IfcWindowLiningProperties, and IfcWindow, thus recalling the examples presented in Sect.4. Table 3

reports the characteristics of the IfcWindowType instance named W1 Casement; two property sets are at-

tached to the definition of the window type, namely instances of

IfcWindowPanelProperties and IfcWindowLiningProperties.475

IFC Entity Attribute Value

IfcWindowType

Name W1 Casement

Construction Type NOTDEFINED

Operation Type SINGLE PANEL

Parameter Takes Precedence 0

IfcWindowLiningProperties

Lining Depth 50

Lining Thickness 50

Transom Thickness 0

Mullion Thickness 0

First Transom Offset 0

Second Transom Offset 0

First Mullion Offset 0

Second Mullion Offset 0

IfcWindowPanelProperties

Operation Type NOTDEFINED

Panel Position MIDDLE

Frame Depth 50

Frame Thickness 50

Table 3: Definition of W1 Casement as an instance of IfcWindowType [31]

The original IFC model required a limited re-factoring since it was based on a previous version of

IFC, namely IFC2x3. For example, IfcWindowType is used in place of IfcWindowStyle because it is

deprecated in IFC4 ADD1.

The excerpt of the IFC model was converted into an ontology module, named WindowTest, that in-

stantiates a fragment of the ifcOWL ontology. The instantiation can be carried out using any OWL editor480

(e.g. Protégé [13], OntoGUI, etc.) or an automatic converter of IFC files into RDF graphs (e.g. [32]).

Furthermore, individuals W01 and D01 were generated by instantiating classes IfcWindow and IfcDoor,

respectively. Finally, a typing relationship with individual W1 Casement of class IfcWindowType was

added to both W01 and D01. The typing relation of D01 is a modelling error that was introduced on purpose

20

to check the relevance of the additional class expressions in the following subsections. The graphical repre-485

sentation of the key individuals defined in the ontology module WindowTest is shown in Fig.4, where the

individuals are represented by boxes with grey background.

IfcDoor

IfcWindowType

DefinesType

IfcRelDefinesByType

RelatedObjects_of_IfcRelDefinesByType

Types

IfcWindow

rdf:type

W1_Casement
W01

D01

rdf:type

rdf:type
id61

rdf:type

RelatedObjects_of_IfcRelDefinesByType

IfcWindowPanelPropertiesIfcWindowLiningProperties

w1c_lining_prop w1c_panel_prop

rdf:typerdf:type

DefinesType

Figure 4: Graphical representation of the key individuals within the ontology module WindowTest, where rdf: stands for the namespace

’http://www.w3.org/1999/02/22-rdf-syntax-ns#’.

It is possible to design two configurations of the test case (WinTest1 and WinTest2), even using the

same ontology module WindowTest, as shown also in Fig.5:

WinTest1. The ontology WindowTest imports only ifcOWL.490

WinTest2. The ontology WindowTest imports ifcOWL and also ifcOWL rules that contains the definition

of additional class expressions like (76)-(79).

The test case configurations2 will be analysed in two possible scenarios; the former is defined by the

Open World Assumption (OWA, see Sect.7.2), whereas the latter considers the context of the Closed World

Assumption (CWA, see Sect.7.3). CWA and OWA are two distinct approaches to knowledge representa-495

tion [33].

2WinTest1 and WinTest2 are available at https://ontohub.org/repositories/test-ifc, under tab ‘File Browser’

21

https://ontohub.org/repositories/test-ifc

ifcOWL_rules

ifcOWL

imports

WindowTest

imports
WindowTest

ifcOWL

imports

WinTest1 WinTest2

Figure 5: Graphical representation of the ontology modules in test case configurations WinTest1 and WinTest2.

7.2. Reasoning under OWA

The Open World Assumption includes the concept of incomplete information. For instance, if a fact

(or an atomic sentence) is not present in the database it is not false by default, but rather it is considered

under the assumption that it is unknown if the sentence is true or false. An advantage of using OWA is that500

it allows expansion of knowledge in the ABox through the reasoning and inference over the existing facts

in the ABox and the axioms defined in the TBox. SW and OWL support the implementation of OWA, that

can drive to the discovery of new facts that have not been explicitly declared.

