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A simple derivation of the stationary velocity distribution of a collection of active particles subject
to non equilibrium colored noise is provided in this note. Moreover simulation results for the 2-
dimensional case are reported.

I. DERIVATION OF THE STATIONARY VELOCITY DISTRIBUTION

The e�ective dynamics for space coordinates of an assembly of active spheres1,2 is

ṙi(t) =
1

γ
F i(r1, . . . , rN ) + ui(t) (1)

where the velocities ui evolve according to the law:

u̇i(t) = −1

τ
ui(t) +

D
1/2
a

τ
ηi(t) (2)

The force F i = −∇iU acting on the i-th particle is conservative and associated to the potential U(r1, . . . , rN ), γ is
the drag coe�cient, whereas the stochastic vectors ηi(t) are Gaussian and Markovian processes distributed with zero
mean and moments 〈ηi(t)ηj(t′)〉 = 2δijδ(t− t′). where d is the spatial dimensionality. The coe�cient Da due to the
activity is related to the correlation of the Ornstein-Uhlenbeck process ui(t) via

〈ui(t)uj(t′)〉 = d
Da

τ
δij exp(−|t− t′|/τ).

where d is the spatial dimension. To simplify the notation we switch from ri to an array xi as done in previous
publications:

ẋi(t) =
1

γ
Fi(x1, . . . , xN ) + ui(t) (3)

Di�erentiate again

ẍi(t) =
1

γ

∑
k

∂Fi
∂xk

ẋk + u̇i(t) (4)

ẍi(t) =
1

γ

∑
k

∂Fi
∂xk

ẋk −
1

τ
[ẋi −

Fi
γ

] +
D

1/2
a

τ
ηi (5)

Let us introduce the variable vi and recast eq.(5) as:

ẋi = vi (6)

v̇i =
1

γ

∑
k

∂Fi
∂xk

vk −
1

τ
[vi −

Fi
γ

] +
D

1/2
a

τ
ηi (7)
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A. One particle

Before presenting the multidimensional result, we digress to illustrate the kinetic method of solution in a simple
one-dimensional case. We begin with a single particle in one dimension and drop the index i. We di�erentiate eq. (1)
with respect to time and introduce the velocity variable v = ẋ so that instead of the original system (1) and (2) we
have:

v̇ = −1

τ
(1− τ

γ

dF

dx
)v +

1

τγ
F +

D
1/2
a

τ
η

ẋ = v (8)

We obtain the Kramers equation for the phase-space distribution f(x, ẋ; t):

∂f

∂t
+ v

∂f

∂x
− ∇U

γτ

∂f

∂v
=

1

τ

∂

∂v

(D
τ

∂

∂v
+ Γ(x)v

)
f (9)

with Γ(x) = 1 + τ
γ∇

2U(x)). By multiplying and integrating over v eq. (9) and considering only time independent

solutions f0(x, v) one obtains:

∂

∂x

ˆ
dvv2f0(x, v) +

∇U
γτ

ˆ
dvf0(x, v) = −1

τ
Γ(x)

ˆ
dvvf0(x, v) (10)

Such an integro-di�erential equation can be solved by the following ansatz f0(x, v) = Π(v|x))P(x) where Π is the

Gaussian velocity distribution : Π(v|x) = ( τ
2πD )1/2

√
Γ(x) exp

(
− τ

2DΓ(x)v2
)
whose width depends on the particle

position and the average velocity v vanishes. After substituting the factorization f0 into (9) and evaluating the
velocity variance

ˆ
dvv2 Π(v|(x) =

Da

τ

1

Γ(x)
(11)

we arrive at the following di�erential equation determining the steady state coordinate distribution P(x) :

d

dx
[Γ−1(x)P(x)] +

∇U(x)

Dγ
P(x) = 0 (12)

which is identical to the di�erential equation determining the stationary coordinate distribution in the uni�ed color
noise approximation (UCNA):

P(x) =
1

Z1
exp(

−H(x)

Ts
) (13)

with

H(x) = U(x) +
τ

2γ
(
∂U(x)

∂x
)2 − Ts ln[1 +

τ

γ

d2U(x)

dx2
] (14)

and Ts = Daγ and Z1 a normalization constant de�ned as:

Z1 =

ˆ
dx exp

(
−H(x)

Ts

)
. (15)

The method can be easily extended to the multidimensional case.

