
SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 1

Global System Architecture Report

 D2.2.1

Deliverable Type: Report
Number: D2.2.1;

Nature: Public
Contractual Date of Delivery: 30 September 2001

Actual Date of Delivery: 12 October 2001
Revised: 03 March 2003

Task WP2.2:

Name of responsible: Donatella Castelli
Pasquale Pagano

CNR-IEI
Area di Ricerca di Pisa

56124 Pisa
Italy

castelli@iei.pi.cnr.it
pagano@iei.pi.cnr.it

Abstract:
This is the Global System Architecture Report. It presents the activity carried out as part of
task T2.2. The overall system architecture is introduced by describing its components and
their distribution. These architectural components are specified in terms of their abstract
state and the set of service requests. Each service request is specified in terms of its input,
output and behaviour.

Keywords: digital library architectures, open architectures, open protocols, digital library
services, multimedia documents, document annotations, cross-language access, personalised
dissemination.

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 2

TABLE OF CONTENTS

1. INTRODUCTION .. 4

2. REQUIREMENTS ... 5

3. FROM ETRDL TO SCHOLNET ... 7

4. THE DOCUMENT MODEL ... 8
4.1 ENTITIES .. 8
4.2 RELATIONS .. 10
4.3 ATTRIBUTES .. 11

5. THE DOCUMENT METADATA DESCRIPTION .. 13

6. THE SCHOLNET ARCHITECTURE ... 14
6.1 THE SCHOLNET SERVICES .. 14

7. THE OPENDLIB PROTOCOL .. 22
7.1 VERBS AND VERSIONS ... 22
7.2 DATES .. 24
7.3 SERVICE INFORMATION VERBS .. 24

8. REPOSITORY SERVICE ... 25
8.1 STATE .. 25
8.2 REPOSITORY VERBS .. 28

9. MULTIMEDIA DOCUMENT STORAGE AND DELIVERY SERVICE ... 49
9.1 STATE ... ERROR! BOOKMARK NOT DEFINED.
9.2 DEFINITIONS ... ERROR! BOOKMARK NOT DEFINED.
9.3 MULTIMEDIA STORAGE VERBS ... ERROR! BOOKMARK NOT DEFINED.

10. LIBRARY MANAGEMENT SERVICE .. 60
10.1 STATE .. 60
10.2 LIBMGT VERBS ... 61

11. REGISTRY SERVICE ... 75
11.1 STATE .. 75
11.2 REGISTRY VERBS ... 77

12. COLLECTION SERVICE .. 89
12.1 STATE .. 90
12.2 COLLECTION VERBS .. 91

13. BROWSE SERVICE .. 103
13.1 STATE .. 103
13.2 BROWSE VERBS ... 103

14. INDEX SERVICE ... 109
14.1 STATE .. 109
14.2 INDEX VERBS ... 110

15. QUERY MEDIATOR SERVICE .. 120
15.1 STATE .. 120
15.2 QUERY MEDIATOR VERBS ... 120

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 3

16. PERSONALIZED INFORMATION DISSEMINATION SERVICE ... 136
16.1 STATE .. 136
16.2 PERSONALISATION VERBS ... 137

17. HYPERMEDIA ANNOTATION SERVICE ... 141
17.1 STATE .. 141
17.2 HYPERMEDIA ANNOTATION VERBS ... 142

18. MULTILINGUAL THESAURUS SERVICE .. 150
18.1 STATE .. 150
18.2 MULTILINGUAL THESAURUS VERBS .. 150

19. USER INTERFACE ... 164
19.1 STATE .. 165
19.2 SCHOLNET USER INTERFACE VERBS .. 165

20. META SERVICE .. 177
20.1 STATE .. 178
20.2 META VERBS ... 180

21. A METADATA EDITOR FOR MULTIMEDIA DOCUMENTS .. 197
21.1 REQUIREMENTS ... 197
21.2 METADATA EDITOR USE CASE .. 197
21.3 ARCHITECTURAL CHOICES ... 201

22. POSSIBLE FUTURE EXTENSIONS ... 203

23. REFERENCES ... 204

24. APPENDIX A: LIST OF ACRONYMS ... 205

25. APPENDIX B: THE OPENDLIB APPLICATION PROFILE .. 206

26. APPENDIX C: MAPPING THE ETRDL METADATA FORMAT INTO OLMS 209

27. APPENDIX D: THE STRUCTURE METADATA SET .. 210

28. APPENDIX E: THE OPENDLIB USER METADATA PROFILE ... 211

29. APPENDIX F: THE OPENDLIB GROUP METADATA PROFILE ... 213

30. APPENDIX G: THE OPENDLIB COLLECTION METADATA PROFILE .. 214

31. APPENDIX H: THE THESAURUS CONCEPT DTD ... 216

32. APPENDIX I: DTD .. 217

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 4

1. INTRODUCTION

This report presents the work of Task 2.2. The aim of this task is to specify the Scholnet
architecture.

The report is organised as follows:

Section 2 lists the general requirements that have influenced the architectural choices.

Section 3 briefly motivates the architectural and protocol design decisions.

Section 4 presents the document model adopted in Scholnet.

Section 5 briefly presents the OpenDLib Application Profile (OLAP).

Section 6 presents the overall architecture.

Section 7 provides a specification of the format of the communication protocol.

Sections 6 to 20 present the specifications of the architectural components.

Section 21 describes the functionality and architectural details of the metadata editor tool that will
be implemented to support the editing of document metadata descriptions.

Section 22 briefly discusses possible extensions to the current version of the system.

Appendix A defines the list of acronyms used in this report.

Appendix B specifies the metadata application profile (OLAP) used to support the realisation of the
Scholnet services.

Appendix C specifies the mapping from the ETRDL metadata format to OpenDLib Metadata Set.

Appendix D specifies the metadata schema that describes the structure of Scholnet documents.

Appendix E introduces the metadata format that has been used to describe users.

Appendix F introduces the metadata format that has been used to describe groups.

Appendix G introduces the metadata format that has been used to describe collections.

Appendix H introduces the metadata format that has been used to describe thesaurus.

Appendix I introduces some DTDs used to validate the OLP protocol response.

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 5

2. REQUIREMENTS

The architectural specification described in this report is the interpretation of the Scholnet
Functional Specifications [ScholnetD2.1.1] as established by the project Technical Annex
[ScholnetTA]. This context imposes certain constraints. In particular:

“The SCHOLNET project will extend the basic service provided by the ERCIM Technical Reference
Digital Library (ETRDL) [ETRDL] with tools that implement a new set of services to handle
multimedia digital objects and to provide a collaborative working environment.
ETRDL was implemented using the Dienst technology[Dienst], developed by a US Consortium led
by Cornell University. Dienst version 4.1.9 provided functionality for archiving, access, discovery
and browsing. ETRDL added capability for on-line document submission/withdrawal, subject
classification, multiple language indexing and search, and on-line administration.”

The design of the Scholnet architecture has been constrained by the ETRDL basic architecture. The
design decisions were made in accordance with the existing ETRDL underlying design principles,
and its architectural and protocol choices.

“SCHOLNET will experiment an open digital library infrastructure. The openness permits the
partitioning of the total system functionality into a set of well-defined services. Each of these
services is accessible via a well-defined protocol – a set of service requests – that defines the public
interface to this service. Furthermore, each of these service requests is documented with respect to
the format of the request, the format of the possible responses and exceptions, and the semantics of
the request”.

“A service is instantiated by a server module, which implements the set of service requests defined
for the service. The actual implementation of a server is opaque and irrelevant from the perspective
of interoperability, the ability of the service to communicate via its protocol with other services, and
clients. In addition, an individual server may be distributed or replicated, the nature of which is
also opaque from the perspective of its use. The exact topology of the SCHOLNET servers is a
design choice and will be decided during the system specification phase of the project.”

Openness, i.e. the possibility of easily integrating other services in the architecture, is one of the
main design principles of ETRDL and has been strictly maintained in the design of the Scholnet
architecture. Scholnet will be a provider of a core set of services that, if required, can be further
enriched in order to satisfy the needs of specific communities.

“An extensive experimentation activity will be conducted in order to assess the degree to which the
SCHOLNET system functionality and performance meet the requirements of a large scholarly
community. In this activity, the ERCIM networked scholarly community extended by the academic
members of the DELOS Network of Excellence (NoE) on Digital Libraries, recently approved for
funding by the 5th FP/IST, will be involved.”

Great care has been taken to maintain the compatibility with the ETRDL document repositories in
order to set up a valuable experimentation. In this way, all the documents accessible through the
ETRDL search and browse services will also be accessible through the analogous Scholnet services.

“Dienst will constitute the reference architecture used by the Open Archive initiative.”

At the time of the presentation of the Scholnet proposal, the Open Archives Initiative(OAI)[OAI]
had adopted a subset of Dienst as the protocol for harvesting data from different heterogeneous
archives. As a consequence of this choice, all the Scholnet repositories would have been
automatically exposed to all the OAI compliant services.
Recently, however, the rules established by the Open Archives Initiative(OAI) have been modified:
a new protocol, called Open Archives Initiative Protocol for Metadata Harvesting has been

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 6

specified. This is a minimal protocol that supplies and promotes an application-independent
interoperability framework that can be used by a variety of communities engaged in publishing
content on the Web. Each archive that implements the protocol becomes accessible by services
implemented by third-parties through the invocation of protocol requests. This protocol has great
potentiality, since on one hand the information stored in an archive is made accessible through
several services, on the other hand the services developed on top of the protocol can provide access
to a growing number of archives.
The Scholnet architecture has thus been designed so that Scholnet repositories can easily be
transformed into OAI compliant ones.

As can be seen from a statement of the Standardization Forum of the DELOS NoE, interoperability
is becoming one of the most important quality issues of a digital library.

“A number of emerging Web standards will provide much of the basic architecture for digital
libraries (RDF, Dublin Core, INDECS, DIENST protocol, UNICODE, XML, Z39.50, etc.). Many of
these standards have just begun to move from research to deployment. Implementers need to follow
the progress of research, while researchers need to monitor the experience of early adopters. The
refinement of a stable architecture for digital libraries will require several iterations as these
standards are adapted for various applications.” (http://www.ercim.org/delos/).

The Scholnet architecture has been designed taking into account the emerging proposals for
interoperability standards in the digital library area.

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 7

3. FROM ETRDL TO SCHOLNET

The original idea for the Scholnet project arose from our experience in designing and constructing
the ETRDL digital library. The aim of the project was to extend ETRDL with new services able to
provide a better support to scholarly communication and collaboration activities. However, the
Dienst software, which was used as a basis for building ETRDL, was found to be insufficient to
support a multimedia, multilingual digital library. Therefore, CNR decided to redesign and
reimplement the basic software in order to provide a better basis for Scholnet. This new software is
called OpenDLib.
The aim of the Scholnet project is thus now to port the distinguishing features of ETRDL to
OpenDLib and implement the new Scholnet-specific services. OpenDLibThe rest of this document
presents the complete specification of the Scholnet architecture.

Before presenting the Scholnet architecture, two preliminary concepts have to be introduced: the
document model (DoMDL) and the metadata schema application profile (OLAP). These are
described in the next two sections.

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 8

4. THE DOCUMENT MODEL

Scholnet will handle multimedia structured documents. Annotations will be treated as external
objects that refer the document versions with which they are associated.
The documents will conform to the Document Model for Digital Library (DoMDL). This document
has already been described in [SCHOLNET D2.1.1]. Here, for clarity, we include a slightly
enhanced version of this description. The DoMDL is illustrated in Figure 1. DoMDL represents a
document through a set of entities (ovals) that model the document from different points of view, a
set of attributes for each entity (not depicted into the figure), a set of relations (arrows) that link the
different entities and a set of constraints.

Figure 1: The Document Model for Digital Library

The following sections present a detailed description of the model components.

4.1 ENTITIES
Each of the entities described below models a particular aspect of a document.

Document
A document is an abstract entity that represents a distinct intellectual creation. A document is
named by a URN (Unified Resource Name). Unlike a URL, a URN is location independent.

Version
We recognize a document through its individual instances along the time dimension. An instance is
a given edition of a document (i.e. prepared for publication). The first instance of a document could
be, for example, a document that describes an idea in a draft form; the second one could be the
document reviewed after experimentation; and the last one the final published version.
An instance of a document is called a version. Versions are linear and numbered. The first version
is version 1, subsequent versions are 2, 3, etc.

View
Each view is a specific intellectual expression of a document instance. The boundaries of the view
are defined so as to exclude physical aspects that are not integral to the intellectual perception of a
document.
Every document instance is perceived through one or more views. A document instance may be
perceived by a user, for example, through its description, or its summary, or its full content.

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 9

In DoMDL we distinguish between two different classes of view: Metadata, and Content. The
content view can be a Body a Reference or a Choice view. Each of these classes models specialised
views that have different constraints and relationships (see Figure 2).

Figure 2: The View Entity, its Specialised Entities and its Relationships

Metadata View
The Metadata View provides descriptive information about the document instance and its views.
Typically, index services or other discovery or browsing services use this cataloguing information
to facilitate location of digital objects in a digital library.

Content View
The Content View models the specific intellectual form taken by the content of the document in
order to be perceived by the user. This view may be used to represent, for example, perceptions of
the same text in different languages, a silent perception of an audio-video document or its audio
summary, etc.
Body View
The Body View represents the intellectual form of documents either as a whole or as the
aggregation of other views. In the former case it is associated with at least one manifestation while
in the second case its manifestations are derived by aggregating the manifestation of its parts.

Reference View
A Reference View is a content view that has all the properties and relations of an already existing
view. For example, the view ArticleOne of an electronic journal might be exactly the same as the
view ArticleFive published in the proceedings of a conference. A Reference View has no assigned
explicit property except the URL of the existing view. This provides all the information that is
required to retrieve the complete description of the view modeled as reference. Its manifestations
can be derived by the manifestations associated with the existing view.

is_specialized_by

I

E

B

View_metadata
Metadata

Content

Body

Reference

Choice

is_an_image_of

has_part

View

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 10

Choice View
A Choice View is a content view, which may be further specialized. For example, if a ChapterView
is represented as a Choice View then this means that there are other more specialized views of it.
These might be a PagedChapterView, a view of the chapter decomposed in pages, or a Section
View, a view of the chapter decomposed in sections.

Manifestation
A manifestation is the physical form of an intellectual perception of the document.
Each manifestation may be disseminated under the form of either a single item or a set of items.
The items are identified as a sequence with an ordinal attribute. The content type of the items in the
set must be the same. A content type is expressed as a MIME (Multi-purpose Internet Mail
Extension) type such as image/tiff or text/html.

4.2 RELATIONS
The entities described above are linked by the following relations.

has_version
The domain of the has_version relation is the document entity and its range is the version entity.
A specific document has at least one version and the same version cannot be the instance of two
different documents.

version_metadata
The domain of this relation is the version entity and its range is the metadata view entity.
The version_metadata relation is used to associate metadata with a specific version in order to
describe it.

has_view
The domain of the has_view relation is the version entity and its range is the view entity.
The has_view relation is used to express how a document instance may be perceived by a user.
Every document instance is perceived through one or more views. A book, for example, may be
perceived by means of its metadata descriptions or by means of two or more content views in
different languages.

view_metadata
The domain of this relation is the content view entity and its range is the metadata view entity.
The view_metadata relation is used to associate metadata with a specific content view in order to
describe it.

has_part
This is a relation from body to content.
The has_part relation makes it possible to manage views that are realized as a hierarchy of parts
that are slices of a single intellectual creation. It describes a view as an aggregation of a set of other
views: for example, a book view of a document may be perceived as organized into a set of parts
(chapters) where each of these parts, in turn, is a set of parts (paragraphs).
Sharing of parts is not possible. For example, a specific paragraph cannot be part of two different
chapters.

is_an_image_of
This is a relation from reference to content.
The is_an_image_of relation is used to indicate that one view is the image of another. As such, it
has exactly the same metadata description, structure and relations as the view to which it refers. For
example, if each of the articles of a journal has been registered as an independent document, the

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 11

journal view may be defined as the aggregation of the set of image views referring the existing
views of the articles in the journal.
Due to its definition, a view can be the image of at most one view; it does not have its own
metadata, parts, specialisation nor manifestation.
is_specialized_by
This is a relation from choice to content.
A view element can be perceived by the user in various intellectual forms which may differ with
respect to the level of detail. The is_specialized_by relation links a view to its specialization. A
journal, for example, may be perceived as a set of articles or as a set of issues: the two sets can be
modeled as specialised views of the journal view.
has_manifestation
The domain of this relation is the view entity and its range is the manifestation entity.
The has_manifestation relation is used to express the relationship between the intellectual and the
physical form of a document. For example, a textual view of a document may have two different
manifestations: one in Adobe's Portable Document Format (pdf) format and another in postscript
format (ps).
Each view with no parts has at least one manifestation.

4.3 ATTRIBUTES
Each entity of the model has an attribute name which is an alphanumeric string. The names of the
objects that are related to the same object must be different. For example, the views of a
givendocument instance must have different names and the parts of a given view must have
different names.
Other specific attributes are reported in the table below.

Entity Attribute

Name Type Description

Version ordinal Integer
(mandatory)

Specifies the number of the version.

View display String
(optional)

Brief human readable description of the
content of the view.

ordinal Integer
(optional)

Can be used to establish an ordering
among different parts of a same view, e.g.
the chapters of a book, the paragraphs in a
chapter.

Manifestation content- type MIME type
(mandatory)

Specifies the content type of the
manifestation.

display String
(optional)

Brief human readable description of the
manifestation.

multiple Boolean
(optional)

This flag is “on” when the manifestation is
available as a set of files, it is off when the
manifestation is available as a single file.

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 12

uri String
(optional)

Unique Resource Identifier of the
manifestation. It can be used to specify the
name of a file, or the complete ftp URL
where the file can be downloaded, or the
specific URN used to identify the
manifestation.

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 13

5. THE DOCUMENT METADATA DESCRIPTION

The content of Scholnet documents will be described by metadata records according to the
OpenDLib Application Profile (OLAP). An application profile is defined as a metadata schema
which consists of data elements drawn from one or more namespaces, combined by implementors,
and optimised for a particular local application.
The idea of application profiles grew out of UKOLN's work on the DESIRE project
[DESIRE][Heery00] and is currently one of the most well accepted methodological solutions for the
definition of new metadata schemas. Application profiles allow implementors to declare how they
are using standard schemas.

The namespaces used in OLAP are the Dublin Core namespace, the Dublin Core Qualified
namespace, and the OpenDLib Metadata Set namespace (OLMS). This last metadata set has been
introduced to support the specific needs of the OpenDLib Architecture services.
Appendix B contains the complete OLAP and an XML DTD that specifies it.

The ETRDL repositories contain metadata descriptions given in a subset of the RFC1807 format
extended with a few additional fields for handling multilinguality. A mapping between the ETRDL
metadata format and OLAP has been established in order to be able to render these metadata
descriptions available in the Scholnet digital library. This mapping is given in Appendix C.
Interoperability with applications that require Dublin Core metadata descriptions (such as those that
are Open Archives compliant) can be obtained simply by restricting the metadata record to only
those fields that belongs to the “dc” and “dcq” namespace and removing the qualifiers.
The system must also maintain a description of the document structure. In Scholnet, this structure
will be described according to the Structure Metadata Set (SMS). The SMS will specify how many
versions are available for each document, their views and, for each view, the corresponding
structure. The SMS DTD is given in Appendix D.

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 14

6. THE SCHOLNET ARCHITECTURE

6.1 THE SCHOLNET SERVICES
Scholnet will be built as a distributed digital library, according to the notion of individually defined
services located anywhere on the Internet. When combined, these services constitute a digital
library. The functionality of the Scholnet digital library includes the storage of and access to
multimedia and multilingual resources, annotations on these resources, cross-language search and
browsing, user registration and personalized information dissemination of new incoming
documents.

The Scholnet federation of services will communicate through an established protocol. Figure 2
shows a conceptual model that specifies the notion of “Scholnet service”. The ovals represent
classes of services, the double arrows the specialisation relationship. A Scholnet architecture
consists of a set of instances of the leaf classes (service types)of this model.

Figure 2. The Scholnet Service Conceptual Schema

Repository

Distributed

Annotation

Index

Library
Management

Replicated

Service

Meta Collection

Browse

Centralised

NoInput

Repository

Multimedia
Storage

Centralised
Input

Distributed
Input

User
Interface

Query
Mediator

Registry

Personalised
Dissemination

Multilingual
Thesaurus

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 15

This model is central to the digital library system design since it highlights the properties
(descriptive metadata) that define each service. Each service instance is known by the other
instances through the values of these properties, which are disseminated on demand. These
properties are modeled using structured attributes that are associated with each entity of the model.
As a natural consequence of the relation between entities, a child entity inherits all attributes of its
parent entity. The whole set of attributes characterize an instance of a service in the Scholnet
architecture. The list of these attributes is given below.

A generic service of the Scholnet architecture is modeled by the entity Service. A service can be
distributed over different servers, replicated, or if necessary centralized. The model has an entity for
each service type.
Distributed services are those that implement the same service through multiple instances, each of
which manages data stored on a different server. The data are distributed according to a set of
criteria that may differ from service to service. Note that each instance of a distributed service does
not need to know anything about the other instances of the same service. In the version of Scholnet
that we are illustrating, the services that are distributed are those that maintain a huge amount of
data and/or those that are strictly related to the document publishing institutions. These institutions
usually prefer to maintain their own documents on their own server to have a physical control over
them. Moreover, each institution usually has its own rules for document submission/withdrawal, or
content management, and therefore prefers to maintain these procedures also in a common shared
environment.
The replicated services are those implemented by a set of service instances, possibly located on
different servers, where each instance is able to cover completely the service functionality over the
entire set of data. Scholnet distinguishes three kinds of replicated services: NoInput,
CentralisedInput, or DistributedInput. A service is of NoInput type if it is instantiated by pure
replications, i.e. the different instances are never distinguishable since they handle the same data
and behave in the same way. A service of CentralisedInput or DistributedInput type has one
replication, which acts as a master, and a set of replicates which act as slaves. In the case of the
CentralisedInput, the master is a special instance of the service whose only purpose is to maintain
and distribute on demand an updated version of the information handled by the service. The slave
instances update their content by periodically invoking the master. Both the master and slave
replicates of a DistributedInput service can accept new information and serve information requests.
The master maintains the global state of the service information: each time a slave updates its local
information, the slave communicates the change to the master which merges the new information
with its own information. Periodically, each slave updates its state by invoking the master. The role
of the instances of a replicated service, i.e. master and slave, is not statically assigned but can be
changed in order to achieve a better connectivity or to overcome temporary crash. In the present
version of Scholnet we have chosen to replicate those services that are either not constrained by any
proprietary (see distributed services), security or privacy constraint (see centralized). This
replication makes it possible to improve service efficiency and to increase its robustness. This is, for
example, the case of the replication of indexes to improve content access, or the replication of meta
information to improve digital library service access, and so on.
A centralized service has always a single instance in the digital library. Each time the security and
the privacy of the content of a service is an issue, the centralized solution is preferred to the
distributed and replicated ones.
Although the presence of multiple instances of a service increases fault tolerance, reduces the
overload of each instance, and makes it possible to dynamically reorganize the environment when a
server hosting a service instance is not reachable, the replication and distribution of the services is
not mandatory and therefore each of the services outlined in Figure 2 can be instantiated as a single
instance. This means that the level of distribution and replication, and the physical location of the

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 16

service instances may be freely chosen to better satisfy the needs of the specific digital library
context

Each class of service has a set of characterising attributes:

Class Attributes
Service serviceName, olp_base_url, textualDescription,

submissionProcedure, harvestingProcedure, metaServiceURL,
useRestriction, protocolVersion, adminEMail, verbsInfo

Centralised
Distributed AuthorityNames
Replicated regionName, prioritySet
 NoInput
 CentralisedInput masterYesNo, masterURL
 DistributedInput masterYesNo, masterURL, copyURLset

The leaf classes inherit the properties of their ancestors and have their own additional characterising
properties (see below).

The functionality of each service type is the following:

• Repository - stores documents that conform to the DoMDL document modelIt can be
distributed on multiple servers because a Repository server can store documents published
by different authorities and different authorities can be hosted by different Repository
servers.

• Multimedia Storage - stores video documents (according to the DoMDL document model),
and supports their dissemination either as whole documents or as aggregations of scenes,
shots and frames. It can be distributed on multiple serversbecause a Multimedia Storage
server can store documents published by different authorities and different authorities can be
hosted by different Multimedia Storage servers.

• Library Management - supports the submission, withdrawal, and replacement of documents.
It can be distributed on multiple servers because a Library Management server can manage
documents of different authorities published in different Repositories and different
authorities can be managed by different Library Management servers. It is replicated
because the same authorities can be managed by different LibMgt servers.

• Index - accepts queries and returns lists of document identifiers matching those queries. It
can be distributed and replicated on multiple servers because an Index server can index
documents published by different authorities stored in different Repositories and because the
document published by different authorities can be indexed by different Index servers.

• Query Mediator - dispatches queries to appropriate index servers. It can be replicated on
multiple servers.

• Browse - supports the construction of browsing indexes and the actual browsing of those
indexes on library contents. It can be replicated on multiple servers.

• Registry - supports the storage and access of information about authors, individual users,
and user groups. Hosted by one server.

• Personalised Dissemination - supports the storage and execution of persistent queries,
subscriptions, on a collection. Hosted by one server.

• Annotation - stores annotations on documents and makes them available to authorised users.
It can be distributed on multiple servers because an Annotation server can store annotations
on documents published by different authorities that are stored in different repositories.

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 17

• Multilingual Thesaurus - maintains language resources, such as multilingual thesauri, which
are required to support cross-language functionality. Hosted by one server.

• Regional Meta Service maintains the information pertaining to the regions (see below). It is
replicated on multiple servers, one for each region.

• Collection Service - provides a virtual organisation of the documents stored in the
repositories. It supplies the information necessary to manage these virtual document
aggregations. This information is used by the other services in order to handle the collection
objects allowing, for example, the Query Mediator to perform a query on a specified
collection, or the Browse to perform a browse on a collection, and so on. It can be replicated
on multiple servers.

• User Interface- mediates human interaction with these services and their protocols.

Each type of service has descriptive attributes that specify its content. The table below lists the
specific attributes associated with each service type:

Service type Specific Attributes
Repository contentDescription, authorities, sets,

metadataFormats, documentStructure
Library Management authority,set,documentStructure, metadataFormat
Index metadataFormat, indexedFields, resultFormats,

language
Multimedia Storage &
Delivery

compositeDocumentFormats,
nonCompositeDocumentFormats,
multimediaDocumentFormats

Query Mediator searchMethods, resultFormats
Regional Meta Service serviceDescriptionFormat
Collection collectionMetadataFormat
Browse metadataFormat, browsableFields, resultFormats
User Interface frameSet
Registry userProfileFormat, groupProfileFormat
Personalized Dissemination topicThesaurus
Annotation authorities
Multilingual Thesaurus topicThesaurus, languageCovered

The services provided in a Scholnet digital library are instantiations of the listed service types. Each
service has thus all the attributes declared for its type.

An Scholnet digital library is implemented as a federation of services that may be located on
different servers. The federation is instantiated when the digital library is created and can change
dynamically during the digital library lifetime. For example, a new server may be added or
removed, a Query Mediator can send its search requests to a different Index, a service instance can
change its role from master to slave, etc.

A Scholnet digital library architecture is described by the model introduced below. This model
specifies the legal configurations of the Scholnet digital library system, i.e. the digital libraries that
can be created with this system, and their possible evolutions.

A Scholnet digital library architecture model uses three concepts: Service (and its specializations, as
introduced in the previous section), Server, and Region. A Server is a network device that is able to
provide services to the network users by managing shared resources. It can host different service
instance types. A Region is an abstract notion which stands for a dynamic set of service instances
which cover the complete functionality of the digital library and which represent the optimal choice

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 18

with respect to some set of optimization criteria, e.g. their mutual connectivity. A region thus
consists of the entire set of centralized and distributed service instances and a set of instances of the
replicated services, one for each service type. For each region, the set of replicated service instances
changes over time in order to always implement the best choice, e.g. according to the state of the
connection.

IsOn

Comprises

HasRegion

HasServices HasMeta

Scholnet
Architecture

Server

Service

Region

Alternatives

Figure 3: The OpenDLib architecture model

The Scholnet architecture model is shown in Figure 3. Any configuration that agrees with this
model is a legal configuration of an Scholnet digital library system, i.e. an Scholnet digital library.
The Service entity and its specializations have been described above. Note that, in in order to
simplify Figure 3, we have not included the whole service hierarchy. Each of the Server and Region
entities has an attribute, Address and Name, respectively, which identifies it. Specific relationships
link a service instance with the server that hosts it (IsOn), and a region with both its current service
instances (Comprises) and with the possible alternative replicated service instances
(HasAlternatives). This relationship indicates the service instances that can be used to replace the
current ones when the optimization criteria are not met anymore. For each region, more than one
alternative of the same service type can be indicated. A priority value is associated with each pair
(region, service instance) as a measure of the quality of participation of the service in the region
with respect to the set of optimization criteria selected. The service with the highest priority belongs
to the region.
Note that the same service instance can belongs to, and be an alternative in, more than one region.
This means that the number of replications can be chosen freely and is not constrained by the
number of established regions.
The Scholnet Architecture entity models a digital library architecture created by instantiating the
Scholnet system. Each digital library has a name and participates in three relationships which
specify the digital library functionality and distribution. The relation HasService expresses the
composition of the federation, i.e. the service instances that working together provide the digital
library functionality; HasRegion models the organization of the instances into a cluster of services
that satisfy optimization criteria; HasMeta identifies the services that control of the architecture and
are responsible over time for its consistency.
Note that the only constraint on the number of participants in a relationship is that they must be
sufficient to cover the digital library functionality. This means that an Scholnet digital library
architecture is completely flexible in terms of the number of instances, regions and servers. These
can be freely chosen when the digital library is created and they can be modified dynamically

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 19

during the digital library lifetime. Note also that the part of the Scholnet model depicted in Figure 3
does not impose any constraint on the type of services implemented by the federation. In presenting
the model we have assumed the service types implemented by the current version of Scholnet,
however other choices are equally supported.
The entities introduced above are subjected to a number of rules that must be satisfied in any state
of any Scholnet digital library architecture. Two rules are reported below as an illustrative example.

Rule 1:
The Query Mediator service is parametric with respect to the type of search supported, the query
language, the metadata formats, and the format of the returned result set. All the replicated Query
Mediator instances usable in a region must select the same search types, result set formats, and the
same sub-set of the metadata formats that are handled by the Repository service instances. As a
consequence of this, different Query Mediator instances can only offer different search types, or
return different result set formats only if they belongs to different regions;

Rule 2:
The Index service is distributed and is parametric with respect to the distribution criteria, to the
retrieval engine supported, to the metadata formats, etc. Clearly an Index Service instance has to
manage a metadata format that is used by the whole set of Repository instances identified by its
distribution criteria. Nevertheless, as it is replicated, all Index instances that are usable in a region
must refer to the same result set formats, and to the same indexed fields. For example, if an Index
Service instance indexes documents in Italian, it will use a stop-word list for Italian, and Italian
stemming rules, As a consequence, only an Index Service instance with the same configuration can
be set-up as its replication.

