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Abstract

Glioblastoma, the most aggressive form of primary brain tumor, presents significant challenges in clinical management and research
due to its invasive nature and resistance to standard therapies. Mathematical modeling offers a promising avenue to understand its
complex dynamics and develop innovative treatment strategies. Building upon previous research, this paper reviews and adapts some
existing mathematical formulations to the modeling study of glioblastoma infiltration and growth, utilizing the Partial Differential
Equation (PDE) formalism to describe the time-varying and space-dependent cancer cell density. Experimental data from the literature
are nicely reproduced and can be better interpreted based on the model behavior. Simulations highlight that the proposed framework is

promising for further investigations.
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1. Introduction

Glioblastoma, the most aggressive type of primary brain
tumor, poses a formidable challenge in both clinical prac-
tice and biomedical research. Known for its relentless in-
vasion of healthy brain tissue and resistance to conven-
tional treatments, glioblastoma represents a complex in-
terplay of genetic, molecular, and microenvironmental
factors. Despite advancements in surgery, chemotherapy,
and radiation therapy, the median survival for patients
with glioblastoma remains dismally low, emphasizing the
urgent need for innovative approaches (Wirsching and
Weller, 2017).

Within the realm of mathematical modeling and

simulation, glioblastoma serves as a compelling frontier,
inviting researchers to explore its intricate dynamics
and devise strategies to combat its formidable nature. By
integrating mathematical frameworks with biological
insights, researchers aim to unravel the underlying
mechanisms driving glioblastoma progression, predict
treatment responses, and identify novel therapeutic
targets.

In this context, several authors (see e.g. Hatzikirou
et al. (2005); Stein et al. (2007); Engwer et al. (2015);
Conte and Surulescu (2021); Falco et al. (2021); Kumar
et al. (2021); Jorgensen et al. (2023)) have developed
original mathematical models of glioblastoma growth or
reviewed existing ones. Among them, Stein et al. (2007),
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for example, provided a new mathematical model for
the increase in both invasive and central glioblastoma
radius over time. Conte and Surulescu (2021) proposed
multiscale modeling of glioma invasion with a focus on
tissue anisotropy. In the recent review paper by Falco et al.
(2021), various proposed models were explored, classified,
and the significant advances of each were highlighted.

1.1. Contributions

In this work, we tackle the problem of mesoscopic
mathematical modeling and simulation of glioblastoma,
leveraging computational tools to dissect its complexities,
as a preliminary step to pave the way for transformative
interventions. By mesoscopic modeling we refer to
capturing both the mean-field behavior (macroscopic
equation) and the stochastic fluctuations of tumor behav-
ior at the population level, rather than at the single-cell
(microscopic) level (van Kampen, 2007). In particular, we
build on our previous work by Pompa et al. (2023), which
introduced an Agent-Based Model (ABM) simulating the
infiltration of glioblastoma into the neighboring healthy
brain tissue, by integrating variable cell movement and
replication rates influenced by internal energy levels.
We here complement the previous computational work
from a more theoretical perspective, by providing some
data-informed physics-based design relying on partial
differential equation (PDE) modeling, representing a
diffusion-reaction system, and pointing out connections
with and stochastic modeling and simulation, still
managing to align quantitatively with classical reported
data from the literature (Stein et al., 2007). We propose
alternative models for the radial position of (proliferating)
tumor cells, together with a model-based characterization
of the tumour core and invasion radii, by also exploiting
model order reduction techniques (Borri et al., 2019)
to turn the infinite-dimensional PDE systems into
finite-dimensional ODE (Ordinary Differential Equation)
ones, by preserving their consistency.

1.2. Organization

The paper is structured as follows. In Section 2 the math-
ematical tools are introduced together with the available
data used in the experiments. In Section 3 the glioblastoma
infiltration modeling framework is presented, while Sec-
tion 4 is devoted to simulation results and their discussion.
Section 5 offers concluding remarks.

