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Abstract: Photosynthetic microorganisms are among the fundamental living organisms exploited
for millennia in many industrial applications, including the food chain, thanks to their adaptable
behavior and intrinsic proprieties. The great multipotency of these photoautotroph microorganisms
has been described through their attitude to become biofarm for the production of value-added com-
pounds to develop functional foods and personalized drugs. Furthermore, such biological systems
demonstrated their potential for green energy production (e.g., biofuel and green nanomaterials).
In particular, the exploitation of photoautotrophs represents a concrete biorefinery system toward
sustainability, currently a highly sought-after concept at the industrial level and for the environmental
protection. However, technical and economic issues have been highlighted in the literature, and in
particular, challenges and limitations have been identified. In this context, a new perspective has
been recently considered to offer solutions and advances for the biomanufacturing of photosynthetic
materials: the co-culture of photoautotrophs and bacteria. The rational of this review is to describe
the recently released information regarding this microbial consortium, analyzing the critical issues,
the strengths and the next challenges to be faced for the intentions attainment.
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1. Introduction

The benefits related to the photosynthetic microorganism’s cultivation (e.g., microal-
gae, cyanobacteria and photosynthetic bacteria) are well known owing to their ability
to convert light, water and carbon dioxide into products with valuable contents in a
sustainable way.

The ability of these photoautotrophs to manufacture high-value compounds (e.g.,
vitamins, pigments and polyunsaturated fatty acids), alternative energy sources and to
perform natural processes for environment safeguard (e.g., biofuel production, CO2 miti-
gation and waste water treatment) founded a significant market demand from industries
of food, feed, oil business, cosmetics and pharmaceutics [1–5]. In particular, the positive
feedback related to the photoautotrophs’ use can be associated to their positive impact
on the Industry 4.0 achievement. This strategic term was introduced in 2011 by the Ger-
man government to indicate a technological perspective able to support sustainability
challenges [6]. The expectations from the companies that embrace this new philosophy
are many, including economic (as a result of a better energy use), environmental (for the
reduction of scrap waste manufacturing and use of sustainable materials) and social ones
(by achieving a safer and more comfortable workplace) [7]. In this context, microalgae and
cyanobacteria exploitation received an increased interest for their attractive potential in
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the current scenario of energy savings and alternative food supplies. Many advantages
derive from the use of these unicellular organisms, being capable of rapidly growing in a
wide range of habitats as flexible systems. In addition, their strains can be easily edited
by genetic approaches, and their cells have a shorter life cycle (1–4 days for microalgae
and only 3 h for cyanobacteria) than the plants (90–180 days) [8–10]. This aspect is not to
be underestimated, being that feedstocks with shorter life cycles are more sustainable in
comparison with longer life ones [11].

However, the photoautotroph cultivations as long as they are in pilot systems and
under controlled growth conditions have not shown particular worries; on the contrary,
when industrial applications at large scales are reached, several concerns are brought
up. In particular, two aspects heavily affect these scaled-up systems, i.e., the design of
photobioreactors and the apparatus dedicated to the biomass harvesting. To this aim,
evaluation in silico by mathematical simulations and dynamic modelling can be extremely
useful for optimizing important parameters and for reducing the cost of expensive experi-
ments. Process simulation is well established in chemical engineering, and its application
in bio-engineering is increasing [12]. In this context, Apel and colleagues proposed a
mathematical programming based on algorithms consisting of two loops: validation loop
and virtual design and evaluation loop. The first one certifies that the models accurately
describe reality. This step is strongly required to identify the parameters for the biology
model, and it is repeated until the required accuracy is accomplished [12].