Figure 4 and 5 show an example of interaction among the Query Mediator, Index, Browse,
Repository, and Library Management services driven by the Meta Server. Following the indication
reported in the map harvested from the Meta Server, the User Interface selects the appropriate
servers to which to send its requests. By changing the map information, the Meta server can modify
the routing of any request in order to improve connectivity between servers.
Figure 4 shows the allocation and the communication paths among the service instances at time T0.
According to the instruction received by the Meta service, the User UI 1 uses the query mediator
hosted by the Server 1 in order to process the user queries. At the same time, this user interface uses
the browse service hosted by the same server.

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 20

Figure 4: Dynamic routing adapting to overcome a server crash

Figure 5: Dynamic routing adapting to overcome a server crash

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 21

At time T1 a temporary crash of the Server 1 is recognized by the UI 1 that reports the detected
fault to the Meta Server. Using this information, the Meta signals alternative servers for each
service instance hosted by that server.
Figure 4 shows the digital library at time T1: the UI 1 uses the query mediator hosted by Server 5 to
process the queries, and Server 3 to allow the users to browse the library. When the temporary crash
of the server is remedied, the Meta retracks the routing in order to re-optimize the communication
between services.

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 22

7. THE OPENDLIB PROTOCOL

Communication with and among individual Scholnet services takes place via the OpenDLib
Protocol (OLP). The OpenDLib Protocol is an evolution of the Dienst protocol. It inherits from
Dienst the basic rules and conventions, and many protocol requests.

This section illustrates the protocol rules inherited from Dienst. A detailed description of the
protocol requests that are served by each single service is given in the next sections.

7.1 VERBS AND VERSIONS
OLP protocol requests are called “verbs”. Each service supports a set of verbs.
A service may support more than one version of a verb, and each version may differ in syntax or
semantics. A version takes the form of two integers, separated by a period. This version applies to
the individual verb, not the protocol as a whole. Including a version number in the message allows
for backward-compatible extensions to the OLP system.
A server offering one or more OLP services might support verbs in various versions. A service
receiving a message with a version number which is previous to the current one must reply either
using the pertinent syntax and semantics, or with an error. If a service receives a message with a
newer version number, then it must return an error.
Software supporting the OLP protocol may or may not be versioned. If a software version number
exists, that number is independent of the OLP protocol verbs and versions of those verbs that the
software supports. OLP protocol requests are expressed as URLs embedded in HTTP requests1.
Except where noted, these are all HTTP GET requests. A typical implementation uses a standard
Web server, such as Apache, that is configured to dispatch OLP URLs to the appropriate OLP
service. The remainder of this section describes the aspects of the protocol that are specific to the
HTTP embedding.

Message format
All messages are encoded in URLs where the path portion of the URL consists of the following
tokens, in the following order:

OLP: This token appears literally in the URL.
Service Name: The name of the service that can handle the message, e.g. Repository.
Version: The version of the verb being invoked.
Verb: This is the name of the message, e.g. Structure. A verb is unique within a Service.
Fixed arguments: Each verb can have a certain number of fixed arguments, which must
always be supplied, and must appear in the order cited.
Fixed_post arguments: Each verb can have a certain number of fixed arguments, which must
always be passed as HTTP POST request. The fixed_post syntax arguments take the form
key=value.
Optional arguments: the optional syntax arguments take the form key=value. If there is more
than one optional argument, they are separated by an ampersand. Arguments may appear in any
order. Unless otherwise specified, optional arguments are always optional and need not be
repeated.

1 As a future extension we are evaluating the possibility of embedding in HTTPS those requests that imply a
user identification. Our preliminary analysis indicates that the existing software framework can support such
an extension.

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 23

Optional_post arguments: the optional_post syntax arguments take the form key=value.
Arguments may appear in any order and must always be passed as an HTTP POST request.
Unless otherwise specified, optional_post arguments are always optional and need not be
repeated.

The separator between tokens in the path is the slash, except for the separator before the Optional
arguments, which is a question mark.

Example:
If the Repository Service implemented the Structure verb, and if version 1 of that verb accepted one
fixed argument and two optional optional arguments (version and view), then an example request
is:

/OLP/Repository/1.0/Structure/handlecorp/docid?version=2&view=book.

The full URL for this request at a particular Web server might be:

http://xx/OLP/Repository/1.0/Structure/handlecorp/docid?version=2&view=book.

Special characters
The syntax rules for URIs2 give special roles to a few characters in certain contexts. If these
characters are used in any other way they must be written as an escape sequence: a percent sign
followed by the character code in hexadecimal. The special characters are.

Character Role Escape Sequence
/ Path Component Separator %2F

? Query Component Separator %3F
Fragment Identifier %23
= Name/Value Separator %3D

& Argument Separator in Query
Component

%26

: Host Port Separator %3A

;
Authority/Set Namespace
Separator %3B

The space character may not appear anywhere in a URL. It must be written with a "+" (or with the
percent sign escape sequence %20.)
Note that in the examples used throughout this document, special character escaping is shown.

Message Responses
Responses to messages are formatted as HTTP responses, with appropriate HTTP header fields. The
return type specified for each message in this document will, therefore, be the MIME type included
in the HTTP Content-Type header field (if a wrapper is applied to the content, the Content-Type
will correspond to the type of the wrapper). Likewise, any encoding applied to the content will be
included in the HTTP Content-Encoding header field.

MIME Types
Responses to OLP protocol requests vary among the following MIME types:

• text/plain is used for responses that contain unstructured information.

2 For a detailed description of the syntax, see http://www.ietf.org/rfc/rfc2396.txt

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 24

• text/xml	 is used for responses that contain structured information (such as the verb
requesting the internal structure of a digital object). This document lists the DTD
(Document Type Definition) for every verb that returns a text/xml response. All XML
responses to OLP protocol requests have the following uniform features.
The first tag output is an XML declaration where the version is always 1.0 and the encoding
is always UTF-8. The remaining content is enclosed in a root element that has the same
name as the verb of the respective request. The element has a single attribute named
version, which has a value that is the version of the verb of the respective request. For
example, a Disseminate verb with version 2.0 will produce text/xml content with a tag like
<Disseminate version="2.0">

• text/html	 is used in response to user interface service requests (that are intended for
rendering by a browser)

Content specific types such as application/postscript and image/gif are reserved for disseminations
from digital objects.
Status Codes
Status codes and error returns correspond to those defined for HTTP (see the following list). A
normal response from an OLP message in HTTP is signaled with the 200 reply code. Error returns
are signaled with the appropriate 4xx or 5xx code as specified in the HTTP protocol. The use of
HTTP error codes is as follows:
400 - if the OLP request is malformed; for example, illegal arguments or the values of arguments
are invalid.
401 - if the client is unauthorized to make the request.
404 - if a document specified in a OLP repository request is not in the repository.
415 - if the format, encoding, or binder requested for a document is not available or cannot be
generated.
501 - if the OLP service, verb, or version is not supported by this server.
503 - if the server is able to automatically generate a requested content type, but does not have a
copy on hand, and does not wish to keep the connection open while it is generated, it should return
the HTTP status code 503 (Service Unavailable), along with a suitable Retry-After header.
For each error return, the HTTP reason-phrase returned with the code should provide additional
useful information to a human reader.

7.2 DATES
All dates in the protocol requests and responses are encoded using the "Complete date" variant of
ISO8601. This format is CCYY-MM-DD where CC is the century, YY is the year, MM is the
month of the year between 01 (January) and 12 (December), and DD is the day of the month
between 01 and 31.

7.3 SERVICE INFORMATION VERBS
Each Scholnet service implements three verbs that provide information about the service to the rest
of the architectural components: Identify, ListVerbs and DescribeVerb. These are termed Service
Information verbs.
Identify returns the name of the service and other specific information about the service.
ListVerbs lists the name of the verbs defined by that service.
DescribeVerb takes as input a verb of the service and returns a description of it.
These verbs have been introduced in order to allow each service to “introduce itself” to other
services that may want to use it. They are intended as a way of supporting the openness of the
architecture and the reusability of the single architectural components.

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 25

8. REPOSITORY SERVICE

A Repository stores and makes available both metadata content and structural descriptions of
documents. It also maintains the content of textual documents. The content of multimedia
documents is stored separately by the Multimedia Storage service.

A repository is divided into sets. Each set stores documents, as defined by the DoMDL, and
provides verbs to deposit documents, discover their structure, and obtain their dissemination. A
number of dissemination variables affect the nature of a particular dissemination request.

8.1 STATE
This section describes the abstract data structures managed by the Repository Service.

Authority
A naming authority is an entity that is authorised to create new handles. Naming authorities are
hierarchically organised, with periods as separators. For example, CNR, CNR.IEI,
CNR.IEI.MultimediaDepartment.

Set
A set is an administrator-defined subset of the repository. Each set has one token name and a
(possibly) longer description. Depending on the policy of a repository an individual document may
exist in one or more sets (the determination of one or more sets in which a document is located is
made in the Submit request).
Note that there is, in general, no way to predict in which set a document appears from its handle.
A repository may have one or more set hierarchies. For example, an administrator may decide to
establish two hierarchies in a repository, one based on institutional affiliation and one based on
subjects as follows:
• Institutions

• CNR - Consiglio Nazionale delle Ricerche
• IEI - Istituto di Elaborazione della Informazione
• IAT - Istituto per le Applicazione Telematiche
• FhG – Fraunhofer GesellschaftIPSI - Integrated Publication and Information Systems Institute
• FIRST - Institute for Computer Architecture and Software Technology

• Subjects
• SE - Software Engineering
• ISP - Image and Signal Processing
• CSD - Computer System Design
• IE - Information Engineering

Note that each document belonging to the IE set also belongs to the Subjects set, i.e a child set in
the hierarchy contains a subset of the documents contained in the father set.

The set hierarchies in a repository are available via the ListSets request.

Set specifications:
Set specifications are expressed in the following grammar in which set name is the short single
token name for the set:

setspec := setlist
setlist := setname | setname;setlist
setname := [A-Za-z0-9-_]+

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 26

Example: Institutions;CNR;IEI

Where CNR is the short name for “Consiglio Nazionale delle Ricerche” and IEI is the short name
for “Istituto di Elaborazione della Informazione”.

Repository
A repository is a set of documents. These documents are virtually organised in:

• partitions, each of which contains the documents created by an authority;

• containers, each of which contains the documents virtually stored in a set.

Document
The Repository Service manages documents in accordance with the DoMDL document model. This
logical document model is instantiated in the protocol as reported below.
A document is named by a handle, which is a kind of URN. Unlike a URL, a handle is location
independent.
A handle has two parts, a naming authority and a string. It is written with these two parts separated
by a slash, for example CNR.IEI /doc1. The character set for handles used in OLP is restricted to
alphanumeric characters, underscore, period, and hyphen (except for the slash separator). Case is
not significant in handles.

Version
Each document may have multiple versions. Versions are linear and numbered. The first version is
version 1, subsequent versions are 2, 3, etc. A specific version of a document is called document
instance. OLP considers the most recent version as the default document version, used to return
information for a document when no version is specified.

View
Each element that belongs to the view entity is managed in the OLP protocol with a set of attributes
that have the following constraints:

Attribute Constraint Type Value Note
name Mandatory String Alphanumeric characters plus

underscore

type Mandatory String ‘Metadata’ Usable when the view belongs to
the range of the relation
“has_metadata”

String ‘Body’ Usable when the view belongs to
the domains of the relation
“has_part” or “has_manifestation”

String ‘Reference’ Usable when the view belongs to
the domain of the relation
“is_an_image_of”

String ‘Choice’ Usable when the view belongs to
the domain of the relation
“is_specialized_by”

String ‘Annotation’ Usable when the view belongs to
the range of the relation
“has_annotation”. This relation
indicatess that a document
instance, or a specific view, has
been annotated.

display Optional Phrase Usable only if the view type is
“body”, “metadata”, or “choice”.

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 27

Used to describe briefly the
content of the view.

min Optional Integer Usable only if the view type is
“body” or “choice”. Used to
specify the ordinal of the first
page.

max Optional Integer Usable only if the view type is
“body” or “choice”. Used to
specify the ordinal of the last
page.

ord Optional Integer Used to transform a set of parts
into a sequence of parts (for
example, if we specify the ‘Ord’
attribute we can transform a
sequence of chapters into a
book).

ref-handle Mandatory Handle Usable only if the view type is
“Reference”. Used to specify the
handle of the related document.

ref-version Mandatory Integer Usable only if the view type is
“Reference”. Used to specify the
version of the related document.

ref-view Mandatory String Usable only if the view type is
“Reference”. Used to specify the
view name of the related
document.

downloading Mandatory Binary Yes/No Used to specify if the
manifestations related to the
view can be downloaded by the
user.

transcoding Mandatory Binary Yes/No Used to specify if the Repository
can convert the manifestations
related to the view from the
original encoding scheme to a
different one.

delivering Mandatory Binary Yes/No Used to specify if the user can
distribuite the manifestation
related to the view.

Manifestation
In the OLP protocol, each element that belongs to the manifestation entity has a set of attributes
with the following constraints:

Attribute Constraint Type Note
name Mandatory String Alphanumeric characters plus underscore

content-
type

Mandatory Mime
type

Specifies the content-type of the manifestation
in accordance with the Mime type specification

display Optional String Usable only as brief human readable description
of the manifestation

uri Optional String Used to specify the name of the file associated
with the manifestation, or the ftp URL where
the file can be downloaded, or a specific URN
used by the system to identify a
video/composite manifestation.

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 28

type Optional String Used to specify the “inside” or “outside” place
where the document is stored. If the value is
“inside”, the physical file associated with the
manifestation is stored locally in the
Repository. Otherwise if the “outside” value is
specified, the physical file is not managed by
the Repository, which reports only the URI
needed to request it. Note that if the
“outside” value is specified, the URI attribute
cannot be empty.

min Optional Integer Used to specify the ordinal of the first file
in a multiple manifestation.

max Optional Integer Used to specify the ordinal of the last file in
a multiple manifestation.

multiple Optional Boolean This flag indicates that the manifestation is
available as a set of single files. Each file
may be submitted by the user or generated
automatically by the system. All the files are
in the same content-type and are ordered
numerically.

size Optional Integer Used to specify the size of the manifestation.

The information related to the views and manifestations of a document are reported in accordance
with the Structure Metadata Set (SMS). The format of this metadata is given in Appendix D by
means of a Data Type Definition (DTD), named SMS DTD.
Although each view may have multiple manifestations, two different views cannot have the same
content type attribute value. Therefore, a textual view of a document, for example, cannot have the
following two different manifestations: postscript in “A4 format” and postscript in “Letter format”.
The document model features are expressed in the protocol by means of:

• The ListVersions verb which displays the versions available for a document.
• The Structure verb which displays the logical structure (views and manifestations of a

version) of a document.
• The Manifestations verb, which displays the content-types that can be requested from a

document.
• The Disseminate verb which allows a client to request disseminations (manifestation of the

content in the requested digital object) by specifying a particular version, structural
component, and content-type.

The syntax used to request the structure of a document instance is given in the documentation for
the Structure verb and the syntax for requesting disseminations based on that structure is given in
the Disseminate verb.

8.2 REPOSITORY VERBS
This section presents the set of the repository verbs. This set is divided into three sub-sets: Service
Information Verb, Cognitive Verb, and Handle Specific Verb as reported in the following table:
Service Information Verb Cognitive Verb Handle Specific Verb
Identify ListAuthorities ListVersions
ListVerbs ListSets Terms
DescribeVerb ListBinders Structure
 ListEncodings Manifestations
 ListMetaFormats Disseminate

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 29

 ListSubmissionFormats Submit
 ListMDFTransformations NewVersion
 ListContents Withdraw
 UpdateRepository Annotate
 LoadHandlesDbs
 BuildMetadataFormats

Identify
Version: 1.0
Fixed args: none
Optional Args: none
Return MIME type: text/xml
Return Status Codes: 200, 400, 501

Returns a structured response containing the name and other information about the service.

Example Request:
/OLP/Repository/1.0/Identify

Example Response:
<?xml version="1.0" encoding="UTF-8"?>
<Identify version="1.0">
 <serviceName>Experimental OLP Repository Server</serviceName >
 <olp_base_url>http://labserv.iei.pi.cnr.it:8119</olp_base_url>
 <metaServiceURL>http://labserv.iei.pi.cnr.it:8221</metaServiceURL>
 <textualDescription></textualDescription>
 <protocolVersion>1.0</protocolVersion>
 <adminEmail>pagano@iei.pi.cnr.it</adminEmail>
 <verbsInfo>
 <verbsSupported>
 <description> </description>
 <olp_base_url>http://labserv.iei.pi.cnr.it:8119/OLP/Repository/1.0/ListVerbs</olp_base_url>
 </verbsSupported>
 <verbsDescription>
 <description> </description>
 <olp_base_url>http://…:8119/OLP/Repository/1.0/DescribeVerb/DescribeVerb</olp_base_url>
 </verbsDescription>
 </verbsInfo>
 <submissionProcedure>
 <description>Submissions accepted from Computer Science Department affiliated researchers
 </description>
 <olp_base_url>http://…:8119/OLP/LibMgt/1.0/UserSubmitForm</olp_base_url>
 </submissionProcedure>
 <harvestInformation>
 <description>

 Return a structured list of the bibliographic metadata for documents stored in this repository service
 </description>
 <olp_base_url>http://labserv.iei.pi.cnr.it:8119/OLP/Repository/1.0/ListContents</olp_base_url>
 </harvestInformation>
 <useRestrictions>Terms and conditions are provided with each document.</useRestrictions>
 <contentInfo>
 <contentDescription>
 a human readable description of the content stored in the repository
 </contentDescription>
 <authorities>
 <description>
 A naming authority is an entity that is authorised to create new handles. Naming authorities are

hierarchically organised, with periods used as the separator
 </description>
 <olp_base_url>http://labserv….:8119/OLP/Repository/1.0/ListAuthorities</olp_base_url>
 </authorities>

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 30

 <sets>
 <description>
 A set is an administrator-defined subset of the repository. Each set has one token name and a

(possibly) longer description. Depending on the policy of a repository, an individual document may
exist in one or more sets

 </description>
 <olp_base_url>http://labserv.iei.pi.cnr.it:8119/OLP/Repository/1.0/ListSets</olp_base_url>
 </sets>
 <metadataFormats>
 <description>
 A metadata description is associated with every document in accordance with the OpenDLib

Application Profile (OLAP)
 </description>
 <olp_base_url>http://labserv.iei.pi.cnr.it:8119/OLP/Repository/1.0/ListMetaFormats</olp_base_url>
 <olp_dtd_url>http://labserv.iei.pi.cnr.it:8119/OLP/htdocs/DTD/olap.dtd</olp_dtd_url>
 </metadataFormats>
 <documentStructure>
 <description>
 The Repository Service manages documents in accordance with the DoMDL document model.

This logical document model is instantiated in the protocol as reported in the sms dtd .
 </description>
 <olp_base_url>http://labserv.iei.pi.cnr.it:8119/OLP/htdocs/domdl.html</olp_base_url>
 <olp_dtd_url>http://labserv.iei.pi.cnr.it:8119/OLP/htdocs/DTD/sms.dtd</olp_dtd_url>
 </documentStructure>
 </contentInfo>
</Identify>

ListVerbs
Version: 1.0
Fixed args: none
Optional Args: none
Return MIME type: text/xml
Return Status Codes: 200, 400, 501

Returns a structured response containing the name of the verbs defined by this service.

Example Request:
/OLP/Repository/1.0/ListVerbs

Example Response:
<?xml version="1.0" encoding="UTF-8" ?>
<ListVerbs version="1.0">

 <verb>BuildFormats</verb>
 <verb>DescribeVerb</verb>
 <verb>Disseminate</verb>
 <verb>Identify</verb>
 <verb>List2Archive</verb>
 <verb>ListAuthorities</verb>
 <verb>ListBinders</verb>
 <verb>ListContents</verb>
 <verb>ListEncodings</verb>
 <verb>ListMDFTransformations</verb>
 <verb>ListMetaFormats</verb>
 <verb>ListSets</verb>
 <verb>ListSubmissionFormats</verb>
 <verb>ListVerbs</verb>
 <verb>ListVersions</verb>
 <verb>Manifestations</verb>
 <verb>NewVersion</verb>
 <verb>Structure</verb>
 <verb>Submit</verb>

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 31

 <verb>Terms</verb>
 <verb>UpdateRepository</verb>
 <verb>Withdraw</verb>

 </ListVerbs>

DescribeVerb
Version: 1.0
Fixed args: verb
Optional Args: version
Return MIME type: text/xml
Return Status Codes: 200, 400, 501

Returns a structured response that contains a list in which each element of the list provides
information on a version of the specified verb that is supported by this service. The following
information may be provided at the verb or version level:

description, description of the verb or a specific version
note, information pertaining to the verb or a specific version

Each element of the list contains the following information:
• version, number of the verb.
• arguments, a list of the names of the fixed and optional arguments, if any, accepted by the verb

in that version.
• example template of request to this repository, with fixed arguments indicated in brackets
• returns, optional, contains information about response format.
Note that a service may implement more than one version of a verb.

Example Request:
/OLP/Repository/1.0/DescribeVerb/Manifestations

Example Response:
<?xml version="1.0" encoding="UTF-8"?>
 <DescribeVerb version="1.0">
 <verb name="Manifestations">
 <description>
 Returns a structured response indicating the formats of disseminations available for this

document
 </description>
 <versions>
 <version id="1.0">

 <example>http://../OLP/Repository/1.0/Manifestations/<handle></example>
 <arguments>
 <fixed>
 <arg name="handle" />
 </fixed>
 <optional>
 <arg name="version" />
 <arg name="view" />
 </optional>
 </arguments>
 </version>
 <version id="2.0">
 <note>Deprecated</note>
 <example>http://../OLP/Repository/2.0/Manifestations/<handle></example>
 <arguments>
 <fixed>
 <arg name="handle" />
 </fixed>
 </arguments>
 </version>

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 32

 </versions>
 </verb>
 </DescribeVerb>

ListAuthorities
Version: 1.0
Fixed args: none
Optional Args: none
Return MIME type: text/xml
Return Status Codes: 200, 400, 501

Returns a structured list of the authorities stored in this repository. For each authority the list of sets
that can store its documents is indicated.

Example Request:
/OLP/Repository/1.0/ListAuthorities

Example Response:
<?xml version="1.0" encoding="UTF-8"?>
 <ListAuthorities version="1.0">
 <authority name=”scholnet.one” display=”Scholnet Project Repository”>
 <allowed-sets>
 <set name=”cs” />
 <set name=”cs;trs” />
 <set name=”test” />
 </allowed-sets>
 </authority>
 <authority name=”scholnet.two” display=”Scholnet Project Test Repository”>
 <allowed-sets>
 <set name=”test” />
 </allowed-sets>
 </authority>
 </ListAuthorities>

ListSets
Version: 1.0
Fixed args: none
Optional Args: none
Return MIME type: text/xml
Return Status Codes: 200, 400, 501

Returns a structured list of the administrator-determined sets for documents stored in this repository
service. The list contains the hierarchy of sets and sub-sets. For each set, both the short name and
long description is returned. For each set the list of authorities that are authorised to publish in it is
also indicated.

Example Request:
/OLP/Repository/2.0/ListSets

Example Response:
<?xml version="1.0" encoding="UTF-8"?>
 <ListSets version="1.0">
 <set name="cs" display=”Computer Science”>
 <allowed-authorities>
 <authority name=”scholnet.one” />
 </allowed-authorities>
 <set name="trs" display=”Technical Reports”>
 <allowed-authorities>
 <authority name=”scholnet.one” />

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 33

 </allowed-authorities>
 </set>
 </set>
 <set name="test" display=”Computer Science: Test area”>
 <allowed-authorities>
 <authority name=”scholnet.one” />
 <authority name=”scholnet.two” />
 </allowed-authorities>
 </set>
 </ListSets>

ListBinders
Version: 1.0
Fixed args: none
Optional Args: none
Return MIME type: text/xml
Return Status Codes: 200, 400, 501

Returns a structured list of the types of binders (e.g. tar) available in this repository.

Example Request:
/OLP/Repository/1.0/ListBinders

Example Response:
<?xml version="1.0" encoding="UTF-8"?>
 <ListBinders version="1.0">
 <binder>tar</binder>
 </ListBinders>

ListEncodings
Version: 1.0
Fixed args: none
Optional Args: none
Return MIME type: text/xml
Return Status Codes: 200, 400, 501

Returns a structured list of the types of encoding (e.g zip) available in this repository.

Example Request:
/OLP/Repository/1.0/ListEncodings

Example Response:
<?xml version="1.0" encoding="UTF-8"?>
 <ListEncodings version="1.0">
 <encoding>gzip</encoding>
 </ListEncodings>

ListMetaFormats

Version: 1.0
Fixed args: none
Optional Args: none
Return MIME type: text/xml
Return Status Codes: 200, 400, 501

Returns a structured response indicating the metadata formats that are supported by this repository
service. Note that the fact that a metadata format is supported does not mean that it is available for
all documents in that repository. For each metadata format, the following information is returned:
• the name, which is the identifier for the metadata format that can be used in other OLP protocol

requests;

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 34

• the namespace ID, which is a URL that refers to a document describing the metadata format.

Example Request:
/OLP/Repository/1.0/ListMetaFormats

Example Response:
<?xml version="1.0" encoding="UTF-8"?>
<ListMetaFormats version="1.0">
 <meta-format name="olms" dtd="http://labserv.iei.pi.cnr.it/OLP/htdocs/olms/Dtd/olap.dtd">
 <namespace name="dc" uri="http://purl.org/dc/elements/1.1/"/>
 <namespace name="olms" uri="http://labserv.iei.pi.cnr.it/OLP/htdocs/olms/NameSpace/"/>
 <namespace name="dcq" uri="http://dublincore.org/documents/2000/07/11/dcmes-qualifiers/"/>
 </meta-format>
 <meta-format name="bib">
 <namespace name="bibns" uri=" ftp://nic.merit.edu/document/rfc/rfc1807.txt"/>
 </meta-format>
 <meta-format name="rfc1807">
 <namespace name="rfc1807" uri="ftp://nic.merit.edu/document/rfc/rfc1807.txt"/>
 </meta-format>
</ListMetaFormats>

ListSubmissionFormats

Version: 1.0
Fixed args:
Optional Args: none
Return MIME type: text/xml
Return Status Codes: 200, 400, 501

Returns a structured list of the MIME types of content streams that are accepted by this server in the
Submit verb. For each manifestation format, the following information is returned:
• the name, which is the identifier for the manifestation format that has to be used in other OLP

protocol requests.
• the content-type identifier as specified in RFC 1521 (Mechanisms for Specifying and

Describing the Format of Internet Message Bodies) and 1522 (Message Header Extensions for
Non-ASCII Text)

Example Request:
/OLP/Repository/1.0/ListSubmissionFormats

Example Response:
<?xml version="1.0" encoding="UTF-8"?>
 <ListSubmissionFormats version="1.0">
 <manifestation name=”postscript” content-type=”application/postscript” />
 <manifestation name=”xml” content-type=” text/xml ” />
 <manifestation name=”html” content-type=” text/html ” />
 </ListSubmissionFormats>

ListMDFTransformations

Version: 1.0
Fixed args:
Optional Args: none
Return MIME type: text/xml
Return Status Codes: 200, 400, 501

Returns a structured response indicating the metadata formats that are acceptable in the submission
phase (source metadata format) and the available transformations to other formats (destination
metadata format) that are supported by this repository service instance. Note that the user, at
submission time, can refuse the transcoding of his/her bibliographic record into other formats. For

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 35

this reason the fact that a metadata format is supported does not mean that it is available for all
documents in that repository.
For each source metadata format, the list of available destination metadata formats is reported.

Example Request:
/OLP/Repository/1.0/ ListMDFTransformations

Example Response:
<?xml version="1.0" encoding="UTF-8"?>
<ListMDFTransformations version="1.0">
 <source value="bib">
 <destination value="rfc1807" />
 <destination value="olms" />
 <destination value="dc" />
 </source>
 <source value="olms">
 <destination value="dc" />
 <destination value="rfc1807" />
 </source>
</ListMDFTransformations>

ListContents

Version: 1.0
Fixed args: none
Optional Args: authorities, partitionspec, file-after, file-before, meta-
format
Return MIME type: text/xml
Return Status Codes: 200, 400, 501

Returns a structured list of the handles for documents stored in this repository service. Without any
arguments the list includes all stored documents.
The meaning of the Optional Arguments is as follows:
• authorities limits the returned handles to those specified in the authorities list. The authorities

available for a repository are returned from the ListAuthorities request.
• partitionspec limits the returned handles to those in the specified set specification. The sets

available for a repository are returned from the ListSets request.
• file-after limits the list to those handles for documents that were added or modified since time, a

universal time expressed in ISO 8601 format. If the server is not able to determine date of
modification to the resolution of a day, or if the server is not able to selectively extract records
on a time scale of a day, the server may return additional records, e.g. all those modified during
the week, month, or even century containing the date.

• file-before limits the list to those handles for documents that were added or modified prior to
time, a universal time expressed in ISO 8601 format. If the server is not able to determine date
of modification to the resolution of a day, or if the server is not able to selectively extract
records on a time scale of a day, the server may return additional records, e.g. all those modified
during the week, month, or even century containing the date.

• meta-format returns, in addition to the handle, metadata for each document in the specified
format. The metadata is empty for any document that does not have metadata in that format.
Legal values for this argument are one of the metadata formats (as returned from the
ListMetaFormats request).

Example Request: List the handles in the Technical Reports (trs) set within the Computer Science (cs) set.
/OLP/Repository/1.0/ListContents?partitionspec=cs;trs

Example Response:
<?xml version="1.0" encoding="UTF-8"?>
<ListContents count="8" version="1.0">

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 36

 <document handle="ncstrl.scholnet.one.trs.good/2001-TR-009" version=”1”/>
 <document handle="ncstrl.scholnet.one.trs/2001-TR-005" version=”1”/>
 <document handle="ncstrl.scholnet.one.trs/2001-TR-021" version=”1”/>
 <document handle="ncstrl.scholnet.one/2001-TR-002" version=”1”/>
 <document handle="ncstrl.scholnet.one/2001-TR-142" version=”1”/>
 <document handle="ncstrl.scholnet.one/2001-TR-144" version=”1”/>
 <document handle="ncstrl.scholnet.two.bad/2001-TR-001" version=”1”/>
 <document handle="ncstrl.scholnet.two/Test-001" version=”1”/>
</ListContents>

List the OLMS metadata along with the handles
Example Request:
/OLP/Repository/1.0/ListContents?partiotionspec=cs;trs&meta-format=olms

Example Response:
<?xml version="1.0" encoding="UTF-8"?>
<ListContents count="8" version="1.0">
 <document handle="ncstrl.scholnet.one.trs.good/2001-TR-009" version=”1”>
 <olms:ol xmlns:olms="http://labserv.iei.pi.cnr.it/OLP/htdocs/olms/NameSpace/"
 xmlns:dcq="http://dublincore.org/documents/2000/07/11/dcmes-qualifiers/"
 xmlns:dc="http://purl.org/dc/elements/1.1/">
 <dc:title>A document test</dc:title>
 <dc:creator>Pagano, Pasquale</dc:creator>
 <dcq:description.abstract>This document has been inserted to test the repository functionality
 </dcq:description.abstract>
 <dcq:date.available>February 12, 2001</dcq:date.available>
 <dcq:date.issued>February 12, 2001</dcq:date.issued>
 </olms:ol>
 </document>

……
</ListContents>

--

Version: 1.1
Fixed args: none
Optional Args: authorities, partitionspec, file-after, file-before, meta-
format, resumption-token
Return MIME type: text/xml
Return Status Codes: 200, 400, 501

Returns a structured list of the handles for documents stored in this repository service. Without any
arguments the list includes only N stored documents. This is because the lists may be very large and
it may be practical to partition them among a series of requests and responses as follows:
• A repository replies to a ListContents 1.1 request with a list and a resumption-token (means that
the list is incomplete), or with a list without resumption-token (means that no other informations
need to be added to the other results);
• In order to complete the response list, the client of the request will have to send one or more
requests with resumption-token as arguments. The complete list then consists of the concatenation
of the incomplete lists from the sequence of requests.