2. Materials and Methods

While simplistic and restrictive, the model illustrated in
this preliminary section can serve as a foundational frame-
work for describing higher-dimensional models that ex-
hibit certain properties of symmetry and/or isotropy, sim-

ilar to those explored later in this study.

2.1. Fokker-Planck equation and the related Stochastic
differential equation

Assume that, at the initial time, t = 0, an assembly of in-
finite cells are concentrated at the point xo € R. These
particles promptly initiate motion, dispersing in diverse
directions along erratic trajectories reminiscent of Brow-
nian motion. Consequently, at each subsequent moment
t > 0, we observe the particles distributed throughout
space, albeit non-uniformly, governed by a probability
density function (pdf), we denote by p(t, x), which sat-
isfies the following Partial Differential Equation (PDE),
known as the Fokker-Planck (FP) equation:
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The dynamical Stochastic Differential Equation (SDE) as-
sociated with the process X; having as density the solution
to (1) is given by

dXt = b(Xt)dt+ O'(Xt)th, Xo = Xo. (2)
With the condition ¢2(x) > o for all x, the unique stationary
solution to (1), namely p(t, x) = p(x), exists if
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We note that, if the drift term is zero, namely b(x) = 0,
and the diffusion is still constant (o(x) = o), the process
X; in (2) is a shifted scalar Wiener process

dXt = O'th, Xo = Xo, (5)
which differs from the Ornstein—Uhlenbeck process
(Doob, 1942) since there is no globally asymptotically sta-
ble linear drift. As a consequence, the condition (3) for the

existence and uniqueness of the stationary solution fails.
The solution to the Fokker-Planck equation (1), namely

op(t,x) _ o 2*
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p(t,x), (6)

is the Gaussian density
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describing a continuous-time random walk with mean xo
and variance o?t, linearly increasing with time.



2.2. Data collection

In this paper we exploit the data reported by Stein et al.
(2007), regarding the behavior of two different glioblas-
toma cell lines: U87WT and U87AEGFR, where the latter
is a common mutation. As reported in the paper, plots of
the experimental data were obtained by evaluating digital
photomicrographs of the midplane of spheroids through
image processing. In particular:

- the invasive radius, which represents the distance from
the center of the furthest highly motile cells, is defined
as the furthest distance from the center at which the
gradient magnitude (averaged over the azimuthal an-
gle) is half of its maximum value;

- the core radius, where the core represents the central
part of the tumour spheroid, is instead identified as the
set of pixels with an intensity of 0.12 in a scale from 0
(darkest pixel) and 1 (lighest pixel) of the gray-scale
image centered on the tumor spheroid;

- the radial cell density at day 3, expressed in [cells/cm3]
is obtained directly from the dark pixel density of the
digital photomicrographs.

In particular, we will try to reproduce the data in Figure
2 (panels A, B, C) in (Stein et al., 2007), namely the experi-
mental time sequence of the invasive radius (panel A) and
core radius (panel B) of the tumour from day 0 to day 7 of
observations, increasing in time, and the cell density as a
function of radial position at day 3 (panel C).

3. Glioblastoma infiltration modeling

We intend to utilize the technical tools introduced in
the previous section to define macroscopic/mesoscopic
stochastic cancer models describing the radial den-
sity/position of tumor cells and their aggregate behavior.

We build upon our preliminary agent-based model
(ABM) formulation (Pompa et al., 2023), by introducing
some features of interest:

- amodel natively built in polar coordinates, as opposed
to the Cartesian reference model (Pompa et al., 2023),
(of particular interest due to the symmetry of the prob-
lem);

- by inheriting the angular (azimuthal) symmetry and
isotropy of cell movements, already assumed in Pompa
etal. (2023), the previous point allows to reduce the spa-
tial dimension of the model to one (radius only); this
allows to exploit and re-adapt, in part, explicit solu-
tions and results available for 1D PDE/SDE models (see
previous section);

