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Abstract

The interplay between process behaviour and spatial aspects of computation has become more
and more relevant in Computer Science, especially in the field of collective adaptive systems, but
also, more generally, when dealing with systems distributed in physical space. Traditional verifica-
tion techniques are well suited to analyse the temporal evolution of programs; however, properties
of space are typically not explicitly taken into account. We propose a methodology to verify prop-
erties depending upon physical space. We define an appropriate logic, stemming from the tradition
of topological interpretations of modal logics, dating back to earlier logicians such as Tarski, where
modalities describe neighbourhood. We lift the topological definitions to the more general setting
of closure spaces, also encompassing discrete, graph-based structures. We further extend the frame-
work with a spatial until operator, and define an efficient model checking procedure, implemented
in a proof-of-concept tool.

1 Introduction

Much attention has been devoted in Computer Science to formal verification of process behaviour.
Several techniques, such as run-time monitoring and model checking, are based on a formal under-
standing of system requirements through modal logics. Such logics typically have a temporal flavour,
describing the flow of events along time, and are interpreted in various kinds of transition structures.

In recent times, aspects of computation related to the distribution of systems in physical space
have become more relevant. An example is provided by so called collective adaptive systems1. Such
systems are typically composed of a large number of interacting objects. Their global behaviour
critically depends on interactions which are often local in nature. The aspect of locality immediately
poses issues of spatial distribution of objects. Abstraction from spatial distribution may sometimes
provide insights in the system behaviour, but this is not always the case. For example, consider a bike
(or car) sharing system having several parking stations, and featuring twice as many parking slots as
there are vehicles in the system. Ignoring the spatial dimension, on average, the probability to find
completely full or empty parking stations at an arbitrary station is very low; however, this kind of
analysis may be misleading, as in practice some stations are much more popular than others, often
depending on nearby points of interest. This leads to quite different probabilities to find stations
completely full or empty, depending on the examined location. In such situations, it is important to
be able to predicate over spatial aspects, and eventually find methods to certify that a given collective

1See e.g. the web site of the QUANTICOL project: http://www.quanticol.eu
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adaptive system satisfies specific requirements in this respect. In Logics, there is quite an amount of
literature focused on so called spatial logics, that is, a spatial interpretation of modal logics. Dating
back to early logicians such as Tarski, modalities may be interpreted using the concept of neighbourhood
in a topological space. The field of spatial logics is well developed in terms of descriptive languages
and computability/complexity aspects. However, the frontier of current research does not yet address
verification problems, and in particular, discrete models are still a relatively unexplored field.

In this paper, we extend the topological semantics of modal logics to closure spaces. A closure space
(also called Čech closure space or preclosure space in the literature), is a generalisation of a standard
topological space, where idempotence of closure is not required. By this, graphs and topological
spaces are treated uniformly, letting the topological and graph-theoretical notions of neighbourhood
coincide. We also provide a spatial interpretation of the until operator, which is fundamental in the
classical temporal setting, arriving at the definition of a logic which is able to describe unbounded
areas of space. Intuitively, the spatial until operator describes a situation in which it is not possible to
“escape” an area of points satisfying a certain property, unless by passing through at least one point
that satisfies another given formula. To formalise this intuition, we provide a characterising theorem
that relates infinite paths in a closure space and until formulas. We introduce an efficient model-
checking procedure. A prototype implementation of a spatial model checker has been made available;
the tool is able to interpret spatial logics on digital images, providing graphical understanding of the
meaning of formulas, and an immediate form of counterexample visualisation.

Related work. We use the terminology spatial logics in the “topological” sense; the reader should
be warned that in Computer Science literature, spatial logics typically describe situations in which
modal operators are interpreted syntactically, against the structure of agents in a process calculus
(see [9, 7] for some classical examples). The object of discussion in this research line are operators
that quantify e.g., over the parallel sub-components of a system, or the hidden resources of an agent.
Furthermore, logics for graphs have been studied in the context of databases and process calculi (see
[8, 14], and the references therein), even though the relationship with physical space is often not
made explicit, if considered at all. The influence of space on agents interaction is also considered in
the literature on process calculi using named locations [11]. Variants of spatial logics have also been
proposed for the symbolic representation of the contents of images, and, combined with temporal
logics, for sequences of images [4]. The approach is based on a discretisation of the space of the
images in rectangular regions and the orthogonal projection of objects and regions onto Cartesian
coordinate axes such that their possible intersections can be analysed from different perspectives. It
involves two spatial until operators defined on such projections considering spatial shifts of regions
along the positive, respectively negative, direction of the coordinate axes and it is very different from
the topological spatial logic approach. There also exist logical frameworks, encompassing some spatial
information, that have been applied to the analysis of medical images [17].

A successful attempt to bring topology and digital imaging together is represented by the field of
digital topology [22, 18]. In spite of its name, this area studies digital images using models inspired
by topological spaces, but neither generalising nor specialising these structures. Rather recently,
closure spaces have been proposed as an alternative foundation of digital imaging by various authors,
especially Smyth and Webster [23] and Galton [16]; we ideally continue that research line, enhancing it
with a logical perspective. The idea of interpreting the until operator in a topological space is briefly
discussed in the work by Aiello and van Benthem [1, 24]. We start from their definition, discuss its
limitations, and provide a more fine-grained operator, which is interpreted in closure spaces, and has
therefore also an interpretation in topological spaces. In the specific setting of complex and collective
adaptive systems, techniques for efficient approximation have been developed in the form of mean-field
/ fluid-flow analysis (see [6] for a tutorial introduction). Recently (see e.g., [10]), the importance of
spatial aspects has been recognised and studied in this context. In this work, we aim at paving the
way for the inclusion of spatial logics, and their verification procedures, in the framework of mean-field
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and fluid-flow analysis of collective adaptive systems.

Proofs. Formal proofs of lemmas, theorems, and other statements can be found in Appendix A.

2 Closure spaces

In this work, we use closure spaces to define basic concepts of space. Below, we recall several definitions,
most of which are explained in [16].

Definition 2.1. A closure space is a pair (X, C) where X is a set, and the closure operator C : 2X → 2X

assigns to each subset of X its closure, obeying to the following laws, for all A,B ⊆ X:

1. C(∅) = ∅;

2. A ⊆ C(A);

3. C(A ∪B) = C(A) ∪ C(B).

As a matter of notation, in the following, for (X, C) a closure space, and A ⊆ X, we let A = X \A be
the complement of A in X.

Definition 2.2. Let (X, C) be a closure space, for each A ⊆ X:

1. the interior I(A) of A is the set C(A);

2. A is a neighbourhood of x ∈ X if and only if x ∈ I(A);

3. A is closed if A = C(A) while it is open if A = I(A).

Lemma 2.3. Let (X, C) be a closure space, the following properties hold:

1. A ⊆ X is open if and only if A is closed;

2. closure and interior are monotone operators over the inclusion order, that is: A ⊆ B =⇒
C(A) ⊆ C(B) and I(A) ⊆ I(B)

3. Finite intersections and arbitrary unions of open sets are open.

Closure spaces are a generalisation of topological spaces. The axioms defining a closure space
are also part of the definition of a Kuratowski closure space, which is one of the possible alternative
definition of a topological space. The link between topological and closure spaces is deep, and also
involves the so-called Alexandrov spaces; we refer the reader to, e.g., [16] for more information. We
provide some further details below.

Definition 2.4. A topological space is a pair (X,O) of a set X and a collection O ⊆ P(X) of subsets
of X called open sets, such that ∅, X ∈ O, and subject to closure under arbitrary unions and finite
intersections.

Definition 2.5. In a topological space (X,O), A ⊆ X is called closed if its complement is open.

Note that ∅ and X are always closed and open. An equivalent definition was given by Kuratowski;
this exhibits topological spaces as closure spaces where closure is idempotent.