The meaning of the Optional Arguments is as follows:
• authorities limits the returned handles to those specified in the authorities list. The authorities

available for a repository are returned from the ListAuthorities request.
• partitionspec limits the returned handles to those in the specified set specification. The sets

available for a repository are returned from the ListSets request.
• file-after limits the list to those handles for documents that were added or modified since time, a

universal time expressed in ISO 8601 format. If the server is not able to determine date of

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 37

modification to the resolution of a day, or if the server is not able to selectively extract records
on a time scale of a day, the server may return additional records, e.g. all those modified during
the week, month, or even century containing the date.

• file-before limits the list to those handles for documents that were added or modified prior to
time, a universal time expressed in ISO 8601 format. If the server is not able to determine date
of modification to the resolution of a day, or if the server is not able to selectively extract
records on a time scale of a day, the server may return additional records, e.g. all those modified
during the week, month, or even century containing the date.

• meta-format returns, in addition to the handle, metadata for each document in the specified
format. The metadata is empty for any document that does not have metadata in that format.
Legal values for this argument are one of the metadata formats (as returned from the
ListMetaFormats request).

• resumption-token is used to partition the results. Note that when a resumption-token is specified
all other parameters will be ignored.

ListVersions

Version: 1.0
Fixed args: handle
Optional Args: none
Return MIME type: text/xml
Return Status Codes: 200, 400, 404, 501

Returns a structured response describing the current versions (document instances) available for the
requested handle. The information returned consists of:

• id: the version number, a positive integer
• date: the submission date, expressed as in ISO 8601, or * if this cannot be determined
• comment: a comment or description. A single line of text only.

Example Request:
/OLP/Repository/1.0/ListVersions/handlecorp%2fTR010101

Example Response:
<?xml version="1.0" encoding="UTF-8"?>
 <ListVersions version="1.0">
 <version id="2">
 <date>1999-02-01</date>
 <comment>this version</comment>
 </version>
 <version id="1">
 <date>1998-02-01</date>
 <comment>that version</comment>
 </version>
 </ListVersions>

Terms
Version: 4.0
Fixed args: handle
Optional Args: none
Return MIME type: text/xml
Return Status Codes: 200, 400, 404, 501

Returns a natural language statement of the terms and conditions for use of the object. The intention
is not to create a contract, but only to advise a human of the reasonable expectations of the server or
author.

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 38

Example Request:
/OLP/Repository/4.0/Terms/CNR.IEI/970101

Example Response:
<Terms version="4.0">
 <text>Copyright 1999 by the CNR-IEI, Pisa Italy
 </text>
</Terms>

Structure
Version: 1.0
Fixed args: handle
Optional Args: version, view
Return MIME type: text/xml
Return Status Codes: 200, 400, 404, , 501, 503

This verb returns a structured response that describes the decompositions available for a document
instance. A client may use the decomposition information as the basis for document requests using
the Disseminate verb.
The meaning of the Optional Arguments is as follows:

• version specifies the document instance for which the structural information is requested. If
omitted, it provides information about the latest document instance.

• view specifies the view of the document instance for which structural information is
requested. If omitted, it provides information about the entire document instance.

The response lists the views, and manifestations available for a document instance.

Example Request:
/OLP/Repository/1.0/Structure/scholnet.test/2002-test-003?version=1.0

Example Response:
<?xml version="1.0" encoding="UTF-8"?>
<document handle="scholnet.test/2002-test-003" version="1">
 <view name="Annotation" type="annotation" display="Annotation posted to the document">
 <manifestation content-type="text/xml" name="ref_annotation" type="outside" uri="Annotation_0006" />
 <view name="Ann_2002-test-003-6433214" type="annotation" display="Annotation">
 <manifestation content-type="text/xml" name="ref_annotation" type="outside" uri="003-6433214" />
 </view>
 <view name="Ann_2002-test-003-5646225" type="annotation" display="Annotation">
 <manifestation content-type="text/xml" name="ref_annotation" type="outside" uri="003-5646225" />
 </view>
 </view>
 <view name="bibdata" type="metadata" display="Bibliographic record">
 <manifestation content-type="text/xml" name="olms" />
 <manifestation content-type="text/xml" name="dc" />
 </view>
 <view min="1" max="5" name="Part_1" type="body" delivering="yes" downloading="yes" transcoding="yes"
display="The Scholnet architecture">
 <manifestation content-type="application/postscript" name="postscript" />
 <manifestation content-type="application/pdf" name="pdf" />
 <view name="Annotation" type="annotation" display="Annotation posted to a view of the document">
 <manifestation content-type="text/xml" name="ref_annotation" type="outside" uri="Annotation_06" />
 </view>
 </view>
</document>
</Structure>

This response says that the document instance can disseminate two metadata formats at the top
level, DC and OLMS. The document instance also has one body view called “Part_1”. This view
has two manifestations (postscript and pdf).

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 39

Example Request:
/OLP/Repository/1.0/Structure/handlecorp/TR010101

Example Response:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE structure SYSTEM "http://labserv.iei.pi.cnr.it/OLP/htdocs/olms/Dtd/olap.dtd">
<Structure version="1.0">
 <document handle=" handlecorp/TR010101" version="1.0">
 <view name="bibdata" type="metadata" downloading=”yes” transcoding=”yes” delivering=”yes”>
 <manifestation name="olms" content-type="text/xml"/>
 <manifestation name="dc" content-type="text/xml"/>
 </view>
 <view name="book" type="body" downloading=”yes” transcoding=”yes” delivering=”yes”>
 <manifestation name="gif" min="1" max="150" multiple=”true” content-type="image/gif"/>
 <manifestation name="postscript-pageimage" min="1" max="150" multiple=”true” content-
type="application/postscript"/>
 <manifestation name="postscript" content-type="application/postscript"/>
 </view>
 </document>
</Structure>

This is the "shorthand" response for documents with simple structure. The response indicates one
two metadata types for the document instance, DC and OLMS, and a single body view, book, with a
set of sequential pages numbered from 1 to 150 inclusive, available in gif and postscript formats.
The body view is also available in postscript format.

Example Request:
/OLP/Repository/1.0/Structure/handlecorp/TR010101?view=book

Example Response:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE structure SYSTEM "http://labserv.iei.pi.cnr.it/OLP/htdocs/olms/Dtd/olap.dtd">
<Structure version="1.0">
 <document handle=" handlecorp/TR010101" version="1.0">
 <view name="book" type="body" downloading=”yes” transcoding=”yes” delivering=”yes”>
 <manifestation name="gif" min="1" max="150" multiple=”true” content-type="image/gif"/>
 <manifestation name="postscript-pageimage" min="1" max="150" multiple=”true” content-
type="application/postscript"/>
 <manifestation name="postscript" content-type="application/postscript"/>
 </view>
 </document>
</Structure>

This request, and the associated response, demonstrate the use of the view argument in the request,
which specifies that only structure information for the specified view should be returned.
Example Request:
/OLP/Repository/1.0/Structure/handlecorp/TR010101?view=DC
This request specifies that only the metadata formats for the document should be returned.

Example Response:
<?xml version="1.0" encoding="UTF-8"?
<!DOCTYPE structure SYSTEM "http://labserv.iei.pi.cnr.it/OLP/htdocs/olms/Dtd/olap.dtd">
<Structure version="1.0">
 <document handle=" handlecorp/TR010101" version="1.0">
 <view name="DC" type="metadata" downloading=”yes” transcoding=”yes” delivering=”yes”>
 <manifestation name="dc" content-type="text/xml"/>
 <manifestation name="dc_html" content-type="text/html"/>
 </view>
 </document>

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 40

</Structure>
This response says that the DC metadata can be disseminated in html or in xml format.

Example Request:
/OLP/Repository/1.0/Structure/handlecorp/2001-TR-125?version=1

Example Response:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE structure SYSTEM "http://labserv.iei.pi.cnr.it/OLP/htdocs/olms/Dtd/olap.dtd">
 <Structure version="1.0">
 <document handle=” handlecorp/2001-TR-125” version=”1.0”>
 <view name=”bibdata” type=”metadata” downloading=”yes” transcoding=”no” delivering=”yes”>
 <manifestation name=” rfc1807” content-type=”text/xml” />
 <manifestation name=” dc” content-type=”text/xml” />
 </view>
 <view name="journal" type=”body” downloading=”yes” transcoding=”yes” delivering=”yes”>
 <view name="part-1" type=”body” ord=”1” downloading=”yes” transcoding=”no” delivering=”no”>
 <view name=”art-1” type=”reference”
 ref-handle=”handlecorp/doc_id”
 ref-version=”version_number”
 ref-view=”name_of_view”
 </view>
 <view name=”art-2” type=”reference”
 ref-handle=”handlecorp/doc_id”
 ref-version=”version_number”
 ref-view=”name_of_view”
 </view>
 …………………
 </view>
 <view name="part-2" type=”body” ord=”2” downloading=”yes” transcoding=”no” delivering=”no”>
 <view name=”art-1” type=”reference”
 ref-handle=”handlecorp/doc_id”
 ref-version=”version_number”
 ref-view=”name_of_view”
 </view>
 …………………
 </view>
 </view>
 </document>
 </Structure>

This response says that the document instance can disseminate two metadata formats at the top
level, RFC1807 and DC. The document instance also has one body view called journal. This view
is structured into body views named part-xx. Each part contains different reference views: each is a
link to a specific view of a document instance of an article.

Example Request:
/OLP/Repository/1.0/Structure/handlecorp/2001-TR-125?version=1

Example Response:
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE structure SYSTEM "http://labserv.iei.pi.cnr.it/olp/htdocs/olms/dtd/olap.dtd">
<Structure version="1.0">
 <document handle=” handlecorp/2001-TR-125” version=”1.0”>
 <view name="bibrecord" type="metadata" display="bib rfc1807 textual record" downloading=”yes”
transcoding=”no” delivering=”yes”>
 <manifestation name="bib" content-type="text/x-rfc1807" />
 </view>
 <view name="body" type="choice" display="the document itself" min="1" max="150" downloading=”yes”
transcoding=”yes” delivering=”yes”>

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 41

 <view name="body-english" type="body" display=”the english version” downloading=”yes”
transcoding=”yes” delivering=”yes”>
 <manifestation name="postscript" content-type="application/postscript" />
 <manifestation name="pdf" content-type="application/pdf" />
 <manifestation name="postscript-pageimage" content-type="application/postscript" multiple=”true”
 min="1" max="150" />
 <manifestation name="inline" content-type="image/gif" min="1" max="150" multiple=”true”/>
 </view>
 <view name="body-italian" type="body" display=”the italian version” downloading=”yes”
transcoding=”yes” delivering=”yes”>
 <view name="part1" display="..." type="body" min="1" max="50" ord=”1” downloading=”yes”
transcoding=”yes” delivering=”yes”>
 <manifestation name="postscript" content-type="application/postscript"/>
 <manifestation name="postscript-pageimage" content-type="application/postscript"
 multiple=”true” min="1" max="50"/>
 <manifestation name="inline" content-type="image/gif" multiple=”true” min="1" max="50"/>
 <view name="chapter1" type="body" min="1" max="14" paged=”true” ord=”1”
downloading=”yes” transcoding=”yes” delivering=”yes”>
 <manifestation name="postscript" content-type="application/postscript" />
 <manifestation name="postscript-pageimage" content-type="application/postscript"
 multiple=”true” min="1" max="14"/>
 <manifestation name="inline" content-type="image/gif" multiple=”true” min="1" max="14"/>
 </view>
 <view name="chapter2" type="body" min="15" max="50" ord=”2” downloading=”yes”
transcoding=”yes” delivering=”yes”>
 <manifestation name="postscript" content-type="application/postscript" />
 <manifestation name="postscript-pageimage" content-type="application/postscript"
 multiple=”true” min="15" max="50"/>
 <manifestation name="inline" content-type="image/gif" multiple=”true” min="15" max="50"/>
 </view>
 </view>
 <view name="part2" display="..." type="body" min="51" max="150" ord=”2” downloading=”yes”
transcoding=”yes” delivering=”yes”>
 ……………………..
 </view>
 </view>
 </view>
 </document>
</Structure>

This response says that the user may view the document instance through the metadata, or through
two different structured versions. The first one in English through the “postscript”/“pdf”
manifestations, or as sets of pages. The second one allows the document to be perceived as two
structured parts, each of which has multiple chapters (available in postscript format or as a set of
pages).

Manifestations
Version: 4.0
Fixed args: handle
Optional Args: version, view
Return MIME type: text/xml
Return Status Codes: 200, 400, 404, 501, 503

Returns a structured response indicating the dissemination formats available for this document
instance.
The available arguments are:

• version specifies the document instance for which the format information is requested. If
omitted, it provides information about the latest document instance.

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 42

• view specifies the view of the document instance for which format information is requested.
If omitted, it provides information about the entire document instance.

The response includes a list of manifestations with the following information for each one:
• name, is the string that can be used in a Disseminate request.
• content-type, is the corresponding MIME type of this manifestation.
• size, is an estimate of the number of bytes of the dissemination, expressed in that content-

type. This is returned only if the size can be determined.
• multiple, identifies manifestations available as a set of single numbered files.
• min, identifies the ordinal of the first file
• max, identifies the ordinal of the last file

Example Request:
/OLP/Repository/1.0/Manifestations/CNR.IEI/970101?version=1&view=chapt1

Example Response:
<?xml version="1.0" encoding="UTF-8"?>
 <Manifestations version="1.0">
 <document handle=”CNR.IEI/970101” version=”1.0”>
 <manifestation name=”postscript” content-type=”application/postscript” size="25555" />
 <manifestation name=”xml” content-type=”text/xml” size="3258" />
 </document>
 </Manifestations>

Disseminate
Version: 1.0
Fixed args: handle, view, manifestation
Optional Args: version, binder, encoding, items
Return MIME type: dependent on dissemination requested.
Return Status Codes: 200, 400, 404, 415, 501, 503

Requests a dissemination of a digital object. The characteristics of the dissemination that can be
requested (the arguments of the Disseminate verb), are determined by the responses to the
ListVersions and Structure verbs (or from the Formats verb) for the specific digital object. The
response is a MIME-typed byte stream. The MIME type of the byte stream is either the MIME type
of the specified content-type or, if a binder is specified, the MIME type of that binder. Refer to the
examples below for more information on the stream that is returned.
In addition to the handle, the required fixed arguments are:
• view specifies the view of the document instance from which a dissemination is requested. This

argument is one of the available body or metadata views for the document instance. For
example: book;chapter-1 specifies the chapter1 part of the book view.

• manifestation is a required argument that specifies the MIME-type tag of the content in the
dissemination. The list of available content-types for a document instance is indicated by the
response to the Manifestations or Structure request. Note that the value supplied for the
argument is not the actual MIME-type, but the manifestation name as indicated in the response
to the Structure request or the tag name as indicated in the response to the Manifestations
request (because of the complications with the "/" character in HTTP requests). If there is no
binder argument, then the manifestation is the MIME-type of the stream disseminated to the
client.

The Optional Arguments are:
• version specifies the document instance from which a dissemination is requested. If

omitted, the latest document instance is used by default.
• binder specifies the encapsulating binder for the dissemination. The MIME type of the

stream disseminated to the requesting client is then the output of the binder application. A

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 43

binder argument is required if the dissemination contains multiple logical objects (e.g.,
multiple images in image/tiff). The list of Binders supported by a repository is available
through the ListBinders protocol request.

• encoding specifies the compression encoding scheme that should be applied to the
dissemination. The encoding applied is reflected in the HTTP Content-encoding header
returned from the Disseminate request. The list of encodings supported by a repository is
available through the ListEncodings protocol request.

• items specifies the ordinal, or the interval, of the requested file, files, in accordance with the
following syntax:
items=xx[-yy] where xx and yy are the numbers identifying an item.
If the items argument for a multiple manifestation is not specified, the binder argument
become mandatory.
If the items argument for a non-multiple manifestation is specified, the argument is ignored.

Note that if a Disseminate request specifies an outside manifestation (a manifestation that has set
the type attribute to the outside value) the 404 error is generated. The Repository only manages
manifestations that are stored locally (inside manifestations). Other services can access the outside
manifestations directly through the address specified by the attribute (if it is a URL) or through the
Multimedia Storage Service (if the value is a URN).
Note also that the Repository disseminates only views, through their manifestations, that have set
the attribute “downloading” to “yes”. If the value for this attribute is set to “no” the 401 error code
is generated.

Example Request:
OLP/Repository/1.0/Disseminate/handlecorp/TR010101/book/postscript

Example Response:
The PostScript rendition (MIME-type postscript) of the "book" view of the document.

Example Request:
OLP/Repository/1.0/Disseminate/handlecorp/TR010101/book;gif/gif(3)

Example Response:
Page 3 of the book view of the document instance as a GIF file (MIME type image/gif).

Example Request:
OLP/Repository/1.0/Disseminate/handlecorp/TR010101/book;chapter3/gif
 ?binder=tar&encoding=gzip

Example Response:
Chapter3 of the book view of the document instance as a series of GIF files, bound together using tar, and
then compressed using gzip. The MIME type of the disseminated byte stream is than compressed/gzip.

Submit
Version: 1.0
Fixed args: none
Fixed_post args: file
Optional Args: id, partitionspec, authority
Return MIME type: text/xml
Return Status Codes: 200, 400, 401, 501
Note: authorized client only

Submit a new document to be stored in the repository. This is transmitted as an HTTP POST
request where the input stream is a MIME type multipart/mixed. This input stream has multiple
parts ordered as follows:

• a structure file with MIME type text/xml;

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 44

• a metadata file with MIME type text/xml;
• one or more files with the appropriate MIME types each of which is a manifestation in a

format that this repository can accept as an input format. Refer to the Submit-Formats verb
for how to retrieve the input formats acceptable to a repository.

The meaning of the arguments is as follows:
• id	 is a suggested doc_id for this document. The repository may reject the submission

because the handle is not unique, or does not conform to the naming conventions for the
repository, or if the repository service does not allow client-specified names. If the id
argument is omitted then the name of the repository service will be assigned, if allowed.

• partitionspec is a list of sets identifying the sets in the repository in which the document
should be deposited. The ListSets verb provides information on the available sets in the
repository. This argument is required if the repository has multiple sets.

• authority is a required argument if the Repository manages multiple authorities. It indicates
the naming authority to be associated with the document. The repository must be configured
to support the authority specified for this document.

Example of the structure file passed to the Repository:
<?xml version="1.0" encoding="UTF-8"?>
<Structure version="1.0">
<view name="bibrecord" type="metadata" display="OpenDLib Metadata Record" downloading=”yes”
transcoding=”yes” delivering=”yes”>
 <manifestation name="dc" content-type="text/xml" filename="metadata.xml" />
 </view>
 <view name="body" type="body" display="The document itself" min="1" max="150" downloading=”yes”
transcoding=”yes” delivering=”yes”>
 <manifestation name="postscript" content-type="application/postscript" filename="body.ps" />
 <view name="part1" display="Part I: Engineering of the OLP protocol" type="body" min="1" max="50"
downloading=”yes” transcoding=”yes” delivering=”yes”>
 <view name="chapter1" type="body" min="1" max="14" downloading=”yes” transcoding=”yes”
delivering=”yes”/>
 <view name="chapter2" type="body" min="15" max="50" downloading=”yes” transcoding=”yes”
delivering=”yes”/>
 </view>
 <view name="part2" type="body" display="Part II: Implementing the Engineered protocol" min="50"
max="150" downloading=”yes” transcoding=”yes” delivering=”yes”/>
 <view name="chapter1" type="body" min="51" max="64" downloading=”yes” transcoding=”yes”
delivering=”yes”/>
 <view name="chapter2" type="body" min="64" max="75" downloading=”yes” transcoding=”yes”
delivering=”yes”/>
 <view name="chapter3" type="body" min="76" max="97" downloading=”yes” transcoding=”yes”
delivering=”yes”/>
 <view name="chapter4" type="body" min="97" max="150" downloading=”yes” transcoding=”yes”
delivering=”yes”/>
 </view>
</Structure>

The above structure file indicates to the Repository Service how to use the MIME multi-part file
and how to generate the parts of the documents. The user submits a single postscript file and
provides some information on the structure of the document. The repository automatically generates
all other manifestations according to the information given.
If the submit request is successful the structured return contains:

• handle of the submitted document.
• partiotionspec indicating the set specification for each of the sets to which the document was

submitted.

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 45

Note on Access Control: the repository service accepts Submit requests only from recognized
LibMgt Service authorized to handle the specified authority.

Example Request:
/OLP/Repository/1.0/Submit?authority=CNR.IEI&id=TR010101&partitionspec=compsci;ai,eng
	
In addition an input stream should be supplied with the POST that includes this request.

Example Response:
<?xml version="1.0" encoding="UTF-8"?>
 <Submit version="1.0">
 <handle>CNR.IEI/TR010101</handle>
 <set name="compsci">
 <display> Computer Science </display>
 <set name="ai">
 <display> Artificial Intelligence </display>
 </set>
 </set>
 <set name="eng">
 <display> Engineering Department </display>
 </set>
 </Submit>

NewVersion
Version: 1.0
Fixed args: handle
Fixed_post args: file
Optional Args: comment
Return MIME type: text/xml
Return Status Codes: 200, 400, 401, 404, 501
Note: authorized client only

Submit a new version of a document with an identifier handle currently stored in the repository.
The version number of the new version is one greater than the previous most current version (and
becomes the default version for Disseminate and Structure requests made without version
arguments).

Note on Access Control: the repository service accepts Submit requests only from recognized
LibMgt Service authorized to handle the specified authority. In this case, it is the client’s
responsibility to verify that the party requesting a new version is authorised to do so.

This is transmitted as an HTTP POST request where the input stream is a MIME type
multipart/mixed. This input stream has two parts ordered as follows:

• a metadata file with MIME type text/xml;
• a structure file with MIME type text/xml;
• one or more files with the appropriate MIME types, each of which is a manifestation in a

format that this repository is able to accept as an input format. Refer to the Submit-Formats
verb for how to retrieve the input formats acceptable to a repository.

The meaning of the arguments is as follows:
• comment - a free text description of the new version.

If the new version request is successful the structured response contains:
• version number of the latest version;
• date of the submitted version;
• comment for this version.

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 46

Example Request:
/OLP/Repository/1.0/NewVersion?description=fixed+wrong+algorithm
In addition an input stream should be supplied with the POST that includes this request.

Example Response:
<?xml version="1.0" encoding="UTF-8"?>
 <NewVersion version="1.0">
 <version id="2">
 <date>1999-02-01></date>
 <comment>fixed wrong algorithm</comment>
 </version>
 </NewVersion>

Withdraw
Version: 1.0
Fixed args: handle
Optional Args: version, reason, nosave, delete
Return MIME type: text/xml
Return Status Codes: 200, 400, 401, 404, 501
Note: authorized client only

Removes a document from a repository. The following arguments are available:
• version allows to specify which version are to be withdrawed. If no version is psecified, the

latest one is assumed.
• reason is a text string specifying the reason for withdrawal. A common use of this string is

to state a new access point for the document.
• nosave is a suggestion to the repository that the deleted content should not be archived (e.g.,

maintained by the repository but not accessible through protocol).
• delete specifies that the information in the bibliographic record (metadata) for the document

should be deleted. If not specified, then the metadata will remain but the content will be
deleted.

Note that if a delete option is not specified, a withdraw request does not remove the document but
only manifestations of the document. All information reported in the metadata and structured files is
kept in the repository.
If the withdraw request is successful the structured response contains: handle of the withdrawn
document.
Note on Access Control: the repository service accepts Submit requests only from recognized
LibMgt Service authorized to handle the specified authority. In this case, it is the client’s
responsibility to verify that the party requesting a withdrawal is authorised to do so.

Example Request:
/OLP/Repository/1.0/Withdraw/handlecorp/TR010101?reason=I+was+wrong.+The+world+is+not+flat

Example Response:
<?xml version="1.0" encoding="UTF-8"?>
 <Withdraw version="1.0">
 <handle>handlecorp/TR010101</handle>
 </Withdraw>

Annotate
Version: 4.0
Fixed args: handle, op, ann_handle
Optional Args: version, view
Return MIME type: text/xml
Return Status Codes: 200, 400, 404, 501

Pasquale Pagano� 6/21/0221 19:47
Deleted: text/plain

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 47

Allows an annotation flag to be set to/removed from to a specific document version or its view.
The meaning of the arguments is as follows:

• handle identifies the document;
• ann_handle allows to identify the annotation stored outside the Repository service;
• version specifies the document instance. If omitted, the Repository service assumes the

latest document instance;
• view specifies the view of the document instance to which to link the annotation view. If

omitted, the annotation is linked to the document instance;
• op assumes one of the two following values: ‘set’ or ‘remove’. Specifying ’set’, an

annotation view is linked to the document instance (or its view) if it is not yet in the
document structure information. Specifying ‘remove’, the annotation view is removed from
the document instance.

Returns 200 if the operation concludes successfully, the appropriate error code otherwise.

Example Request:
/OLP/Repository/1.0/Annotate/handlecorp/TR010101/set/ann_001

Example Response:
 <?xml version="1.0" encoding="UTF-8" ?>
 <Annotate version="1.0">
 <document handle="scholnet.test/2002-test-002" version="1">
 <annotation_set>
 <annotation handle=" ann_001" />
 </annotation_set>
 </document>
 </Annotate>

Example Request:
/OLP/Repository/1.0/Annotate/handlecorp/TR010101/remove/ann_001

Example Response:
 <?xml version="1.0" encoding="UTF-8" ?>
 <Annotate version="1.0">
 <document handle="scholnet.test/2002-test-002" version="1">
 <annotation_remove>
 <annotation handle=" ann_001" />
 </annotation_remove>
 </document>
 </Annotate>

BuildMetadataFormats
Version: 1.0
Fixed args: none
Optional Args: handle, version, authorities
Return MIME type: none
Return Status Codes: 200, 400, 501
Note: authorized client only

This verb updates the repository adding any missing manifestations of a metadata view. A specif
handle, with its version, or a generic list of authorities could be specified.
This verb has to be used when a set of documents are imported or when some data are corrupted or
need to be upgraded.
Note that when an handle is specified the authorities list will be ignored. Note also that if a version
is not specified, the latest one is assumed.

Example Request:

Pasquale Pagano� 6/21/0221 19:49
Formatted: Bullets and Numbering

Pasquale Pagano� 6/21/0221 19:47
Deleted: /OLP/Repository/1.0/Annotate/h
andlecorp/TR010101/remove

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 48

/OLP/Repository/1.0/BuildMetadataFormats?authorities=test test1 test2

LoadHandlesDbs

Version: 1.0
Fixed args: none
Optional Args: authorities, rebuild, nosave
Return MIME type: none
Return Status Codes: 200, 400, 501
Note: authorized client only

This verb updates the databases used to store information about documents. It can be used
specifying a list of authorites.
This verb has to be used when a set of documents are imported or when some data are corrupted or
need to be upgraded.
Note that if rebuild is not specified, the Repository service only checks and updates the databases. If
the rebuild options is setted, then databases will be copied in a backup directory and new instances
of the databases will be created. Specifying the option nosave, the backup copy will be omitted.

Example Request:
/OLP/Repository/1.0/ LoadHandlesDbs?authorities=test test1 test2

UpdateRepository
Version: 1.0
Fixed args: none
Optional Args: none
Return MIME type: none
Return Status Codes: 200, 400, 501
Note: authorized client only

This verb updates the repository built with a generic version of Dienst in order to re-use it with the
more sophisticated OpenDLib Repository.
In particular it:
• scans any old style authority based directories and sets handle_mapping_db (handle_partition

and partition_handle mappings) according to virtual partitions

• can traverse partition sub-directories and set handle_mapping_db and reverse mapping
accordingly

• adapts the old file-system structure to support more than 32767 documents per authority. The
new limit offor publications is now associated with the document identifier sub-parts. For
example, let us suppose that an authority has configured the Repository Service in order to
support a document identifier composed of three parts: the year, the type of document (TR,
technical report; TH, thesis; etc), and a progressive ordinal. Examples are 2000-TR-009, 2001-
TH-1234, etc. The limit of publications for this authority is now 32767 raised to third (???)
(more than 35000 * 109 documents).

The handle_mapping_db (which also manages handle_partition, partition_handle tables) stores
relations between documents and sets. These relations are maintained in a database so that the
Repository Service can support in an efficient way any service requests that include the set
specifications.

Example Request:
/OLP/Repository/1.0/UpdateRepository

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 49

9. MULTIMEDIA DOCUMENT STORAGE AND DELIVERY SERVICE

The Multimedia Document Storage and Delivery Service (MDS) supports the storage and both the
streaming (real-time) and the download delivery of the stored multimedia documents.

9.1 STATE

In this section we describe the data structure, its abstract data type, and a brief textual description
for each object managed by the Multimedia Storage Service. Also, whenever necessary, a short
explanation of the main ideas behind certain functions is given for the interested reader.

9.2 DEFINITIONS

Composite Documents
Definition: A composite document is a document that consists of several files whereby one of these
files is the “header file” that contains references to the other files.

Non Composite Documents
Definition: A non composite document is a document with a single file representation.

Example 1: A web page which contains two pictures and some html is a composite document made
of three files (two files with pictures and one html file, the html file is the “header file”).
Example 2: A web page which contains only embedded information without any references to other
files is a non composite document.

Multimedia Documents
The main structures the MDS deals with are:

1. Non composite documents represented as continuous files that can be downloaded and
stored on a local file system or transmitted in real-time as a stream and that can be played
with suitable player applications (e.g. MPEG-1, QuickTime, Real video)

2. Composite documents in SMIL format
3. Non composite documents that can be downloaded and stored on a local file system but

can’t be streamed (e.g. bitmaps in .bmp Format)

Note: Although the MDS’ internal architecture is optimised for the handling of multimedia
documents like audio and video streams in certain well known standards it is also possible to store
any other kinds of documents with single file representations in the MDS’ data vaults. The MDS
provides only an ftp based download facility for these documents as long as none of the MDS
streaming servers is able to stream them. Usage of the MDS for non multimedia files is not
recommended.

Note: Any document’s original version will always be available for downloading. It will also be
available for streaming, if it is in a stream able format and the format is understood and can be
streamed by one of the MDS streaming servers.

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 50

Uploading of documents
The remote user of this service must use the file transfer protocol (ftp) for uploading files to the
vaults of the MDS.

9.3 MULTIMEDIA STORAGE VERBS
In this section, we present the set of the MDS verbs. This set is divided into four sub-sets: Service
Information Verb, Service Specific Verb, Service Specific Verb (restricted) and Service Specific
Verb (administrative) as reported in the following table:

Service
Information

Verb

Service Specific
Verb

Service Specific
Verb

(restricted)

Service Specific
Verb

(administrative)
Identify GetListOfDocuments ApproveDocument
ListVerbs EndSession WithdrawDocument
DescribeVerb RequestUpload
 DiscardUpload
 ProcessUpload
 GetDocumentInfo
 GetUserRole
 UserLoginForm
 ApproverLoginForm
 AdminLoginForm

Identify
Version: 1.0
Fixed args: none
Keyword Args: none
Return MIME type: text/xml
Return Status Codes: 200, 400, 501

Returns a structured response containing the name and other information about the service.