- continuity of the model in time and space, with
time/space discretization only employed for simulation
purposes;

- reproduction of the behavior of two different cell lines:
U87WT (already considered in CINTI) and US7AEGFR,
which is a common mutation, for which we consider
the data reported in Stein et al. (2007), see Section 2.2.
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As mentioned in Section 2.2, core and invasive radii
are increasing in the observation period, so a steady-state
model for radial position would not be realistic. Conse-
quently, the simplest non-stationary model we can define
is the pure scalar Wiener (diffusion) process with no drift
(b(x) = 0) and constant diffusion (o(x) = o) described in
(5). By the change of coordinates r = |x|, from (7) one gets
the half-normal density

_ V2
Pdiff(f»r)-me 2%, t>0, r>0, (8)

satisfying o> pgi(t, r)dr = 1.

In order to fit the model to the cell density radial dis-
tribution at day t = t = 3 from Stein et al. (2007), which
are not normalized (they are expressed in cells/cm3), we
consider the derived model

AV2 >
2

Ugir(t,1) = A Py (t, 1) = Jagt T 120, =20,

(9)
satisfying j;w ud,-ff(t, r)dr = A. Notice that the model (9)
does not represent a probability density function (pdf),
but we assume it is equivalent to it, up to a constant ratio
A.

As a comparison term, we also consider another plau-
sible model with decreasing behavior and with the same
number of free parameters (equal to 2), i.e. an exponen-
tially decreasing function:

Uexp(r) = A - pexp(r) = A}\e_)‘r, r=>o, (10)
satisfying [,°° pexp(r)dr = 1and [,°° uexp(r)dr = A.

A refinement of the previous simplistic models would
consist in adding to the FP equation (6) of the pure dif-
fusion case a reaction term, so that the spatio-temporal
evolution of the one-dimensional concentration u(x, t) of
tumor cells can be well described by a Reaction-Diffusion
PDE, also known as KPP-Fisher Equation (see e.g. eq. (1)
of Stein et al. (2007)):

2
0o o (20, oo

whose solution ugpp(t, x) can be recast in radial coordinates
by setting r = |x|, and where

- gis the proliferation rate;

- Dis the diffusion constant;

* Umax iS @ maximum admissible concentration value,
modeling intraspecific competition.

Notice that by setting D = %2 and g = 0, one easily ob-
tains as a result the pure-diffusion density in (7). Due to
the higher number of parameters (equal to four) with re-
spect to the exponential and to the pure diffusion model,
we expect that the fitted KPP-Fisher model is able to bet-
ter capture the experimental tumour cell density behav-
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ior. Note also that the integral Agpp(t) := 5> ugpp(t, r)dr
is non-constant, so the corresponding (normalized) pdf
KPP-Fisher model can be obtained by imposing pxpp(t, 1) =
UKpp(t, r)/AKpp(t), so that I;OO prp(t, r)dr =1
Introducing the non-linear reaction term, we are no

longer able to get an explicit solution. To this end, we
exploit the multi-agent method proposed in (Borri et al.,
2019) to reduce the spatially continuous PDE model into
a spatially discrete one, by imposing an arbitrary space
discretization Ax > 0, which leads to the following infinite
ODE system:

u;(t) )

Umax / ’

(12)

(0) = s (1a0) = 200) + s (®) + gui(0) (1

for i € 7, where we set u;(t) := ugpp(t, iAx). By finite trun-
cation of the model to the bounded set x € [Xmax, Xmax],
for a proper choice of xmax > 0, the model (12) becomes a
finite ODE model, which we are able to integrate by means
of standard ODE solvers.

4. Simulation results

All the computations in this section have been performed

in the MATLAB® suite on a ASUS Zenbook laptop with 1.8
GHz Intel Core i7-10510U CPU and 16 GB RAM.