Definition 2.6. A topological space is a closure space where the closure operator is idempotent, that
is, for all A ⊆ X, C(C(A)) = C(A).

QUANTICOL 3 May 16 2014
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The Kuratowski definition and the open sets definition of a topological space are equivalent. Each
topological space is also an (idempotent) closure space, and each idempotent closure space is a topolog-
ical space. The proof can be sketched as follows. To view a topological space defined in terms of open
sets as a closure space, one defines C(A) as the smallest closed set containing A (this is the standard
topological closure). The properties of Definition 2.1 hold. For the converse, starting from a closure
space (X, C) whose closure operator is idempotent, the open sets are given by Definition 2.2 (3). The
topological definition of closure in the obtained space coincides with C.

A closure space can be also obtained by restricting the domain of another space.

Definition 2.7. Given a closure space (X, CX) and a subset Y ⊆ X, we call subspace closure the
operation CY : P(Y )→ P(Y ) defined as CY (A) = CX(A)∩Y . We call (Y, CY ) the subspace of (X, CX)
generated by Y .

Lemma 2.8. The subspace closure is a closure operator.

In [15], a discrete variant of the topological definition of the boundary of a set A is given, for the
case where a closure operator is derived from a reflexive and symmetric relation (see Definition 3.1
in the next section). Therein, in Lemma 5, it is proved that the definition coincides with the one
we provide below. The latter is only given in terms of closure and interior, and coincides with the
definition of boundary in a topological space. We also need to define two variants on this notion,
namely the interior and closure boundary (the latter is sometimes called frontier).

Definition 2.9. In a closure space (X, C), the boundary of A ⊆ X is defined as B(A) = C(A) \ I(A).
The interior boundary is B−(A) = A \ I(A), and the closure boundary is B+(A) = C(A) \A.

Proposition 2.10. The following equations hold in a closure space:

B(A) = B+(A) ∪ B−(A) (1)

B+(A) ∩ B−(A) = ∅ (2)

B(A) = B(A) (3)

B+(A) = B−(A) (4)

B+(A) = B(A) ∩A (5)

B−(A) = B(A) ∩A (6)

B(A) = C(A) ∩ C(A) (7)

3 Quasi-discrete closure spaces

In this section we see how a closure space may be derived starting from a binary relation, that is, a
graph. The following comes from [16].

Definition 3.1. Consider a set X and a relation R ⊆ X ×X. A closure operator is obtained from R
as CR(A) = A ∪ {x ∈ X | ∃a ∈ A.(a, x) ∈ R}.

Remark 3.2. One could also change Definition 3.1 so that CR(A) = A∪{x ∈ X | ∃a ∈ A.(x, a) ∈ R},
which actually is the definition of [16]. This does not affect the theory presented in the paper. Indeed,
one obtains the same results by replacing R with R−1 in statements of theorems that make explicit use
of R, and are not invariant under such change.

Proposition 3.3. The pair (X, CR) is a closure space.

Closure operators obtained by Definition 3.1 are not necessarily idempotent. Lemma 11 in [16]
provides a necessary and sufficient condition, that we rephrase below. We let R= denote the reflexive
closure of R.
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Figure 1: A graph inducing a quasi-discrete closure space

Lemma 3.4. CR is idempotent if and only if R= is transitive.

Note that, when R is transitive, so is R=, thus CR is idempotent. The vice-versa is not true, e.g.,
when (x, y) ∈ R, (y, x) ∈ R, but (x, x) /∈ R.

Remark 3.5. In topology, open sets play a fundamental role. However, the situation is different in
closure spaces derived from a relation R. For example, in the case of a closure space derived from a
connected symmetric relation, the only open sets are the whole space, and the empty set.

Proposition 3.6. Given R ⊆ X ×X, in the space (X, CR), we have:

I(A) = {x ∈ A | ¬∃a ∈ A.(a, x) ∈ R} (8)

B−(A) = {x ∈ A | ∃a ∈ A.(a, x) ∈ R} (9)

B+(A) = {x ∈ A | ∃a ∈ A.(a, x) ∈ R} (10)

Closure spaces derived from a relation can be characterised as quasi-discrete spaces (see also
Lemma 9 of [16] and the subsequent statements).

Definition 3.7. A closure space is quasi-discrete if and only if one of the following equivalent condi-
tions holds: i) each x ∈ X has a minimal neighbourhood2 Nx; ii) for each A ⊆ X, C(A) =

⋃
a∈A C({a}).

The following is proved as Theorem 1 in [16].

Theorem 3.8. A closure space (X, C) is quasi-discrete if and only if there is a relation R ⊆ X ×X
such that C = CR.

Summing up, whenever one starts from an arbitrary relation R ⊆ X × X, the obtained closure
space (X, CR) enjoys minimal neighbourhoods, and the closure of a set A is the union of the closure of
the singletons composing A. Furthermore, such nice properties are only true in a closure space when
there is some R such that the closure operator of the space is derived from R. In the reminder of this
section, we exemplify some aspects of quasi-discreteness.

Example 3.9. Every graph induces a quasi-discrete closure space. For instance, we can consider the
(undirected) graph depicted in Figure 1. Let R be the (symmetric) binary relation induced by the
graph edges, and let Y and G denote the set of yellow and green nodes, respectively. The closure
CR(Y ) consist of all yellow and red nodes, while the closure CR(G) contains all green and blue nodes.
The interior I(Y ) of Y contains a single node, i.e. the one located at the bottom-left in Figure 1. On
the contrary, the interior I(G) of G is empty. Indeed, we have that B(G) = C(G), while B−(G) = G
and B+(G) consists of the blue nodes.

2A minimal neighbourhood of x is a set that is a neighbourhood of x (Definition 2.2 (2)) and is included in all other
neighbourhoods of x.
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Example 3.10. Existence of minimal neighbourhoods does not depend on finiteness of the space, and
not even do they depend on existence of a “closest element” for each point. To see this, consider the
rational numbers Q, equipped with the relation ≤. Such a relation is reflexive and transitive, thus the
closure space (Q, C≤) is topological and quasi-discrete.

Example 3.11. Another example exhibiting minimal neighbourhoods in absence of closest elements is
the following. Consider the rational numbers Q equipped with the relation R = {(x, y) | |x− y| ≤ 1},
and let us look at the closure space (Q, CR). R is reflexive but not transitive, hence the obtained
closure space is quasi-discrete but not topological. We have CR(A) = {x ∈ Q | ∃a ∈ A.|a − x| ≤ 1}.
Consider a point x. For x to be included in I(A), a set A must include all the points whose distance
from x is less than or equal to 1, in other words, it must be true that [x− 1, x+ 1] ⊆ A. To see this,
suppose that there is z /∈ A such that |z−x| ≤ 1. Then x ∈ CR({z}), thus since A = A∪{z}, we have

x ∈ CR(A), and therefore x /∈ I(A) = CR(A). The minimal neighbourhood is thus Nx = [x− 1, x+ 1].
It is easily verified that I(Nx) = {x}. In other words, each point x has a minimal neighbourhood
Nx, and there is no other point y such that Nx is a neighbourhood of y. However, there are infinitely
many points belonging to Nx.

Example 3.12. An example of a topological closure space which is not quasi-discrete is the set of real
numbers equipped with the Euclidean topology (the topology induced by arbitrary union and finite
intersection of open intervals). To see that the space is not quasi-discrete, one applies Definition 3.7.
Consider an open interval (x, y). We have C((x, y)) = [x, y], but for each point z, we also have
C(z) = [z, z] = {z}. Therefore

⋃
z∈(x,y) C(z) =

⋃
z∈(x,y){z} = (x, y) 6= [x, y].

Example 3.13. The reader may think that quasi-discreteness is also related to the space having a
smaller cardinality than that of the real numbers. This is not the case. To see this, just equip the
real numbers with an arbitrary relation, e.g., the relation ≤, in a similar way to Example 3.10. The
obtained closure space is quasi-discrete. This example illustrates why these spaces are not simply
called “discrete”.