Example Request:
/OLP/MDS/1.0/Identify

Example Response:
<?xml version="1.0" encoding="UTF-8"?>
<Identify version="1.0">
<serviceName>Multimedia Document Storage and Delivery Service</serviceName>
<baseURL>http://pc-snaredrum.ipsi.fhg.de:8283</baseURL>
<protocolVersion>1.0</protocolVersion>
<adminEmail>jlang@ipsi.fhg.de</adminEmail>
<descriptions />
</Identify>

ListVerbs
Version: 1.0
Fixed args: none
Keyword Args: none
Return MIME type: text/xml
Return Status Codes: 200, 400

Returns a structured response containing the name of the verbs defined by this service.

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 51

Example Request:
/OLP/MMS/1.0/ListVerbs

Example Response:
<?xml version="1.0" encoding="UTF-8"?>
<ListVerbs version="1.0">
<verb>AdminLoginForm</verb>
<verb>ApproverLoginForm</verb>
<verb>ApproveDocument</verb>
<verb>DescribeVerb</verb>
<verb>DiscardUpload</verb>
<verb>EndSession</verb>
<verb>GetDocumentInfo</verb>
<verb>GetListOfDocuments</verb>
<verb>Identify</verb>
<verb>ListVerbs</verb>
<verb>ProcessUpload</verb>
<verb>RequestUpload</verb>
<verb>UserLoginForm</verb>
<verb>WithdrawDocument</verb>
</ListVerbs>

DescribeVerb
Version: 1.0
Fixed args: verb
Keyword Args: version
Return MIME type: text/xml
Return Status Codes: 200, 400

Returns a structured response that contains a list, where each element of the list provides
information of a version of the specified verb that is supported by this service. The following
information may be provided at the verb or version level:

• description, description of the verb or a specific version
• note, information pertaining to the verb or a specific version

Each element of the list contains the following information:
• version number of the verb.
• arguments, a list of the names of the fixed and keyword arguments, if any, accepted by the

verb in that version.
• example template of request to this repository, with fixed argument indicated in brackets
• returns, optional, contains information about response format.

Note that a service may implement more than one version of a verb.

Example Request:
/OLP/MMS/1.0/DescribeVerb/UserLoginForm

Example Response:
<?xml version="1.0" encoding="UTF-8" ?>
<DescribeVerb version="1.0">
<Verb name="UserLoginForm">
 <description>Allows the user to log in the user environment. If the authentification was successful a unique
session id will be given back.</description>
<versions>
<version id="1.0">
 <example>http://pc-snaredrum.ipsi.fhg.de:8283/OLP/MDS/1.0/UserLoginForm</example>
<arguments>
<optional_post>
<arg name="login" />
<arg name="password" />

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 52

 </optional_post>
 </arguments>
 <returns note="unstructured text/html" />
 </version>
 </versions>
 </Verb>
 </DescribeVerb>

UserLoginForm
Version: 1.0
Post args: username, password
Keyword Args: -
Return MIME type: text/xml
Return Status Codes: 200, 400

Before any other MDS service specific verb can be used the user has to pass the authentification
procedure. By calling “UserLoginForm” a request for a “normal” session with ordinary user rights
will be asked. If the authentification was successful a unique session id will be given back.

Note: The username/password combination must resemble a valid Registry Service user entry with
sufficient rights for usage of this service verb!

Note: This verb can be called interactively (not recommended) or by using POST parameters
similar to the LibMgt UserLoginForm verb.

Example:

Example Request:
/OLP/MDS/1.0/UserLoginForm

Example Response (success):
<?xml version="1.0" encoding="UTF-8"?>
<UserLoginForm version="1.0" status="OK">
<sessionid>tqidmqb3khqxhc45w3jj2j45</sessionid>
<role>user</role>
<ipaddress>141.12.12.27</ipaddress>
<grantedtime>1/6/2003 4:24:27 PM</grantedtime>
<validuntiltime>1/7/2003 4:24:27 PM</validuntiltime>
</UserLoginForm>

ApproverLoginForm
Version: 1.0
Post args: username, password
Keyword Args: -
Return MIME type: text/xml
Return Status Codes: 200, 400

Before any other MDS service specific verb can be used the user has to pass the authentification
procedure. By calling “ApproverLoginForm” a request for an “approver” session with sufficient
rights to approve documents will be asked. If the authentification was successful a unique session id
will be given back.

Note: The username/password combination must resemble a valid Registry Service user entry with
sufficient rights for usage of this service verb!

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 53

Note: This verb can be called interactively (not recommended) or by using POST parameters
similar to the LibMgt UserLoginForm verb.

Example:

Example Request:
/OLP/MDS/1.0/ApproverLoginForm

Example Response (success):
<?xml version="1.0" encoding="UTF-8"?>
<ApproverLoginForm version="1.0" status="OK">
<sessionid>tqidmqb3khqxhc45w3jj2j45</sessionid>
<role>approver</role>
<ipaddress>141.12.12.27</ipaddress>
<grantedtime>1/6/2003 4:24:27 PM</grantedtime>
<validuntiltime>1/7/2003 4:24:27 PM</validuntiltime>
</ApproverLoginForm>

AdminLoginForm
Version: 1.0
Post args: username, password
Keyword Args: -
Return MIME type: text/xml
Return Status Codes: 200, 400

Before any other MDS service specific verb can be used the user has to pass the authentification
procedure. By calling “AdminLoginForm” a request for an “administrative” session with sufficient
rights to administrate the MDS will be asked. If the authentification was successful a unique session
id will be given back.

Note: The username/password combination must resemble a valid Registry Service user entry with
sufficient rights for usage of this service verb!

Note: This verb can be called interactively (not recommended) or by using POST parameters
similar to the LibMgt UserLoginForm verb.

Example:

Example Request:
/OLP/MDS/1.0/AdminLoginForm

Example Response (success):
<?xml version="1.0" encoding="UTF-8"?>
<AdminLoginForm version="1.0" status="OK">
<sessionid>tqidmqb3khqxhc45w3jj2j45</sessionid>
<role>administrator</role>
<ipaddress>141.12.12.27</ipaddress>
<grantedtime>1/6/2003 4:24:27 PM</grantedtime>
<validuntiltime>1/7/2003 4:24:27 PM</validuntiltime>
</AdminLoginForm>

EndSession
Version: 1.0
Fixed args: sessionid
Keyword Args: -
Return MIME type: text/xml
Return Status Codes: 200, 400

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 54

Ends the session that was started formerly by calling “UserLoginForm”, “ApproverLoginForm”
or “AdminLoginForm”.

Note: For security reasons the session id “sessionid” will not be assigned or used anymore by the
MDS after successful completion of this operation.

Example:

Example Request:
/OLP/MDS/1.0/EndSession/tqidmqb3khqxhc45w3jj2j45

Example Response (success):
<?xml version="1.0" encoding="UTF-8"?>
<EndSession version="1.0" sessionid=" tqidmqb3khqxhc45w3jj2j45" status="OK"/>

Example Response (failure):
<?xml version="1.0" encoding="UTF-8"?>
<EndSession version="1.0" sessionid=" tqidmqb3khqxhc45w3jj2j45" status=" Error: Session cannot be
ended. Service is still processing."/>

RequestUpload
Version: 1.0
Fixed args: sessionid, pathname
Keyword Args: -
Return MIME type: text/xml
Return Status Codes: 200, 400

Notifies the MDS that the user wants to upload one or more files on the MDS’ ftp server. The user
has to provide the filename of the “header” file he wants to upload using the “pathname” fixed
argument. In return the user receives a user id and a unique document id from the MDS for the
file(s) he wants to upload. The user id should then be used as a login on the MDS ftp server.

Note: “pathname” must be enclosed in quotation marks!

Note: After the retrieval of the user id the ftp upload can be started. MDS ensured that everything
necessary on the ftp server is set up and ready to go.

Note: Every assigned user id will be unique and only used once.

Note: Every assigned document id will be unique and only used once.

Note: Usage of the assigned user id for login on the server is possible as long as the upload was not
declared completely obsolete by using the “DiscardUpload” verb or completely successful by
using the “ProcessUpload” verb.

Note: If the MDS can’t handle the upload request, it will return a meaningful error message.

Example (1):

Example Request:
/OLP/MDS/1.0/ RequestUpload/urnxqv45kpdoj3jcrq43wla1/"long name/256x192.smi"

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 55

Example Response (success):
<?xml version="1.0" encoding="UTF-8"?>
<RequestUpload version="1.0" status="OK">
<sessionid>urnxqv45kpdoj3jcrq43wla1</sessionid>
<userid>U00ghcugv552s4os455</userid>
<uploadurl>ftp://U00ghcugv552s4os455:U00ghcugv552s4os455@pc-
snaredrum.ipsi.fhg.de:4543</uploadurl>
<documentid>D00ghcugv552s4os455q5mqju45</documentid>
<referencename>long name/256x192.smi</referencename>
</RequestUpload>

Example Response (failure):
<?xml version="1.0" encoding="UTF-8"?>
<RequestUpload version="1.0" status="Error: Invalid sessionid. Please start a valid session before using this
service verb." />

DiscardUpload
Version: 1.0
Fixed args: sessionid, userid
Keyword Args: -
Return MIME type: text/xml
Return Status Codes: 200, 400

Discards the upload with the upload id “userid”. This id must be an id which was requested while
using a former “RequestUpload”. All files that were uploaded during the upload session with this
“userid” will be deleted by the MDS.

Note: The document id tied to the discarded upload will be declared obsolete and will never be used
again.

Note: This verb allows the user of the MDS to delete broken/unsuccessful uploads.

Note: For security reasons the user id “userid” will not be used and assigned to users anymore by
the MDS after successful completion of this operation.

Note: Only uploads that were not processed by proper completion of the “ProcessUpload” verb can
be withdrawn this way. Uploaded documents that already have been processed can only be
discarded one by one by using the (restricted) “WithdrawDocument” verb.

Example:

Example Request:
/OLP/MDS/1.0/ DiscardUpload/3l2cpqzwpebikj55a5fnyo45/U005y5z3r55qhl1sx45

Example Response (success):
<?xml version="1.0" encoding="UTF-8"?>
<DiscardUpload version="1.0" status="OK">
<sessionid>3l2cpqzwpebikj55a5fnyo45</sessionid>
<userid>u005y5z3r55qhl1sx45</userid>
<documentid>D005y5z3r55qhl1sx45h42hl1ao</documentid>
<referencename>long name/256x192.smi</referencename>
<size>0</size>
<documentstatus>discarded</documentstatus>
</DiscardUpload>

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 56

ProcessUpload
Version: 1.0
Fixed args: sessionid, userid
Keyword Args: -
Return MIME type: text/xml
Return Status Codes: 200, 400

This verb must be used to complete the upload procedure with the given upload id “userid”. This id
must be an id which was requested while using a former “RequestUpload”. All files that were
uploaded during the upload session with this user id will now be processed by the MDS. After
processing of the files has finished, a response to the caller will be given back.

Note: The response will contain the unique document id of the formerly uploaded files as given by
the “RequestUpload” response.

Note: For security reasons the user id “userid” will not be used and assigned to users anymore by
the MDS after successful completion of this operation.

Note: If the operation completes with a non fatal failure then it is possible to take the appropriate
measures (e.g. retransmission of the not correctly processed files to the MDS ftp-server) and to call
“ProcessUpload” again until the successful completion of the operation could be accomplished.
Alternatively discarding the whole upload by calling “DiscardUpload” is also possible.

Note: Processed uploads can’t be discarded. The documents of a processed upload have to be
discarded by using the (restricted) “WithdrawDocument” verb.

Example Request:
/OLP/MDS/1.0/ ProcessUpload/dzoetr55x4er3o55ucyze355/U00ijqg5ei3wszladvs

Example Response (success):
<?xml version="1.0" encoding="UTF-8"?>
<ProcessUpload version="1.0" status="OK">
<sessionid>dzoetr55x4er3o55ucyze355</sessionid>
<userid>u00ijqg5ei3wszladvs</userid>
<documentid>D00ijqg5ei3wszladvshue2oy45</documentid>
<referencename>long name/256x192.smi</referencename>
<size>17558497</size>
<documentstatus>processed</documentstatus>
</ProcessUpload>

GetDocumentInfo
Version: 1.0
Fixed args: sessionid, documentid
Keyword Args: -
Return MIME type: text/xml
Return Status Codes: 200, 400

Retrieves detailed information about the different versions of the document with the id
“documentid” that are available. This information may and should be used for retrieval purposes.

Note: It is mandatory to use “GetDocumentInfo” whenever a new request for a document with a
certain “documentid” comes up, because the returned information of a former “GetDocumentInfo”
call with the same “documentid” could be obsolete shortly after the MDS’ response (e.g. because of
load balancing on the video servers).

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 57

Note: “GetDocumentInfo” may also provide information for administrative tasks like usage
statistics and reference counters.

Example:

Example Request:
/OLP/MDS/1.0/GetDocumentInfo/s004325/d00018

Example Response (success):
<?xml version="1.0" encoding="UTF-8"?>
<GetDocumentInfo version="1.0" sessionid="s004325" documentid="d00018" status="OK">
 <variant url="ftp://ftp.scholnet.org/s1.rm" status="OK" type="Realmedia8" bitrate="450kpbs"/>
 <variant url="http://play.scholnet.org/?url=swave/scholnet/g2demand/020/s1.rm" status="OK"
type="Realmedia8" bitrate="20kpbs"/>
 <variant url="http://play.scholnet.org/?url=swave/scholnet/g2demand/450/s1.rm" status="OK"
type="Realmedia8" bitrate="450kpbs"/>
</GetDocumentInfo>

Example Response (failure):
<?xml version="1.0" encoding="UTF-8"?>
<GetDocumentInfo version="1.0" sessionid="s004325" documentid="d00018" status=”Error: Document id is
not valid."/>

WithdrawDocument
Version: 1.0
Fixed args: sessionid, documentid
Keyword Args: -
Return MIME type: text/xml
Return Status Codes: 200, 400

Deletes all variants (including the original version) of the document with the id “documentid” that
are available on the MDS servers.

Note: Use with caution! Withdrawn documents cannot be restored by the MDS administrators.

Note: The usage of this verb may be restricted to users with administrative MDS access rights.

Note: The document id tied to the withdrawn document will be declared obsolete and will never be
used again.

Note: Only documents that are already processed by proper completion of the “ProcessUpload”
verb can be withdrawn this way. Uploaded documents that haven’t been processed can only be
discarded by using the “DiscardUpload” verb.

Note: Only documents that are not tied to composite documents can be withdrawn. For proper
withdrawal of referenced documents the referencing document such as the composite document’s
master document (smil) has to be withdrawn first or an error will happen. Information about the
number of references a document has can be retrieved by using the “GetDocumentInfo” verb.

Example:

Example Request:
/OLP/MDS/1.0/WithdrawDocument/s004325/d00018

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 58

Example Response (success):
<?xml version="1.0" encoding="UTF-8"?>
<WithdrawDocument version="1.0" sessionid="s004325" documentid="d00018" status="OK"/>

Example Response (failure):
<?xml version="1.0" encoding="UTF-8"?>
< WithdrawDocument version="1.0" sessionid="s004325" documentid="d00018" status=”Error: Document
reference counter is not zero – Document wasn’t withdrawn."/>

ApproveDocument
Version: 1.0
Fixed args: sessionid, documentid
Keyword Args: -
Return MIME type: text/xml
Return Status Codes: 200, 400

Approves all variants (including the original version) of the document with the id “documentid” that
are available on the MDS servers.

Note: The usage of this verb may be restricted to users with administrative MDS access rights.

Note: Only documents that are already processed by proper completion of the “ProcessUpload”
verb can be approved.

Example:

Example Request:
/OLP/MDS/1.0/ApproveDocument/s004325/d00018

Example Response (success):
<?xml version="1.0" encoding="UTF-8"?>
<ApproveDocument version="1.0" sessionid="s004325" documentid="d00018" status="OK"/>

Example Response (failure):
<?xml version="1.0" encoding="UTF-8"?>
< ApproveDocument version="1.0" sessionid="s004325" documentid="d00018" status=”Error"/>

GetUserRole

Version: 1.0
Fixed args: sessionid
Keyword Args: -
Return MIME type: text/xml
Return Status Codes: 200, 400

Retrieves detailed information about the user's role. Three different roles are currently available:

Administrator - user is allowed to administrate the service
Approver - user is allowed to call restricted verbs ("ApproveDocument" and "WithdrawDocument")
User - user is allowed to call normal service verbs

Example:

Example Request:
/OLP/MDS/1.0/GetUserRole/s004325

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 59

Example Response (success):
<?xml version="1.0" encoding="UTF-8"?>
<GetUserRole version="1.0" sessionid="s004325" status="OK" username="johndoe" role="Administrator"/>

Example Response (failure):
<?xml version="1.0" encoding="UTF-8"?>
<GetUserRole version="1.0" sessionid="s004325" status=" Error: GetUserRole failed."/>

GetListOfDocuments
Version: 1.0
Fixed args: sessionid
Keyword Args: -
Return MIME type: text/xml
Return Status Codes: 200, 400

Retrieves a list of all available original documents and their current status.

Example:

Example Request:
/OLP/MDS/1.0/GetListOfDocuments/s004325

Example Response (success):
<?xml version="1.0" encoding="UTF-8"?>
<GetListOfDocuments version="1.0" sessionid="s004325" status="OK">
 <document documentid="d00018" name="s1.rm" size="456789" status="approved"/>
 <document documentid="d00019" name="s2.ra" size="943554" status="pending"/>
</GetListOfDocuments>

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 60

10. LIBRARY MANAGEMENT SERVICE

The Library Management Service supports the submission, withdrawal, and replacement of
documents from repositories.
It receives submission, withdrawal, editing of document metadata and document object requests
submitted by a registered user, stores these requests in a temporary area, and allows the
administrator to approve or to reject them.
The LibMgt administrators are those users authorised by the Registry to manage one or more
authorities. An administrator is associated with a set of authorities and, in the Scholnet
environment, different administrators manage different authorities.

The Library Management Service (LibMgt) is logically divided into two components as reported
below:

The communication with the LibMgt Service takes place via the OpenDLib Protocol (OLP). Note
that other services can call either the LibMgt GUI verbs or the LibMgt Engine verbs in accordance
with the service specification reported in this paragraph. The communication between LibMgt GUI
and LibMgt Engine takes place via internal API. This architectural choice makes it possible:
1. to use the LibMgt Service functionality with a third party user interface;
2. to easily change the LibMgt GUI to fit the specific needs.

10.1 STATE
This section describes the data structure, its abstract type, and gives a brief textual description for
each object managed by the Library Management Service.

Authority
A naming authority is an entity that is authorised to create new handles. Naming authorities are
hierarchically organised, with periods used as the separator. For example, CNR, CNR.IEI,
CNR.IEI.MultimediaDepartment.
The list of authorities managed by a LibMgt Service is set up at service configuration time. This list
is harvested from the Meta Service if the LibMgt service is configured as “networked”, otherwise
the list defined in the service configuration file is take into account.

Set
A set is an administrator-defined subset of the Repository. Each set has one token name and a
(possibly) longer description. Depending on the policy of a Repository, an individual document
may belong to one or more sets (the decision as to in which sets a document is located is made in
the Submit request). Note that there is, in general, no way to predict in which set a document
appears from its handle.
The list of Repository Sets in which an authority is authorised to publish documents is dynamically
calculated pulling information from the appropriate Repository Service instances. These instances
are dynamically and automatically selected in accordance with the defined list of authorities.

LibMgt
GUI

LibMgt
Engine

LibMgt
Service

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 61

Document
The LibMgt Service manages documents in accordance with the DoMDL. The information
describing the document model is represented in accordance with the Structure Metadata Set
(SMS), and the documents are described in accordance with the metadata format specified at
service start-up time.

10.2 LIBMGT VERBS
In this section, we present the set of the LibMgt verbs. This set is divided into three sub-sets:
Service Information Verb, Graphical User Interface Verb, and Service Specific Verb, as reported in
the following table:

Service Information Verb GUI Verb Service Specific Verb
Identify AdminLoginForm AdminLogin
ListVerbs IncomingSubmitForm ApproveSubmit
DescribeVerb IncomingWithdrawForm ApproveWithdraw
 RejectForm Reject
ListAuthorities
 ShowBibRecord
 ShowStructureRecord

 UserSubmitForm UserSubmit
 UserEditForm UserSubmitNewVersion
 UserWithdrawForm UserWithdraw

All GUI verbs return an html page that is designed to be displayed by a browser.
Identify

Version: 1.0
Fixed args: none
Optional Args: none
Return MIME type: text/xml
Return Status Codes: 200, 400, 501

Returns a structured response containing the name and other information about the service.

Example Request:
/OLP/LibMgt/1.0/Identify

Example Response:
<?xml version="1.0" encoding="UTF-8"?>
<Identify version="1.0">
 <serviceName>Experimental OLP LibMgt Server</serviceName >
 <olp_base_url>http://labserv.iei.pi.cnr.it:8230</olp_base_url>
 <metaServiceURL>http://labserv.iei.pi.cnr.it:8221</metaServiceURL>
 <textualDescription></textualDescription>
 <protocolVersion>1.0</protocolVersion>
 <adminEmail>pagano@iei.pi.cnr.it</adminEmail>
 <verbsInfo>
 <verbsSupported>
 <description> </description>
 <olp_base_url>http://labserv.iei.pi.cnr.it:8119/OLP/LibMgt/1.0/ListVerbs</olp_base_url>
 </verbsSupported>
 <verbsDescription>
 <description> </description>
 <olp_base_url>http://…:8119/OLP/LibMgt/1.0/DescribeVerb/DescribeVerb</olp_base_url>
 </verbsDescription>

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 62

 </verbsInfo>
 <submissionProcedure>
 <description>Submissions accepted from Computer Science Department affiliated researchers
 </description>
 <olp_base_url>http://…:8119/OLP/LibMgt/1.0/UserSubmitForm</olp_base_url>
 </submissionProcedure>
 <harvestInformation>
 <description>

 No information is disseminated by the service
 </description>
 <olp_base_url></olp_base_url>
 </harvestInformation>
 <useRestrictions>Terms and conditions are …...</useRestrictions>
 <contentInfo>
 <contentDescription>
 a human readable description of the content stored in the LibMgt
 </contentDescription>
 <authorities>
 <description>
 A naming authority is an entity that is authorised to create new handles. Naming authorities are

hierarchically organised, with periods as separators.
 This LibMgt instance allows submitting, editing or deleting of documents in a subset of the

overall set of authorities.
 </description>
 <olp_base_url>http://labserv….:8119/OLP/LibMgt/1.0/ListAuthorities</olp_base_url>
 </authorities>
 <metadataFormats>
 <description>
 A metadata description is associated with every document in accordance with the OpenDLib

Application Profile (OLAP)
 </description>
 <olp_base_url>http://labserv.iei.pi.cnr.it:8119/OLP/Repository/1.0/ListMetaFormats</olp_base_url>
 <olp_dtd_url>http://labserv.iei.pi.cnr.it:8119/OLP/htdocs/DTD/olap.dtd</olp_dtd_url>
 </metaFormats>
 <documentStructure>
 <description>
 The Repository Service manages documents in accordance with the DoMDL document model.

This logical document model is instantiated in the protocol as reported in the sms dtd
 </description>
 <olp_base_url>http://labserv.iei.pi.cnr.it:8119/OLP/htdocs/domdl.html</olp_base_url>
 <olp_dtd_url>http://labserv.iei.pi.cnr.it:8119/OLP/htdocs/DTD/structure.dtd</olp_dtd_url>
 </documentStructure>
 </contentInfo>
</Identify>

ListVerbs
Version: 1.0
Fixed args: none
Optional Args: none
Return MIME type: text/xml
Return Status Codes: 200, 400, 501

Returns a structured response containing the name of the verbs defined by this service.

Example Request:
/OLP/LibMgt/1.0/ListVerbs

DescribeVerb
Version: 1.0

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 63

Fixed args: verb
Optional Args: version
Return MIME type: text/xml
Return Status Codes: 200, 400, 501

Returns a structured response that contains a list in which each element of the list provides
information on a version of the specified verb that is supported by this service. The following
information may be provided at the verb or version level.

• description, description of the verb or a specific version
• note, information pertaining to the verb or a specific version

Each element of the list contains the following information:
• version number of the verb.
• arguments, a list of the names of the fixed and optional arguments, if any, accepted by the

verb in that version.
• example template of request to this LibMgt, with fixed arguments indicated in brackets
• returns, optional, contains information about response format.

Note that a service may implement more than one version of a verb.

Example Request:
/OLP/LibMgt/1.0/DescribeVerb/AdminLoginForm

ListAuthorities
Version: 1.0
Fixed args: none
Optional Args: none
Return MIME type: text/xml
Return Status Codes: 200, 400, 501

Returns a structured list of the authorities managed by this LibMgt. The short and long name is
indicated for each authority.

Example Request:
/OLP/LibMgt/1.0/ListAuthorities

Example Response:
<?xml version="1.0" encoding="UTF-8"?>
 <ListAuthorities version="1.0">
 <authority name=”scholnet.one” display=”Scholnet Project Repository”/>
 <authority name=”scholnet.two” display=”Scholnet Project Test Repository”/>
 </ListAuthorities>

AdminLoginForm
Version: 1.0
Fixed args: none
Optional_post Args: login, password
Return MIME type: text/html
Return Status Codes: 200, 400, 501

This page allows the administrator to login to the administration environment.
If the login and password are specified as optional_post arguments, passed as HTTP POST
requests, the LibMgt GUI service starts the session without showing the form on which these values
can be input. In this way the verb can also be called by other services that have already
authenticated the user as LibMgt administrator.
After the identification of the LibMgt administrator, the verb displays the administration home
environment. From this environment, the administrator can access all the functionality provided.

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 64

Example Request:
/OLP/LibMgt/1.0/AdminLoginForm

IncomingSubmitForm
Version: 1.0
Fixed args: none
Optional Args: none
Return MIME type: text/html
Return Status Codes: 200, 400, 501

This page shows all incoming requests to submit/edit a new/existing document submitted to the
authorities administered by the given administrator. The set of authorities is managed as parameter
of the session.
This verb is usable only after the identification of the administrator. The login and password of the
administrator are managed as parameters of the session and used to verify that only authorised
users access this verb. If a session has not yet been initialized, the verb automatically calls the
AdminLoginForm.

For each incoming request, this page shows the following information:

• the date of the submission

• the author of the request

• a link to the bibliographic record that describes the document

• a link to the structure metadata record that represents the document

• the authority and the set in which to publish the document
The link to the bibliographic/structure metadata is:

• a pointer to the incoming area of the LibMgt for the submit new document request

• a request to the Repository that stores the document for the edit existing document request.

The administrator can approve or reject any shown requests.
Example Request:
/OLP/LibMgt/1.0/IncomingSubmitForm

IncomingWithdrawForm
Version: 1.0
Fixed args: none
Optional Args: none
Return MIME type: text/html
Return Status Codes: 200, 400, 501

This page shows all incoming requests to withdraw/delete an existing document submitted to the
authorities administered by the given administrator. The set of authorities is managed as parameter
of the session.
This verb is usable only after the identification of the administrator. The login and password of the
administrator are managed as parameters of the session and used to verify that only authorised users
access this verb. If a session ihas not yet been initialized, the verb automatically calls the
AdminLoginForm.

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 65

For each incoming request, this page shows the following information:

• the date of the submission

• the author of the request

• a link to the bibliographic record that describes the document

• a link to the structure metadata record that represents the documents

• the authority and the set in which the document is published.
The link to the bibliographic/structure metadata is always a request to the Repository that stores the
document.

The administrator can approve or reject any showed requests.
Example Request:
/OLP/LibMgt/1.0/IncomingWithdrawForm

RejectForm
Version: 1.0
Fixed args: handle, version, user
Optional Args: none
Return MIME type: text/html
Return Status Codes: 200, 400, 501

This page allows the administrator to specify the reason for rejection. The system automatically
sends an e-mail message to the author as response to the incoming request.
This verb is usable only after the identification of the administrator. The login and password of the
administrator are managed as parameters of the session and make it possible to verify that only
authorised users can access this verb.
For each incoming request, this page allows the following information to be specified:

• the date of the rejection

• the reason for rejection
The administrator also decides whether he/she want to keep/delete the incoming request. In the first
case, the author of the request can correct the request without completely re-submitting it.

Example Request:
/OLP/LibMgt/1.0/RejectForm

ShowBibRecord
Version: 1.0
Fixed args: handle
Optional Args: type, modality
Return MIME type: text/html
Return Status Codes: 200, 400, 404, 501

The page shows the bibliographic metadata record in accordance with the OLAP application profile.
The type argument can assume one of the following values:

• incoming, means that the document has not yet been approved and therefore all files about it are
maintained by the LibMgt Service

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 66

• repository, means that the document is already approved and therefore all files about it are
maintained by the Repository Service

If the type argument is not specified, the incoming mode is assumed as default.
The modality argument can assume one of the following values:

• view, means that the bibliographic record is shown only in view mode. Changes to the
bibliographic record are not allowed.

• edit, means that the bibliographic record is shown in edit mode allowing changes to the values
reported in the bibliographic record.

If the modality argument is not specified, the view mode is assumed as default.
Example Request:
/OLP/LibMgt/1.0/ShowBibRecord/CNR.IE/TR-103?type=incoming&modality=view

ShowStructureRecord
Version: 1.0
Fixed args: handle
Optional Args: modality, type
Return MIME type: text/html
Return Status Codes: 200, 400, 404, 501

This page shows the structure metadata record in accordance with the SMS dtd.
The type argument can assume one of the following values:

• incoming, means that the document has not yet been approved and therefore all files about it are
maintained by the LibMgt Service

• repository, means that the document is already approved and therefore all files about it are
maintained by the Repository Service

If the type argument is not specified, the incoming mode is assumed as default.
The modality argument can assume one of the following values:

• view, means that the bibliographic record is shown only in view mode. Changes to the
bibliographic record are not allowed.

• edit, means that the bibliographic record is shown in edit mode allowing changes to the values
reported in the bibliographic record.

If the modality argument is not specified, the view mode is assumed as default.
Example Request:
/OLP/LibMgt/1.0/ShowStructureRecord/CNR.IEI/TR-103?type=incoming&modality=view

UserSubmitForm
Version: 1.0
Fixed args: none
Optional Args: none
Return MIME type: text/html
Return Status Codes: 200, 400, 501

This page allows the user to fill in all information in accordance with the OLAP application profile
and with the SMS DTD.
The user has to submit the following information:

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 67

• user identification and password
• the bibliographic record in accordance with the OLAP application profile
• the logical structure of the document. The structure is automatically composed by the service in

accordance with the steps performed by the user. This structure can be edited in order to add
new logical views of the documents (for which the user does not have to submit a related
manifestation) or to submit manifestations related to a specific view. The structured information
is validated in accordance with the SMS DTD. When a user specifies a manifestation he/she has
to specify:
• the path location of the file if it is not a video or composite manifestation;
• an FTP location where the system can download the file or its file name, if it is a video or

composite manifestation.
The LibMgt service sends a message to the Multimedia Storage Service indicating the file
name and receives an URN for the resource and a user-id. The URN is associated with the
manifestation, and the user-id is used to upload the file to the MDS, if the user has specified
an FTP location, or is given to the user that uses it to upload the file directly to the MDS.
Note that the LibMgt cannot access or download video manifestations, which are directly
downloaded by the Multimedia Storage Service. This is because a video/composite
manifestation has normally a dimension of some hundreds mega-bytes.