II. A KINETIC DERIVATION OF THE STEADY DISTRIBUTION, VELOCITY CORRELATIONS FOR

MANY PARTICLE SYSTEMS

We now generalize the kinetic argument above illustrated to a many particle system and write the following multi-
dimensional Kramers equation3 describing the evolution of the phase-space distribution fN (x1, . . . , xN ; , v1 . . . , vN ; t)

∂fN
∂t

+
∑
i

vi
∂fN
∂xi

+
∑
i

Fi
γτ

∂fN
∂vi

=
1

τ

∑
i

∂

∂vi

(Da

τ

∂

∂vi
+
∑
k

Γikvk

)
fN (16)
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with the non dimensional friction matrix Γik de�ned as

Γik = δik +
τ

γ

∂2U
∂xi∂xk

. (17)

The probability conservation and the momentum balance equations are straightforwardly obtained by projection, i.e.
by integrating eq.(16) over the dN dimensional velocity space after multiplying by 1 and vi, respectively:

∂PN ({xi}, t)
∂t

+
∑
i

∂Ji({xi}, t)
∂xi

= 0 (18)

∂Ji({xi}, t)
∂t

+
∑
k

∂pik({xi}, t)
∂xk

− Fi({xi}, t)
γτ

PN ({xi}, t) = −1

τ

∑
k

Γik({xi}, t)Jk({xi}, t) (19)

where PN ({xi}, t) is the marginalized distribution giving the distribution of positions of the particles regardless their
velocities:

PN ({xi}, t) =

ˆ
dNv fN ({xi}, ({vi}, t) , (20)

while the current Ji({xi}, t) is the N-dimensional vector:

Ji({xi}, t) =

ˆ
dNv vifN ({xi}, ({vi}, t). (21)

Finally, pij({xi}, t) is the N ×N dimensional generalized kinetic pressure tensor

pij({xi}, t) =

ˆ
dNv vivjfN ({xi}, ({vi}, t) (22)

Equations (18)-(19) are an exact consequence of (16), but require the knowledge of pij which can be obtained by
continuing the projection procedure in velocity space to higher order in vi and closing the hierarchy by a suitable
truncation ansatz, such as the introduction of phenomenological transport coe�cients. On the other hand, if we limit
ourselves to study the stationary regime the approach is fruitful and leads to a di�erent interpretation of the MUCNA
equations. Let us �rst, notice that the operator featuring in the right hand side of (16) posseses a null eigenvalue
whose associated eigenfunction (the ground state) is the multivariate Gaussian velocity distribution :

Π(({vi}|{xi}) = (
τ

2πDa
)N/2
√

det Γ exp
(
− τ

2Da

∑
ij

viΓij({x})vj
)

(23)

In other words Π({vi}|{xi}) is the conditional probability distribution of velocities given the positions take on the
values {xi}. We now construct a time-independent trial phase-space distribution having a factorized form:

f
(K)
T ({xi}, ({vi}) = Π(({vi}|{xi})× P st({xi}) (24)

and corresponding to zero current Ji(x1, . . . , xN ). For generic potentials the velocity moments of G are non constant
in space, but depend on coordinates xi and di�erent velocity components may be correlated and are given by the
formula:

vivj =

ˆ
dNvvivjΠ({vi}|{xi}) =

Da

τ
Γ−1ij ({xi}) (25)

so that the "pressure " tensor reads pij({xi}) = Da

τ Γ−1ij ({xi})P st({xi}). Using eq. (19) in conjunction with the
condition of vanishing currents, Ji = 0, we have the following balance equations:

τ

Da

∑
k

∂pik({xi})
∂xk

− Fi({xi})
Daγ

P st({xi}) = 0 (26)

Eliminating the pressure tensor using (25) we arrive at the di�erential equation determining P st({xi}) :∑
k

∂

∂xk
[Γ−1ik ({xi})P st({xi})] +

1

Daγ

∂U({xi})
∂xi

P st({xi}) = 0 (27)
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Finally, by multiplying by the matrix Γ equation (27) we arrive at an equation identical to the MUCNA equation (see
ref2)

−(Da +Dt)γ
(∂PN
∂xn

− PN
∂

∂xn
ln det Γ

)
− PN

∑
k

(
δnk +

τ

γ

∂2U
∂xn∂xk

)∂U(x1, . . . , xN )