4 The design of a spatial until operator

This paper is about spatial logics in closure spaces. Before introducing the complete framework, in
this section, we discuss the design of a spatial until operator, that is, a binary logical connective of
the form φUψ, with a natural intended meaning, that we state as a design principle.

Principle 4.1. We aim at defining a binary spatial logical operator U , interpreted on points of a
closure space. The basic idea is that point x satisfies φUψ whenever it is included in an area A
satisfying φ, and there is “no way out” from A unless passing trough an area B that satisfies ψ.

To turn this principle into a mathematical definition, one should clarify the meaning of the words
area, included, passing, in the context of closure spaces. The variables are many. Consider the area
A. Is it possible for A to be the singleton x, or do we require that x has a proper neighbourhood of
points satisfying φ? This is more relevant in continuous spaces, where singletons are problematic (for
example, in Euclidean spaces, they have measure 0). Definitions that are satisfactory in discrete spaces
may have issues when switching to continuous domains, and vice-versa. We start from the topological
definition of until, and investigate the situation with respect to Principle 4.1. For this, we need to
define a model, providing a context of evaluation for the satisfaction relation, as in M, x |= φUψ.

Definition 4.2. A closure model is a pair M = ((X, C),V) consisting of a closure space (X, C) and a
valuation V : P → 2X , assigning to each proposition letter the set of points where it holds.

When (X, C) is the interpretation of a topological space as a closure space, we callM a topological
model, in line with the definition used in [24], and [1]. Therein, the topological until operator is
presented. We recall it below.
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Definition 4.3. The topological until operator UT is interpreted in a topological modelM asM, x |=
φUTψ ⇐⇒ ∃A open .x ∈ A ∧ ∀y ∈ A.M, y |= φ ∧ ∀z ∈ B(A).M, z |= ψ.

The intuition behind Definition 4.3 is that one seeks for an area A (which, topologically speaking,
could sensibly be an open set) where φ holds, and that is completely surrounded by points where
ψ holds. First, we report about a well-known problem of notions such as “inside” and “outside” in
topology.

Issue 4.4. Definition 4.3 does not distinguish the inside from the outside of a boundary. Let C =
{(x, y) ∈ R2 | x2 + y2 = 1} be the circumference of radius 1 in R2, x a point inside of C (e.g., (0, 0)),
y a point outside of C (e.g., (2, 2)). Consider a topological model based on R2 (with the Euclidean
topology) such that V(p) = R2 \ C and V(q) = C. Then we have x |= pUT q. This is in accordance to
our stated requirements. But y satisfies pUT q as well, as can be easily checked, by choosing as the set
A all the points outside of C.

Issue 4.4 is a well-known subject in topology, stemming from the statement of Jordan’s theorem:
the complement of a closed curve C in R2 consists of exactly two connected components A and A′.
The statement of the theorem does not make a distinction between A and A′. In a general topological
space, it is not actually possible to make such a distinction (think of a closed curve on the surface of
a sphere). In Euclidean spaces, to address this, one may resort to homotopy [25]. Investigating an
appropriate notion of homotopy in closure spaces is not a trivial task. For example, in graphs, it is
always possible to rearrange nodes, so notions of “inside” and “outside” can not be simply translated
from Euclidean spaces.

In this work, we will seek for a more pragmatic approach. We shall assume that, on a by-need
basis, one may make use of predicates denoting “extremal points” that should not be reachable by any
point satisfying an until formula. This is reasonable in finite models as they typically are submodels
of some infinite model, where a boundary has been used to delineate the “end of the world”. In this
situation, let e be a proposition letter denoting the extremal points; then the formula (φ ∧ ¬e)UTφ
distinguishes points that are “inside” ψ (and satisfy φ), from points that are “outside” of it. Once
this is established, we ought to seek for a definition which is apt to closure spaces.

Issue 4.5. Definition 4.3 can not be translated directly to closure spaces, even if all the used topological
notions have a counterpart in the more general setting. Open sets in closure spaces are often too
coarse (see Remark 3.5). Moreover, the usage of B in Definition 4.3 is not satisfactory either. By
Proposition 2.10 we have B(A) = B+(A)∪B−(A). Let us look at the closure space (Z2, C) induced by
the graph with nodes in Z2 and edges linking each point (x, y) to its four neighbours3 (x− 1, y), (x+
1, y), (x, y − 1), (x, y + 1). Consider a rectangle A such that all points in A satisfy φ and all points in
B−(A) satisfy ψ, whereas all points in A do not satisfy φ or ψ. Then each point in I(A) is enclosed
in the region delimited by ψ, thus satisfying φUψ according to Principle 4.1. However, not all points
in B(A) satisfy ψ, as ψ does not hold in B+(A) .

By Issue 4.5, we could chose either B− or B+ to play the same role as B. In the first case, we
shall seek for a set A such that all points in its interior satisfy φ, and all the points in B−(A) satisfy
ψ. In the second case, we shall instead require that φ is satisfied by all the points of A, and that in
B+(A), ψ holds. This is to ensure that there are no “gaps” between φ and ψ. The definition using
B− presents an additional problem.

Issue 4.6. Consider the closure space (Z2, C) described in Issue 4.5. Consider the “cross” H =
{(−1, 0), (0, 0), (1, 0), (0,−1), (0, 1)} where point x = (0, 0) satisfies φ and the remaining points satisfy
ψ. Let A = H. Then I(A) = {x} satisfies φ and B−(A) satisfies ψ, agreeing with our intuition.
However, if we restrict the space to (H, C) (see Definition 2.7), then A is the set of all points, thus

3In the literature, such space is sometimes referred to as the digital plane; however, the same term may also denote
Z2 equipped with different notions of neighbourhood.
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1
Figure 2: Three continuous closure models (boundaries are deliberately very tick, but the reader
should think of them as infinitely thin).

I(A) = A and B−(A) = ∅. Therefore, not all points of I(A) satisfy φ. A quick analysis of all the
possible choices for A shows that, in this case, it is impossible to find A such that φ holds in I(A) and
ψ holds in B−(A).

Furthermore, in closure spaces (X, CR) derived from a non-symmetric relation R, B−(A) is the set
of points that have incoming edges from A (see Proposition 3.6). As in Principle 4.1 we mention the
idea of having “no way out” of A, it intuitively makes sense to consider B+(A) instead. In Section 5
and Section 7, we shall see how all these observations converge to a definition which behaves according
to Principle 4.1 over discrete structures.

Until operators are especially difficult to study in continuous spaces (such as the Euclidean plane),
as intuition may be easily misled. Let us consider an example.

Example 4.7. We shall define two models based on the Euclidean topology over R2, seen as a
closure space (R2, C). We use propositions b, w, g, depicted in Figure 2 as black, white and grey areas,
respectively. Consider the sets H = {(x, y)|x2 + y2 < 1}, H< = {(x, y)|x2 + y2 = 1 ∧ x < 0},
H≥ = {(x, y)|x2 + y2 = 1 ∧ x ≥ 0}. Let Mi = ((R2, C),Vi), for i ∈ {1, 2}. Fix valuations as
follows: V1(b) = H ∪ H<, V1(w) = R2 \ V1(b), V1(g) = ∅, V2(b) = V1(b), V2(w) = H≥, V2(g) =
R2 \ (H ∪ H< ∪ H≥). Let x ∈ H. The expectation is that bUw holds at x in M1. Furthermore,
bUw should not hold at x in M2. However, M2, x |= bUw by the choice A = H ∪ H<, because
B+(A) = H≥.

We remark that, although it is not immediately useful for verification, being able to characterise
also continuous space is certainly of theoretical interest, and it could be worth of some deeper analysis.