Moreover, another important issue related to the large-scale production is the culture
contamination by other microorganisms (e.g., virus, bacteria, grazers and fungi) that can
greatly reduce the biomass yield compromising the quality. In this regard, besides the
contamination management strategies available into open ponds (e.g., use of adequate
filters, selection of engineered strains, sterility conditions and antibiotics use), a new point
of view is emerging on the concept contaminant organism, which is a new additional
element capable of providing added value to the cultivation. In particular, the natural
consortia have been a source of inspiration and offered the possibility to observe a new
and complex reality able to combine productivity and high resistance to contaminations,
because the ecological niche is already engaged. However, the final products of these
natural consortia can be restricted due to the environment-elevated complexity. Recent
efforts are focused on the design of stable, less complex and better controllable synthetic
co-cultures to take advantage of microbial communities (e.g., distribution of the metabolic
burden and ability to convert complex substrates) [13]. This synthetic ecological strategy is
helpful for large-scale cultures, without sterile environments, and seems to be a promising
approach to low-cost sustainable production of valuable compounds. Intriguing studies
pointed out many strategies, such as engineering of chemical symbiosis, of quorum sensing
and of ecological niches useful for this topic [14–17]. These parameters can be modulated
purposefully to obtain a stable co-culture, in stress-free conditions and with the possibility
to live together, making the most of the substrates partitioning as available resources [13].
In general, co-culture members can be identified according to the communication profile,
which can be based on the analyses of metabolite content and protein assay, and/or taking
inspiration from natural consortia. However, great challenges remain in the carrying out of
multispecies cultures for industrial applications [18,19].

Several types of microalgae-based consortia have been reported in the literature, in-
cluding microalgae–bacteria, algae–fungi, microalgae–protists and the multibacteria and
multialgae symbiosis systems [20–22]. Microalgae–bacteria co-cultivation systems are ex-
tremely promising biotechnological tools, as many recent studies have revealed a positive
effect of microalgae–bacteria symbiosis on microalgal growth [23–25]. The advantageous
association of microalgae and bacteria has been attributed to various factors, e.g., (i) bac-
teria stimulate microalgal growth by producing growth-promoting substances as well as
vitamins (cobalamin, thiamine and biotin) and cofactors and by reducing dissolved O2 con-
centration [26]; (ii) microalgae produce O2 through photosynthesis which can be utilized
by bacteria, which in turn produce CO2 photosynthetically fixed by microalgae [23,27–29];
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and (iii) microalgae secrete complex compounds which serve as a source of carbon and
nitrogen for bacteria. As an example, in co-culturing Chlorella vulgaris and Pseudomonas,
the symbiotic bacterium showed a growth-promoting effect on the green microalga [30].

The topic of synthetic microbial consortia is still in an early infancy, and several
challenges related to the intercellular communication and the design of stable/manageable
systems must be still faced. In this review, the state of the art concerning the peculiar
bio-materials obtainable through the photoautotrophs–bacteria co-cultures is presented,
highlighting the challenges and future directions to support the development of synthetic
microbial consortia.

2. Microbial Consortium for Photosynthetic Biomanufacturing Materials

In the last 40 years, several important scientific discoveries have strongly contributed
to the recent and promising possibility to use consortia of microorganisms for the synthesis
of valuable biomolecules. In particular, starting from the first experiments of microbiology
and selection of remarkable microorganisms, the knowledge evolved until sophisticated
approaches (e.g., production of recombinant proteins and DNA editing) made possible the
microbial co-cultivations for environmental and human purposes [31] (Figure 1).
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Reprinted with permission from Qian et al. (2020). Biotechnological potential and applications of microbial consortia.
Biotechnology Advances [32]. Copyright (2020) Elsevier.

In fact, a great potential of mixed crops is the possibility to obtain a wide range of pho-
tosynthetic materials, such as astaxanthin, β-carotene, omega-3 fatty acids, phycocyanin,
exopolysaccharides and bio-polymers, as well as alternative energy sources (e.g., hydrogen,
H2) and high amounts of biomass useful for many applications [19]. Moreover, recent
studies reported that co-cultures, being designed for converting/producing to specific
substrates/products, are able to ensure a higher yield than monocultures modeling growth
parameters (e.g., high light, temperature, pH and salinity) or applying nutrient starva-
tion [24]. This was demonstrated in the production of exopolysaccharides by co-culturing
of Agaricus blazei and Chlorella vulgaris, or lipids by Chlorella pyrenoidosa and Rhodospiridium
toruloides and Chlorella vulgaris and Trichosporonoides spathulate [33–35].

As mentioned above, the role of microalgae in the design of co-cultures is arousing
much interest in the scientific community, and, to date, this strong potential has not yet been
fully portrayed. In particular, the number of studies related to consortia and co-cultures in
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the wastewater treatment, anaerobic digestion and in biomanufacturing, where microalgae
play important roles of co-culture partners, is greatly increasing (Figure 2). In this regard,
case studies divided by bioproducts are reported below in order to obtain a snapshot of the
current situation.
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2.1. Manufacturing of Biomolecules

Biological molecules, such as carbohydrates, lipids and carotenoids, are synthesized
by living organisms and are involved in essential cellular functions. Some of them have im-
portant roles in the marketing area, being pivotal in human health and diseases prevention,
as well as being a sustainable resource for the environment (Figure 3).