∂xk
= 0. (28)

in the case Dt = 0, so that we may identify the con�gurational part of the trial solution P st with PN derived by the
MUCNA method2:

PN (x1, . . . , xN ) =
1

ZN
exp
{
− 1

Daγ

[
U(x1, . . . , xN ) +

τ

2γ

N∑
k

(∂U(x1, . . . , xN )

∂xk

)2
−Daγ ln |det Γik|

]}
(29)

where ZN is a normalization constant.
We turn now to the formula for the velocity covariance matrix for many particles. Using the Gaussianity of the

distribution we can immediately write the averages of the velocity as

< vivj >=

ˆ
dNx vivjPN ({xi}) =

Da

τ

ˆ
dNxΓ−1ij ({xi})PN ({xi}) (30)

where 〈·〉 stands for the double average over velocities and over space since the velocity distribution depends on the
positions, unlike the equilibrium case.
In the general case we must evaluate the matrix elements Γij . As shown in the appendix this can be done to �rst

order in τ/γ with the result for the velocity self-correlations:

< viαv
i
α >=

Da

τ

ˆ
dNrP st(r1, . . . , rN )[1− τ

γ

∑
j 6=i

wαα(ri, rj)] (31)

Finally, averaging over the whole system and introducing the positional pair correlation function g(r− r′) one obtains

1

N

N∑
i=1

< viαv
i
α >=

Da

τ

(
1− τ

γ
ρ

ˆ
drg2(r)wαα(r)

)
(32)

In analogy with granular gases we can de�ne the second moment of the velocity distribution to be the average

kinetic temperature, T k of the system, via Tk = 1
N

∑N
i 〈vivi〉.

III. APPROXIMATION FOR THE DETERMINANT AND VELOCITY CORRELATIONS

The exact evaluation of the determinant Γ associated with the Hessian matrix is beyond the authors capabilities
and we look for approximations in order to evaluate the e�ective forces. We consider the associated determinant in
the case of two spatial dimensions and vanishing external potential:



[1 + τ
γ

∑
j 6=1 wxx(r1, rj)]

∑
j 6=1

τ
γ
wxy(r1, rj) − τ

γ
wxx(r1, r2) . . . − τ

γ
wxy(r1, rN )∑

j 6=1
τ
γ
wyx(r1, rj) [1 + τ

γ

∑
j 6=1 wyy(r1, rj)] − τ

γ
wyx(r1, r2) . . . − τ

γ
wyy(r1, rN )

− τ
γ
wxx(r2, r1) − τ

γ
wyx(r2, r1) [1 + τ

γ

∑
j 6=2 wxx(r2, rj)] . . . − τ

γ
wxy(r2, rN )

. . . . . . . . . . . . . . .

− τ
γ
wxy(rN , r1) − τ

γ
wyy(rN , r1) . . . . . . [1 + τ

γ

∑
j 6=N wyy(rN , rj)]


It is interesting to remark that the o�-diagonal elements contain only one term, while the diagonal elements and their
neighbors contain N terms. Thus in the limit of N → ∞ we expect that the matrix becomes e�ectively diagonal.
However, even with such a limit, we see that to order τ/γ the inverse matrix, which is directly related to velocity
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correlator vαivβj (see (25)), reads:

τ

D
vαivβj ≈



[1− τ
γ

∑
j 6=1 wxx(r1, rj)] −

∑
j 6=1

τ
γ
wxy(r1, rj)

τ
γ
wxx(r1, r2) . . . τ

γ
wxy(r1, rN )

−
∑
j 6=1

τ
γ
wyx(r1, rj) [1− τ

γ

∑
j 6=1 wyy(r1, rj)]

τ
γ
wyx(r1, r2) . . . τ

γ
wyy(r1, rN )

τ
γ
wxx(r2, r1)

τ
γ
wyx(r2, r1) [1− τ

γ

∑
j 6=2 wxx(r2, rj)] . . .

τ
γ
wxy(r2, rN )

. . . . . . . . . . . . . . .