Note that the user can also indicate the bibliographic record and the logical structure as XML files.
The information extracted from these files allows the LibMgt service to pre-load the LibMgt GUI
environment.
Using this additional functionality, the user can prepare both document descriptive files with
another tool (such as the Metadata Editor, or the SMIL editor) and then complete the operation with
the LibMgt service. The use of a specialised tool can be helpful when managing special document
types such as composite documents or video documents.

Example Request:
/OLP/LibMgt/1.0/UserSubmitForm

UserEditForm
Version: 1.0
Fixed args: step
Optional Args: none
Return MIME type: text/html
Return Status Codes: 200, 400, 501

This page allows the user to change the metadata and the content associated with an existing
document.
The LibMgt Service manages this verb in multiple steps.
In the first step the user has to submit the following information (if not already provided):
• The user identification and password.
In the second step:
• the user can select the handle of the document that he/she wants to change. Note that a user can

only ask to change those documents of which he/she is owner
• the user specifies a comment that reports the changes with respect to the current version.
The handle allows the LibMgt to identify whether the document is stored in the incoming area of
the service or in the Repository Service.
In the third step the user can modify the following information:
• the bibliographic record shown

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 68

• the logical structure shown for the document. This structure can be edited in order to:
- add new logical views to document (for which the user does not have to submit a related

manifestation)
- submit related manifestations to a specific view
- change existing manifestations
- delete a view/manifestation
- change information related to a view/manifestation

The structured information is validated in accordance with the SMS dtd.
Steps 2 and 3 are can only be performed after the user has been identified. The login and password
of the registered user are managed as parameters of the session and used to verify that only
authorised users access this verb.

Example Request:
/OLP/LibMgt/1.0/UserEditForm/1

UserWithdrawForm
Version: 1.0
Fixed args: step
Optional Args: none
Return MIME type: text/html
Return Status Codes: 200, 400, 501

This page allows the user to request the withdrawal or deletion of a document. A withdraw request,
if approved, makes only the bibliographic/structure metadata of the document accessible. A delete
request, if approved, deletes all information about the document. The delete request is supported but
is discouraged.
In the first step, the user has to submit the following information (if not already provided):
• The user identification and password.
In the second step:
• the user can select the handle of the document that he/she wants to withdraw/delete. Note that a

user can only submit a request for those documents of which he/she is owner.
In the third step the user has to specify the following information:
• the kind of the request (withdraw, delete)
• the reason
• optionally, the new address of the document.
Steps 2 and 3 can only be performed after the identification of the user. The login and password of
the registered user are managed as parameters of the session and used to verify that only authorised
users access this method.

Example Request:
/OLP/LibMgt/1.0/UserWithdrawForm/1

AdminLogin
Version: 1.0
Fixed_post args: login, password
Optional Args: none
Return MIME type: text/xml
Return Status Codes: 200, 400

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 69

This is used to verify the identification of an administrator. It checks that the login and password,
passed as HTTP POST request, are correct and returns the list of authorities that the user is
authorised to administer.

Example Request:
/OLP/LibMgt/1.0/AdminLogin

Example Response:
<?xml version="1.0" encoding="UTF-8"?>
<AdminLogin version="1.0">
 <session-id value=””/>
 <login>test</login>
 <authorities>
 <authority name="……." />
 <authority name="……." />
 ……………….
 </authorities>
 </AdminLogin>

ApproveSubmit
Version: 1.0
Fixed args: type, doc-id, partiotionspec, authority
Optional Args: comment
Optional_post Args: session-id, login, password
Return MIME type: text/xml
Return Status Codes: 200, 400, 501

This is used to complete the document submission phase, improving the request submitted by the
user.
This verb can only be used after the identification of the administrator. The login and password of
the administrator are managed as parameters of the session and used to verify that only authorised
users access this method. If a session has not yet been initialized, the verb can be used specifying
the login and password of a LibMgt administrator as optional arguments. In this way the verb is
usable either by the GUI, that creates a session with the Engine, or by other services.

The type argument can assume one of the following values:

• submit, means that the administrator has approved the publication of a new document

• edit, means that the administrator has approved the editing of a published document.
The doc-id argument specifies the document identifier. The partiotionspec argument specifies the
set in which the document has to be published. The authority makes it possible to verify that the
user/administrator can submit/approve a document in/for this authority.
The verb verifies that the following information is available in the LibMgt incoming area for the
specified document:
• the structure metadata file with MIME type text/xml in accordance with the SMS dtd,
• the bibliographic metadata file with MIME type text/xml in accordance with the OLAP dtd,
• one or more files with the appropriate MIME types, each of which is a manifestation in a format

that the repository is able to accept as an input format.
The optional comment argument is mandatory if the type is “edit”.

If the document contains external, i.e. video or composite, manifestations submitted by the user, an
additional step is performed:

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 70

• a session is started with the Multimedia Document Storage Service (MDS) in order to confirm
approval of the document. In this session, ProcessUpload and then ApproveDocument are
invoked using the appropriate parameters.

If the submit request is successful the structured return contains:
• handle of the submitted document
• partiotionspec indicates the set specification for each of the sets to which the document was

submitted.
Example Request:

/OLP/LibMgt/1.0/ApproveSubmit/submit/TR-103/cs;ai/CNR.IEI
Example Response:

<?xml version="1.0" encoding="UTF-8"?>
 <ApproveSubmit version="1.0">
 <handle>CNR.IEI/TR-103</handle>
 <set name="cs">
 <display>Computer Science</display>
 <set name="ai">
 <display>Artificial Intelligence</display>
 </set>
 </set>
 </ApproveSubmit>

ApproveWithdraw
Version: 1.0
Fixed args: doc-id, authority, version
Optional Args: reason, type, nosave
Optional_post Args: session-id, login, password
Return MIME type: text/xml
Return Status Codes: 200, 400, 501

This is used to complete the document withdraw phase, improving the request submitted by the
user.
This verb can only be used after the identification of the administrator. The login and password of
the administrator are managed as parameters of the session and used to verify that only authorised
users access this method. If a session has not yet been initialized, the verb can be used specifying
the login and password of a LibMgt administrator as optional arguments. In this way, the verb is
usable either by the GUI, which creates a session with the Engine, or by other services.

The doc-id argument specifies the document identifier. The authority verifies that the administrator
can withdraw/delete documents of this authority.

The reason is a text string specifying the reason for withdrawal. A common use of this string is to
state a new access point for the document.
The type argument can assume one of the following values:
• nodelete, means that the administrator has requested that manifestations of the document are

removed. However, all information reported in the metadata and structured files are maintained
by the repository.

• delete specifies that the bibliographic metadata record and the structure metadata record for the
document should also be deleted.

If the type argument is not specified, the nodelete option will be considered as default.

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 71

The nosave argument is a suggestion to the repository that the deleted content should not be
archived (e.g., maintained by the repository but not accessible through the protocol).

If the document contains external, i.e. video or composite, manifestations submitted by the user, an
additional step is performed:
• a session is started with the Multimedia Document Storage Service (MDS) in order to confirm

the document withdrawal. In this session, the WithdrawDocument method is invoked using the
appropriate parameters.

If the withdraw request is successful the structured response contains the handle of the withdrawn
document.

Example Request:
/OLP/LibMgt/1.0/ApproveWithdraw/TR010101/CNR.IEI?reason=the document has been published in DLib

Example Response:
<?xml version="1.0" encoding="UTF-8"?>
 <ApproveWithdraw version="1.0">
 <handle>CNR.IEI/TR010101</handle>
 </ApproveWithdraw>

Reject
Version: 1.0
Fixed args: type, user-id
Optional Args: reason, title, date
Optional_post Args: session-id, login, password
Return MIME type: text/xml
Return Status Codes: 200, 400, 501

The system automatically sends an e-mail message to the author as response to the incoming
request.
This verb can only be used after the identification of the administrator. The login and password of
the administrator are managed as parameters of the session and used to verify that only authorised
users access this method. If a session has not yet been initialized, the verb can be used specifying
the login and password of a LibMgt administrator as optional arguments. In this way, the verb is
usable either by the GUI, which creates a session with the Engine, or by other services.

The user-id argument specifies the owner of the request.
The type argument can assume one of the following values:

• keep, the request is not deleted and the owner of the request may correct the request without
completely re-submiting it.

• delete, the request is deleted from the incoming area
The reason argument specifies the comment of the administrator. The title argument specifies the
title of the document, object of the request. The date argument specifies the date of rejection.

If the document contains external, i.e. video or composite, manifestations submitted by the user an
additional step is performed:
• a session is started with the Multimedia Document Storage Service (MDS) in order to confirm

the document rejection. In this session, the DiscardUpload method is invoked using the
appropriate parameters.

If the request is successful, confirmation is returned to the client.

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 72

Example Request:
/OLP/LibMgt/1.0/Reject/keep/pagano01?title=The OLP protocol&date=21-04-2001
Example Response:
<?xml version="1.0" encoding="UTF-8"?>
 <Reject version="1.0">
 <title> The OLP protocol </title>
 <type>keep</type>
 </Reject>

UserWithdraw
Version: 1.0
Fixed args: type, handle
Optional Args: new-addr, reason
Optional_post Args: session-id, login, password
Return MIME type: text/xml
Return Status Codes: 200, 400, 501

Stores a withdraw request in the incoming area.
This verb can only be used after the identification of the user. The login and password of the
registered user are managed as parameters of the session and used to verify that only authorised
users can access this method. If a session has not yet been initialized, the verb can be used
specifying the login and password as optional arguments.
The handle argument specifies the authority and identifier of the document object of the request.
The type argument can assume one of the following values:
• withdraw, means that the user has requested to remove the manifestations of the document. All

information reported in the metadata and structured files can be maintained by the repository.
• delete specifies that also the bibliographic metadata record and the structure metadata record for

the document should be deleted.
The new-addr argument specifies the new address of the document, if this exists. The reason
argument allows the user to justify the reason for the request.
If the request is successful, confirmation is returned to the client.

Example Request:
/OLP/LibMgt/1.0/UserWithdraw/delete/CNR.IEI/TR-01-01
Example Response:
<?xml version="1.0" encoding="UTF-8"?>
 <UserWithdraw version="1.0">
 <handle>CNR.IEI/TR-01-01</handle>
 <type>delete</type>
 </UserWithdraw>

UserSubmit
Version: 1.0
Fixed args: none
Fisex_post Args: file
Optional Args: none
Optional_post Args: session-id, login, password
Return MIME type: text/xml
Return Status Codes: 200, 400, 501

Stores a submit request in the incoming area.
This verb can only be used after the identification of the user. The login and password of the
registered user are managed as parameters of the session and used to verify that only authorised

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 73

users access this method. If a session has not yet been initialized, the verb can be used specifying
the login and password as optional arguments.
All information is passed from the UI to the LibMgt engine as an HTTP POST request.
The verb produces the following information in the LibMgt incoming area for the document object
of the request:
• the structure metadata file with MIME type text/xml in accordance with the SMS dtd,
• the bibliographic metadata file with MIME type text/xml in accordance with the OLAP dtd,
• a MIME multipart/mixed type that contains all inside manifestations submitted by the user.

If the document contains external, i.e. video or composite, manifestations submitted by the user, an
additional step is performed:
• a session is started with the Multimedia Document Storage Service (MDS) in order to confirm

approval of the document. In this session, the RequestUpload method is invoked using the
appropriate parameters.

If the request is successful, aconfirmation is returned to the client. The confirmation message
reports:
1. the temporal doc-id assigned to the document. This number can be used to simplify

communication with the administrator.
2. the user-id returned by the MDS, if the document contains external manifestations. The user

has to use this user-id in order to upload the document to the MDS ftp server.

Example Request:
/OLP/LibMgt/1.0/UserSubmit
Example Response:
<?xml version="1.0" encoding="UTF-8"?>
 <UserSubmit version="1.0">
 <doc-id>213-1313-3314</doc-id>
 </UserSubmit>

UserSubmitNewVersion
Version: 1.0
Fixed args: none
Fisex_post Args: file
Optional Args: none
Optional_post Args: session-id, login, password
Return MIME type: text/xml
Return Status Codes: 200, 400, 501

Stores a submit new version request in the incoming area.
This verb can only be used after the identification of the user. The login and password of the
registered user are managed as parameters of the session and used to verify that only authorised
users access this method. If a session has not yet been initialized, the verb can be used specifying
the login and password as optional arguments.
All information is passed from the UI to the LibMgt engine as an HTTP POST request.
The verb produces the following information in the LibMgt incoming area for the document object
of the request:
• the structure metadata file with MIME type text/xml in accordance with the SMS dtd,
• the bibliographic metadata file with MIME type text/xml in accordance with the OLAP dtd,
• a MIME multipart/mixed type that contains all inside manifestations submitted by the user.

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 74

If the document contains external, i.e. video or composite, manifestation submitted by the user, an
additional step is performed:
• a sessionis started with the Multimedia Document Storage Service (MDS) in order to confirm

approval of the document. In this session, the RequestUpload method is invoked using the
appropriate parameters.

If the request is successful, confirmation is returned to the client. The confirmation message reports:
1. the temporal doc-id assigned to the document. This number can be used to simplify

communication with the administrator.
2. the user-id returned by the MDS, if the document contains external manifestations. The user

has to use this user-id in order to upload the document to the MDS ftp server.

Example Request:
/OLP/LibMgt/1.0/UserSubmitNewVersion
Example Response:
<?xml version="1.0" encoding="UTF-8"?>
 <UserSubmitNewVersion version="1.0">
 <doc-id>213-1313-3314</doc-id>
 </UserSubmitNewVersion>

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 75

11. REGISTRY SERVICE

The Registry Service of the Scholnet system handles registration of users and groups. A user is
identified by a unique login, while a group is identified by a groupname. Every group is represented
by its owner; this is specified (changed) together with other settings through the group profile.
The Digital Library administrator is established at service start-up time and can assign special rights
to the registered users in order to give them the appropriate administration rights on those services
of the architecture that need an administrator. In the current version of the Scholnet system, these
services are the Registry, the Repository, the LibMgt and the Collection Service.
A Repository administrator can assign document submission rights in his/her authorities to any
registered user. Such users become “submitters” and can also edit or delete documents.
A LibMgt administrator can approve or reject any submission, edit or withdraw requests submitted
by a submitter to his/her authorities.
A Collection Service administrator can create collection, and edit or delete his/her own collections.
A Thesaurus Service administrator can manage the service in order to release a new thesaurus;
create, update, delete, or rename terms an existing thesaurus; create, delete, or move hierarchies in a
thesaurus; create a (new) facet of the thesaurus.
A Registry administrator can assign and remove user rights.

The Registry is logically divided in two components as reported below:

Communication with the Registry Service takes place via the OpenDLib Protocol (OLP). Note that
other services can call either the Registry GUI verbs or the Registry Engine verbs in accordance
with the service specification reported in this section. The communication between Registry GUI
and Registry Engine takes place via internal API. This architectural choice makes it possible:
1. to use the Registry Service functionality with a third party user interface;
2. to easily change the Registry GUI to fit the specific needs.

11.1 STATE

User Profile
The Registry service manages user profiles in accordance with the UserProfile format that is
reported in Appendix E (UserProfile DTD). The user profile has three different parts: the first
reports information on the user identity and can be edited by the user; the second reports
information on the documents submitted by the user and is updated in the Scholnet environment
only by the LibMgt Service; the last reports information on the user rights and can only be updated
using the Registry UI or the Registry Engine.
A user with a known e-mail address is identified by a unique login. All the other settings in the user
profile are optional.

Registry
GUI

Registry
Engine

Registry
Service

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 76

D
A

TA
 HandleList Optional Set set of document handles associated

with the user (the user is the owner
of these documents)

R
IG

H
TS

Authorities Optional Set set of authorities in which the user
can submit documents. If the set is
empty the user cannot submit
documents.

Collection-Adm Optional Boolean specifies whether the user can
administer the Collection Service

LibMgt-Adm Optional Set specifies the set of authorities that
can be administered with the
Library Management Service

Repository-Adm Optional Set specifies the set of authorities that
can be administered

Registry-Adm Optional Boolean specifies whether the user can
administer the Registry Service

Thesaurus-Adm Optional Boolean specifies whether the user can
administer the Thesaurus Service

Group Profile
The Registry service manages group profiles in accordance with the GroupProfile format that is
reported in the Appendix F (GroupProfile DTD).
A group is identified by a unique groupname. A group must have an owner specified (a user already
registered in the system) and a short description - the other settings in the group profile are optional.
A group can be defined public or private. A public group is visible to all registered users and each
registered user can ask to join the group sending a message to the administrator. A private group
(introduced to support a project or a restricted team of users) is only visible to its members.

 Attribute Obligation Type Constraint/Comment

SE
TT

IN
G

S GroupName Mandatory String alphanumeric characters plus
underscore, unique in the system

Description Mandatory String short description of the group
Owner Mandatory String login of the group owner, must

already be registered

 Attribute Obligation Type Constraint/Comment
SE

TT
IN

G
S

Login Mandatory String alphanumeric characters plus
underscore, unique in the system

Password Mandatory String user's password to the system
FullName Mandatory String user's first name(s) and surname
Email Mandatory String valid e-mail contact for the user
Institution Optional String user's institution
Address Optional String contact address for the user
Phone Optional String contact phone for the user
Comment Optional String any text

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 77

UserList Optional Set login of each registered user
belonging to the group

Comment Optional String any text
Public Mandatory Boolean default value is true.

11.2 REGISTRY VERBS
In this section, we present the set of the registry verbs. This set is divided into three sub-sets:
Service Information Verbs, User Verbs, and GroupVerbs as reported in the following table:

Service Information Verbs User Verbs Group Verbs

Identify AddUser AddGroup
ListVerbs AuthenticateUser
DescribeVerb DisplayUserInfo DisplayGroupInfo
 ModifyUserInfo ModifyGroupInfo
 DeleteUser DeleteGroup
 AddUserHandle AddUserToGroup
 AuthenticateUserHandle AuthenticateGroupUser
 DeleteUserHandle DeleteUserFromGroup
 ListUsers ListGroups
 ListUserHandles ListGroupUsers
 ListUserGroups
 EditUserRights
 EditUserRightsForm
 AdminLogin
 AdminLoginForm
Identify

Version: 1.0
Fixed args: none
Optional Args: none
Return MIME type: text/xml
Return Status Codes: 200, 400, 501

Returns a structured response containing the name and other information about the service.

Example Request:
/OLP/Registry/1.0/Identify

Example Response:
<?xml version="1.0" encoding="UTF-8"?>
<Identify version="1.0">
 <serviceName>Experimental OLP Registry Server</serviceName >
 <olp_base_url>http://labserv.iei.pi.cnr.it:8230</olp_base_url>
 <metaServiceURL>http://labserv.iei.pi.cnr.it:8221</metaServiceURL>
 <textualDescription></textualDescription>
 <protocolVersion>1.0</protocolVersion>
 <adminEmail>pagano@iei.pi.cnr.it</adminEmail>
 <verbsInfo>
 <verbsSupported>

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 78

 <description> </description>
 <olp_base_url>http://labserv.iei.pi.cnr.it:8230/OLP/Registry/1.0/ListVerbs</olp_base_url>
 </verbsSupported>
 <verbsDescription>
 <description> </description>
 <olp_base_url>http://…:8230/OLP/Registry/1.0/DescribeVerb/DescribeVerb</olp_base_url>
 </verbsDescription>
 </verbsInfo>
 <submissionProcedure>
 <description>The service supports public registration of the user. The registered user can access

additional services that include Group Management, Annotation, and Personalised
Information Dissemination. Special rights can also be assigned to registered users by an
administrator in order to allow them to submit documents to the library

 </description>
 <olp_base_url>http://…/OLP/UI/1.0/GenerateRegistrationForm</olp_base_url>
 </submissionProcedure>
 <harvestInformation>
 <description>
 The individual users and groups list is available
 </description>
 <olp_base_url>http://…:8230/OLP/Registry/1.0/ListUsers</olp_base_url>
 <olp_base_url>http://…:8230/OLP/Registry/1.0/ListGroups</olp_base_url>
 </harvestInformation>
 <useRestrictions>Terms and conditions are …...</useRestrictions>
 <contentInfo>
 <userProfile>
 <description>

 A metadata description is associated with every user in accordance with the OpenDLib
UserProfile format.

 </description>
 <olp_base_url>http://labserv.iei.pi.cnr.it:8119/OLP/htdocs/userprofile.html</olp_base_url>
 <olp_dtd_url>http://labserv.iei.pi.cnr.it:8119/OLP/htdocs/DTD/userprofile.dtd</olp_dtd_url>
 </userProfile>
 <groupProfile>
 <description>

 A metadata description is associated with every group in accordance with the OpenDLib
GroupProfile format.

 </description>
 <olp_base_url>http://labserv.iei.pi.cnr.it:8119/OLP/htdocs/groupprofile.html </olp_base_url>
 <olp_dtd_url>http://labserv.iei.pi.cnr.it:8119/OLP/htdocs/DTD/groupprofile.dtd</olp_dtd_url>
 </groupProfile>
 </contentInfo>
</Identify>

ListVerbs

Version: 1.0
Fixed args: none
Optional Args: none
Return MIME type: text/xml
Return Status Codes: 200, 400

Returns a structured response containing the name of the verbs defined by this service.
Example Request:
/OLP/Registry/1.0/ListVerbs

DescribeVerb
Version: 1.0
Fixed args: verb

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 79

Optional Args: version
Return MIME type: text/xml
Return Status Codes: 200, 400

Returns a structured response that contains a list in which each element of the list provides
information on a version of the specified verb that is supported by this service. The following
information may be provided at the verb or version level:
• description, description of the verb or a specific version,
• note, information pertaining to the verb or a specific version.
Each element of the list contains the following information:
• version, number of the verb,
• arguments, a list of the names of the fixed and optional arguments, if any, accepted by the verb

in that version,
• example, template of request to this repository, with fixed arguments indicated in brackets,
• returns, optional, contains information about response format.

Note that a service may implement more than one version of a verb.

Example Request:
/OLP/Registry/1.0/DescribeVerb/AddUser

AddUser
Version: 1.0
Fixed_post args: uploaded_file
Optional Args: none
Return MIME type: text/xml
Return Status Codes: 200, 400, 401

A new user is added to the Registry.
The user-settings are transmitted as XML file in an HTTP POST request.
The fullname, password, and email arguments are mandatory.
Returns a structured response that contains at least:
• login, a new unique login name assigned to the user by the system,
• code, 200 if the addition was successful, an error code (400, 401) otherwise.

Example Request:
/OLP/Registry/1.0/AddUser/%s
Example Response:
<?xml version="1.0" encoding="UTF-8"?>
<AddUser version="1.0">
 <login>newuser</login>
 <code>200</code>
</AddUser>

AuthenticateUser

Version: 1.0
Fixed_post args: login, password
Optional Args: service
Return MIME type: text/xml
Return Status Codes: 200, 400, 401

Checks whether the user is already registered and has a password to the system.
The login and password arguments are transmitted as an HTTP POST request.

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 80

If the service argument is specified, the Registry service only returns information on the service
required. The accepted values are the following: submit, collection, libmgt, repository, registry.
Returns error code 400 if the user is not authenticated, otherwise returns an xml response that
contains the user rights.

Example Request:
/OLP/Registry/1.0/AuthenticateUser/%s/%s

Example Response:
<?xml version="1.0" encoding="UTF-8"?>
<AuthenticateUser version="1.0">
 <login>test</login>
 <authorities>
 <authority>ercim.cnr.iei</authority>

<authority>ercim.gmd</authority>
 </authorities>
 <collection-adm value=”0” />
 <libmgt-adm>
 <authorities>
 <authority>ercim.cnr.iei</authority>
 </authorities>
 </libmgt-adm>
 <repository-adm>
 <authorities>

 <authority>ercim.gmd</authority>
 </authorities>
 </repository-adm>
 <registry-adm value=”0” />
 </AuthenticateUser>

DisplayUserInfo
Version: 1.0
Fixed args: login
Optional_post: password
Optional Args: none
Return MIME type: text/xml
Return Status Codes: 200, 400

Returns a structured response that contains all settings of the given user:
• login, user's login in the registry,
• full name, user's first name(s) and surname,
• email, user’s contact e-mail ,
• institution, user's institution,
• address, user's contact address,
• phone, user's contact phone,
• comment, any text.

Example Request:
/OLP/Registry/1.0/DisplayUserInfo/user

Example Response:
<?xml version="1.0" encoding="UTF-8"?>
<DisplayUser version="1.0">
 <login>test</login>
 <fullname>Test User</fullname>
 <email>test@scholnet.org</email>
 <institution>Scholnet</institution>

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 81

 <address>wherever he lives 21</address>
 <phone>+666999666</phone>
 <comment></comment>
 </DisplayUser>

ListUserHandles

Version: 1.0
Fixed args: login
Optional Args: none
Return MIME type: text/xml
Return Status Codes: 200, 400

Returns a structured response that contains a list of handles, each of which is related to a document,
submitted by the user:

Example Request:
/OLP/Registry/1.0/ListUserHandles/user

Example Response:
<?xml version="1.0" encoding="UTF-8"?>
<ListUserHandles version="1.0">
 <documents>
 <document handle="scholnet.test/2002-test-012" version="1" />
 <document handle="scholnet.test/2002-NewTest-002" version="1" />
 <document handle="scholnet.test/1999-isl-21" version="1" />
 <document handle="scholnet.test/2002-test-022" version="1" />
 <document handle="scholnet.test/2002-NewTest-006" version="1" />
 </documents>
 </ListUserHandles>

ModifyUserInfo

Version: 1.0
Fixed_post args: DisplayUserInfo
Optional Args: none
Return MIME type: text/plain
Return Status Codes: 200, 400, 401

Changes settings of a given user. Only the user can change his/her settings.
The user-settings are transmitted as an XML file in an HTTP POST request.
The fullname, password, and email arguments are mandatory.
Returns a structured response that contains at least:
• login, a new unique login name assigned to the user by the system,
• code, 200 if the addition was successful, an error code (400, 401) otherwise

Example Request:
/OLP/Registry/1.0/ModifyUserInfo/%s

DeleteUser
Version: 1.0
Fixed args: none
Fixed_post args: login, password
Optional Args: none
Return MIME type: text/plain

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 82

Return Status Codes: 200, 400

Deletes the user (identified by the login) from the Registry and removes him/her from all groups,
where he/she is a member.
The login and password arguments are transmitted as an HTTP POST request.
Returns 200 if the user can be deleted, the 400 error code otherwise.

Example Request:
/OLP/Registry/1.0/DeleteUser/%s/%s

AddUserHandle
Version: 1.0
Fixed args: none
Fixed_post args: owner, admin, adminpass, handle
Optional Args: version
Return MIME type: text/plain
Return Status Codes: 200, 400, 401

The registry maintains a relationship between users and their documents. This relationship allows
an owner to be associated with a document in order to check withdraw, delete, or new-version
requests. This verb allows a document handle to be associated with a specific user that becomes the
owner of the document.
The owner, admin, adminpass, handle arguments are transmitted as an HTTP POST request. The
admin and the admpass are userid and password of the LibMgt administrator that has approved the
submission of a new document. The LibMgt service checks that:
• the password of the administrator is correct;
• the administrator can approve a submission for the authority specified.

Returns 200 if no error is generated, or an error code (400 or 401) otherwise.

Example Request:

/OLP/Registry/1.0/AddUserHandle/%s/%s/%s/%s

AuthenticateUserHandle
Version: 1.0
Fixed args: none
Fixed_post args: owner, handle
Optional Args: version
Return MIME type: text/plain
Return Status Codes: 200, 400

Verifies whether a user is the owner of a document.
The login, and handle arguments are transmitted as an HTTP POST request.
Returns 200 if authenticated, or the error code number otherwise.
Example Request:
/OLP/Registry/1.0/AuthenticateUserHandle/%s/%s

DeleteUserHandle
Version: 1.0
Fixed args: none
Fixed_post args: owner, admin, adminpass, handle

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 83

Optional Args: none
Return MIME type: text/plain
Return Status Codes: 200, 400, 401

Removes the document handle from the list of handles owned by the user.

The owner, admin, adminpass, handle arguments are transmitted as an HTTP POST request. The
admin, adminpass are the login and the password of the LibMgt administrator that has approved the
deletion of the document. The LibMgt service checks that:
• the password of the administrator is correct;
• the administrator can approve the user delete request for the authority specified.

Returns 200 if removal was successful or an error code (400 or 401) otherwise.

Example Request:
/OLP/Registry/1.0/DeleteUserHandle/%s/%s/%s/%s

ListUsers
Version: 1.0
Fixed args: none
Optional Args: format
Return MIME type: text/xml
Return Status Codes: 200, 400

Returns a structured response indicating the login and possibly other settings from the user's profile.
Format can be either 'short', which returns only login for each user, or 'long', which returns all
setting attributes. The default value for format is 'short'.
Example Request:
/OLP/Registry/1.0/ListUsers?format=long

Example Response:
<?xml version="1.0" encoding="UTF-8"?>
<ListUsers version="1.0" format="long">
 <user>
 <login>test</login>
 <fullname>Test User</fullname>
 <email>test@scholnet.org</email>
 <institution>Scholnet</institution>
 <address>wherever he lives 21</address>
 <phone>+666999666</phone>
 <comment></comment>
 </user>
 <user>
 ...
 </user>
</ListUsers>

AdminLoginForm

Version: 1.0
Fixed args: none
Optional_post Args: login, password
Return MIME type: text/html
Return Status Codes: 200, 400

This page allows the administrator to login in the Registry administration environment.

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 84

If the login and password are specified as optional arguments, passed as an HTTP POST request,
the Registry GUI service starts the session without showing a form in which these values can be
entered. In this way the verb can be called also by other services that have already authenticated the
user as the Registry administrator.
After the identification of the Registry administrator, the verb displays the administration home
environment. Using this environment the administrator can access all the functionality provided.

Example Request:
/OLP/Registry/1.0/AdminLoginForm

EditUserRightsForm
Version: 1.0
Fixed args: step
Optional Args: none
Return MIME type: text/html
Return Status Codes: 200, 400

The page allows the Registry administrator to manage the rights of a user.
In the first step, the administrator has to submit his/her identification and password, if not
previously provided.
In the second step, the administrator can select the login of a given user.
In the third step, the administrator can change any of the user rights.
Steps 2 and 3 can only be used after the identification of the user. The login and password of the
registered user are managed as parameters of the session and used to verify that only authorised
users access this method. If a session has not yet been initialized, the verb automatically calls the
AdminLoginForm.

Example Request:
/OLP/Registry/1.0/UserWithdrawForm/1

EditUserRights

Version: 1.0
Fixed args: login
Fixed_post args: uploaded_file
Optional Args: admin, admpass
Optional_post Args: session-id, login, password
Return MIME type: text/plain
Return Status Codes: 200, 400, 401

Used to modify the rights of the user specified as parameter.
This verb can only be used after the identification of a Registry administrator. The login and
password of the Registry administrator are managed as parameters of the session and used to verify
that only authorised users access this method. If a session has not yet been initialised the verb can
be used specifying the login and password of a Registry administrator as optional arguments. In this
way, the verb is usable either by the Registry GUI, that creates a session with the Registry Engine,
or by other services.
All rights-configuration information is passed from the Registry UI to the Registry engine as an
HTTP post request of an xml file.
Returns 200 if the rights modification was successful, an error code (400 or 401) otherwise.