The ordinary least squares (OLS) method (Casella and
Berger, 2024) is used to fit the parameters A and o of the
position radial density models (9) and (10), and the param-
eters A, o, g and dmax of the KPP-Fisher model (11)—(12)
to the data in Figure 2C from Stein et al. (2007), by mini-
mizing the sum of squared differences between observed
and predicted values, for both the U87WT and U87AEGFR
cell lines, exploiting the MATLAB® routine fminsearch.

In Figure 1, we show the best fit of the probability den-
sity function for a fixed time t = 3 for the three position
models proposed. It is readily seen that the half-normal
model fits the data better with respect to the exponential
model, approximately by a factor of 2 in terms of mean
square error, for both cell lines, but both models are out-
performed by the reaction-diffusion KPP-Fisher model.

After establishing the superiority of the reaction-
diffusion KPP-Fisher model, namely (11), in capturing
the cell density position, in Figure 2 we provide the cell
density predictions in different days, where the MATLAB®
routine ode45 is employed to integrate the ODE system
(12), with the choice Ax = 5 and xmax = 1000. In this case,
we do not report the normalized pdf pxpp(t, r) but the cell
density ugpp(t, r) in the original coordinates, showing the
progressive increase of the tumour in time and good fit
the data at day 3 from Stein et al. (2007).

Instead, in Figs. 3 we provide an approximate model-
based evaluation (based on the fitted KPP-Fisher model) of
the invasive and core radii, evaluated in terms respectively
of the 99-th and 90-th percentiles, respectively, of the
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Figure 1. Best fit of the probability density function (pdf) of the radial
position for the U87WT (top panel) and U87AEGFR cell lines at day 3: data
from Stein et al. (2007) (blue circles), exponential model (red dashed line),
half-normal model (yellow dash-dotted line), KPP-Fisher model (purple
solid line).
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Figure 2. Predictions based on the reaction-diffusion (KPP-Fisher) model
of the probability density function (pdf) of the radial position for the U87WT
(top panel) and U87AEGEFR cell lines along a period of 7 days.
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Figure 3. KPP-Fisher model evaluation of the tumour invasive radius (left figure) and core radius (right figure) along a period of 7 days for the U87WT (top
panels) and U87AEGER cell lines (bottom panels): data from Stein et al. (2007) (blue circles), KPP-Fisher model (red solid line).

tumour cell pdf, namely

(13)

rinvasion(t)
J pxpp(t, r)dr = 0.99,

Feore(t)
JO pkpp(t,r)dr = 0.9, (14)

where the percentile levels have been calibrated based on
the available data and literature to provide reasonably good
results.

Although Fig. 3 essentially captures the increasing
trend in time of invasive and core radii, we highlight that
the imperfect matching between the figure and the ex-
perimental data of Figures 2A—2B in (Stein et al., 2007)
can easily be justified since the model has not been fitted
accounting for such time-varying data from day 0 to 7, but
only based on the density data at day 3. The alternative
choice of fitting the KPP-Fisher model parameters based
on the experimental time course of the radii, as well as the
adoption of more complex models able to better capture
the tumour radial expansion behavior, will be object of
future investigation.

5. Conclusions

Glioblastoma poses formidable challenges in clinical prac-
tice and research, given its aggressive and treatment-
resistant nature, and mathematical modeling emerges as
a promising tool to comprehend the intricate dynamics
of this disease and devise novel therapeutic approaches.
This study contributes several innovative mathematical
models for glioblastoma infiltration and growth. Lever-
aging the partial differential equation (PDE) formalism,
we characterize the temporal and spatial variations in can-
cer cell density. Numerical simulations corroborate the

theoretical findings and nicely replicate literature data.

The presented theoretical framework, informed by
computational and data-driven approaches, seems able to
offer some insights into tumor progression and poten-
tial therapeutic interventions. Regarding ongoing and
future work, we highlight that the proposed design al-
lows for versatile expansion, enabling the study of diverse
cell sub-populations, tumor-immune system interactions,
and personalized therapy strategies.
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