5 A Spatial Logic for Closure Spaces

In this section we present SLCS: a Spatial Logic for Closure Spaces. The logic features boolean
operators, and two spatial operators: a “one step” modality, turning closure into a logical operator,
and a binary until operator, which is interpreted spatially. As we shall see, the SLCS formula φUψ
requires φ to hold at least on one point. The operator is a weak until in temporal logics terminology,
as there may be no point satisfying ψ, if φ holds everywhere; this is in line with the topological
interpretation of until (Definition 4.3).
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⊥ , ¬> φ ∨ ψ , ¬(¬φ ∧ ¬ψ)

�φ , ¬(♦¬φ) δφ , (♦φ) ∧ (¬�φ)

δ−φ , φ ∧ (¬�φ) δ+φ , (♦φ) ∧ (¬φ)

φRψ , ¬((¬ψ)U(¬φ)) Gφ , φU⊥
Fφ , ¬G(¬φ)

Figure 3: SLCS derivable operators

As we explained in Section 4, the spatial logical operator U is interpreted on points of a closure
space. The basic idea is that point x satisfies φUψ whenever it is included in an area A satisfying φ,
and there is “no way out” from A unless passing trough an area B that satisfies ψ. For instance, if we
consider the model of Figure 1, yellow nodes should satisfy yellow U red while green nodes should
satisfy green U blue. In order to formally define SLCS, recall the definition of model (Definition 4.2).
From now on, fix a (finite or countable) set P of proposition letters.

Definition 5.1. The syntax of SLCS is defined by the following grammar, where p ranges over P :

Φ ::= p | > | ¬Φ | Φ ∧ Φ | ♦Φ | ΦUΦ

Here, > denotes the truth value true, ¬ is negation, ∧ is conjunction, ♦ is the closure operator,
and U is the until operator. Closure (and interior) operators come from the tradition of topological
spatial logics [24].

Definition 5.2. Satisfaction M, x |= φ of formula φ at point x in model M = ((X, C),V) is defined,
by induction on terms, as follows:

M, x |= p ⇐⇒ x ∈ V(p)
M, x |= > ⇐⇒ true
M, x |= ¬φ ⇐⇒ M, x 6|= φ
M, x |= φ ∧ ψ ⇐⇒ M, x |= φ and M, x |= ψ
M, x |= ♦φ ⇐⇒ x ∈ C({y ∈ X|M, y |= φ})
M, x |= φUψ ⇐⇒ ∃A ⊆ X.x ∈ A ∧ ∀y ∈ A.M, y |= φ∧

∧∀z ∈ B+(A).M, z |= ψ

In Figure 3, we present some derived operators. Besides standard logical connectives, the logic can
express the interior (�φ), the boundary (δφ), the interior boundary (δ−φ) and the closure boundary
(δ+φ) of the set of points satisfying formula φ. Moreover, by appropriately using the until operator,
operators concerning reachability (φRψ), global satisfaction (G) and possible satisfaction (Fφ) can be
derived.

To clarify the expressive power of U and operators derived from it we provide Theorem 5.5 and
Theorem 5.7, giving a formal meaning to the idea of “way out” of φ, and providing an interpretation
of U in terms of paths.

Definition 5.3. A continuous function f : (X1, C1)→ (X2, C2) is a function f : X1 → X2 such that,
for all A ⊆ X1, f(C1(A)) ⊆ C2(f(A)).

Definition 5.4. Consider a closure space (X, C), and the quasi-discrete space (N, CSucc), where
(n,m) ∈ Succ ⇐⇒ m = n+ 1. A (countable) path in (X, C) is a continuous function p : (N, CSucc)→
(X, C). We call p a path from x, and write p : x ∞, when p(0) = x. We write y ∈ p whenever there

is l ∈ N such that p(l) = y. Finally, we write p : x
A
 
y
∞ when p is a path from x, and there is l with

p(l) = y and for all l′ ≤ l.p(l′) ∈ A.
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Theorem 5.5. IfM, x |= φUψ, then for each p : x ∞ and l, ifM, p(l) |= ¬φ, there is k ∈ {1, . . . , l}
such that M, p(k) |= ψ.

Theorem 5.5 can be strengthened to a necessary and sufficient condition in the case of models based
on quasi-discrete spaces. First, we establish that paths in a quasi-discrete space are also paths in its
underlying graph.

Lemma 5.6. Given path p in a quasi-discrete space (X, CR), for all i ∈ N with p(i) 6= p(i + 1), we
have (p(i), p(i + 1) ∈ R), i.e., the image of p is a (graph theoretical, infinite) path in the graph of R.
Conversely, each path in the graph of R uniquely determines a path in the sense of Definition 5.4.

Theorem 5.7. In a quasi-discrete closure model M, M, x |= φUψ if and only if M, x |= φ, and for
each path p : x ∞ and l ∈ N, if M, p(l) |= ¬φ, there is k ∈ {1, . . . , l} such that M, p(k) |= ψ.

Remark 5.8. Directly from Theorem 5.7 and from definitions in Figure 3 we have also that in a
quasi-discrete closure model M:

1. M, x |= φRψ iff there is p : x ∞ and k ∈ N such thatM, p(k) |= ψ and for each j ∈ {1, . . . , k}
M, p(j) |= φ;

2. M, x |= Gφ iff for each p : x ∞ and i ∈ N, M, p(i) |= φ;

3. M, x |= Fφ iff there is p : x ∞ and i ∈ N such that M, p(i) |= φ.

Note that point x satisfies φRψ if and only if either ψ is satisfied by x or there exists a sequence
of points after x, all satisfying φ, leading to a point satisfying both ψ and φ. In the second case, it is
not required that x satisfies φ.

6 Model checking SLCS formulas

In this section we present a model checking algorithm for SLCS, which is a variant of standard CTL
model checking [3].

Function Sat, presented in Algorithm 1, takes as input a quasi-discrete model M = ((X, CR),V)
and a SLCS formula φ, and returns the set of all points in X satisfying φ. The function is inductively
defined on the structure of φ and, following a bottom-up approach, computes the resulting set via an
appropriate combination of the recursive invocations of Sat on the sub formulas of φ. When φ is >,
p, ¬ψ or ψ ∧ ξ, definition of Sat(M, φ) is as expected. To compute the set of points satisfying ♦ψ,
the closure operator C of the space is applied to the set of points satisfying ψ.

When φ is of the form ψ Uξ, function Sat relies on the function CheckUntil defined in Algorithm 2.
This function takes as parameters a modelM and two SLCS formulas ψ and ξ and computes the set
of points inM satisfying ψ Uξ by removing from V = Sat(M, ψ) all the bad points. A point is bad if
it can reach a point satisfying ¬ψ without passing through a point satisfying ξ. Let Q = Sat(M, ξ) be
the set of points inM satisfying ξ. To identify the bad points in V the function CheckUntil performs
a backward search from T = B+(V ∪Q). Note that any path exiting from V ∪Q has to pass through
points in T . Moreover, the latter only contains points that satisfy neither ψ nor ξ. Until T is empty,
function CheckUntil first picks an element x in T and then removes from V the set of (bad) points N
that can reach x in one step. To compute the set N we use the function pre(x) = {y ∈ X | (y, x) ∈ R}.
At the end of each iteration the set T is updated by considering the set of new discovered bad points.

Finally, we define the notion of size of a formula, in order to address termination, complexity and
correctness of the model checking algorithm.

Definition 6.1. For Φ a SLCS formula, let size(Φ) be inductively defined as follow:
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Function Sat(M, φ)
Input: Quasi-discrete closure model

M = ((X, C),V), formula φ
Output: Set of points

{x ∈ X | M, x |= φ}
Match φ

case > : return X
case p : return V(p)
case ¬ψ :

let P = Sat(M, ψ) in
return X \ P

case ψ ∧ ξ :
let P = Sat(M, ψ) in
let Q = Sat(M, ξ) in
return P ∩Q

case ♦ψ :
let P = Sat(M, ψ) in
return C(P )

case ψ Uξ :
return CheckUntil (M,ψ, ξ)

Algorithm 1: Decision procedure for the
model checking problem.