A remarkable example is the integration of co-cultures in the enhancing of lipid
production, positively impacting on yield and costs. In this context, Berthold and colleagues
presented intriguing results of renewable fuel resources exploiting microalgae biomass,
already known for their capability to produce several eco-fuels (e.g., diesel, hydrocarbons,
biogas and ethanol) [36]. In this study, the authors avoid the common condition of nutrients
depletion applied on monocultures to reach lipids accumulation, reason of inhibition in the
biomass productivity, preferring a co-culture condition based on microalgae and bacteria
isolated from 10 South Florida water samples [37]. In particular, effective results have
been obtained with the algae Characium sp. and the heterotrophic bacterium, Pseudomonas
composti, reaching a 50% increase in lipids content.

Another noteworthy research related to the effects of artificial consortia of microalgae
and bacterial symbionts was presented by Xue and colleagues. In this case, Chlorella
vulgaris and Stenotrophomona smaltophilia were analyzed in terms of biomass, growth rate
and lipid production reaching an increase of 21.9%, 20.4% and 18%, respectively [38]. In
particular, the co-culture condition affected not only the total content of lipids, but also their
composition fostering the saturated fatty acids and oleic acids production. All these results
highlight the great potential of microalgae–bacteria consortia in the quality of biodiesel. In
addition, the results presented by Wei and colleagues supported the consortia exploitation,
contributing to the demonstration that the quality and quantity of microalgal bio-oil can
be improved and maximized with this new approach. In fact, through the co-culture of
Chlorella vulgaris and Mesorhizobium sangaii (initial ratio of 40:1), the authors reported an
increase in biomass, lipid content and productivity of algae (1.5, 2.2 and 3.3 times higher
than those of the pure algae culture) [39].
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A further contribution was presented with the co-culture of the green algae Chlorella
minutissima with Escherichi coli under mixotrophic conditions [40]. In addition, in this case
the attempt to replicate a “real” algae cultivation system revealed an interesting algae
response to the presence of heterotrophic organism, suggesting a successful symbiotic rela-
tionship. This study documented significant increases in total lipid and starch productivity
compared to axenic cultures, suggesting that bacterial contamination was not detrimental
to the production of biofuel precursors but a possible added value. However, the experts in
this field do not hide that further investigations are strongly required, especially to clarify
the chemical/physical interactions that may occur between populations of different species,
as well as to better cope the scaled-up systems. In the context of microbial renewable
energies, the production of bio-H2, as an interesting alternative to gasoline, deserves to be
mentioned, especially in the presence of co-cultivation.

Nowadays, several studies on H2 production by microalgae and bacteria co-cultures
have been reported [41–44]. For instance, studies shown that Chlamydomonas–bacteria
co-cultures can enhance H2 production [43,45,46]. In these co-cultures, dissolved oxygen
in the culture medium is consumed by bacteria, thus producing an anaerobic environment
that is suitable for hydrogenase, the enzyme responsible for H2 production, activation.
Microalgae and bacteria co-culturing enhanced starch accumulation and maintained protein
content. These factors are also important in order to improve H2 production. Fakimi et al.
demonstrated the possibility of attaining synergetic H2 production in microalgae–bacteria
consortia [47]. In these co-cultures, bacteria produce acetic acid, which is consumed by
microalgae, and anaerobic conditions as a result of bacterial growth. H2 production in
these microalgae–bacteria consortia resulted in 60% more H2 production than the sum of
the respective monocultures [47].

A recent review of Fakimi et al. provided a comparison of previously published data
about H2 production in Chlamydomonas–bacteria co-cultures and their respective algal
monocultures [41,48]. Bacterial partners, such as Pseudomonas sp. and Bradyrhizobium
japonicum, in cultures incubated in tris-acetate-phosphate devoid of sulphur medium,
improved H2 production by 22-fold and 17-fold of the pure algal cultures, respectively [49].