Test case configurations WinTest1 and WinTest2 can be considered in the context of OWA, which

leaves open the possibility that some facts are unknown. In this case WinTest1 passes the parsing test per-505

formed via reasoners that are available in Protégé (FaCT++, Pellet, HermiT), without capturing any incon-

sistency. Unlike WinTest1, the class expressions available in WinTest2 function as the closure axioms, ex-

plicitly restricting the intended meaning of the typing relationship between the class-pairs IfcWindowType

and IfcWindow, and IfcDoorType and IfcDoor. Thus, an inappropriate assignment of the typing rela-

tionship leads to inconsistency of WinTest2.510

One of the possible explanations of the inconsistency is given by considering together statements (67),

(80), (81), (82), (83), and (84).

D01 Type IfcDoor (80)

W1 Casement Types id61 (81)515

id61 RelatedObjects of IfcRelDefinesByType D01 (82)

W1 Casement Type IfcWindowType (83)

IfcDoor DisjointWith IfcWindow (84)

22

The individual D01 of class IfcDoor (80) is involved in a typing relationship (81-82) with individ-520

ual W1 Casement of class IfcWindowType (83). According to statement (67), an individual of class

IfcWindowType can be in a typing relationship only with individuals of class IfcWindow, therefore it can

be inferred that individual D01 belongs to class IfcWindow as well. However, IfcWindow and IfcDoor are

disjoint classes (84) and their intersection is an empty set, thus leading to inconsistency because individual

D01 cannot be a member of both classes.525

The presence of additional class expressions in WinTest2 provides a relevant advantage over WinTest1

because it enables the detection of inconsistencies caused by modelling errors. This is particularly useful

during reasoning, because it reduces the risk of generating and using the fact inferred from a poorly built

ontology. For examples, the works by Pauwels et al. [16], Beach et al. [18], and Lee et al. [19] mentioned

in Sect.2 could benefit from the inclusion of the proposed class expressions that can increase the quality530

and confidence of inferences obtained via reasoning.

7.3. Integrity Constraint Validation under CWA

The Closed World Assumption states that unless an atomic sentence is known to be true, it can be

assumed to be false (see [33], p. 210). This assumption is frequently used in the database practice as it

allows to act as if a Knowledge Base (KB) represents complete knowledge. In addition, the CWA provides535

a useful approach that simplifies the representational scope by capturing only a small fraction of the large

number of sentences that can be declared in a KB, i.e. the fraction of the atomic sentences that are true by

default. It also assumes that any unmentioned atomic sentence is false. Moreover, the typical KB that we

consider employs the CWA with domain closure, including the additional assumption that no object exists

apart from the named constants (see [33], p. 214).540

The test case configurations WinTest1 and WinTest2 can be re-evaluated in the context of CWA under

the domain closure where everything that exists must be explicitly declared and only the declared sentences

are considered to be true. The fact that instance W1 Casement is a member of the class IfcWindowType,

and the fact that D01 is a member of the class IfcDoor are stated to be true. If an integrity check based

on CWA3 is run over WinTest1, then no violation is detected and its interpretation under CWA is satisfi-545

able. On the other hand, certain statements about the typing relationships are recognised as impermissible,

i.e. false, within WinTest2 (see Fig.6). The typing relation between W1 Casement and D01 is false in

WinTest2 because an individual of class IfcWindowType is allowed to have a typing relationship only

3The integrity check under CWA can be run with different tools, e.g. Pellet Integrity Constraint Validator (http://clarkparsia.

com/pellet/icv/) and OntoGUI (see Sect. 6).

23

http://clarkparsia.com/pellet/icv/
http://clarkparsia.com/pellet/icv/

with individuals of class IfcWindow, whereas D01 belongs to class IfcDoor, thus leading to a violation of

integrity check under CWA.550

Figure 6: Explanation of integrity constraint violation for WinTest2 under CWA as generated by OntoGUI tool (see Sect. 6).

Also in the case of CWA the presence of additional class expressions in WinTest2 is beneficial because

it provides tighter constraints to be used to detect unintended statements and to lead the generation of new

instances and relationships.

8. Concluding Remarks

Motivated by the relevance of the IFC standard and the growing interest towards SW technologies, we555

provided an enhancement of the state-of-the-art IFC to OWL conversion patterns by adding class expres-

sions that explicate the links between IFC object occurrence, object type and pre-defined property sets.