Function CheckUntil (M,ψ, ξ)
let V = Sat(M, ψ) in
let Q = Sat(M, ξ) in
var T := B+(V ∪Q)
while T 6= ∅ do

T ′ := ∅
for x ∈ T do

N := pre(x) ∩ V
V := V \N
T ′ := T ′ ∪ (N \Q)

T := T ′;
return V

Algorithm 2: Checking until formulas in a
quasi-discrete closure space.

• size(>) = size(p) = 1

• size(¬Φ) = size(♦Φ) = 1 + size(Φ)

• size(Φ ∧Ψ) = size(ΦUΨ) = 1 + size(Φ) + size(Ψ)

Lemma 6.2. For any finite quasi-discrete model M = ((X, CR),V) and SLCS formula φ of size k,
Sat terminates in O(k · (|X|+ |R|)) steps.

Theorem 6.3. For any finite quasi-discrete closure model M = ((X, C),V) and SLCS formula φ,
x ∈ Sat(M, φ) if and only if M, x |= φ.

7 A model checker for spatial logics

The algorithm described in Section 6 is available as a proof-of-concept tool4. The tool, implemented
using the functional language OCaml, contains a generic implementation of a global model checker
using closure spaces, parametrised by the type of models.

An example of the tool usage is to approximately identify regions of interest on a digital picture
(e.g., a map, or a medical image), using spatial formulas. In this case, digital pictures are treated as
quasi-discrete models in the plane Z×Z. The language of propositions is extended to formulas dealing
with colour ranges, in order to cope with images where there are different shades of certain colours.

In Figure 4 we show a digital picture of a maze. The green area is the exit. The blue areas are start
points. The input of the tool is shown in Figure 6, where the Paint command is used to invoke the
global model checker and colour points satisfying a given formula. The concrete syntax of the model
checker uses symbols !, &, |, U, C to denote the logical operators ¬, ∧, ∨, U , C, respectively. Three
formulas, making use of the until operator, are used to identify interesting areas. The output of the
tool is in Figure 5. The colour red denotes start points from which the exit can be reached. Orange and
yellow indicate the two regions through which the exit can be reached, including and excluding a start
point, respectively. The properties of interest for this example are expressed in terms of the derived

4Web site: http://www.github.com/vincenzoml/slcs.
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Figure 4: A maze. Figure 5: Model checker output.

Let reach(a,b) = !( (!b) U (!a) );

Let reachThrough(a,b) = a & reach((a|b),b);

Let toExit = reachThrough(["white"],["green"]);

Let fromStartToExit = toExit & reachThrough(["white"],["blue"]);

Let startCanExit = reachThrough(["blue"],fromStartToExit);

Paint "yellow" toExit;

Paint "orange" fromStartToExit;

Paint "red" startCanExit;

Figure 6: Input to the model checker.

reachability operator R (see Figure 3), introduced in the model checking session by the definition of
reach(a,b). The definition of reach(a,b) by itself is not yet expressing exactly what we need; thus,
the definition of reachThrough(a,b) is introduced. The definition of reachThrough(a,b) requires
that the initial state of the paths satisfying the reachability property also satisfy a, and moreover,
that along each path a or b holds until b is reached. The latter is needed since reach(a,b) requires
that each path leads to a point in which both a and b hold. Since in the maze each point is labelled
by exactly one proposition (colour) this implies that we are looking for paths that lead to points that
satisfy (a|b) R b.

In Figure 7 we show a digital image5 depicting a portion of the map of Pisa, featuring a red circle
which denotes a train station. Streets of different importance are painted with different colours in the
map. The model checker is used to identify the area surrounding the station which is delimited by main
streets, and the delimiting main streets. The output of the tool is shown in Figure 8, where the station
area is coloured in orange, the surrounding main streets are red, and other main streets are in green.
The source code of the model checking session is shown in Figure 9. The most relevant formula is
Let stationArea = !((!station) U street);. The formula (!station) U street captures those
points that live in an area not containing the station, and completely surrounded by main streets of
a certain importance; this also includes those points included in the main streets. The complement
of these points is the area containing the station. The operator C^n, for n a positive integer, is a
shorthand for n nested applications of C, which corresponds to the “dilation” operation of digital
imaging and is used to reconnect parts of a picture that would be disconnected due to noise in the
image (such as street names printed on the map). In the formula streetsAroundStation, dilation

5 c©OpenStreetMap contributors – http://www.openstreetmap.org/copyright.
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Figure 7: Input: the map of a town. Figure 8: Output of the tool.

Let bigStreet = [RED > 160] & [RED < 180] &

[GREEN > 150] & [GREEN < 180] & [BLUE > 200] & [BLUE < 255];

Let midStreet1 = [RED > 230] & [RED < 240] &

[GREEN > 233] & [GREEN < 240] & [BLUE > 190] & [BLUE < 210];

Let midStreet2 = [RED > 235] & [RED < 245] &

[GREEN > 220] & [GREEN < 230] & [BLUE > 220] & [BLUE < 230];

Let street = C^3 (bigStreet | midStreet1 | midStreet2);

Let station = [RED > 200] & [RED < 225] &

[GREEN > 30] & [GREEN < 60] & [BLUE > 50] & [BLUE < 80];

Let stationArea = !((!station) U street);

Let streetsAroundStation = street & (C^10 stationArea);

Paint "orange" stationArea;

Paint "green" street;

Paint "red" streetsAroundStation;

Figure 9: Source code of the model checking session.

is used to capture main streets that are near the station area6. The Paint command invokes the
model checking function and superimposes an user-specified colour over the points that satisfy a given
formula, using some transparency as a visual aid. As a mere hint on how practical is to use a model
checker for image analysis, the execution time on our test image, consisting of about 250000 pixels, is
in the order of ten seconds on a standard laptop equipped with a 2Ghz processor.

8 Conclusions and Future Work

In this paper, we have presented a methodology to verify properties that depend upon physical space.
We have defined the spatial logic SLCS, stemming from the tradition of topological interpretations of
modal logics, dating back to earlier logicians such as Tarski, where modalities describe neighbourhood.
The topological definitions have been lifted to a more general setting, also encompassing discrete,

6The value of n (in this case 10) is an estimate of the width of a street, expressed in number of pixels; this is typically
a constant in maps taken from the same source.
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graph-based structures. The proposed framework has been extended with a spatial variant of the until
operator, and we have also defined an efficient model checking procedure, which is implemented in a
proof-of-concept tool.

As future work, we first of all plan to merge the results presented in this paper with temporal
reasoning. This integration can be done in more than one way. It is not difficult to consider “snapshot”
models consisting of a temporal model (e.g., a Kripke frame) where each state is in turn a closure model,
and atomic formulas of the temporal fragment are replaced by spatial formulas. The various possible
combinations of temporal and spatial operators, in linear and branching time, are examined for the
case of topological models and basic modal formulas in [19]. Snapshot models may be susceptible to
state-space explosion problems as spatial formulas could need to be recomputed at every state. On the
other hand, one might be able to exploit the fact that changes of space over time are incremental and
local in nature. Promising ideas are presented both in [16], where principles of “continuous change”
are proposed in the setting of closure spaces, and in [20] where spatio-temporal models are generated
by locally-scoped update functions, in order to describe dynamic systems. In the setting of collective
adaptive systems, it will be certainly needed to extend the basic framework we presented with metric
aspects (e.g., distance-bounded variants of the until operator), and probabilistic aspects, using atomic
formulas that are probability distributions. A thorough investigation of these issues will be the object
of future research.