Example Request:
/OLP/Registry/1.0/EditUserRights/testuser/%s

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 85

AddGroup
Version: 1.0
Fixed_post args: owner, password
Optional_post Args: uploaded_file
Return MIME type: text/plain
Return Status Codes: 200, 400

Creates a new group in the Registry. The specified user is set as the owner of the new group and is
the only user present in the group.
The group settings are transmitted as an HTTP POST request of an XML file. Returns 200 if the
group is successful created, the error code 400 otherwise.

Example Request:
/OLP/Registry/1.0/AddGroup/%s/%s/%s

DisplayGroupInfo
Version: 1.0
Fixed args: groupname
Optional Args: none
Return MIME type: text/xml
Return Status Codes: 200, 400

Returns a structured response that contains all settings of the given group:
• groupname, group's ID in the registry,
• description, short description of the group,
• owner, login of the group's owner,
• comment, any text.

Example Request:
/OLP/Registry/1.0/DisplayGroupInfo/group

Example Response:
<?xml version="1.0" encoding="UTF-8"?>
<DisplayGroup version="1.0">
 <groupname>developers</groupname>
 <description>System Developers</description>
 <owner>devadmin</owner>
 <comment></comment>
</DisplayGroup>

ModifyGroupInfo
Version: 1.0
Fixed_post args: groupname, owner, password
Optional_post Args: uploaded_file
Return MIME type: text/plain
Return Status Codes: 200, 400

Changes settings of the given group.
The Registry service verifies that the user specified (owner) is the owner of the group specified
(groupname) because only the owner of a group can modify the group settings.
All fixed and optional arguments are transmitted as an HTTP POST request.
Returns 200 if all required settings can be changed, the error code 400 otherwise.

Example Request:
/OLP/Registry/1.0/ModifyGroupInfo/%s/%s/%s%s

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 86

DeleteGroup

Version: 1.0
Fixed_post args: groupname, owner, password
Optional Args: none
Return MIME type: text/plain
Return Status Codes: 200, 400

Deletes a group. Its members remain as registered users, but their membership in this group is
removed.
The Registry service verifies that the user specified (owner) is the owner of the group specified
(groupname) because only the owner of a group can request the group deletion.
All fixed arguments are transmitted as an HTTP POST request.
Returns 200 if the deletion was successful, the error code 400 otherwise.

Example Request:
/OLP/Registry/1.0/DeleteGroup/%s/%s/%s

AddUserToGroup
Version: 1.0
Fixed_post args: groupname, owner, password, login
Optional Args: none
Return MIME type: text/plain
Return Status Codes: 200, 400

All fixed arguments are transmitted as an HTTP POST request.
The Registry service verifies that the user specified (owner) is the owner of the group specified
(groupname) because only the owner of a group can add a user to a group.
Returns 0 if the user is known to the Registry and could be added to the group, a negative number
otherwise.

Example Request:
/OLP/Registry/1.0/AddUserToGroup/%s/%s/%s/%s

AuthenticateGroupUser
Version: 1.0
Fixed args: groupname, login
Optional Args: none
Return MIME type: text/plain
Return Status Codes: 200, 400

Returns 200 if the user is a member of the given group, the error code otherwise.

Example Request:
/OLP/Registry/1.0/AuthenticateGroupUser/group/user

DeleteUserFromGroup
Version: 1.0
Fixed_post args: groupname, owner, password, login
Optional Args: none
Return MIME type: text/plain
Return Status Codes: 200, 400

Removes a user from the given group.

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 87

The Registry service verifies that the user specified (owner) is the owner of the group specified
(groupname) because only the owner of a group can add a new user (login) to a group.
All fixed arguments are transmitted as an HTTP POST request.
Returns 200 if the user could be deleted, the error code otherwise.

Example Request:
/OLP/Registry/1.0/DeleteUserFromGroup/%s/%s/%s/%s

ListGroups
Version: 1.0
Fixed args: none
Optional Args: format
Return MIME type: text/xml
Return Status Codes: 200, 400

Returns a structured response that contains a list in which each element of the list provides
information about a public group from the Registry. Format can be either 'short', in which case the
service returns only groupname for each group, or 'long', which returns all available items as
specified in the DisplayGroup verb. The default value for format is 'short'.

Example Request:
/OLP/Registry/1.0/ListGroups?format=long

Example Response:
<?xml version="1.0" encoding="UTF-8"?>
<ListGroups version="1.0" format="long">
 <group>
 <groupname>developers</groupname>
 <description>
 System Developers
 </description>
 <owner>devadmin</owner>
 <comment></comment>
 </group>
 <group>
 ...
 </group>
</ListGroups>

ListGroupUsers
Version: 1.0
Fixed args: groupname
Optional Args: format
Return MIME type: text/xml
Return Status Codes: 200, 400

Returns a structured response that contains a list in which each element of the list provides
information on one member of the given group. Format can be either 'short', in which case the
service only returns the login for each user, or 'long', which returns all available items as specified
in the DisplayUser verb. The default value for format is 'short'.

Example Request:
/OLP/Registry/1.0/ListGroupUsers/group?format=long

Example Response:
<?xml version="1.0" encoding="UTF-8"?>

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 88

<ListGroupUsers version="1.0" group="developers" format="long">
 <user>
 <login>devadmin</login>
 <full>Developers' Administrator</full>
 <email>devadmin@scholnet.org</email>
 <institution>Scholnet</institution>
 <address>
 wherever all admins live 42
 </address>
 <phone>+9999999999</phone>
 <comment></comment>
 </user>
 <user>
 ...
 </user>
</ListGroupUsers>

ListUserGroups
Version: 1.0
Fixed args: login
Optional Args: format
Return MIME type: text/xml
Return Status Codes: 200, 400

Returns a structured response that contains a list in which each element of the list provides
information on one group that contains the given user as a member. Format can be either 'short', in
which case the service only returns the groupname for each group, or 'long', which returns all
available items as specified in the DisplayGroup verb. The default value for format is 'short'.

Example Request:
/OLP/Registry/1.0/ListUserGroups/user?format=long

Example Response:
<?xml version="1.0" encoding="UTF-8"?>
<ListUserGroups version="1.0" user="devadmin" format="long">
 <group>
 <groupname value=”developers” />
 <description>
 System Developers
 </description>
 <owner value=”devadmin” />
 <public value=”1” />
 <comment>just a comment</comment>
 </group>
 <group>
 ...
 </group>
</ListUserGroups>

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 89

12. COLLECTION SERVICE

The Collection Service (CS) provides a virtual organisation of the documents stored in the
repositories. It supplies the information necessary to manage this aggregation of virtual documents.
This information is used by the other services in order to handle the objects in the collection objects
so that, for example, the Query Mediator can perform a query on a given collection, or the Browse
can perform a browsing on a collection, and so on. It can be replicated on multiple servers.

Collections are managed by one or more administrators. The administrators are registered users that
have administration rights on the collection service, i.e. they can create, delete, and edit the
collection metadata, creating virtual views of the information space. Theser rights are set by the
Registry Administrator.

In order to automatically pre-organise the documents stored in the distributed repositories, the
Collection Service exploits the repository set concept. A set is an administrator-defined subset of
the Repository that is described by a name and a textual description. At the service start-up time
(and then periodically) the CS dynamically pulls information about sets from each Repository
Service instance and associates a collection with each discovered set. These collections are called
default collections and can be used by the CS administrators to create other virtual views of the
information space.

The CS is a replicated service. Multiple instances of the CS can be defined in the environment. The
Meta Service maintains the address of each instance and defines one of these as the master CS and
all others as slave CS. When a slave CS adds, deletes or edits the collection metadata for a
collection, it sends a notification to the master CS that registers the event and updates the
information for that collection. Periodically, each slave CS harvests the collection’s metadata list
from the master CS and updates its state.
The presence of multiple instances of the CS increases fault tolerance, reduces the overload of each
instance, and makes it possible to dynamically reorganise the environment when a server hosting
the CS is not reachable. Note that the Meta Service can dynamically change the status of a
Collection Service, moving it from slave to master and vice versa. The master CS must verify that
the CS candidate to the master status has updated the information before changing its state to slave
in order to preserve the CS state integrity. If the master candidate has not yet been updated the CS
invokes Synchronise which then forces the synchronisation between two CSs.

The Collection Service is logically divided in two components as reported below:

Communication with the Collection Service takes place via the OpenDLib Protocol (OLP). Note
that other services can call either the Collection GUI verbs or the Collection Engine verbs in
accordance with the service specification reported in this section. The CS GUI and CS Engine
communicate via internal API. This architectural choice makes it possible:
• to use the Collection Service functionality with a third party user interface;
• to easily change the CS GUI to fit the specific needs.

Collection
GUI

Collection
Engine

Collection
Service

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 90

12.1 STATE
This section presents the data structure, its abstract type, and a brief textual description for each
object managed by the Collection Service.

Collection
A Collection is a virtual view of the information space, i.e. any collection may be perceived as a
subset of documents published in the environment. The documents belonging to the collection are
dynamically identified. Each collection has a unique CollectionId and the following collection
metadata, in accordance with the DTD defined in the Appendix G.
• Name: the name of the collection
• Description: the textual description of the collection
• Subject: a list of free text optionals that specify the collection subject
• Owner: the login of the creator of the collection
• Filtering Condition: a set of pairs (Authority, Condition) with the following meaning:

- Authority: authority that publishes documents in the collection
- Condition: filter to select the documents of the collection among those published by the

authority
• Services: a set of service descriptions. Each service description reports the name of the service

and its verbs (with the specification of the version) that can be used on the collection.
• Parent Collection: the parent collection CollectionId. This information is used to build a

hierarchy between collections in order to present them in a more usable and meaningful way to
the end-user.

Note that the information about the available verbs of a service will be used by other services in
order to present the end-user with only that functionality supported by authorities associated with
the collection. For example, let us suppose that certain authorities (identified generically as Ax)
indexed by certain specific index servers support a very complex query, named A, that is not
supported by other authorities. The A query form is presented as available functionality to the end-
user only when he/she selects a collection based on authorities extracted by the Ax group mentioned
above. The same query capability is not visible to the user when he selects a collection on
authorities outside Ax.

Here below is an example of the collection metadata managed by the CS.

<collection name="……." description="…….." subject= “…….” id=”…”>
 <owner>
 <login>….</login>
 </owner>
 <filtering-condition>
 <pair>
 <authorities>
 <authority name="…." />
 ……
 </authorities>
 <condition value=”….” />
 </pair>
 ………..
 </filtering-condition>
 <services>
 <service name=”……”>
 <verbs name=”……” version=”……”>
 …….

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 91

 </service>
 ………..
 </services>
 <parent-collection id=”….” />
</collection>

12.2 COLLECTION VERBS
In this section, we present the set of Collection verbs. This set is divided into three sub-sets: Service
Information Verb, Graphical User Interface Verb, and Service Specific Verb, as reported in the
following table:

Service Information Verb GUI Verb Service Specific Verb
Identify AdminLoginForm AdminLogin
ListVerbs CreateDefaultCollection
DescribeVerb CreateCollectionForm CreateCollection
 EditCollectionForm EditCollection
 DeleteCollectionForm DeleteCollection
 ListCollectionsForm ListCollections
 ShowCollectionMetadata GetCollectionMetaData
 Synchronise
 SynchroniseCollection

Any GUI verb returns an html page that is designed for rendering by a browser.
Identify

Version: 1.0
Fixed args: none
Optional Args: none
Return MIME type: text/xml
Return Status Codes: 200, 400, 501

Returns a structured response containing the name and other information about the service.

Example Request:
/OLP/Collection/1.0/Identify

Example Response:
<?xml version="1.0" encoding="UTF-8"?>
<Identify version="1.0">
 <serviceName>Experimental OLP Collection Server</serviceName >
 <olp_base_url>http://labserv.iei.pi.cnr.it:8230</olp_base_url>
 <metaServiceURL>http://labserv.iei.pi.cnr.it:8221</metaServiceURL>
 <textualDescription></textualDescription>
 <protocolVersion>1.0</protocolVersion>
 <adminEmail>pagano@iei.pi.cnr.it</adminEmail>
 <verbsInfo>
 <verbsSupported>
 <description> </description>
 <olp_base_url>http://labserv.iei.pi.cnr.it:8230/OLP/Collection/1.0/ListVerbs</olp_base_url>
 </verbsSupported>
 <verbsDescription>
 <description> </description>
 <olp_base_url>http://…:8230/OLP/Collection/1.0/DescribeVerb/DescribeVerb</olp_base_url>
 </verbsDescription>
 </verbsInfo>
 <submissionProcedure>

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 92

 <description>The service supports public management of the collection. The authorised user can
create, edit, and delete own collection.

 </description>
 <olp_base_url>http://…/OLP/Collection/1.0/AdminLoginForm</olp_base_url>
 </submissionProcedure>
 <harvestInformation>
 <description>
 The collections list is available
 </description>
 <olp_base_url>http://…:8230/OLP/Collection/1.0/ListCollections</olp_base_url>
 </harvestInformation>
 <useRestrictions>Terms and conditions are …...</useRestrictions>
 <contentInfo>
 <collectionProfile>
 <description>

 A metadata description is associated with every collection in accordance with the OpenDLib
CollectionProfile format.

 </description>
 <olp_base_url>http://labserv.iei.pi.cnr.it:8119/OLP/htdocs/collectionprofile.html</olp_base_url>
 <olp_dtd_url>http://labserv.iei.pi.cnr.it:8119/OLP/htdocs/DTD/collectionprofile.dtd</olp_dtd_url>
 </collectionProfile>
 </contentInfo>
</Identify>

ListVerbs
Version: 1.0
Fixed args: none
Optional Args: none
Return MIME type: text/xml
Return Status Codes: 200, 400, 501

Returns a structured response containing the name of the verbs defined by this service.

Example Request:
/OLP/Collection/1.0/ListVerbs

DescribeVerb
Version: 1.0
Fixed args: verb
Optional Args: version
Return MIME type: text/xml
Return Status Codes: 200, 400, 501

Returns a structured response that contains a list in which each element of the list provides
information on a version of the specified verb that is supported by this service. The following
information can be provided at the verb and version level:

• description, description of the verb or a specific version
• note, information pertaining to the verb or a specific version

Each element of the list contains the following information:
• version, number of the verb.
• arguments, list of the names of the fixed and optional arguments, if any, that are accepted by

the verb in that version.
• example template of request to this Collection, with fixed arguments indicated in brackets
• returns, optional, contains information about response format.

Note that a service may implement more than one version of a verb.

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 93

Example Request:
/OLP/Collection/1.0/DescribeVerb/AdminLoginForm

AdminLogin
Version: 1.0
Fixed post: none
Fixed_post args: login, password
Optional Args: none
Return MIME type: text/xml
Return Status Codes: 200, 400, 501

Allows to verify the identification of an administrator. The login and password are passed as HTTP
POST request.

The method verifies that the login and password are correct and returns the list of the collections
that the identified user is authorised to administrate.

Example Request:
/OLP/Collection/1.0/AdminLogin
Example Response
<?xml version="1.0" encoding="UTF-8"?>
<AdminLogin version="1.0">
 <session-id value=””/>
 <login>test</login>
 <collections>
 <collection name="……." description="…….." subject= “…….” id=”…”>
 <collection name="……." description="…….." subject= “…….” id=”…”/>
 </collection>
 ……………….
 </collections>
 </AdminLogin>

CreateDefaultCollections
Version: 1.0
Fixed args: none
Optional Args: none
Return MIME type: text/plain
Return Status Codes: 200, 400, 501

Allows to create the default collections of the environment. The CS harvest information from each
repository in order to discover the available sets. For each set, the CS creates a collection such that:
• The name of the collection is the name of the set;
• The description is the display field associated with the set;
• The authorities is the list of all authorities (also if they are managed by different repositories)

able to publish documents in the set;
• The condition for each authority is: “setspec=set-name”;
• The owner is the special flag “Collection Service”;
• At present the Subject is empty. In the future we would like to automatically associated subjects

to the default collections by analysing the documents that belong to them.
• The parent collection is calculated automatically using the structured information of the name,

formally expressed in accordance with the partiotionspec definition rule (see Repository State
paragraph).

• The services reported are the available verbs for searching and browsing the authorities
specified.

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 94

The master CS automatically invokes the CreateDefaultCollection at service start-up time. Each
slave CS at service start-up time requires the list of available collections from the master CS.
Note that the default collections are periodically updated because each repository can change the list
of available sets or new repositories can be dynamically added to the environment.

Returns 200 if the request can be served, the error code 400 otherwise.

Example Request:
/OLP/Collection/1.0/CreateDefaultCollection

CreateCollection
Version: 1.0
Fixed args: none
Fixed_post args: collection-specification
Optional Args: session-id
Optional_post Args: login, password
Return MIME type: text/plain
Return Status Codes: 200, 400, 501

Allows to create collections in the environment. The collection-specification is passed as XML file
in POST mode. This specification contains two parts. The first part includes metadata that describes
the collection: the name, description, and subject of the collection, its owner, its parent collection,
and the list of services. The second part describes the membership condition and the available
services.
Note that the collection filtering condition is built as the combination of the filtering condition of its
parent collection, if this is specified, and the membership condition specified explicitly.
The membership condition is formulated according to the following BNF grammar:
Membership-Condition ::= Condition | Part
Part ::= Pair | Pair Part
Pair ::= Auths and Condition | Auths
Filtering-Condition ::= Leaf | Condition
Condition ::= Leaf Operator Leaf | Leaf Operator Condition | Condition Operator Leaf | Condition Operator
Condition
Leaf ::= Attr Rel-Op Value
Operator::= and | or
Rel-Op ::= = | > | < | …
Auths ::= Authories = (list of authorities)
Attr ::= Olap field

Multiple conditions can be associated with multiple authorities set. If the user does not specify the
list of authorities, all authorities are assumed as default and only a single condition can be specified.

An example of the collection-specification is reported below:

<?xml version="1.0" encoding="UTF-8"?>
<collection name="" description="" subject= "" id="">
 <owner>
 <login></login>
 <passwd></passwd>
 </owner>
 <services>
 <service name="search">
 <verb name="SearchFielded">
 <metadata_format name="olms">
 <filtering name="dc:language" value="en">
 <fields>
 <field name="dc:creator"/>

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 95

 </fields>
 </filtering>
 </metadata_format>
 </verb>
 </service>
 </services>
 <parent-collection id="" />
 <membership meta-format="olms" filtering_name="dc_language" filtering_value="en">
 <pair>
 <authorities>
 <authority name="ercim.cnr.iei"/>
 <authority name="ercim.cnr.cnuce"/>
 </authorities>
 <filtering-condition>
 <condition>
 <leaf attribute="dc:creator" value="pagano" rel-op=””/>
 <operator name="and"/>
 <leaf attribute="dc:creator" value="castelli" rel-op=””/>
 </condition>
 <operator name="or"/>
 <leaf attribute="dc:subject" value="digital library" rel-op=””/>
 </filtering-condition>
 </pair>
 <pair>
 <authorities>
 <authority name="ercim.cnr.iat"/>
 </authorities>
 <filtering-condition>
 <condition>
 <leaf attribute="dc:creator" value="buzzi" rel-op=””/>
 <operator name="or"/>
 <leaf attribute="dc:subject" value="digital library" rel-op=””/>
 </condition>
 </filtering-condition>
 </pair>
 </membership>
</collection>

Note that in the service section of the collection-specification for every service specification not
explicitly reported, the default configuration, reported by the QM ListSearchMethods verb and by
the Browse ListBrowsableFields verb, is assumed as default. This means that if, in the specification
of the collection A, is not reported “<service name="search">”, the search service is not usable to find
documents belonging to the collection. If is reported “<service name="search" />”, all search
functionalities will be available on that collection. If is reported: “<service name="search"><verb
name="SearchFielded"/></service>”, only the SearchFielded method will be available on the
collection. If is reported: “<service name="search"><verb name="SearchFielded"><metadata_format
="olms"/></verb></service>”, only the SearchFielded method restricted to the OLMS metadata format
will be available on the collection. The same rules apply to the “<service name="browse">” section,
and, as for the search section, for each sub-section not explicitly reported.

The filtering condition allows to select which documents, published by specific authorities, belong
to a collection.

The CS creates a CollectionId automatically and uses the collection-specification in order to build
the collection metadata. At present the Membership-Condition includes information about the
authorities that stores documents about the collection. If the authorities are not specified, the CS
assumes that the collection documents can be published in one of the overall set of authorities.

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 96

Techniques that allow the CS to select automatically the authorities that publish documents
compliant with the membership condition can be taken into account. The CS has been designed to
easily permit this enhancement.

This verb can be invoked only after the identification of the administrator. The login and password
of the administrator are managed as parameters of the session and allow to verify that only
authorised users can access this method.
If a session is not yet initialised, the verb is usable by specifying the login and password of the
Collection administrator. In this way the verb can be invoked either by the Collection GUI, that
creates a session with the Collection Engine, or by the other services.

Returns 200 if the request can be served, the error code 400 otherwise.

Example Request:
/OLP/Collection/1.0/CreateCollection

EditCollection
Version: 1.0
Fixed args: CollectionId
Fixed_post args: collection-metadata
Optional Args: session-id
Optional_post Args: login, password
Return MIME type: text/plain
Return Status Codes: 200, 400, 501

Allows to edit the description, subject, parent collection, and services of an exiting collection. Only
the owner of a collection can modify these collection metadata.
In order to preserve the database integrity the filtering condition cannot be modified using the
EditCollection service request. The modification of the settings specified in the filtering condition
might identify a completely different set of documents, thus changing completely the semantics of
the collection. .

The CS uses the login and password (or the session-id) to verify that the user can edit and modify
the specified collection.
The collection-metadata is passed as XML file in POST mode.

Returns 200 if the request can be served, the error code 400 otherwise.

Structure of the collection-metadata file passed to the Collection is as follow:
<collection name="……." description="…….." subject= “…….” id=”…”>
 <owner>
 <login>….</login>
 </owner>
 <membership meta-format=”” language=””>
 <pair>
 <authorities>
 <authority name="ercim.cnr.iei"/>
 <authority name="ercim.cnr.cnuce"/>
 </authorities>
 <filtering-condition />
 </pair>
 ………..
 </filtering-condition>
 <services>
 <service name=”……”>
 <verbs name=”……” version=”……”>
 …….

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 97

 </service>
 ………..
 </services>
 <parent-collection id=”….” />
</collection>

Example Request:
/OLP/Collection/1.0/EditCollection/0000125

DeleteCollection
Version: 1.0
Fixed args: CollectionId
Optional Args: session-id
Optional_post Args: login, password
Return MIME type: text/plain
Return Status Codes: 200, 400, 501

Allows to delete a explicitly created collections, i.e. a collections that is not classified as default.
The specified collection is removed from the list of available collections.
Before to proceed to the deletion the system checks that:
• The request is issued by the owner of the collection ;
• The specified collection is not classified as default collection. The default collection cannot be

removed.

This verb is usable only after the identification of the administrator. The login and password of the
administrator are managed as parameters of the session and allow to verify that only authorised
users can access this verb.
If a session is not yet initialised, the verb is usable by specifying the login and password of the
Collection administrator as optional arguments. In this way the verb is usable either by the
Collection GUI, that creates a session with the Collection Engine, or by the other services.

Returns 200 if the request can be served, the error code 400 otherwise.

Example Request:
/OLP/Collection/1.0/DeleteCollection/0000125

ListCollections
Version: 1.0
Fixed args: none
Optional Args: owner
Return MIME type: text/xml
Return Status Codes: 200, 400, 501

Returns a structured response containing the Name, Description, Subject and CollectionId of the
collections defined by this service.
If the owner is specified the CS return only the list of collections owned by the specified user.

Note that the parent-collection attribute is used to build a structured list where a collection child is
included in the tree of the collection father.

Example Request:
/OLP/Collection/1.0/ListCollections

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 98

Example Response:
<?xml version="1.0" encoding="UTF-8" ?>
<ListCollections version="1.0">
 <collection name="Computer Science Publications" id="0000015" description="Scholnet Computer
Science Publications" subject=”computer science”>
 <collection name="Operating System" id="0000024" description="Operating System Technical
Reports" subject =”Operating System”/>
 <collection name="Database" id="0000024" description="Scholnet Computer Science Technical
Reports" subject =”Database”/>
 </collection>
 <collection>
 ….
 </collection>
</ListCollections>

GetCollectionMetadata
Version: 1.0
Fixed args: CollectionId
Optional Args: none
Return MIME type: text/xml
Return Status Codes: 200, 400, 501

Returns a structured response containing all information about a specific collection. This
information is used, for example, by the Query Mediator to transform a query on a collection in a
query understandable by an Index Service.

Example Request:
/OLP/Collection/1.0/GetCollectionMetadata

Example Response:
<?xml version="1.0" encoding="UTF-8" ?>
<collection name="……." description="…….." subject= “…….” id=”…”>
 <owner>
 <login>….</login>
 </owner>
 <filtering-condition meta-format=”” language=””>
 <pair>
 <authorities>
 <authority name="ercim.cnr.iei"/>
 <authority name="ercim.cnr.cnuce"/>
 </authorities>
 <filtering-condition />
 </pair>
 ………..
 </filtering-condition>
 <services>
 <service name=”……”>
 <verbs name=”……” version=”……”>
 …….
 </service>
 ………..
 </services>
 <parent-collection id=”….” />
</collection>

Synchronise
Version: 1.0

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 99

Fixed args: host, port
Optional Args: none
Return MIME type: text/plain
Return Status Codes: 200, 400, 501

The verb is used to synchronise two or more CSs.

This method is used by a Meta Service before changing the state of CS from master to slave, or
periodically by the Master Collection Service to update its state.

The methods is managed by the new master CS as follows:
1. Set a lock that interrupts any collection service request. The pending requests are completed and

the new ones are refused sending a special error code that allows the client to manage the
temporary interruption of the service.

2. Send a Synchronise request to all slaves CSs.
3. Require the list of available collections from any slave CS, using SynchroniseCollection verb.
4. Update the set of collection metadata.
5. Remove the lock on SynchroniseCollection request.
6. Wait that any slave CS updates its collection metadata via SynchroniseCollection.
7. Remove the lock on all methods.

The methods is managed by a slave CS as follow:
1. Set a lock that interrupts any collection service request, except for SynchroniseCollection. The

pending requests are completed and the new ones are refused.
2. Wait until the master CS call the SynchroniseCollection verb.
3. Send a SynchroniseCollection request to the new master CS in order to download the list of

available collections.
4. Update the set of collection metadata.
5. Remove the lock on the collection requests.

A CS accepts the Synchronise request only if the client address is known as a CS address or a Meta
address.

Example Request:
/OLP/Collection/1.0/Synchronise/labserv.iei.pi.cnr.it/8031

SynchroniseCollection
Version: 1.0
Fixed args: none
Optional Args: none
Return MIME type: text/xml
Return Status Codes: 200, 400, 501

Returns a structured response containing all information about the handled collections set.
A CS accepts the SynchroniseCollection request only if the client address is known as a CS address.

Example Request:
/OLP/Collection/1.0/SynchroniseCollection

AdminLoginForm
Version: 1.0
Fixed args: none
Optional_post Args: login, password
Return MIME type: text/html

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 100

Return Status Codes: 200, 400

Returns the page that allows the administrator to log in the administration environment.
If the login and password are specified as optional arguments, passed as HTTP POST request, the
Collection GUI service starts the session without showing the form in which these values can be
entered. In this way the verb can be called also by other services that have already authenticated the
user as Collection administrator.
After the identification of the Collection administrator the verb shows the administration home
environment. Using this environment the administrator can access all the service functionality.

Example Request:
/OLP/Collection/1.0/AdminLoginForm

ListCollectionsForm

Version: 1.0
Fixed args: none
Optional Args: user
Return MIME type: text/html
Return Status Codes: 200, 400, 501

Returns the page that shows the structured collection list containing the Name, Description, Subject
and CollectionId of the collections managed by this service.
If the user is specified only the list of collections owned by the specified user is shown.

Example Request:
/OLP/Collection/1.0/ListCollectionsForm

ShowCollectionMetadata
Version: 1.0
Fixed args: CollectionId
Optional Args: none
Return MIME type: text/html
Return Status Codes: 200, 400, 501

Returns the page that shows the structured collection metadata containing all information about a
specific collection. This information is analysed, for example, by a collection administrator in order
to create a refinement of an existing collection.

Example Request:
/OLP/Collection/1.0/ShowCollectionMetadata

CreateCollectionForm
Version: 1.0
Fixed args: none
Optional Args: none
Return MIME type: text/html
Return Status Codes: 200, 400

Returns the page that allows the administrator to fill in all information about a collection.
The administrator has to submit the following information:
• the name, the subject and the description
• the membership condition. It is automatically composed by the service in accordance with the

steps performed by the user. He/she can specify:
- The collection constraints using all OLAP fields.
- The collection as composition of other existing collections.

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 101

- The collection as refinement of an exiting collection

This verb is usable only after the identification of the administrator. The login and password of the
administrator are managed as parameters of the session and allow to verify that only authorised user
can access this method.
If a session is not yet initialised the verb automatically calls the AdminLoginForm.

Example Request:
/OLP/Collection/1.0/CreateCollectionForm

EditCollectionForm
Version: 1.0
Fixed args: step
Optional Args: none
Return MIME type: text/html
Return Status Codes: 200, 400

Returns the page that allows the administrator to change the metadata associated to an existing
collection.
The Collection Service in multiple steps manages the method.
After the administrator has submitted the identification and password, he/she can select the
collections that he/she wants to change. Note that an administrator can only ask to change his/her
own collections.In the second step the user can modify the following information:
• the showed description and subject
• the list of available services and verbs.

Note that the membership condition of the collection cannot be changed because this operation
corresponds to the identification of a new set of documents.. If the administrator wants to change a
filtering condition he/she has to delete the exiting collection and to build a new one.

The structured information is validated in accordance with the collection metadata format.

This verb is usable only after the identification of the administrator. The login and password of the
administrator are managed as parameters of the session and allow to verify that only authorised user
can access this method.
If a session is not yet initialised the verb automatically calls the AdminLoginForm.

Example Request:
/OLP/Collection/1.0/EditCollectionForm/1

DeleteCollectionForm
Version: 1.0
Fixed args: step
Optional Args: none
Return MIME type: text/html
Return Status Codes: 200, 400

Returns the page that allows the administrator to request the deletion of a document. A delete
request deletes all information about the collection. The delete request is supported but it is
deprecated.

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 102

After the administrator has submitted the identification and password, he/she can select the
collections that he/she wants to delete. Note that an administrator can ask only for the deletion of
that collection of which he/she is owner.

This verb is usable only after the identification of the administrator. The login and password of the
administrator are managed as parameters of the session and allow to verify that only authorised user
can access this method.
If a session is not yet initialised the verb automatically calls the AdminLoginForm.