The analysis of a test case under CWA and OWA scenarios has demonstrated that the additional class

expressions allow the detection of impermissible relationships between individuals, thus showing how dif-

ferent conversion strategies can lead to more accurate (and even more reliable) ontological representations560

of the IFC standard. These strategies rely on the structural constructs of the ontological language and are

thus suitable to verify the logical consistency and coherence of the captured information.

The relevance of the new class expressions has been discussed also in the scope of software development

by addressing the case of the ontology-based software tool OntoGUI. The class expressions allow this tool

to correctly create relations between object types, object occurrences, and pre-defined property sets while565

avoiding hard-coded implementations and enhancing the consistency and integrity of data on the level of

application. The generation of class expressions like (76)-(79) can be applied to the core ifcOWL ontology,

but also to domain ontologies that extend ifcOWL. Therefore, any ontology-based application that is able

to handle such class expressions will enhance its flexibility and re-usability.

24

It remains to be determined to what extent OWL class expressions can be employed to convert further570

explicit and implicit rules in the IFC schema. Further developments are foreseen to address the following

open issues:

• IFC property and quantity sets have not yet been considered in the literature about EXPRESS to

OWL conversion because they are not included in the EXPRESS schema, but attached to the IFC

specification as XML files. However, the XML definition can be converted to OWL by creating575

new pre-defined property sets. In this case, class expressions like (78) and (79) would complete the

characterization of the property sets.

• WHERE rules that constrain the feasible values of EXPRESS defined data types (e.g.

IfcPositiveInteger and IfcTextAlignment) can be converted to class expressions consisting in

restrictions on OWL datatype properties (owl:DatatypeProperty). This conversion pattern would580

be general purpose and not limited to the IFC schema.

• Further WHERE rules declarations in the IFC schema may be successfully converted into customized

class expressions. Attention will be paid to declarations involving objectified relationship classes (i.e.

subclasses of IfcRelationship).

• Implicit rules in the IFC standard could be made explicit in its OWL version. For example, class585

expressions can be exploited to enforce that a process (see IfcProcess) can be nested only by

another process.

Ontology can help to shed light into other aspects of the IFC standard as well. On the one hand, it helps

to understand classes and relationships, raising the awareness of the modeller toward a coherent use of these

elements [34]. On the other hand, it provides guidelines to choose the appropriate representation schema590

depending on the information to be modelled. It remains to verify whether this further analysis may lead

to improve the conversion results here discussed as suggested by previous experiences in applied ontology,

e.g. [35, 36, 37].

9. Acknowledgments

This research has been partially funded by the European Union 7th FP (FP7/20072013) under the grant595

agreement No: 314156, Engineering Apps for advanced Manufacturing Engineering (Apps4aME) and by

MIUR under the Italian flagship project Fabbrica del Futuro, Subproject 2, research project Product and

Process Co-Evolution Management via Modular Pallet configuration (PRO2EVO) and Smart Manufactur-

ing 2020 of the Cluster Tecnologico Nazionale Fabbrica Intelligente.

25

References600

[1] T. Liebich, Y. Adachi, J. Forester, J. Hyvarinen, S. Richter, T. Chipman, M. Weise, J. Wix, Industry Foundation

Classes official release - Introduction, online.

URL http://www.buildingsmart-tech.org/ifc/IFC4/final/html/introduction.htm

[2] T. Berners-Lee, J. Hendler, O. Lassila, et al., The semantic web, Scientific American 284 (5) (2001) 28–37.

[3] International Organization for Standardization, ISO 10303-11:2004, Industrial Automation Systems and Integra-605

tion – Product Data Representation and Exchange – Part 11: Description Methods: The EXPRESS Language

Reference Manual, online.

URL http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=

38047

[4] P. Hitzler, M. Krtzsch, B. Parsia, P. F. Patel-Schneider, S. Rudolph, OWL 2 Web Ontology Language Primer610

(Second Edition), online.

URL http://www.w3.org/TR/owl2-primer/

[5] P. Pauwels, ifcOWL: the EXPRESS to OWL conversion pattern, online (2015).

URL http://www.w3.org/community/lbd/ifcowl/

[6] International Organization for Standardization, ISO 10303-21:2002, Industrial Automation Systems and Integra-615

tion – Product Data Representation and Exchange – Part 21: Implementation Methods: Clear Text Encoding of

the Exchange Structure, online.