Moreover, several studies on H2 production by photosynthetic bacteria and bacteria
co-cultures have been reported [50–52]. Kao et al. showed that Clostridium butyricum and
Rhodopseudomonas palustris co-cultures improved H2 production yield (2.16 mol H2/mol
sucrose) compared to pure cultures (Clostridium butyricum monoculture 1.77 mol H2/mol
sucrose, Rhodopseudomonas palustris monoculture 1.64 mol H2/mol sucrose) [50–52]. In
the work of Hitit et al., the dark- and photo-fermentation processes were simultaneously
carried out in a single-stage process by using co-cultures of Clostridium butyricum and
Rhodopseudomonas palustris in order to enhance H2 production [53]. In this study, the
Clostridium butyricum bacteria (dark fermentation) convert carbohydrates to H2 and produce
volatile fatty acids as by-products that are used by the purple non-sulphur bacteria (photo-
fermentation) to produce H2.

Unlike the production of lipids, few data are still available in the literature on the
production of nutraceutical compounds, such as carotenes and xanthophylls, under pho-
toautotrophic/bacterial co-culture conditions. In fact, the only results reported at this time
describe other types of consortia (e.g., fungi/yeasts and algae/fungi), stating that this
topic has not yet been fully focused [54,55]. However, some studies attest the accumula-
tion of chlorophyll, ß-carotene, lutein and violaxanthin in microalgae co-cultivated with
bacteria [56,57].

Another emergent sector within consortia of photoautotrophic organisms/bacteria
concerns the production of exopolysaccharides (EPS), sugar-based molecules with promis-
ing traits for medical and pharmaceutical purposes, such as their capability to stimulate
the immune system [58,59]. In this context, Angelis and colleagues investigated the EPS
production in co-cultures of microalgae/cyanobacteria [60]. The reported results present
an innovative technological process to increase the EPS production, both from algae and
fungus, but with a prevalence of the latter, demonstrating a synergic effect and not a merely
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sum. Moreover, several studies report with increased interest the use and recovery of
sludge, obtained from wastewater treatment, as recovery matrices and production of EPS,
given the abundance of microbial species within these glomerular sludge [61–63].

The technology of mutualism and/or commensalism consortia paved the way to
the fulfilment of novel platforms to produce bioplastics. In detail, polyhydroxyalkanoate
molecules (PHA) are biodegradable and sustainable coproducts, particularly appealing for
biorefinery markets, being useful for many applications currently covered by petroleum-
based plastics [64,65]. Several microbial co-cultures of photosynthetic microorganisms and
heterotrophic bacteria have been tested and evaluated for PHA bioplastic production [66,67],
such as cyanobacteria/heterotrophic bacteria [68], photosynthetic bacteria/microalgae [69],
photosynthetic bacteria/heterotrophic bacteria [70] and mixed purple non-sulphur bac-
teria [71]. Dinesh and colleagues used a combined dark- and photo-fermentation using
co-cultures for H2 and poly-β-hydroxybutyrate (PHB) bioplastic production [72]. They
obtained the maximal H2 and PHB production yields of 1.82 ± 0.01 mol H2/mol glucose
and PHB 19.15 ± 0.25 g/L using 100% rice straw hydrolysate.

In more recent articles, the interactions between microalgae and prokaryotes in
wastewater treatment are described [73–80]. Garcia et al. evaluated the performance
of two photobioreactors operating with microalgae–bacteria and purple photosynthetic
bacteria consortia during the treatment of diluted piggery wastewater [73]. Choi et al.
studied the nutrient removal from artificial wastewater by the co-culture consortium of
Scenedesmus dimorphus and nitrifier. The co-culture system showed enhancement in both
nitrogen (N) and phosphorous (P) removal compared to each single culture [74]. da Silva
Rodrigues et al. evaluated the bioremediation of sulfamethoxazole in wastewater treatment
plant effluents using a tertiary treatment composed by microalgae–bacteria consortium.
The microalgae–bacteria consortium used in this study demonstrated to be a promising
alternative for bioremediation of sulfamethoxazole [79].

The new possibility of the use of microalgae–bacteria consortia for environmental and
biotechnological purposes requires the use of efficient cultivation systems, such as photobiore-
actors. Many photobioreactor designs have been proposed and optimized for the cultivation
of microalgae–bacteria consortia for the treatment of wastewater [77,81–84]. López-Serna
and colleagues evaluated the removal of veterinary drugs from piggery wastewater in
two open photobioreactors operated with a consortium of microalgae–bacteria and purple
photosynthetic bacteria [85]. They found that a microalgae–bacteria consortium was more
effective than purple photosynthetic bacteria in the removal of the detected veterinary
drugs [85].