A further challenge in spatial and spatio-temporal reasoning is posed by recursive spatial formulas,
a la µ-calculus, especially on infinite structures with relatively straightforward generating functions
(think of fractals, or fluid flow analysis of continuous structures). Such infinite structures could be
described by topologically enhanced variants of ω-automata. Classes of automata exist living in specific
topological structures; an example is given by nominal automata (see e.g., [5, 13, 21]), that can be
defined using presheaf toposes [12]. This standpoint could be enhanced with notions of neighbourhood
coming from closure spaces, with the aim of developing a unifying theory of languages and automata
describing physical spaces, graphs, and process calculi with resources.
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A Proofs

Proof. (of Lemma 2.3)
Proof of item 1

A = I(A)

⇐⇒ A = I(A)

⇐⇒ A = C(A)
Proof of item 2

A ⊆ B

⇐⇒ A ∪B = B

=⇒ [ def. closure ]

C(A) ∪ C(B) = C(B)

⇐⇒ C(A) ⊆ C(B)

A ⊆ B

=⇒ B ⊆ A

=⇒ [ previous part of the proof ]

C(B) ⊆ C(A)

⇐⇒ I(B) ⊆ I(A)

⇐⇒ I(A) ⊆ I(B)
Proof of item 3

I(A ∩B)

= C(A ∩B)

= C(A ∪B)

= [ definition of closure ]

C(A) ∪ C(B)

= C(A) ∩ C(B)

= I(A) ∩ I(B)

= [A and B are open ]

A ∩B
Finally, we prove that, whenever all sets in a collection Ai∈I are open, we have I(

⋃
i∈I Ai) =⋃

i∈I Ai, that is, the union of open sets is open. The left-to-right inclusion is true since ∀A.I(A) ⊆ A,
which is the property ∀A.A ⊆ C(A) (Definition 2.1), dualised by the definition of interior. For the
right-to-left inclusion we have:

true

=⇒ [ definition of
⋃

]

∀i ∈ I.Ai ⊆
⋃

i∈I Ai

=⇒ [ I is monotone by Lemma 2.3, item 2 ]
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∀i ∈ I.I(Ai) ⊆ I(
⋃

i∈I Ai)

=⇒ [ ∀i ∈ I.Ai is open ]

∀i ∈ I.Ai ⊆ I(
⋃

i∈I Ai)

=⇒
⋃

i∈I Ai ⊆ I(
⋃

i∈I Ai)

Proof. (of Lemma 2.8) We have

CY (∅)

= CX(∅ ∩ Y )

= CX(∅)

= ∅

true

=⇒ [ CX is a closure operator ]

A ⊆ CX(A)

=⇒ [A ⊆ Y ]

A ⊆ CX(A) ∩ Y

⇐⇒ A ⊆ CY (A)

CY (A ∪B)

= CX(A ∪B) ∩ Y

= (CX(A) ∪ CX(B)) ∩ Y

= (CX(A) ∩ Y ) ∪ (CX(B) ∩ Y )

= CY (A) ∪ CY (B)

Proof. (of Proposition 2.10)
Equation 1:

B(A)

= C(A) \ I(A)

= [ I(A) ⊆ A, ∀A,B,C.B ⊆ C =⇒ A \B = (A \ C) ∪ (C \B) ]

(C(A) \A) ∪ (A \ I(A))

= B+(A) ∪ B−(A)

Equation 2:

B+(A) ∩ B−(A)

= (C(A) \A) ∩ (A \ I(A))

= [ C(A) \A ⊆ A,A \ I(A) ⊆ A ]

∅

Equation 3:
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B(A)

= C(A) \ I(A)

= I(A) \ C(A)

= C(A) \ I(A)

= B(A)

Equation 4:

B−(A)

= A \ I(A)

= A \ C(A)

= C(A) \A

= B+(A)

Equation 5:

B+(A)

= C(A) \A

= [ I(A) ⊆ A ]

(C(A) \ I(A)) \A

= B(A) \A

= B(A) ∩A

Equation 6:

B−(A)

= [ Statement 4 ]

B+(A)

= [ Statement 5 ]

B(A) ∩A

= [ Statement 3 ]

B(A) ∩A

Equation 7:

B(A)

= C(A) \ I(A)

= C(A) ∩ I(A)

= C(A) ∩ C(A)

Proof. (of Proposition 3.3)

Axiom 1:

CR(∅) = ∅ ∪ {x ∈ X | ∃a ∈ ∅.(a, x) ∈ R} = ∅

Axiom 2:
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A

⊆ [A ⊆ A ∪B ]

CR(A)

Axiom 3:

CR(A ∪B)

= A ∪B ∪ {x ∈ X | ∃c ∈ A ∪B.(c, x) ∈ R}

= [ c ∈ A ∪B ⇐⇒ c ∈ A ∨ c ∈ B ]

A ∪B ∪ {x ∈ X | ∃c ∈ A.(c, x) ∈ R} ∪ {x ∈ X | ∃c ∈ B.(c, x) ∈ R}

= CR(A) ∪ CR(B)

Proof. (of Proposition 3.6)
Equation 8:

I(A)

= CR(A)

= A ∪ {x ∈ X | ∃a ∈ A.(a, x) ∈ R}

= A ∩ {x ∈ X | ¬∃a ∈ A.(a, x) ∈ R}

= {x ∈ A | ¬∃a ∈ A.(a, x) ∈ R}
Equation 9:

B−(A)

= A \ I(A)

= A \ {x ∈ A | ¬∃a ∈ A.(a, x) ∈ R}

= A ∩ {x ∈ A | ∃a ∈ A.(a, x) ∈ R}

= {x ∈ A | ∃a ∈ A.(a, x) ∈ R}
Equation 10:

B+(A)

= C(A) \A

= (A ∪ {x ∈ X | ∃a ∈ A.(a, x) ∈ R}) \A

= (A ∪ {x ∈ X | ∃a ∈ A.(a, x) ∈ R}) ∩A

= (A ∩A) ∪ ({x ∈ X | ∃a ∈ A.(a, x) ∈ R} ∩A)

= {x ∈ A | ∃a ∈ A.(a, x) ∈ R}

Proof. (of Theorem 5.5) LetM = ((X, C),V). SinceM, x |= φUψ, let A be the set from Definition 5.2.
Let p : x ∞, and l be such that M, p(l) |= ¬φ. Consider the set K− = {k | ∀h ∈ {0, . . . , k}.p(h) ∈
A}. Since 0 ∈ K−, we have K− 6= ∅. Consider the complement of K−, namely K+ = N \K−. Since
all points in A satisfy φ, and p(l) |= ¬φ, we have l ∈ K+, thus K+ 6= ∅. By finiteness of both sets,
consider k− = maxK− and k+ = minK+. Noting that if k ∈ K− and h ∈ [0, k), then h ∈ K−, we
have k−+1 = k+, thus (k−, k+) ∈ Succ. Let S = {p(k)|k ∈ K−} ⊆ A. By monotonicity of closure, we
have C(S) ⊆ C(A). By definition of CSucc , we have k+ ∈ CSucc(K−), thus by continuity p(k+) ∈ C(S)
and therefore p(k+) ∈ C(A). But it is also true that p(k+) /∈ A; if p(k+) ∈ A, then we would have
k+ ∈ K−, by definition of K−. Thus, p(k+) ∈ B+(A), therefore p(k+) |= ψ. Note that in particular
k+ 6= 0 as p(0) = x ∈ A, and k+ ≤ l as l ∈ K+ and k+ = minK+.
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Proof. (of Lemma 5.6) For one direction of the proof, assume p is a continuous function. Importing
definitions from Definition 5.4 and the statement of Lemma 5.6, we have

(i, i+ 1) ∈ Succ

=⇒ i+ 1 ∈ CSucc({i})

=⇒ [ p continuous ]

p(i+ 1) ∈ CR(p({i}))

⇐⇒ p(i+ 1) ∈ CR({p(i)})

⇐⇒ p(i+ 1) ∈ {p(i)} ∪ {x | (p(i), x) ∈ R}

⇐⇒ p(i+ 1) = p(i) ∨ (p(i), p(i+ 1)) ∈ R

For the other direction, given a path xi of length l in R, define p(i) = xi. Continuity of p is straight-
forward.