Example Request:
/OLP/Collection/1.0/DeleteCollectionForm/1

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 103

13. BROWSE SERVICE

The Browse Service (BS) supports the construction of browsing indexes and the actual browsing of
those indexes on library contents.
It receives browsing requests and returns structured list of document metadata, each of which
contains a link to the document itself.
The formats of the metadata managed by the BS, the indexed fields list and of the result metadata
are parametric and can be easily changed. The BS harvests these configuration parameters from the
Meta Service if it is configured in networked modality, or read them from its local configuration
files if it is configured in standalone modality.
In the Scholnet environment these formats are subsets of the OpenDLib Application Profile, i.e. any
metadata format disseminated by the Repository Service is a potential candidate.
In order to build the browsing indexes, the service periodically harvests the available metadata from
each repository, and updates its knowledge base.

The communication with the Browse Service takes place via the OpenDLib Protocol (OLP).

13.1 STATE
This section presents the data structure, its abstract type, and a brief textual description for each
object managed by the Browse Service.

Bibliographic Record
The Browse Service manages bibliographic records in accordance with the specified metadata
format.
A bibliographic metadata is named by a handle, which is a kind of URN. Unlike a URL, a handle is
location independent.
A handle has two parts, a naming authority, and a string. It is written with these two parts separated
by a slash, for example CNR.IEI /doc1. The character set for handles used in OLP is restricted to
alphanumeric characters, underscore, period, and hyphen (except for the slash separator). Case is
not significant in handles.

Browsable Fields
The Browse Service will index a subset of the fields included in the specified metadata format. This
subset is determined analysing the configuration parameters at service start-up time.

Result Formats
The Browse Service will return list of documents where each element of the list contains the fields
specified in one of the available result formats. These formats are determined analysing the
configuration parameters at service start-up time.

13.2 BROWSE VERBS
In this section, we present the set of the Browse verbs. This set is divided into three sub-sets:
Service Information Verb, Service Descriptive Verb, and Service Specific Verb as reported in the
following table:

Service Information Verb Service Descriptive Verb Service Specific Verb
Identify ListBrowsableFields Browse
ListVerbs ListResultFormats BrowseUpdate
DescribeVerb

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 104

Identify
Version: 1.0
Fixed args: none
Optional Args: none
Return MIME type: text/xml
Return Status Codes: 200, 400, 501

Returns a structured response containing the name and other information about the service.

Example Request:
/OLP/Browse/1.0/Identify

Example Response:
<?xml version="1.0" encoding="UTF-8"?>
<Identify version="1.0">
 <serviceName>Experimental OLP Browse Server</serviceName >
 <olp_base_url>http://labserv.iei.pi.cnr.it:8230</olp_base_url>
 <metaServiceURL>http://labserv.iei.pi.cnr.it:8221</metaServiceURL>
 <textualDescription></textualDescription>
 <protocolVersion>1.0</protocolVersion>
 <adminEmail>pagano@iei.pi.cnr.it</adminEmail>
 <verbsInfo>
 <verbsSupported>
 <description> </description>
 <olp_base_url>http://labserv.iei.pi.cnr.it:8230/OLP/Browse/1.0/ListVerbs</olp_base_url>
 </verbsSupported>
 <verbsDescription>
 <description> </description>
 <olp_base_url>http://…:8230/OLP/Browse/1.0/DescribeVerb/DescribeVerb</olp_base_url>
 </verbsDescription>
 </verbsInfo>
 <submissionProcedure>
 <description>The service does not support submission.
 </description>
 <olp_base_url> </olp_base_url>
 </submissionProcedure>
 <harvestInformation>
 <description>
 No information is available
 </description>
 <olp_base_url> </olp_base_url>
 </harvestInformation>
 <useRestrictions>Terms and conditions are …...</useRestrictions>
 <contentInfo>
 <browsableFields>
 <description>

 The set of fields that can be used to browse the set of documents is available.
 </description>
 <olp_base_url> http://…:8230/OLP/Browse/1.0/ListBrowsableFields</olp_base_url>
 </browsableFields>
 <resultFormats>
 <description>

 The result formats used by the service are parametric. The pertinent set of result formats is
available.

 </description>
 <olp_base_url> http://…:8230/OLP/Browse/1.0/ListResultFormats</olp_base_url>
 </resultFormats>
 </contentInfo>
</Identify>

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 105

ListVerbs
Version: 1.0
Fixed args: none
Optional Args: none
Return MIME type: text/xml
Return Status Codes: 200, 400, 501

Returns a structured response containing the name of the verbs defined by this service.

Example Request:
/OLP/Browse/1.0/ListVerbs

DescribeVerb
Version: 1.0
Fixed args: verb
Optional Args: version
Return MIME type: text/xml
Return Status Codes: 200, 400, 501

Returns a structured response that contains a list in which each element of the list provides
information on a version of the specified verb that is supported by this service. The following
information may be provided at the verb or version level:

• description, description of the verb or a specific version
• note, information pertaining to the verb or a specific version

Each element of the list contains the following information:
• version number of the verb.
• arguments, a list of the names of the fixed and optional arguments, if any, accepted by the

verb in that version.
• example template of request to this Collection, with fixed arguments indicated in brackets
• returns, optional, contains information about response format.

Note that a service may implement more than one version of a verb.

Example Request:
/OLP/Browse/1.0/DescribeVerb/Browse

ListBrowsableFields
Version: 1.0
Fixed args: none
Optional Args: none
Return MIME type: text/xml
Return Status Codes: 200, 400, 501

Returns a structured response that contains a list in which each element of the list provides
information on a field available for browsing the library contents.
The available fields are identified at Browse service start-up time, analysing the configuration
parameters harvested from the Meta (BS configured as networked) or read from local files (BS
configured as standalone).

Example Request:
/OLP/Browse/1.0/ListBrowsableFields

Example Response:
<?xml version="1.0" encoding="UTF-8"?>

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 106

<ListBrowsableFields version="1.0">
 <meta-format name=”olms” uri="http://labserv.iei.pi.cnr.it/OLP/htdocs/olms/NameSpace/">

 <field name=”creator”>
 <type>string</type>

 </field>
 <field name=”date”>

 <type>iso8610</type>
 <start_value>1995-08-01</start_value>
 <end_value>20021024</end_value>

 </field>
</meta-format>

</ListBrowsableFields>

ListResultFormats
Version: 1.0
Fixed args: none
Optional Args: none
Return MIME type: text/xml
Return Status Codes: 200, 400, 501

Returns a structured response that contains a list in which each element of the list provides
information on the format of a browse results request on the library contents.
The available formats are identified at Browse service start-up time, analysing the configuration
parameters harvested from the Meta (BS configured as networked) or read from local files (BS
configured as standalone). One of these formats must be indicated as default, otherwise the first one
is assumed.
The name of these formats specified in the response can be used as optional arguments in the
Browse request in order to select the format of the result.

Example Request:
/OLP/Browse/1.0/ListResultFormats

Example Response:
<?xml version="1.0" encoding="UTF-8"?>
<ListResultFormats version="1.0">
 <meta-format name=”olms” uri="http://labserv.iei.pi.cnr.it/OLP/htdocs/olms/NameSpace/">

 <format name=”short” default=’yes’>
 <field>dc:title</field>
 <field>dc:date</field>

 </format>
 <format name=”long”>
 <field>dc:creator</field>

 <field>dc:title</field>
 <field>dc:date</field>
 <field>dc:subject</field>

 </format>
</meta-format>

</ListResultFormats>

Browse
Version: 1.0
Fixed args: field
Optional Args: range, authority, collection, format
Return MIME type: text/xml
Return Status Codes: 200, 400, 501

Returns a structured response that contains a list in which each element of the list provides
information on a document.

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 107

The meaning of the arguments is as follows:
• field. Specifies the field on which the browse request is performed.
• range. Specifies a range of values for which browse information should be returned.
• authority. If the authority option is specified, the results will be filtered so that documents

returned indicate publications for the authorities specified. If no value is specified, all the
authorities specified in the configuration parameters are assumed as default.

• collection. If collection option is specified, the results will be filtered so that documents
returned indicate publications for the collections specified. If no value is specified, the all
collections value is assumed as default. Note that if the collection option is specified, the
authority option is ignored.

• format. Specifies the format of the browse results request. If no value is specified, the
default result format value is assumed.

The name of the formats available can be selected from the list returned by the ListResultsFormat.

Example Request:
/OLP/Browse/1.0//Browse/creator/range=a-d&collection=information%20retrieval&format=short

Example Response:
<?xml version="1.0" encoding="UTF-8"?>
<Browse version="1.0">
 <document handle="ncstrl.scholnet.one.trs.good/2001-TR-009">
 <olms:ol xmlns:olms="http://labserv.iei.pi.cnr.it/OLP/htdocs/olms/NameSpace/"
 xmlns:dcq="http://dublincore.org/documents/2000/07/11/dcmes-qualifiers/"
 xmlns:dc="http://purl.org/dc/elements/1.1/">
 <dc:title>A document test</dc:title>
 <dc:date>2001/06/12</dc:date>
 </olms:ol>
 </document>
</Browse>

BrowseUpdate
Version: 1.0
Fixed args: metadata-format
Optional Args: authority, force, verbose
Return MIME type: text/plain
Return Status Codes: 200, 400, 501

Used to update the browse database. This service request harvests the available new bibliographic
records from remote Repository servers and adds these new document descriptions to the database.

The arguments are as follows:
• metadata-format. Specifies the metadata format harvested from the Repository. The metadata

format managed by the Browse service is a parameter specified at service start-up time.
• authority. Specifies the authorities to be updated. If no value is specified, all authorities are

assumed as default.
• force. Used to force the updating of all authorites without keeping into account the time-stamp

of each authority. If no value is specified, only the authorities that have a time-stamp within the
specific time (fixed as configuration parameter) will be updated.

• verbose. Forces the writing of a verbose log.

The following steps are performed:
1. Lock the browse database in order to update it.
2. Select the authorities that have to be updated.

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 108

3. Identify the Repositories that store the documents for those authorities.
4. Send a ListContents request to each Repository identified specifying the authority, the starting

date, and the metadata-format.
5. Add bibliographic information for a document to the browse database. Note that the same

document may be added more than once to account for changes to bibliographic records.
6. Unlock the database.

200 is returned if no error occurs, an error code (400 or 501) otherwise.

Example Request:
/OLP/Browse/1.0/BrowseUpdate/OLMS

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 109

14. INDEX SERVICE

The Index Service (IS) supports the construction of indexes on the contents of the library and the
querying of those indexes.
It receives search requests and returns a structured list of document metadata, each of which
contains a link to the document itself.
The formats of the metadata managed by the IS, of the indexed fields list and of the result metadata
are parametric and can be easily changed. The IS harvests these configuration parameters from the
Meta Service if it is configured in networked modality, or reads them from its local configuration
files if it is configured in standalone modality.
In the Scholnet environment, these formats are subsets of the OpenDLib Application Profile, i.e.
any metadata format disseminated by the Repository Service is a potential candidate.

The Index Service is also a distributed service that is driven by the Meta Service, i.e. the Meta
Service assigns a set of authorities to each index server.
In order to build the indexes, the service periodically harvests the available metadata from a set of
repository servers, and updates its knowledge base. The set of repository servers is identified using
the authority-repository relation maintained by the Meta Service.

Communication with the Index Service occurs via the OpenDLib Protocol (OLP).

The IS is composed by a third party retrieval engine and by a gateway between the OpenDLib
environment and this engine. These two modules communicate via internal API. Note that the
OpenDLib gateway is completely parametric and that different retrieval engines can be used, for
example, FreeWaisSf, Inquery, and Smart.

14.1 STATE
This section presents the data structure, its abstract type, and a brief textual description for each
object managed by the Index Service.

Bibliographic Record
The Index Service manages bibliographic records in accordance with the metadata format specified.
A bibliographic metadata is named by a handle, which is a kind of URN. Unlike a URL, a handle is
location independent.
A handle has two parts, a naming authority, and a string. It is written with these two parts separated
by a slash, for example CNR.IEI /doc1. The character set for handles used in OLP is restricted to
alphanumeric characters, underscore, period, and hyphen (except for the slash separator). Case is
not significant in handles.

Indexed Fields
The Index Service will index a subset of the fields included in the metadata format specified. This
subset is determined analysing the configuration parameters at service start-up time.

Result Formats
The Index Service will return a list of documents in which each element of the list contains the
fields specified in one of the available result formats. These formats are determined by analysing
the configuration parameters at service start-up time.

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 110

Language
Each instance of the IS is language dependent. The language is specified as a local configuration
parameter. The language has to be specified because the lists of stop words, stemming rules, and
many others rules used by the retrieval engine are specific for each language. For this reason,
different servers will be instantiuated, each of which will able to manage different language.

14.2 INDEX VERBS
In this section, we present the set of the Index verbs. This set is divided into three sub-sets: Service
Information Verb, Service Descriptive Verb, and Service Specific Verb, as reported in the following
table:

Service Information Verb Service Descriptive Verb Service Specific Verb
Identify ListIndexedFields SearchFielded
ListVerbs ListResultFormats SearchSimple
DescribeVerb SearchFeedback
 GetMetadataDocuments
 IndexUpdate

Identify
Version: 1.0
Fixed args: none
Optional Args: none
Return MIME type: text/xml
Return Status Codes: 200, 400, 501

Returns a structured response containing the name and other information about the service.

Example Request:
/OLP/Index/1.0/Identify

Example Response:
<?xml version="1.0" encoding="UTF-8"?>
<Identify version="1.0">
 <serviceName>Experimental OLP Index Server</serviceName >
 <olp_base_url>http://labserv.iei.pi.cnr.it:8230</olp_base_url>
 <metaServiceURL>http://labserv.iei.pi.cnr.it:8221</metaServiceURL>
 <textualDescription></textualDescription>
 <protocolVersion>1.0</protocolVersion>
 <adminEmail>pagano@iei.pi.cnr.it</adminEmail>
 <verbsInfo>
 <verbsSupported>
 <description> </description>
 <olp_base_url>http://labserv.iei.pi.cnr.it:8230/OLP/Index/1.0/ListVerbs</olp_base_url>
 </verbsSupported>
 <verbsDescription>
 <description> </description>
 <olp_base_url>http://…:8230/OLP/Index/1.0/DescribeVerb/DescribeVerb</olp_base_url>
 </verbsDescription>
 </verbsInfo>
 <submissionProcedure>
 <description>Submission procedure is not supported by this service.
 </description>
 <olp_base_url> </olp_base_url>
 </submissionProcedure>
 <harvestInformation>
 <description>
 No information is available

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 111

 </description>
 <olp_base_url> </olp_base_url>
 </harvestInformation>
 <useRestrictions>Terms and conditions are …...</useRestrictions>
 <contentInfo>
 <indexedFields>
 <description>

 The set of fields that can be used to search the set of documents.
 </description>
 <olp_base_url> http://…:8230/OLP/Index/1.0/ListIndexedFields</olp_base_url>
 </indexedFields>
 <resultFormats>
 <description>

 The result formats used by the service are parametric. The pertinent set of result formats is
available at the specified address.

 </description>
 <olp_base_url> http://…:8230/OLP/Index/1.0/ListResultFormats</olp_base_url>
 </resultFormats>
 <supportedLanguage>
 <description>

 Each instance of the IS is language dependent. The language is specified as a local
configuration parameter. The language has to be specified because the list of stop words,
the stemming rules, and many others rules used by the retrieval engine are specific for each
language.

 </description>
 <olp_base_url> http://…:8230/OLP/htdocs/language.html</olp_base_url>
 </supportedLanguage>
 </contentInfo>
</Identify>

ListVerbs
Version: 1.0
Fixed args: none
Optional Args: none
Return MIME type: text/xml
Return Status Codes: 200, 400, 501

Returns a structured response containing the name of the verbs defined by this service.

Example Request:
/OLP/Index/1.0/ListVerbs

DescribeVerb
Version: 1.0
Fixed args: verb
Optional Args: version
Return MIME type: text/xml
Return Status Codes: 200, 400, 501

Returns a structured response that contains a list in which each element of the list provides
information on a version of the specified verb that is supported by this service. The following
information may be provided at the verb or version level:

• description, description of the verb or a specific version
• note, information pertaining to the verb or a specific version

Each element of the list contains the following information:
• version number of the verb.
• arguments, a list of the names of the fixed and optional arguments, if any, accepted by the

verb in that version.

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 112

• example template of request to this Collection, with fixed arguments indicated in brackets
• returns, optional, contains information about response format.

Note that a service may implement more than one version of a verb.

Example Request:
/OLP/Index/1.0/DescribeVerb/ListIndexedFields

ListIndexedFields
Version: 1.0
Fixed args: none
Optional Args: none
Return MIME type: text/xml
Return Status Codes: 200, 400, 501

Returns a structured response that contains a list in which each element of the list provides
information on a field that can be used to search the library contents.
The available fields are identified at Index service start-up time, analysing the configuration
parameters harvested from the Meta service (IS configured as networked) or read from local files
(IS configured as standalone).
Note that this verb returns information on the IS and that different search methods can use different
subsets of the overall set of indexed fields. Detailed information on a search verb can be retrieved
using the DescribeVerb method.
Note also that, using the local configuration of the retrieval engine, the IS specifies the operators
supported for each field.

Example Request:
/OLP/Index/1.0/ListIndexedFields

Example Response:
<?xml version="1.0" encoding="UTF-8"?>
<ListIndexedFields version="1.0">
 <meta-format name=”olms” uri="http://labserv.iei.pi.cnr.it/OLP/htdocs/olms/NameSpace/">

 <field name=”dc:creator”>
 <type>string</type>
 <rel-op name=”equal” symbol=”=” position=”infix”/>
 <rel-op name=”like” symbol=”=^” position=”infix”/>

 </field>
 <field name=”dc:date”>

 <type>%4d/%2d/%d(%d)</type>
 <rel-op name=”equal” symbol=”=” position=”infix”/>
 <rel-op name=”greater than” symbol=”>” position=”infix”/>

 </field>
 <supported-operators>
 <operator value=”and”/>
 <operator value=”or”/>
 </supported-operators>

</meta-format>
</ListIndexedFields>

ListResultFormats
Version: 1.0
Fixed args: none
Optional Args: none
Return MIME type: text/xml
Return Status Codes: 200, 400, 501

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 113

Returns a structured response that contains a list in which each element of the list provides
information on the format of a search results request on the library contents.
The available formats are identified at service start-up time, analysing the configuration parameters
harvested from the Meta service (IS configured as networked) or read from local files (IS
configured as standalone). One of these formats must be indicated as default, otherwise the first in
the response list is assumed.
The name of these formats can be used as optional arguments in the Search request to select the
format of the result.

Example Request:
/OLP/Index/1.0/ListResultFormats

Example Response:
<?xml version="1.0" encoding="UTF-8"?>
<ListResultFormats version="1.0">
 <meta-format name=”olms” uri="http://labserv.iei.pi.cnr.it/OLP/htdocs/olms/NameSpace/">

 <format name=”short” default=’yes’>
 <field>dc:title</field>
 <field>dc:date</field>

 </format>
 <format name=”long”>
 <field>dc:creator</field>

 <field>dc:title</field>
 <field>dc:date</field>
 <field>dc:subject</field>

</format>
 </meta-format>
</ListResultFormats>

SearchFielded
Version: 1.0
Fixed args: none
Fixed_post args: search-condition
Optional Args: none
Return MIME type: text/xml
Return Status Codes: 200, 400, 501

Returns a structured response that contains a list in which each element of the list provides
information on and a link to a document. This list, called result-set, is uniquely named by the IS that
is able to accept query refinements on it. To perform a refinement on the result-set, see the
SearchFeedback verb: in this case the IS performs the search, specified by means of the search-
condition argument, as a query on this subset of the overall digital library content. The result-set
remains active for a given amount of time, and when this expires, error 400 is returned.

The search-condition is passed as an HTTP POST request of an XML string. This specification
contains two parts. The first part includes metadata that describe the set of authorities on which to
perform the query, the result format requested by the user, and the specification of the max number
of documents returned in the format specified (called top_documents). For the other documents,
that match the filtering condition but overcome the max number specified, only the document
header will be returned. To retrieve these documents see GetMetadataDocuments verb. Note that if
the top_documents is not specified, the default value is assumed, and if the “-1” value is specified
all documents that match the request will be returned in the requested format.
The second part describes the filtering condition. Note that the filtering condition is only performed
on the set of documents that belong to the authorities specified.

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 114

The search condition is formulated in accordance with the following BNF grammar:
Search-Condition ::= Filtering-Condition | Part1 Filtering-Condition
Part1 ::= Format Auths Top | Format Top| Auths Top
Format ::= Format = string
Top ::= top_documents = number
Auths ::= Authories = (list of authorities)
Filtering-Condition ::= Leaf | Condition
Condition ::= Leaf Operator Leaf | Leaf Operator Condition | Condition Operator Leaf | Condition Operator
Condition
Leaf ::= Attr Rel-Op Value
Rel-Op ::= like | = | …
Operator ::= and | or | ….
Attr ::= indexed_field

Note that if the user does not specify a list of authorities, all authorities are assumed as default. Note
also that if the user does not specify the response format the default one is assumed.

The structure of the search-specification is reported below:

<search-condition>
 <format name=” …”/>
 <top_documents value=” ”/>
 <authorities>
 <authority name="…." />
 ……
 </authorities>
 <filtering-condition value=” ….”>
 <condition>
 <leaf attribute="" value=" " rel-op=”” side=”left”/>
 <operator name=" "/>
 <condition side=”right”>
 <leaf attribute="" value="" rel-op=”” side=”left”/>
 <operator name=" "/>
 <leaf attribute="" value="" rel-op=”” side=”right”/>
 </condition>
 </condition>
 </filtering-condition>
</search-condition>

The filtering condition is used to select which documents, published by a set of specific authorities,
belong to the result-set.

At present, the search-condition includes information about the authorities that store documents
relevant to the request of the client. If the authorities are not specified, the IS performs the query on
all authorities.

The name of the formats available can be selected from the list returned by the ListResultsFormat.

Example Request:
/OLP/Index/1.0/SearchFielded/%s

Example Response:
<?xml version="1.0" encoding="UTF-8"?>
<SearchFielded version="1.0">
 <result-set name=”21908123” count=”2”>
 <document handle="scholnet.csp/2001-TR-009" version=”1” rank=”0.434224342“>
 <olms:ol xmlns:olms="http://labserv.iei.pi.cnr.it/OLP/htdocs/olms/NameSpace/"
 xmlns:dcq="http://dublincore.org/documents/2000/07/11/dcmes-qualifiers/"

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 115

 xmlns:dc="http://purl.org/dc/elements/1.1/">
 <dc:title>A document test</dc:title>
 <dc:date>2001/06/12</dc:date>
 </olms:ol>
 </document>
 <document handle="scholnet.trs/2001-TR-023" version=”1” rank=”0.2321431234“>
 <olms:ol xmlns:olms="http://labserv.iei.pi.cnr.it/OLP/htdocs/olms/NameSpace/"
 xmlns:dcq="http://dublincore.org/documents/2000/07/11/dcmes-qualifiers/"
 xmlns:dc="http://purl.org/dc/elements/1.1/">
 <dc:title>A document test2</dc:title>
 <dc:date>2001/08/12</dc:date>
 </olms:ol>
 </document>
 </result-set>
</SearchFielded>

SearchSimple
Version: 1.0
Fixed args: none
Fixed_post args: search-condition
Optional Args: none
Return MIME type: text/xml
Return Status Codes: 200, 400, 501

Returns a structured response that contains a list in which each element of the list provides
information on and a link to a document. This list, called result-set, is uniquely named by the IS that
is able to accept query refinements on it. To perform a refinement on the result-set, see the
SearchFeedback verb: in this case the IS performs the search, specified by means of the search-
condition argument, as a query on this subset of the overall digital library content. The result-set
remains active for a given amount of time, and when this expires, error 400 is returned..

The search-condition is passed as an HTTP POST request of an XML string. This specification
contains two parts. The first part includes metadata that describe the set of authorities on which to
perform the query, the result format requested by the user, and the specification of the max number
of documents returned in the format specified (called top_documents). For the other documents,
that match the filtering condition but overcome the max number specified, only the document
header will be returned. To retrieve these documents see GetMetadataDocuments verb. Note that if
the top_documents is not specified, the default value is assumed, and if the “-1” value is specified
all documents will be returned in the requested format.

The second part describes the filtering condition. Using the SearchSimple, the request of the client
does not specify the fields on which the search has to be performed, and the IS calculates the
response as a result of a free text search.
Note that the filtering condition specified is evaluated only on the set of documents that belong to
the authorities specified.

The search condition is formulated in accordance with the following BNF grammar:
Search-Condition ::= Filtering-Condition | Part1 Filtering-Condition
Part1 ::= Format Auths Top | Format Top| Auths Top
Format ::= Format = string
Top ::= top_documents = number
Auths ::= Authories = (list of authorities)
Filtering-Condition ::= string

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 116

Note that if the user does not specify a list of authorities, all authorities are assumed as default. Note
also that if the user does not specify the response format the default one is assumed.

The structure of the search-specification is reported below:

<search-condition>
 <format name=” …”/>
 <top_documents value=” ”/>
 <authorities>
 <authority name="…." />
 ……
 </authorities>
 <filtering-condition value=” ….”/>
</search-condition>

The filtering condition makes it possible to select which documents, published by a set of specific
authorities, belong to the result-set.

At present, the search-condition includes information about the authorities that store documents
relevant to request of the client. If the authorities are not specified, the IS performs the query on all
authorities. In the future, techniques that allow the IS to select automatically the authorities that
publish documents compliant with the query-condition will be considered.

The name of the formats available can be selected from the list returned by the ListResultFormats.

Example Request:
/OLP/Index/1.0/SearchSimple/%s

Example Response:
<?xml version="1.0" encoding="UTF-8"?>
<SearchSimple version="1.0">
 <result-set name=”21908123” count=”2”>
 <document handle="scholnet.csp/2001-TR-009" version=”1” rank=”0.434224342“>
 <olms:ol xmlns:olms="http://labserv.iei.pi.cnr.it/OLP/htdocs/olms/NameSpace/"
 xmlns:dcq="http://dublincore.org/documents/2000/07/11/dcmes-qualifiers/"
 xmlns:dc="http://purl.org/dc/elements/1.1/">
 <dc:title>A document test</dc:title>
 <dc:date>2001/06/12</dc:date>
 </olms:ol>
 </document>
 <document handle="scholnet.trs/2001-TR-023" version=”2” rank=”0.234224342“>
 <olms:ol xmlns:olms="http://labserv.iei.pi.cnr.it/OLP/htdocs/olms/NameSpace/"
 xmlns:dcq="http://dublincore.org/documents/2000/07/11/dcmes-qualifiers/"
 xmlns:dc="http://purl.org/dc/elements/1.1/">
 <dc:title>A document test2</dc:title>
 <dc:date>2001/08/12</dc:date>
 </olms:ol>
 </document>
 </result-set>
</SearchSimple>

SearchFeedback
Version: 1.0
Fixed args: none
Fixed_post args: feedback-condition
Optional Args: none

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 117

Return MIME type: text/xml
Return Status Codes: 200, 400, 501

Allows to perform a refinement on a result set generated by a previous query. This method, using
the relevant documents specified, performs an automatic query expansion in order to improve the
Index capability to satisfy the user needs. The query expansion algorithm uses terms extracted from
the set of fields specified by the Meta Service with the index configuration parameters.
Returns a structured response that contains a list in which each element of the list provides
information on and a link to a document. This list, called result-set, is uniquely named by the IS that
is able to accept query refinements on it. To perform a refinement on the result-set, the
SearchFeedback verb can be recalled: in this case the IS performs the search as a query on this
subset of the overall digital library content. The result-set remains active for a given amount of
time, and when this expires, error 400 is returned.

The feedback-condition is passed as an HTTP POST request of an XML string. This specification
contains two parts. The first part includes metadata that report the result set name requested by the
user, and the specification of the max number of documents returned in the original format specified
(called top_documents). For the other documents, that match the feedback condition but overcome
the max number specified, only the document header will be returned. To retrieve these documents
see GetMetadataDocuments verb. Note that if the top_documents is not specified, the default value
is assumed, and if the “-1” value is specified all documents will be returned in the requested format.
The second part of the condition includes the list of relevant documents.

The feedback condition is formulated in accordance with the following BNF grammar:
Feedback-Condition ::= Part1 Rel_Docs
Part1 ::= Result_Set Top | Result_Set
Result_Set ::= result-set = string
Top ::= top_documents = number
Rel_Docs ::= Doc | Doc Rel_Docs
Doc ::= document = string

The structure of the feedback condition is reported below :
<feedback-condition>
 <result-set name=""/>
 <top_documents value=""/>
 <rel_documents>
 <document handle="" version=""/>
 <document handle="" version=""/>
 </rel_documents>
</feedback-condition>

Example Request:
/OLP/Index/1.0/SearchFeedback/%s
Example Response:
<?xml version="1.0" encoding="UTF-8"?>
<SearchFeedback version="1.0">
 <result-set name=”21908123” count=”3”>
 <document handle="scholnet.csp/2001-TR-009" version=”1” rank=”0.434224342“>
 <olms:ol xmlns:olms="http://labserv.iei.pi.cnr.it/OLP/htdocs/olms/NameSpace/"
 xmlns:dcq="http://dublincore.org/documents/2000/07/11/dcmes-qualifiers/"
 xmlns:dc="http://purl.org/dc/elements/1.1/">
 <dc:title>A document test</dc:title>
 <dc:date>2001/06/12</dc:date>
 </olms:ol>
 </document>
 <document handle="scholnet.trs/2001-TR-023" version=”2” rank=”0.234224342“>

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 118

 <olms:ol xmlns:olms="http://labserv.iei.pi.cnr.it/OLP/htdocs/olms/NameSpace/"
 xmlns:dcq="http://dublincore.org/documents/2000/07/11/dcmes-qualifiers/"
 xmlns:dc="http://purl.org/dc/elements/1.1/">
 <dc:title>A document test2</dc:title>
 <dc:date>2001/08/12</dc:date>
 </olms:ol>
 </document>
 <document handle="scholnet.csp/2001-TR-021" version=”2” rank=”0.134224342“/>
 </result-set>
</SearchFeedback>

GetMetadataDocuments

Version: 1.0
Fixed args: none
Optional_post args: documents, meta_format
Optional Args: none
Return MIME type: text/xml
Return Status Codes: 200, 400, 501

Allows to retrieve the metadata of the documents specified in the format specified. If the format is
not indicated by the client of the request, the default format will be assumed.

Returns a structured response that contains a list in which each element of the list provides
information on and a link to a document.

The documents parameter is passed as an HTTP POST request of an XML string. Its structure is
reported below :
<documents>
 <document handle="" version=""/>
 <document handle="" version=""/>
 …
</documents>

Example Request:
/OLP/Index/1.0/GetMetadataDocuments/%s
Example Response:
<?xml version="1.0" encoding="UTF-8"?>
<GetMetadataDocuments version="1.0">
 <document handle="scholnet.csp/2001-TR-009" version=”1”>
 <olms:ol xmlns:olms="http://labserv.iei.pi.cnr.it/OLP/htdocs/olms/NameSpace/"
 xmlns:dcq="http://dublincore.org/documents/2000/07/11/dcmes-qualifiers/"
 xmlns:dc="http://purl.org/dc/elements/1.1/">
 <dc:title>A document test</dc:title>
 <dc:date>2001/06/12</dc:date>
 </olms:ol>
 </document>
 <document handle="scholnet.trs/2001-TR-023" version=”2”>
 <olms:ol xmlns:olms="http://labserv.iei.pi.cnr.it/OLP/htdocs/olms/NameSpace/"
 xmlns:dcq="http://dublincore.org/documents/2000/07/11/dcmes-qualifiers/"
 xmlns:dc="http://purl.org/dc/elements/1.1/">
 <dc:title>A document test2</dc:title>
 <dc:date>2001/08/12</dc:date>
 </olms:ol>
 </document>
</GetMetadataDocuments>

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 119

IndexUpdate
Version: 1.0
Fixed args: metadata-format
Optional Args: authority, force, verbose
Return MIME type: text/plain
Return Status Codes: 200, 400, 501

Used to update the IS database. This service request harvests the new bibliographic records from
remote Repository servers and adds these new document descriptions to the database.