Algal–bacterial processes have been successfully tested for the treatment of domes-
tic wastewater [81], centrates [86], vinasse [87] and piggery wastewater [88]. Wang and
colleagues evaluated a Chlorella–Exiguo bacterium consortia cultured in a column pho-
tobioreactor for piggery wastewater purification [89]. They showed that the rates of
contaminant removal by the Chlorella–bacteria consortium were higher than that of the
pure Chlorella and bacterial monocultures. The results indicated that there is synergistic
interactions of cell growth promotion and the exchange of carbon and oxygen between
microalgae and bacteria [89]. Posadas et al. studied the photosynthetic biogas upgrading
coupled with centrate treatment at pilot scale under outdoors conditions. In this work,
the constant biomass productivity 15 g/m2/d and the minimization of effluent generation
supported high nutrient recoveries in the harvested biomass (C = 66 ± 8%, N = 54 ± 18%,
P ≈ 100%, S = 16 ± 3%) [86]. Serejo et al. confirmed the potential of algal–bacterial pro-
cesses to support an efficient upgrading of biogas coupled to both wastewater treatment
and the production of biomass [87].

2.2. Spent Biomass: An Efficient and Economically Viable Biorefinery Feedstock

The above-described potential of photosynthetic microorganisms/bacteria
co-cultivations seems to be distinctly high in terms of yields and costs. Moreover, the
residual production materials, e.g., biomass generated during the growth of the cultures,
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could appear as a hindrance to the sustainability of the entire production process because
of the issues related to its disposal. Several intriguing studies pointed out the strong
possibilities correlated to these biomaterials, as well as described sophisticated methods of
harvesting and of reuse of organic matter (Figure 3). Noteworthy examples in the literature
are related to the biomass recycling as feedstocks for biofuels manufacture [90,91], and
animal feed preparation [92], whit additional benefits for bioeconomy.
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in the biorefinery scenario. With the scale-up cultivation of these algae/bacteria consortia, there
are many possible applications, e.g., the production of high-value-added compounds, reduction of
CO2 emissions, and by the reuse of biomass the production of bio-fertilizers, water bio-sanitation,
production of alternative and sustainable energies. Reprinted with permission from González-
González et al. (2021). Toward the Enhancement of Microalgal Metabolite Production through
Microalgae–Bacteria Consortia. Biology [93]. Copyright (2021) MDPI.

This is the case of Hernández and colleagues study, which describes an integrated
approach combining the production of second generation biofuels from the biomass of
Chlorella sorokiniana with aerobic bacteria to produce biogas [94].

Recently, a huge development has been occurring in the treatment of municipal and
industrial wastewater through the exploitation of biomass from algae/bacteria consortia
(Figure 4). In fact, these co-cultures can play an important role in secondary and tertiary
wastewaters treatment.

Furthermore, during wastewater treatments, symbiosis of microorganisms provides
valuable benefits, such as cost-efficient aeration, removal of pollutants, sequestration of
greenhouse gas emissions, as well as removing of pathogens (i.e., viruses), and flocs produc-
tion, which means easier biomass managing [95]. For these reasons, promising results have
been reported in the literature as well as innovative photobioreactor configuration with
biomass recycling. An example can be the anoxic–aerobic algal–bacterial photobioreactor
designed by Alcántara and colleagues to promote nitrogen removal via denitrification
and the development of a rapidly settling algal–bacterial population [96]. This system
efficiently removes organic carbon (86–90%), inorganic carbon (57–98%) and total nitrogen
(68–79%) during synthetic wastewater treatment. In this context, Wicker and Bhatnagar de-
scribed that slurry produced during biogas digestate treatment is a rich source of valuable
nutrients not recommended to waste, due to the recent crisis of nutrient scarcity. However,
chemical and recovery treatments are fiscally and energetically expensive. Hence, these
authors proposed a compelling motion of nutrients remediation and resource recovery by
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a synergistic co-culture of eukaryotic and prokaryotic microorganisms to maximize the
biomass production (1.99 g/L) [97].
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waters; moreover, the harvested biomass can further be used as feedstock for biofuel or biochemical
production. Reprinted with permission from Qian et al. (2020). Biotechnological potential and
applications of microbial consortia. Biotechnology advances [32]. Copyright (2020) Elsevier.