Proof. (of Theorem 5.7) One direction is given by Theorem 5.5. For the other direction, assume
M = ((X, CR),V) where CR is the closure operator derived by a relation R. Consider point x with
M, x |= φ, and assume that for each p : x  ∞ and l such that M, p(l) |= ¬φ there is k ∈ {1, . . . , l}
such that M, p(k) |= ψ. Define the following set:

Ax = {x} ∪ {y ∈ X | ∃p : x ∞.∃l > 0.p(l) = y ∧ ∀k ∈ {1, . . . , l}.M, p(k) |= φ ∧ ¬ψ}

We will use Ax as a witness of the existence of a set A in Definition 5.2, in order to prove that
M, x |= φUψ. Note that by definition of Ax, x ∈ Ax and ∀y ∈ Ax.M, p(y) |= φ. We need to
show that ∀z ∈ B+(Ax).M, z |= ψ. Consider z ∈ B+(Ax). Since M is based on a quasi-discrete
closure space, by Equation 10 in Proposition 3.6, we have z ∈ Ax and there is y ∈ Ax such that
(y, z) ∈ R. Suppose y = x. Let p be the path defined by p(0) = x, p(i 6= 0) = z. If M, z |= φ,
suppose M, z 2 ψ; then z ∈ Ax, witnessed by the path p, with l = 1; therefore, since z ∈ Ax we
have M, z |= ψ. If M, z 2 φ, then noting p(1) = z, by hypothesis, there is k ∈ {1, . . . , 1} with
M, p(k) |= ψ, that is M, z |= ψ. Suppose y 6= x. Then there are p : x  ∞ and l > 0 such that

p(l) = y ∧ ∀k ∈ {1, . . . , l}.M, p(k) |= φ ∧ ¬ψ. Define p′ by p′(l′) = p(l′) if l′ ≤ l, and p′(l′) = z
otherwise. The rest of the proof mimics the case y = x. If M, z |= φ, then M, z 2 ψ implies z ∈ Ax,
witnessed by p′ and l′ = l + 1, therefore M, z |= ψ. If M, z |= ¬φ, then by hypothesis there must be
k ∈ {1, . . . , l + 1} such that M, p′(k) |= ψ. By definition of p′, it is not possible that k ∈ {1, . . . , l},
thus k = l+ 1 andM, z |= ψ. By this argument, we haveM, x |= φUψ using the set Ax to verify the
definition of satisfaction.

Proof. (of Remark 5.8)

1. M, x |= φRψ

⇐⇒ [ Definition of R ]

M, x |= ¬(¬ψ U¬φ)

⇐⇒ M, x 6|= ¬ψ U¬φ

⇐⇒ [ Theorem 5.7 ]

¬(M, x |= ¬ψ and ∀p : x ∞∀l ∈ N :M, p(l) |= ¬¬ψ ⇒ ∃k ∈ {1, . . . , l} :M, p(k) |= ¬φ)

⇐⇒ ¬(M, x |= ¬ψ and ∀p : x ∞∀l ∈ N : ¬(M, p(l) |= ψ)∨(∃k ∈ {1, . . . , l} :M, p(k) |= ¬φ))

⇐⇒ M, x |= ψ or ∃p : x ∞∃l ∈ N : M, p(l) |= ψ ∧ ¬(∃k ∈ {1, . . . , l} :M, p(k) |= ¬φ)

⇐⇒ ∃p : x ∞∃l ∈ N : M, p(l) |= ψ ∧ ∀k ∈ {1, . . . , l} :M, p(k) |= φ
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2. M, x |= Gφ

⇐⇒ [ Definition of G ]

M, x |= φU⊥

⇐⇒ [ Theorem 5.7 ]

∀p : x ∞∀l ∈ N :M, p(l) |= ¬φ⇒ ∃k ∈ {1, . . . , l} :M, p(k) |= ⊥

⇐⇒ ∀p : x ∞∀l ∈ N :M, p(l) |= φ

3. M, x |= Fφ

⇐⇒ [ Definition of F ]

M, x |= ¬G¬φ

⇐⇒ [ Remark 5.8 (2) ]

¬(∀p : x ∞∀l ∈ N :M, p(l) |= ¬φ)

⇐⇒ ∃p : x ∞∃l ∈ N :M, p(l) |= φ

Proof. Lemma 6.2 We prove by induction on the syntax of SLCS formulae that for any quasi-discrete
closure modelM = ((X, CR),V), and for any formula Φ function Sat terminates in at most O(size(Φ)·
(|X|+ |R|)) steps.

Base of Induction. If Φ = > or Φ = p the statement follows directly from the definition of Sat.
Indeed, in both these cases function Sat computes the final result in just 1 step.

Inductive Hypothesis. Let Φ1 and Φ2 be such that for any quasi-discrete closure model M =
((X, CR),V), function Sat(M,Φi), i = 1, 2, terminate in at most O(size(Φi) · (|X|+ |R|)) steps.

Inductive Step.

Φ = ¬Φ1: In this case function Sat first recursively computes the set P = Sat(M,Φ1), then returns
X −P . By inductive hypothesis, the calculation of P terminates in at most O(size(Φ1) · (|X|+
|R|)) steps, while to compute X − P we need O(|X|) steps. Hence, Sat(M,¬Φ1) terminates in
at most O(size(Φ1) · (|X|+ |R|)) +O(|X|). However:

O(size(Φ1) · (|X|+ |R|)) +O(|X|)
≤ O(size(Φ1) · (|X|+ |R|)) +O(|X|+ |R|)
= O((1 + size(Φ1)) · (|X|+ |R|))
= O(size(¬Φ1) · (|X|+ |R|))

Φ = Φ1 ∧ Φ2: To compute P = Sat(M,Φ1 ∧ Φ2) function Sat first computes P = Sat(M,Φ1) and
Q = Sat(M,Φ2). Then the final result is obtained as P ∩Q. Like for the previous case, we have
that the statement follows from inductive hypothesis and by using the fact that P ∩ Q can be
computed in at most O(|X|).

Φ = ♦Φ1: In this case function Sat first computes, in at most O(size(Φ1) · (|X|+ |R|)) steps, the set
P = Sat(M,Φ1). Then the final result is obtained as CR(P ). Note that, to compute CR(P )
one needs O(|X| + |R|) steps. According to Definition 3.1, CR(P ) is obtained as the union,
computable in O(|X|) steps, of P with {x ∈ X|∃a ∈ P.(a, x) ∈ R}. The latter can be computed
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in O(|R|) steps. Indeed, we need to consider all the edges exiting from P . Hence, Sat(M,♦Φ1)
terminates in a number of steps that is:

O(size(Φ1) · (|X|+ |R|)) +O(|X|) +O(|R|)
= O(size(Φ1) · (|X|+ |R|)) +O(|X|+ |R|)
= O((1 + size(Φ1)) · (|X|+ |R|))
= O(size(♦Φ1) · (|X|+ |R|))

Φ = Φ1 UΦ2: When Φ = Φ1 UΦ2 function Sat recursively invokes function CheckUntil that first
computes the sets P = Sat(M,Φ1), Q = Sat(M,Φ2) and T = B+(P ∪ Q). By inductive
hypothesis, the computations of P and Q terminate in at most O(size(Φ1) · (|X| + |R|)) and
O(size(Φ2) · (|X| + |R|)) steps, respectively, while T can be computed in O(|X| + |R|). After
that, the loop at the end of function CheckUntil is executed. We can observe that:

• a point x is added to T only one time (i.e. if an element is removed from T , it is never
reinserted in T );

• all the points in T are eventually removed from T ;

• each edge in M is traversed at most one time.