URL http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=

38047

[7] buildingSMART, Certified Software, online.620

URL http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=

38047

[8] W. Terkaj, M. Urgo, Ontology-based Modeling of Production Systems for Design and Performance Evaluation,

in: 12th IEEE International Conference on Industrial Informatics, Porto Alegre, 2014, 2014.

[9] J. Beetz, J. Van Leeuwen, B. De Vries, IfcOWL: A case of transforming EXPRESS schemas into ontologies,625

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 23 (01) (2009) 89–101.

[10] S. Krima, R. Barbau, X. Fiorentini, R. Sudarsan, R. Sriram, OntoSTEP: OWL-DL ontology for STEP, National

Institue of Standards and Technology, NISTIR 7561.

[11] R. Barbau, S. Krima, S. Rachuri, A. Narayanan, X. Fiorentini, S. Foufou, R. D. Sriram, OntoSTEP: Enriching

product model data using ontologies, Computer-Aided Design 44 (6) (2012) 575–590.630

[12] H. Schevers, R. Drogemuller, Converting the Industry Foundation Classes to the Web Ontology Language, in:

Semantics, Knowledge and Grid, 2005. SKG’05. First International Conference on, IEEE, 2005, pp. 73–73.

[13] H. Knublauch, R. W. Fergerson, N. F. Noy, M. A. Musen, The Protégé OWL plugin: An Open Development

Environment for Semantic Web Applications, in: The Semantic Web–ISWC 2004, Springer, 2004, pp. 229–243.

[14] P. Pauwels, R. De Meyer, J. Van Campenhout, Interoperability for the Design and Construction Industry through635

26

http://www.buildingsmart-tech.org/ifc/IFC4/final/html/introduction.htm
http://www.buildingsmart-tech.org/ifc/IFC4/final/html/introduction.htm
http://www.buildingsmart-tech.org/ifc/IFC4/final/html/introduction.htm
http://www.buildingsmart-tech.org/ifc/IFC4/final/html/introduction.htm
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=38047
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=38047
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=38047
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=38047
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=38047
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=38047
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=38047
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=38047
http://www.w3.org/TR/owl2-primer/
http://www.w3.org/TR/owl2-primer/
http://www.w3.org/TR/owl2-primer/
http://www.w3.org/TR/owl2-primer/
http://www.w3.org/community/lbd/ifcowl/
http://www.w3.org/community/lbd/ifcowl/
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=38047
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=38047
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=38047
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=38047
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=38047
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=38047
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=38047
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=38047
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=38047
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=38047
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=38047
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=38047

Semantic Web Technology, in: T. Declerck, M. Granitzer, M. Grzegorzek, M. Romanelli, S. Rger, M. Sintek

(Eds.), Semantic Multimedia, Vol. 6725 of Lecture Notes in Computer Science, Springer Berlin Heidelberg,

2011, pp. 143–158.

[15] L. Zhang, R. R. Issa, Development of IFC-based construction industry ontology for information retrieval from

IFC models, in: Proceedings of the 2011 EG-ICE Workshop, University of Twente, The Netherlands, July, 2011,640

pp. 6–8.

[16] P. Pauwels, D. Van Deursen, R. Verstraeten, J. De Roo, R. De Meyer, R. Van de Walle, J. Van Campenhout,

A semantic rule checking environment for building performance checking, Automation in Construction 20 (5)

(2011) 506–518.

[17] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, M. Dean, et al., SWRL: A Semantic Web Rule645

Language Combining OWL and RuleML, W3C Member submission 21 (2004) 79.

[18] T. Beach, Y. Rezgui, H. Li, T. Kasim, A rule-based semantic approach for automated regulatory compliance in

the construction sector, Expert Systems with Applications 42 (12) (2015) 5219 – 5231.

[19] S.-K. Lee, K.-R. Kim, J.-H. Yu, BIM and ontology-based approach for building cost estimation, Automation in

Construction 41 (2014) 96 – 105.650

[20] W. Terkaj, G. Pedrielli, M. Sacco, Virtual Factory Data Model, in: Proceedings of the Workshop on Ontology and

Semantic Web for Manufacturing, CEUR Workshop Proceedings, Vol. 886, 2012, pp. 29–43.