Another fascinating study has been proposed by Goswami and colleagues, which
highlighted the possibility to obtain a sustainable process for production of bio-crude oil
via hydrothermal liquefaction of biomass generated by the co-cultivation of microalgae
and bacteria coupled with wastewater remediation [98]. GC-MS and FTIR experiments on
bio-crude oil was carried, and a great quantity of the hydrocarbon fraction was observed,
as well as a high oil quality.

An alternate and promising reuse of biomasses derived from co-cultures of photoau-
totroph microorganisms and bacteria relies in its exploitations as biofertilizer in agriculture
(Figure 5). The demand for biofertilizers is currently strongly growing, as they could be a
valid alternative to toxic compounds widely used up to now on crops to ensure enhanced
yields. In addition, biofertilizers play important functions in the decomposition of organic
matter, thus ensuring greater nutrient availability for plants [99]. Finally, bio-fertilizers can
increase the quantity and biodiversity of useful bacteria, such as plant growth-promoting
rhizobacteria (e.g., Azotobacter, Bacillus, Burkholderia, Pantoea, Pseudomonas, Serratia
and Streptomyces) [100,101].
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Figure 5. Consortia microalgae based can stimulate the plant growth-promoting bacteria (PGPB)
allowing a sustainable agriculture. In detail, the microalgae cells and PGPB establish a beneficial
exchange of nutrient molecules, and together enhance plant growth by producing phytohormones
and other growth stimulants. Furthermore, this consortium can prevent the occurrence of certain
plant diseases with particular suppressive mechanisms. Reprinted with permission from Kang et al.
(2021). Potential of Algae–Bacteria Synergistic Effects on Vegetable Production. Frontiers in Plant
Science [102]. Copyright (2021) Frontiers.

The positive effects of three bacteria (Providencia sp., Brevundimonas sp. and Ochrobac-
terium sp.) and three cyanobacterial strains (Anabaena sp., Calothrix sp. and Anabaena
sp.) were evaluated in a pot experiment with rice variety (Pusa-1460) by Prasanna and
colleagues. In this study, the authors observed a highest yield enhancement of 19.02%, a
significant enhancement in nitrogen fixing potential, and an improved soil health by N
saving of 40–80 kg/ha, in particular with Anabaena sp. and Ochrobacterium sp. [103].

The combined bio-stimulant properties of algae and bacteria has been tested also
by Kopta and colleagues on lettuce plant. The results demonstrated that the bacterial–
algal preparation significantly affected the plant weight of both romaine and leaf lettuce
in the spring and summer seasons [104]. The highest increase for romaine lettuce has
been obtained in the spring crop (18.9%) and for leaf lettuce in the summer crop (22.7%).
Moreover, the data pointed out that the photosynthetic compounds produced by algae, such
as carotenoids, could improve the plant crops in terms of quality and quantity, and furnish
support in stress conditions as can be present during the summer season. Analogues
results, related to growth promotion, productivity and quality of the plants, were reported
also for common bean, maize and onion by administering on crops a preparation of algae
and bacteria [105–107]. For all these reasons, it is reasonable to suppose that co-cultures
systems can be more effective in enhancing microbial diversity in the soil, resistance to plant
diseases and productivity of vegetable crops. However, further investigations concerning
the molecular mechanisms underlying the effect of microalgae–bacteria consortia on plants
growth, and their disease suppression, are essential in light of to their safer and wider use
in agriculture.



Materials 2021, 14, 3027 10 of 17

3. Improve the Consortia by Omics Approaches

Synthetic biology and metabolic engineering made great strides in constructing and
optimizing metabolic pathways in model microbes [32,108]. These methodologies could be
crucial for the exploitation of photoautotrophic/bacterial co-cultures, especially if the aim
is to achieve a deeper knowledge of the molecular mechanisms underlying a consortium
and a refinement of the features that could ensure a more stable and productive co-culture.
Several experimental methods can contribute to clarifying physiological characteristics
within the consortia, such as microscopy, cell sorting, mass spectrometry, molecular tech-
niques and genetic engineering. Recently, the latter played an important role in the current
challenge related to the implementation of cell–cell communication [109]. Although many
studies are available in the literature concerning algal–bacterial interactions, notions regard-
ing the chemical-ecological role and actors of this relationship remains limited, particularly
with respect to quorum sensing, which is a system of stimuli and responses correlated to
population density [110].