The first two items, together with the fact thatM is finite, guarantee that the loop terminates.
The last item guarantees that the loop terminates in at most O(|R|) steps7. Summing up, the
computation of Sat(M,Φ1 UΦ2) terminates in at most

O(size(Φ1) · (|X|+ |R|)) +O(size(Φ2) · (|X|+ |R|))
+O(|X|+ |R|) +O(|R|)

= O((size(Φ1) + size(Φ2)) · (|X|+ |R|)) +O(|X|+ |R|)
= O((1 + size(Φ1) + size(Φ2)) · (|X|+ |R|))
= O(size(Φ1 UΦ2) · (|X|+ |R|))

Proof. Theorem 6.3 The proof proceeds by induction on the syntax of SLCS formulae.

Base of Induction. If Φ = > or Φ = p the statement follows directly from the definition of function
Sat and from Definition 5.2.

Inductive Hypothesis. Let Φ1 and Φ2 be such that for any finite quasi-discrete closure model M =
((X, CR),V), function x ∈ Sat(M,Φi) if and only if M, x |= Φi, for i = 1, 2.

Inductive Step.

Φ = ¬Φ1: x ∈ Sat(M,¬Φ1)

⇐⇒ [ Definition of Sat ]

x 6∈ Sat(M,Φ1)

⇐⇒ [ Inductive Hypothesis ]

M, x 6|= Φ1

⇐⇒ [ Definition 5.2 ]

M, x |= ¬Φ1

7Note that this is the complexity for a DFS in a graph
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Φ = Φ1 ∧ Φ2: x ∈ Sat(M,Φ1 ∧ Φ2)

⇐⇒ [ Definition of Sat ]

x ∈ Sat(M,Φ1) ∩ Sat(M,Φ2)

⇐⇒ x ∈ Sat(M,Φ1) and x ∈ Sat(M,Φ2)

⇐⇒ [ Inductive Hypothesis ]

M, x |= Φ1 and M, x |= Φ2

⇐⇒ [ Definition 5.2 ]

M, x |= Φ1 ∧ Φ2

Φ = ♦Φ1: x ∈ Sat(♦Φ1)

⇐⇒ [ Definition of Sat ]

x ∈ CR(Sat(M,Φ1))

⇐⇒ [ Definition of CR ]

∃A ⊆ Sat(M,Φ1) : x ∈ CR(A)

⇐⇒ [ Inductive Hypothesis ]

∃A ⊆ X.∀y ∈ A.M, y, |= Φi and x ∈ CR(A)

⇐⇒ [ Definition 5.2 ]

M, x |= ♦Φ1

Φ = Φ1 UΦ2: We prove that x ∈ CheckUntil(M,Φ1,Φ2) if and only if M, x |= Φ1 UΦ2. Function
CheckUntil takes as parameters a modelM and two SLCS formulas Φ1 and Φ2 and computes
the set of points in M satisfying Φ1 UΦ2 by removing from V = Sat(M,Φ1) all the bad points.

A point is bad if it can reach a point satisfying ¬Φ1 without passing through a point satisfying
Φ2. Let Q = Sat(M,Φ2) be the set of points in M satisfying Φ2. To identify the bad points in
V the function CheckUntil performs a backward search from T = B+(V ∪ Q). Note that any
path exiting from V ∪ Q has to pass through points in T . Moreover, the latter only contains
points that satisfy neither Φ1 nor Φ2, by definition. Until T is empty, function CheckUntil first
picks all the elements x in T and then removes from V the set of (bad) points N that are in
V −Q and that can reach x in one step. At the end of each iteration the set T contains the set
of bad points discovered in the last iteration. The proof proceeds in two steps. The first step
guarantees that if x does not satisfy Φ1 UΦ2, then x is eventually removed from V . The second
step shows that if x is removed from V then x does not satisfy Φ1 UΦ2.

Note that, by Inductive Hypothesis, we have that:

x ∈ V = Sat(M,Φ1)⇔M, x |= Φ1 (11)

x ∈ Q = Sat(M,Φ2)⇔M, x |= Φ2 (12)

For each x ∈ X we let:

Ix = {i ∈ N|∃p : x ∞.M, p[i] |= ¬Φ1 ∧ ∀j ∈ {1, . . . , i}.M, p[j] |= ¬Φ2}

Note that, directly from Theorem 5.7, we have that M, x |= Φ1 UΦ2 if and only if M, x |= Φ1

and Ix = ∅.
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First we prove that if Ix 6= ∅ andM, x |= Φ1, then x is removed from V at iteration i = min Ix.
This guarantees that if x does not satisfy Φ1 UΦ2, then x is eventually removed from V . The
proof of this result proceeds by induction on i:

Base of Induction: Let x ∈ X such thatM, x |= Φ1, Ix 6= ∅ and min Ix = 1. Since min Ix = 1,
we have that there exists p : x  ∞ such that M, p[1] |= ¬Φ1 and M, p[1] |= ¬Φ2.

By definition of paths, we also have that x = p[0] and (x, p[1]) ∈ R. This implies that
p[1] ∈ B+(V ∪ Q) and x ∈ pre(p[1]). By definition of function CheckUntil we have that
p[1] is in T and x is removed from V during the first iteration. Note that x will be added
to T only if it does not satisfy Φ2 (i.e. if x 6∈ Q).

Inductive Hypothesis: For each x ∈ X be such thatM, x |= Φ1, Ix 6= ∅ and min Ix = k, x is
removed from V at iteration k.

Inductive Step: Let x ∈ X be such that M, x |= Φ1, Ix 6= ∅ and min Ix = k + 1. If min Ix =
k+1 then there exists p : x ∞ such thatM, p[k+1] |= ¬Φ1 and for each j ∈ {1, . . . , k+1}
M, p[j] |= ¬Φ2. We have also that M, p[1] |= Φ1 (otherwise min Ix = 1) and min Ip[1] = k
(otherwise min Ix 6= k + 1). By inductive hypothesis we have that p[1] is removed from V
at iteration k. However, since M, p[1] |= ¬Φ2 we have that p[1] 6∈ Q and p[1] is in the set
T at the beginning of iteration k + 1. This implies that x = p[0] is removed from V at
iteration k + 1, since x ∈ pre(p[1]).

We now prove that if x is removed from V at iteration i, then Ix 6= ∅ and i = min Ix. This
ensures that if x is removed from V then x does not satisfy Φ1 UΦ2. We proceed by induction
on the number of iterations i:

Base of Induction: If x ∈ V is removed in the first iteration we have that there exists a point
y ∈ B+(V ∪ Q) such that (x, y) ∈ R. From Equation 11 and Equation 12 we have that
M, x |= Φ1 whileM, y |= ¬Φ1 ∧¬Φ2. This implies that there exists a path p : x ∞ such

that p[1] = y and 1 = min Ix.

Inductive Hypothesis: For each point x ∈ V , if x is removed from V at iteration i ≤ k, then
Ix 6= ∅ and i = min Ix.

Inductive Step: Let x ∈ V be removed at iteration k+ 1. This implies that after k iterations,
there exists a point y in T such that (x, y) ∈ R. This implies that y has been removed from
V at iteration k and, by inductive hypothesis, Iy 6= ∅ and k = min Iy. Hence, there exists
a path p : y  ∞ such that M, p[k] |= ¬Φ1 and for each j ∈ {1, . . . , k} M, p[j] |= ¬Φ2.

Moreover, since y ∈ T , we have also that y 6∈ Q and, from Equation 12, M, y |= ¬Φ2. We
can consider the path p′ : x  ∞ such that, for each j, p′[0] = x and p′[j + 1] = p[j].

We have that M, p′[k + 1] |= ¬Φ1 and for each j ∈ {1, . . . , k + 1}, M, p′[j] |= ¬Φ2. Hence
Ix 6= ∅ and k+ 1 = min Ix (otherwise x should be removed from V in a previous iteration).
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