[21] International Organization for Standardization, ISO 14649-1:2003, Industrial automation systems and integration

– Physical device control – Data model for computerized numerical controllers – Part 1: Overview and funda-

mental principles, online.655

URL http://www.iso.org/iso/catalogue_detail.htm?csnumber=34743

[22] B. Kádár, W. Terkaj, M. Sacco, Semantic virtual factory supporting interoperable modelling and evaluation of

production systems, CIRP Annals-Manufacturing Technology 62 (1) (2013) 443–446.

[23] M. Colledani, G. Pedrielli, W. Terkaj, M. Urgo, Integrated Virtual Platform for Manufacturing Systems Design,

Procedia CIRP 7 (2013) 425 – 430.660

[24] S. Zhang, F. Boukamp, J. Teizer, Ontology-based semantic modeling of construction safety knowledge: Towards

automated safety planning for job hazard analysis (JHA), Automation in Construction 52 (2015) 29 – 41.

[25] M. Horridge, N. Drummond, J. Goodwin, A. L. Rector, R. Stevens, H. Wang, The Manchester OWL Syntax, in:

OWLed, Vol. 216, 2006.

[26] W. Zhao, J. Liu, OWL/SWRL representation methodology for EXPRESS-driven product information model: Part665

I. Implementation methodology, Computers in Industry 59 (6) (2008) 580 – 589.

[27] W. Zhao, J. Liu, OWL/SWRL representation methodology for EXPRESS-driven product information model: Part

II: Practice, Computers in Industry 59 (6) (2008) 590 – 600.

[28] J. Beetz, J. van Leeuwen, B. de Vries, An ontology web language notation of the industry foundation classes, in:

Proceedings of the 22nd CIB W78 Conference on Information Technology in Construction, Vol. 2006, 2005.670

[29] D. Beckett, Redland RDF Libraries, Online.

URL http://librdf.org/

27

http://www.iso.org/iso/catalogue_detail.htm?csnumber=34743
http://www.iso.org/iso/catalogue_detail.htm?csnumber=34743
http://www.iso.org/iso/catalogue_detail.htm?csnumber=34743
http://www.iso.org/iso/catalogue_detail.htm?csnumber=34743
http://www.iso.org/iso/catalogue_detail.htm?csnumber=34743
http://www.iso.org/iso/catalogue_detail.htm?csnumber=34743
http://librdf.org/
http://librdf.org/

[30] G. Modoni, M. Sacco, W. Terkaj, A survey of RDF store solutions, in: International ICE Conference on Engi-

neering, Technology and Innovation (ICE), 2014, pp. 1–7.

[31] Open IFC Model Repository, Iai: 6-01window brep ac 1, online.675

URL http://openifcmodel.cs.auckland.ac.nz/Model/Details/199

[32] P. Pauwels, D. Van Deursen, IFC-to-RDF: adaptation, aggregation and enrichment, in: First International Work-

shop on Linked Data in Architecture and Construction, Abstracts, 2012, pp. 1–3.

[33] R. Brachman, H. Levesque, Knowledge representation and reasoning, Elsevier, 2004.

[34] S. Borgo, E. M. Sanfilippo, A. Sojic, W. Terkaj, Ontological Analysis and Engineering Standards: an initial680

study of IFC, in: V. Ebrahimipour, S. Yacout (Eds.), Ontology Modeling in Physical Asset Integrity Management,

Springer, 2015.

[35] N. Guarino, C. A. Welty, An overview of OntoClean, in: Handbook on ontologies, Springer, 2009, pp. 201–220.

[36] M. Grüninger, Using the PSL ontology, in: Handbook on Ontologies, Springer, 2009, pp. 423–443.

[37] M. West, Developing high quality data models, Elsevier, 2011.685

28

W. Terkaj, A. Šojić (2015) Ontology-based representation of IFC EXPRESS rules: An enhancement of the
ifcOWL ontology.
Automation in Construction, Volume 57, Pages 188-201, ISSN 0926-5805.
https://doi.org/10.1016/j.autcon.2015.04.010
(https://www.sciencedirect.com/science/article/pii/S0926580515000886)

http://openifcmodel.cs.auckland.ac.nz/Model/Details/199
http://openifcmodel.cs.auckland.ac.nz/Model/Details/199