τ
γ
wxy(rN , r1)

τ
γ
wyy(rN , r1) . . . . . . [1− τ

γ

∑
j 6=N wyy(rN , rj)]


We, now, assume translational invariance and perform the average over the spatial distribution PN (r1, . . . , rN ), and

introduce the pair correlation as P2(r1, r2) = ρ2

N(N−1)g(r1 − r2) . The sought average is:

τ

D
< vαivβj >=



1− τ
γ
ρ
´
drwxx(r)g(r) − τ

γ
ρ
´
drwxy(r)g(r)

τ
Nγ
ρ
´
drwxx(r)g(r) . . . τ

Nγ
ρ
´
drwxy(r)g(r)

−ρ τ
γ

´
drwyx(r)g(r) 1− τ

γ
ρ
´
drwyy(r)g(r)

τ
Nγ
ρ
´
drwyx(r) . . . τ

Nγ
ρ
´
drwyy(r)g(r)

τ
Nγ
ρ
´
rwxx(r)g(r)

τ
Nγ
ρ
´
drwyx(r)g(r) 1− τ

γ
ρ
´
drwxx(r)g(r) . . . τ

Nγ
ρ
´
drwxy(r)g(r)

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .


One can see that in the limit of large N the o�-diagonal terms become neglegible because they carry factors 1/N and
one obtains a block diagonal matrix whose blocks are 2× 2 matrices:(

< vxvx > < vxvy >
< vyvx > < vyvy >

)
=
D

τ

(
1− τ

γ
ρ
´
drwxx(r)g(r) − τ

γ
ρ
´
drwxy(r)g(r)

−ρ τ
γ

´
drwyx(r)g(r) 1− τ

γ
ρ
´
drwyy(r)g(r)

)
If the system is rotationally invariant < vxvx >=< vyvy > and < vxvy >=< vyvx >= 0.

A. Evaluation of the ensemble average of the determinant to linear order in τ/γ and velocity variance

Notice that to linear order τ/γ the ensemble average of the determinant is:

ˆ
dr1 . . . drNPN (r1, . . . , rN ) det Γ(r1, . . . , rN ) ≈

(
[1 +

τ

γ
ρ

ˆ
drwxx(r)g(r)][1 +

τ

γ
ρ

ˆ
drwyy(r)g(r)]

)N
(33)

ˆ
dr1 . . . drNPN (r1, . . . , rN ) det Γ(r1, . . . , rN ) ≈

(
1 +

τ

γ
ρ

ˆ
dr[wxx(r) + wyy)(r)]g(r)

)N
(34)

To order τ/γ:

ˆ
dr1 . . . drNPN (r1, . . . , rN ) ln det Γ ≈ N ln

(
1+

τ

γ
ρ

ˆ
dr[wxx(r)+wyy(r)]g(r)

)
≈ N ln

(D
τ

1

< vxvx >

)
+N ln

(D
τ

1

< vyvy >

)
(35)

IV. 2D SIMULATION RESULTS

We simulate a 2d system driven by GCN and composed by N = 1000 particles with periodic boundary conditions.
The particles interact via the purely repulsive pair potential ϕ(r1 − r2) = |r1 − r2|−12. We �x τ = 1 and we explore
several values of density ρ = N/L2 and di�usivityD. The results are reported in Fig. 1. Fig. 1(a) shows the normalized
velocity variance as a function of density for di�erent values of D. It is seen that, as in the 1d case, the quantity
〈ẋ2〉/(D/τ) is a decreasing function of ρ. However in the 1d case 〈ẋ2〉/(D/τ) is also a decreasing function of D (at
�xed ρ), while in 2d a non-monotonic behavior in D can be observed at high ρ. Fig. 1(b) shows the amplitude of the
Fourier-transformed density �uctuations at low q (q ≈ (20σ)−1) which shows a very similar behaviour to the 1d case.
Fig. 1(c) and (d) show two snapshots at high D and intermediate densities where evident clustering of the particles is
observed but not a full phase separation. This is the case also upon further increasing τ to very high values as shown
in Fig. 2.
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Figure 1: (a) Velocity variance as a function of density at di�erent values of D. (b) The colormap represents the values of the
structure factor at low q for several values of the density and the di�usivity. (c) and (d) Snapshot of the system at di�erent
values of D and ρ, an evident clustering is observed.
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Figure 2: Snapshot of the system at high τ for two di�erent values of D and ρ, an evident clustering is observed without a full
phase separation.