In general, omics approaches can offer important details on the relation between
environmental factors and genes/transcriptomes/metabolites and protein expression, as
well as in the gene regulation of consortia (Figure 6) [62]. In detail, genomic techniques can
provide data on rapid and accurate species composition of the consortia, identifying genetic
variabilities and comparison among the species [111]. However, these approaches require
specific knowledge and genome libraries, and they can be inadequate for the isolation
of low abundant species in consortia. Instead, the transcriptomics tools can be useful
in the consortia study because they can provide data on specific transcripts regulation
and transcriptional comparison between patterns of consortia and axenic cultures [112].
However, these techniques require long and complex sample preparations.

Concerning the proteomic approach, high-throughput analysis of proteome can be
obtained, intriguing connections between genetic and biochemical information highlighted,
regulatory mechanisms in consortium identified and enzymatic studies performed [113].
Nevertheless, data processing and analysis are very difficult and complex, for this reason
highly skilled personnel are strongly required. Recently, the analysis of the total “secretoma”
of a microbial community has also been very successful as it provides a clear summary of the
proteins involved and their dynamics outside microbial cells. Indeed, the metasecretomics
approach allows for a complete identification of the total surface-bound proteins and
secretions in the consortia [114,115].

Finally, through reliable and reproducible metabolomics techniques, qualitative and
quantitative data can be achieved on consortium-produced metabolites [116]. They are very
sensitive techniques, sample preparation is easier than the techniques described above, but
they require the use of hazardous solvents for the extraction of metabolites.

The potential of genetic engineering on algae–cyanobacteria/bacteria consortia and
its benefits for industry begins to be demonstrated from the scientific literature even if few
studies have been done actually. A noteworthy example in this context is certainly the
research described by Ortiz-Marquez and colleagues, who edited the genome of Azotobacter
vinelandii bacteria, obtaining higher capability of fixing nitrogen and ammonium release in
the medium in comparison with control. This approach determined a growth stimulation
on oil-producing microalgae and lipids accumulation [117].

Another interesting study has been recently provided by Ducan and collaborators,
who described an improved synthetic photoautotroph/chemoheterotroph consortium
with Synechococcus elongatus and the bacterium Halomonas boliviensis. This successful
microbial blend is derived from the sucrose secreted by cyanobacteria in support of the
bacterium, a natural producer of the bioplastic precursor, achieving a productivity level
of 28.3 mg PHB L−1 d−1. Moreover, the trial carried out on this consortium pointed out a
high productivity of at least 5 months and resistance to the attack of invasive microbial
species without the use of antibiotics or chemicals [118].
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4. Conclusions and Future Perspective

The exploitation of photoautotrophic organisms and bacteria co-cultures showed
many advantages when compared to monocultures. In fact, such co-cultures are effective
farms for the production of different biomaterials with strong interest in human health, as
well as source of alternative and sustainable energies. This successful combination, inspired
by nature, is based on several fruitful interactions between the cells of photoautotrophs
and bacteria, based on exchanges of vitamins, oxygen and carbon dioxide. In addition,
algae/bacteria consortia ensure the minimization of contamination, a serious issue in axenic
cultures, and it can lead to greater resistance and stability in the cell population. These are
important qualities during the scale-up of the cultures [120], and, from an industrial point of
view [121–123], these are synonyms of higher yields and economic savings, although much
can be done from the engineering side (e.g., design of bioreactors) and in the management
of biomasses (e.g., cells harvesting).

Moreover, insights on transcriptomics, metagenomics and metabolomics are currently
strongly required to reach a better understanding of microbial interactions, addressing the
use of available substrates and increasing the productivity. Furthermore, a genome-editing
approach could be the driving force to promote in the next future a sustainable production
of molecules not conventionally synthesized by these microorganisms.

The analysis of the current scenario on microbial consortia highlights another im-
portant issue to face, which is the development and consolidation of computational and
mathematical assistances for co-cultures realization. In fact, this aspect, which strongly
affects the total costs and the time required to obtain large volume systems, is especially
essential for the achievement of the real market.
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Another desirable tool for achieving large-volume co-cultures, as suggested by
Padmaperuma and colleagues, could be the realization of an open-access database col-
lecting relevant metadata about tested consortia and their outcomes (both positive and
negative), description of the selected strains, growth dynamics, biomolecules released and
data related to the conditions in bioreactors if tested [24]. Undeniably, this would be a
great support for the academic research and for the technology transfer from bench-scale
to industrial applications.
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