The meaning of the arguments is as follows:
• metadata-format. Specifies the metadata format harvested from the Repository. The metadata

format managed by the Index service is a parameter determined at service start-up time.
• authority. Specifies the authorities to be updated. If no value is specified, all the authorities

specified in the configuration parameters are assumed as default.
• force. Forces the updating of all authorities without taking into account the time-stamp of each

authority. If no value is specified, only the authorities that have a time-stamp within the specific
time (fixed as configuration parameter) will be updated.

• verbose. Forces the writing of a verbose log.

The following steps are performed:
1. Lock the IS database in order to update it.
2. Select the authorities that have to be updated.
3. Identify the Repositories that store the documents for those authorities.
4. Send a ListContents request to each identified Repository specifying the authority, the starting

date, and the metadata-format.
5. Add bibliographic information for a document to the IS database. Note that the same document

may be added more than once to account for changes to bibliographic records.
6. Unlock the database.

The method returns 200 if no error occurs, an error code (400 or 501) otherwise.

Example Request:
/OLP/Index/1.0/IndexUpdate/OLMS

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 120

15. QUERY MEDIATOR SERVICE

The Query Mediator (QM) receives search requests and returns a structured list of document
metadata, each of which contains a link to the document itself. In order to do this, it routes the query
to the appropriate Index Servers, collects the results, and transforms them into a format that is
interpretable by the User Interface.
The formats of the metadata searchable by the QM, and of the results metadata are parametric and
can be easily changed. The QM harvests these configuration parameters from the Meta Service.
In the Scholnet environment, these formats are subsets of the OpenDLib Application Profile, i.e.
any metadata format disseminated by the Repository Service is a potential candidate.

The QM Service is a NoInput replicated service that is driven by the Meta Service, i.e. the Meta
Service assigns to each QM a set of index servers that can be used to dispatch the queries. The
correct IS is identified using the authority-index relation maintained by the Meta Service

Note that the search methods managed by the QM are not the same as those supported by the Index
Service. The QM supports querying on collections, monolingual querying, and pseudo-cross-
language querying as follows:
• using the collection description, it performs a query on a set of collections into a SearchFielded

query on a set of authorities with the appropriate filtering condition;
• using the Index configuration description furnished by the Meta Service, it selects the

appropriate monolingual Index servers, configured to support the language specified in the
query, and routes the query to them;

• using the relevance feedback capability of the Index Service, it transforms a cross-language
query into multiple monolingual querying.

Communication with the Query Mediator Service takes place via the OpenDLib Protocol (OLP).

15.1 STATE
This section presents the data structure, its abstract type, and a brief textual description for each
object managed by the Query Mediator Service.

Search Methods
The QM Service will export the search methods set available on the specified metadata format. This
information is retrieved using the local configuration of the search methods and the indexed fields
supported by the IS, determined analysing the configuration parameters at service start-up time.

Result Formats
The QM Service will return a list of documents in which each element of the list contains the fields
specified in one of the available result formats. These formats are determined analysing the
configuration parameters at service start-up time.

15.2 QUERY MEDIATOR VERBS
In this section, we present the set of the Query Mediator verbs. This set is divided into three sub-
sets: Service Information Verb, Service Descriptive Verb, and Service Specific Verb, as reported in
the following table:

Service Information Verb Service Descriptive Verb Service Specific Verb
Identify ListSearchMethods SearchFielded

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 121

ListVerbs SearchSimple
DescribeVerb SearchFeedback
 SearchAcross
 GetMetadataDocuments

Identify
Version: 1.0
Fixed args: none
Optional Args: none
Return MIME type: text/xml
Return Status Codes: 200, 400, 501

Returns a structured response containing the name and other information about the service.

Example Request:
/OLP/QM/1.0/Identify

Example Response:
<?xml version="1.0" encoding="UTF-8"?>
<Identify version="1.0">
 <serviceName>Experimental OLP QM Server</serviceName >
 <olp_base_url>http://labserv.iei.pi.cnr.it:8230</olp_base_url>
 <metaServiceURL>http://labserv.iei.pi.cnr.it:8221</metaServiceURL>
 <textualDescription></textualDescription>
 <protocolVersion>1.0</protocolVersion>
 <adminEmail>pagano@iei.pi.cnr.it</adminEmail>
 <verbsInfo>
 <verbsSupported>
 <description> </description>
 <olp_base_url>http://labserv.iei.pi.cnr.it:8230/OLP/QM/1.0/ListVerbs</olp_base_url>
 </verbsSupported>
 <verbsDescription>
 <description> </description>
 <olp_base_url>http://…:8230/OLP/QM/1.0/DescribeVerb/DescribeVerb</olp_base_url>
 </verbsDescription>
 </verbsInfo>
 <submissionProcedure>

 <description>Submission procedure is not supported by this service.
 </description>
 <olp_base_url> </olp_base_url>
 </submissionProcedure>
 <harvestInformation>
 <description>

 No information is available
 </description>
 <olp_base_url> </olp_base_url>
 </harvestInformation>
 <useRestrictions>Terms and conditions are …...</useRestrictions>
 <contentInfo>
 <searchMethods>
 <description>

 The set of queries syntax usable to search the set of documents.
 </description>
 <olp_base_url> http://…:8230/OLP/QM/1.0/ListSearchMethods</olp_base_url>
 </searchMethods>
 <resultFormats>
 <description>
 The result formats used by the service are parametric. The pertinent set of result formats is

available at the specified address.
 </description>

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 122

 <olp_base_url> http://…:8230/OLP/QM/1.0/ListResultFormats</olp_base_url>
 </resultFormats>
 </contentInfo>
</Identify>

ListVerbs
Version: 1.0
Fixed args: none
Optional Args: none
Return MIME type: text/xml
Return Status Codes: 200, 400, 501

Returns a structured response containing the name of the verbs defined by this service.

Example Request:
/OLP/QM/1.0/ListVerbs

DescribeVerb
Version: 1.0
Fixed args: verb
Optional Args: version
Return MIME type: text/xml
Return Status Codes: 200, 400, 501

Returns a structured response that contains a list in which each element of the list provides
information on a version of the specified verb that is supported by this service. The following
information may be provided at the verb or version level:

• description, description of the verb or a specific version
• note, information pertaining to the verb or a specific version

Each element of the list contains the following information:
• version number of the verb.
• arguments, a list of the names of the fixed and optional arguments, if any, accepted by the

verb in that version.
• example template of request to this Collection, with fixed arguments indicated in brackets
• returns, optional, contains information about response format.

Note that a service may implement more than one version of a verb.

Example Request:
/OLP/QM/1.0/DescribeVerb/ListSearchMethods

ListSearchMethods
Version: 1.0
Fixed args: none
Optional Args: none
Return MIME type: text/xml
Return Status Codes: 200, 400, 501

Returns a structured response that contains a list in which each element of the list provides
information on a search method available for searching the library contents.
The QM Service combines the information about the available search methods with the information
on the available metadata format and its indexed fields. This information is composed using:
• the local configuration of the search methods;
• the indexed fields list supported by any IS. This list is harvested, at service start-up time, from

the Meta Service through a request for the Index configuration description.

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 123

• the detailed list of indexed fields supported by the Index servers known by the QM. Note that a
QM uses a subset of the overall set of Index servers available in the environment.

This verb returns information on the QM service and this information is built after the initialization
of the environment. The non-configured information of the search verbs can be retrieved using the
DescribeVerb method.
Note that if the metadata format or the filtering contain empty values, it means that all metadata
formats or filtering values are supported.

Example Request:
/OLP/QM/1.0/ListSearchMethods

Example Response:
<?xml version="1.0" encoding="UTF-8"?>
<ListSearchMethods version="1.0">
 <Verb name="SearchFielded">
 <description>Search this QM server</description>
 <versions>
 <version id="1.0">
 <example>http://labserv.iei.pi.cnr.it:8226/OLP/QM/1.0/SearchBoolean</example>
 <meta-format name="olms" uri="http://labserv.iei.pi.cnr.it/OLP/htdocs/olms/NameSpace/"
default="true">
 <information-space>
 <entity value="(collection|authority)"/>
 <supported-operators>
 <operator value="or"/>
 </supported-operators>
 </information-space>
 <filtering value="en" name="dc:language" default="true">
 <indexed-fields>
 <field name="dc:creator">
 <type>string</type>
 <rel-op name="equal" symbol="=" position="infix"/>
 <rel-op name="like" symbol="=^" position="infix"/>
 </field>
 <field name="dc:title">
 <type>string</type>
 <rel-op name="equal" symbol="=" position="infix"/>
 <rel-op name="like" symbol="=^" position="infix"/>
 </field>
 <field name="dc:subject">
 <type>string</type>
 <rel-op name="equal" symbol="=" position="infix"/>
 <rel-op name="like" symbol="=^" position="infix"/>
 </field>
 <field name="dc:date">
 <type>%4d/%2d/%d(%d)</type>
 <rel-op name="equal" symbol="=" position="infix"/>
 <rel-op name="greater than" symbol=">" position="infix"/>
 </field>
 <supported-operators>
 <operator value="and"/>
 <operator value="or"/>
 </supported-operators>
 </indexed-fields>
 <result-formats>
 <format name="short" default="yes">
 <field>dc:title</field>
 <field>dc:date</field>
 </format>

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 124

 <format name="long">
 <field>dc:creator</field>
 <field>dc:title</field>
 <field>dc:date</field>
 <field>dc:subject</field>
 </format>
 </result-formats>
 </filtering>
 <filtering value=”it|fr" name="dc:language">
 <indexed-fields>
 <field name="dc:creator">
 <type>string</type>
 <rel-op name="equal" symbol="=" position="infix"/>
 <rel-op name="like" symbol="=^" position="infix"/>
 </field>
 <field name="dc:date">
 <type>%4d/%2d/%d(%d)</type>
 <rel-op name="equal" symbol="=" position="infix"/>
 <rel-op name="greater than" symbol=">" position="infix"/>
 </field>
 <field name="dcq:title.alternative">
 <type>string</type>
 <rel-op name="equal" symbol="=" position="infix"/>
 <rel-op name="like" symbol="=^" position="infix"/>
 </field>
 <field name="dcq:abstract.alternative">
 <type>string</type>
 <rel-op name="equal" symbol="=" position="infix"/>
 <rel-op name="like" symbol="=^" position="infix"/>
 </field>
 <supported-operators>
 <operator value="and"/>
 <operator value="or"/>
 </supported-operators>
 </indexed-fields>
 <result-formats>
 <format name="short" default="yes">
 <field>dc:title</field>
 <field>dc:date</field>
 </format>
 <format name="long">
 <field>dc:creator</field>
 <field>dc:title</field>
 <field>dc:date</field>
 <field>dc:subject</field>
 </format>
 </result-formats>
 </filtering>
 </meta-format>
 </version>
 </versions>
 </Verb>
 <Verb name="SearchSimple">
 <description>Search this QM server</description>
 <versions>
 <version id="1.0">
 <example>http://labserv.iei.pi.cnr.it:8226/OLP/QM/1.0/SearchBoolean</example>
 <meta-format name="olms" uri="http://project.it/OLP/htdocs/olms/NameSpace/" default="true">
 <information-space>
 <entity value="(collection|authority)"/>
 <supported-operators>

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 125

 <operator value="or"/>
 </supported-operators>
 </information-space>
 <filtering value="en" name="dc:language" default="true">
 <indexed-fields>
 <field name="condition">
 <type>string</type>
 <rel-op name="equal" symbol="=" position="infix"/>
 <rel-op name="like" symbol="=^" position="infix"/>
 </field>
 </indexed-fields>
 <result-formats>
 <format name="short" default="yes">
 <field>dc:title</field>
 <field>dc:date</field>
 </format>
 <format name="long">
 <field>dc:creator</field>
 <field>dc:title</field>
 <field>dc:date</field>
 <field>dc:subject</field>
 </format>
 </result-formats>
 </filtering>
 </meta-format>
 </version>
 </versions>
 </Verb>
 <Verb name="SearchFeedback">
 <description>Allow to use the relevance feedback capability</description>
 <versions>
 <version id="1.0">
 <example>http://labserv.iei.pi.cnr.it:8226/OLP/QM/1.0/SearchFeedback</example>
 <meta-format name="" uri="" default="true">
 <filtering value="" name="" default="true">
 <result-formats/>
 </filtering>
 </meta-format>
 </version>
 </versions>
 </Verb>
 <Verb name="SearchAcross">
 <description>Search this QM server</description>
 <versions>
 <version id="1.0">
 <example>http://labserv.iei.pi.cnr.it:8230/OLP/QM/1.0/SearchAcross</example>
 <meta-format name="olms" uri="http://project.it/OLP/htdocs/olms/NameSpace/" default="true">
 <information-space>
 <entity value="(collection|authority)"/>
 <supported-operators>
 <operator value="or"/>
 </supported-operators>
 </information-space>
 <filtering value="en" name="dc:language" default="true">
 <indexed-fields>
 <field name="dc:subject.ccs">
 <type>string</type>
 <rel-op name="equal" symbol="=" position="infix"/>
 <rel-op name="like" symbol="=^" position="infix"/>
 </field>
 <field name="dc:description.abstract">

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 126

 <type>string</type>
 <rel-op name="equal" symbol="=" position="infix"/>
 <rel-op name="like" symbol="=^" position="infix"/>
 </field>
 </indexed-fields>
 <result-formats>
 <format name="short" default="yes">
 <field>dc:title</field>
 <field>dc:date</field>
 </format>
 <format name="long">
 <field>dc:creator</field>
 <field>dc:title</field>
 <field>dc:date</field>
 <field>dc:subject.ccs</field>
 </format>
 </result-formats>
 </filtering>
 <filtering value=”it|de" name="dc:language">
 <indexed-fields>
 <field name="dc:subject.ccs.alternative">
 <type>string</type>
 <rel-op name="equal" symbol="=" position="infix"/>
 <rel-op name="like" symbol="=^" position="infix"/>
 </field>
 <field name="dc:description.abstract.alternative">
 <type>string</type>
 <rel-op name="equal" symbol="=" position="infix"/>
 <rel-op name="like" symbol="=^" position="infix"/>
 </field>
 </indexed-fields>
 <result-formats>
 <format name="short" default="yes">
 <field>dc:title</field>
 <field>dc:date</field>
 </format>
 <format name="long">
 <field>dc:creator</field>
 <field>dc:title</field>
 <field>dc:date</field>
 <field>dc:subject.ccs</field>
 </format>
 </result-formats>
 </filtering>
 </meta-format>
 </version>
 </versions>
 </Verb>
</ListSearchMethods>

SearchFielded
Version: 1.0
Fixed args: none
Fixed_post args: file (search_specification)
Optional Args: none
Return MIME type: text/xml
Return Status Codes: 200, 400, 501

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 127

The fielded search allows the user to restrict his/her search criteria to specific fields of the selected
metadata formats, and to use date and numeric ranges, as far as right types and controlled
vocabulary.
The verb returns a structured response that contains a list in which each element of the list provides
information on and a link to a document. This list, called result-set, is uniquely named by the QM
that can accept query refinements on it. Note that:
1) the QM creates this list as a combination of multiple named result-set lists (each of which

contains a different set of documents) generated by different IS;
2) the QM maintains the relation (named rs-rel+) between the QM result-set name and the result-

set names generated by the Index servers.
To perform a refinement on the result-set, see the SearchFeedback verb: in this case the the QM
dispatches the query, described by means of the search_specification argument, to every Index
server indicating the appropriate result-set name that is identified using the rs-rel+ relation.
The result-set remains active for a given amount of time, and when it expires, error 400 is returned.

The search-specification is passed as an HTTP POST request of an XML file. This specification
contains two parts. The first part includes metadata that describes the set of collections/authorities
on which to perfom the query, the meta-format selected, the result set format requested by the user,
the filter value that selects the appropriate search method, and the specification of the max number
of documents returned (called top_documents). Note that if the top_documents is not specified, the
default value is assumed, and if the “-1” value is specified all documents that match the request will
be returned in the requested format. To retrieve the other documents of the result-set see
GetMetadataDocuments verb.
The second describes the filtering condition. Note that the filtering condition is performed only on
the set of documents that belong to the collections/authorities specified, and that if the
result_set_format option is not specified the default option is assumed.

The search condition is formulated in accordance with the following BNF grammar:
Search-Condition ::= Filter Filtering-Condition | Part1 Filter Filtering-Condition
Part1 ::= Format Auths | Format Colls | Format | Auths | Colls Op | Part1 Top
Format ::= Meta_format=string | Meta_format=string, Result_Set_Format = string
Top ::= top_documents = number
Filter ::= filter-name = string
Auths ::= Authories = (list of authorities)
Colls ::= collection-name | collection-name Colls
Filtering-Condition ::= Leaf | Condition
Condition ::= Leaf Operator Leaf | Leaf Operator Condition | Condition Operator Leaf | Condition Operator
Condition
Leaf ::= Attr Rel-Op Value
Rel-Op ::= like | = | …
Op ::= and | or
Operator ::= #band | #or | ….
Attr ::= indexed_field

Note that if the user does not specify a list of authorities/collections, all authorities are assumed as
default. The “and/or” operator can be used to specify the collections/authorities combination in the
information space. If the operator is not specified, the “or” value is assumed as default.
Note also that if the user does not specify the response format the default format is assumed.

The structure of the search-specification is reported below:

<search-condition>
 <meta_format name=” …” result_set_format_name=”..”/>
 <information_space>

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 128

 <collections>
 <collection name="…." />
 <collection name="…." />
 ……
 </collections>
 <op value=""/>
 </information_space>
 <top_documents value="…."/>
 <filtering value=”it” name=”dc:language”>
 <filtering-condition>
 <condition>
 <leaf attribute="" value="" rel-op=”” side=”left”/>
 <operator name=" "/>
 <condition value=” ..” side=”right”>
 <leaf attribute="" value="" rel-op=”” side=”left”/>
 <operator name=""/>
 <leaf attribute="" value="" rel-op=”” side=”right”/>
 </condtition>
 </condition>
 </filtering-condition>
 </filtering>
</search-condition>

The filtering condition selects the documents published by a set of specific authorities/collections
that belong to the result. Note that if collections are specified, the authorities are ignored.

At present the search-condition includes information about the authorities/collections that store
documents relevant to the request of the client. If the authorities/collections are not specified, the
QM performs the query on all authorities. In the future, techniques that allow the QM to select
automatically the authorities/collections that publish documents compliant with the filtering-
condition will be considered.

The formats available can be selected from the list returned by the ListResultFormats.

Example Request:
/OLP/QM/1.0/SearchFielded/%s

Example Response:
<?xml version="1.0" encoding="UTF-8"?>
<SearchFielded version="1.0">
 <result-set name=”21908123” count=”98”>
 <document handle="scholnet.csp/2001-TR-009" version=”12” rank=“0.9084948“>
 <olms:ol xmlns:olms="http://labserv.iei.pi.cnr.it/OLP/htdocs/olms/NameSpace/"
 xmlns:dcq="http://dublincore.org/documents/2000/07/11/dcmes-qualifiers/"
 xmlns:dc="http://purl.org/dc/elements/1.1/">
 <dc:title>A document test</dc:title>
 <dc:date>2001/06/12</dc:date>
 </olms:ol>
 </document>
 <document handle="scholnet.trs/2001-TR-023" version=”2” rank=”0.5434534”>
 <olms:ol xmlns:olms="http://labserv.iei.pi.cnr.it/OLP/htdocs/olms/NameSpace/"
 xmlns:dcq="http://dublincore.org/documents/2000/07/11/dcmes-qualifiers/"
 xmlns:dc="http://purl.org/dc/elements/1.1/">
 <dc:title>A document test2</dc:title>
 <dc:date>2001/08/12</dc:date>
 </olms:ol>
 </document>
 </result-set>
</SearchFielded>

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 129

SearchSimple
Version: 1.0
Fixed args: none
Fixed_post args: file (search_specification)
Optional Args: none
Return MIME type: text/xml
Return Status Codes: 200, 400, 501

The simple search allows the user to search the documents in the selected collection(s) that have
been described using the specified metadata formats without restricting his/her search criteria to
specific fields. This verb performs a full text search and therefore neither numeric ranges nor
controlled vocabularies can be applied.
The verb returns a structured response that contains a list in which each element of the list provides
information on and a link to a document. This list, called result-set, is uniquely named by the QM
that can accept query refinements on it. Note that:
3) the QM creates this list as combination of multiple named result-set lists (each of which

contains a different set of documents) generated by different IS;
4) the QM maintains the relation (named rs-rel+) between the QM result-set name and the result-

set names generated by the Index servers.
To perform a refinement on the result-set, see the SearchFeedback verb: in this case the the QM
dispatches the query, described by means of the search_specification argument, to every Index
server indicating the appropriate result-set name that is identified using the rs-rel+ relation.
The result-set remains active for a given amount of time, and when it expires, error 400 is returned.

The search-specification is passed as an HTTP POST request of an XML file. This specification
contains two parts. The first part includes metadata that describes the set of collections/authorities
on which performs the query, the meta-format selected, the result set format requested by the user,
the filter value that selects the appropriate search method, and the specification of the max number
of documents returned (called top_documents). Note that if the top_documents is not specified, the
default value is assumed, and if the “-1” value is specified all documents that match the request will
be returned in the requested format. To retrieve the other documents of the result-set see
GetMetadataDocuments verb.
The second one allows to describe the filtering condition. Using the SearchSimple, the request of
the client does not specify the fields on which the search has to be performed, and the QM
calculates the response as a result of a free text search.
Note that the filtering condition specified is performed only on the set of documents that belong to
the collections/authorities specified, and that if the Result_Set_Format option is not specified the
default one is assumed.
The first part includes metadata that describes the set of collections/authorities on which performs
the query, the result format requested by the user, and the filter value that allows to select the
appropriate search method. The second one allows to describe the filtering condition.

The search condition is formulated in accordance with the following BNF grammar:
Search-Condition ::= Filter Filtering-Condition | Part1 Filter Filtering-Condition | Filtering-Condition
Part1 ::= Format Auths | Format Colls | Format | Auths | Colls Op | Part1 Top
Top ::= top_documents = number
Format ::= Meta_format=string | Meta_format=string, Result_Set_Format = string
Filter ::= filter-name = string
Auths ::= Authories = (list of authorities)
Colls ::= collection-name | collection-name Colls
Op ::= and | or
Filtering-Condition::= string

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 130

Note that if the user does not specify a list of authorities/collections, all authorities are assumed as
default. The “and/or” operator can be used to specify the collections/authorities combination in the
information space. If the operator is not specified, the “or” value is assumed as default.
Note also that if the user does not specify the response format the default one is assumed.

The structure of the search-specification is reported below:

<search-condition>
 <meta_format name=” …” result_set_format_name=”..”/>
 <information_space>
 <collections>
 <collection name="…." />
 <collection name="…." />
 ……
 </collections>
 <op value=""/>
 </information_space>
 <top_documents value="…."/>
 <filtering value=”%lang” name=”dc:language”>
 <filtering-condition value=” ….”/>
 </filtering>
</search-condition>

The filtering condition allows to select which documents, published by a set of specific
authorities/collections, belong to the result. Note that if collections are specified, the authorities one
are ignored.

At present, the search-condition includes information about the authorities/collections that store
documents relevant to the request of the client. If the authorities/collections are not specified, the
QM performs the query on all authorities. In the future, techniques that allow the QM to select
automatically the authorities/collections that publish documents compliant with the filtering-
condition will be taken into account.

The formats available can be selected from the list returned by the ListResultFormats.

Example Request:
/OLP/QM/1.0/SearchSimple/%s

Example Response:
<?xml version="1.0" encoding="UTF-8"?>
<SearchSimple version="1.0">
 <result-set name=”21908123” count=”28”>
 <document handle="scholnet.csp/2001-TR-009" version=”12” rank=“0.9084948“>
 <olms:ol xmlns:olms="http://labserv.iei.pi.cnr.it/OLP/htdocs/olms/NameSpace/"
 xmlns:dcq="http://dublincore.org/documents/2000/07/11/dcmes-qualifiers/"
 xmlns:dc="http://purl.org/dc/elements/1.1/">
 <dc:title>A document test</dc:title>
 <dc:date>2001/06/12</dc:date>
 </olms:ol>
 </document>
 <document handle="scholnet.trs/2001-TR-023" version=”1” rank=“0.433248“>
 <olms:ol xmlns:olms="http://labserv.iei.pi.cnr.it/OLP/htdocs/olms/NameSpace/"
 xmlns:dcq="http://dublincore.org/documents/2000/07/11/dcmes-qualifiers/"
 xmlns:dc="http://purl.org/dc/elements/1.1/">
 <dc:title>A document test2</dc:title>
 <dc:date>2001/08/12</dc:date>
 </olms:ol>

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 131

 </document>
 </result-set>
</SearchSimple>

SearchFeedback
Version: 1.0
Fixed args: none
Fixed_post args: feedback-condition
Optional Args: none
Return MIME type: text/xml
Return Status Codes: 200, 400, 501

The feedback search allows the user to access the relevance feedback capability supported by the
QM service. The relevance feedback is used as a solution for query modification in order to
improve the quality of the results. The user has to specify the relevant retrieved as response to a
search. The service use this information to modify the original query. The new query is performed
and the results returned to the user.
The verb returns a structured response that contains a list in which each element of the list provides
information on and a link to a document. This list, called result-set, is uniquely named by the QM
that is able to accept query refinement on it. Note that:
5) the QM creates this list as a combination of multiple named result-set list (each of which

contains a different set of documents) generated by different IS;
6) the QM maintains the relation (named rs-rel+) between the QM result-set name and the result-

set names generated by the Index servers.
The result-set remains active for a given amount of time, and when it is expires, error 400 is
returned.

The feedback-condition is passed as an HTTP POST request of an XML string. This specification
contains two parts. The first part includes metadata that report the result set name requested by the
user, and the specification of the max number of documents returned in the original format specified
(called top_documents). To retrieve the other documents see GetMetadataDocuments verb. Note
that if the top_documents is not specified, the default value is assumed, and if the “-1” value is
specified all documents will be returned in the requested format.
The second part of the condition includes the list of relevant documents.

The search specification is formulated in accordance with the following BNF grammar:
Feedback-Condition ::= Part1 Rel_Docs
Part1 ::= Result_Set Top | Result_Set
Result_Set ::= result-set = string
Top ::= top_documents = number
Rel_Docs ::= Doc | Doc Rel_Docs
Doc ::= document = string

The structure of the search-specification is reported below:
<feedback-condition>
 <result-set name=""/>
 <top_documents value=""/>
 <rel_documents>
 <document handle="" version=""/>
 <document handle="" version=""/>
 </rel_documents>
</feedback-condition>

Example Request:

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 132

/OLP/QM/1.0/SearchFeedback/%s

Example Response:
<?xml version="1.0" encoding="UTF-8"?>
<SearchFeedback version="1.0">
 <result-set name=”21908123” count=”98”>
 <document handle="scholnet.csp/2001-TR-009" version=”5” rank=”0.434224342“>
 <olms:ol xmlns:olms="http://labserv.iei.pi.cnr.it/OLP/htdocs/olms/NameSpace/"
 xmlns:dcq="http://dublincore.org/documents/2000/07/11/dcmes-qualifiers/"
 xmlns:dc="http://purl.org/dc/elements/1.1/">
 <dc:title>A document test</dc:title>
 <dc:date>2001/06/12</dc:date>
 </olms:ol>
 </document>
 <document handle="scholnet.trs/2001-TR-023" version=”2” rank=”0.234224342“>
 <olms:ol xmlns:olms="http://labserv.iei.pi.cnr.it/OLP/htdocs/olms/NameSpace/"
 xmlns:dcq="http://dublincore.org/documents/2000/07/11/dcmes-qualifiers/"
 xmlns:dc="http://purl.org/dc/elements/1.1/">
 <dc:title>A document test2</dc:title>
 <dc:date>2001/08/12</dc:date>
 </olms:ol>
 </document>
 </result-set>
</SearchFeedback>

SearchAcross

Version: 1.0
Fixed args: none
Fixed_post args: file (search_specification)
Optional Args: none
Return MIME type: text/xml
Return Status Codes: 200, 400, 501

This verb allows the user to access the cross-querying capability of the QM. The user has to specify
a value for an attribute that supports the cross-querying capability, and the characteristic of the
subset of the results that he/she wants to receive. For example, let us suppose that the subject
attribute supports the cross-querying capability with respect to the language. This means that the
user can specify a subject in Italian and retrieve all documents containing related subjects, even if
these documents are described in a different language.
The verb returns a structured response that contains a list in which each element of the list provides
information on and a link to a document. This list, called result-set, is uniquely named by the QM
that is able to accept query refinement on it. Note that:
7) the QM creates this list as a combination of multiple named result-set list (each of which

contains a different set of documents) generated by different IS;
8) the QM maintains the relation (named rs-rel+) between the QM result-set name and the result-

set names generated by the Index servers.
To perform a refinement on the result-set, see the SearchFeedback verb: in this case the the QM
dispatches the query, described by means of the search_specification argument, to every Index
server indicating the appropriate result-set name that is identified using the rs-rel+ relation.
The result-set remains active for a given amount of time, and when it expires, error 400 is returned.

The search-specification is passed as an HTTP POST request of an XML file. This specification
contains two parts. The first part includes metadata that describes the set of collections/authorities
on which performs the query, the meta-format selected, the result set format requested by the user,
and the specification of the max number of documents returned (called top_documents). Note that if
the top_documents is not specified, the default value is assumed, and if the “-1” value is specified

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 133

all documents that match the request will be returned in the requested format. To retrieve the other
documents of the result-set see GetMetadataDocuments verb.
The second one allows to describe the filtering condition. Using the SearchAcross, the request of
the client must specify the fields on which the search is to be performed and the source and target
filters; the QM calculates the response as a result of the search.

Note that the filtering condition is performed only on the set of documents that belong to the
collections/authorities specified and that if the Result_Set_Format option is not specified the default
option is assumed.
The first part includes metadata that describes the set of collections/authorities on which to perform
the query, the result format requested by the user, and the filter value that selects the appropriate
search method. The second part describes the filtering condition.

The search condition is formulated in accordance with the following BNF grammar:
Search-Condition ::= Filter Filtering-Condition | Part1 Filter Filtering-Condition
Part1 ::= Format Auths | Format Colls | Format | Auths | Colls Op | Part1 Top
Format ::= Meta_format=string | Meta_format=string, Result_Set_Format = string
Top ::= top_documents = number
Filter ::= filter-name = string
Auths ::= Authories = (list of authorities)
Colls ::= collection-name | collection-name Colls
Filtering-Condition::= Leaf filtering_target
Leaf::= filtering_attribute Rel-Op Value
Rel-Op ::= like | = | contains |…
Op ::= and | or

Note that if the user does not specify a list of authorities/collections, all authorities are assumed as
default. The “and/or” operator can be used to specify the collections/authorities combination in the
information space. If the operator is not specified, the “or” value is assumed as default.
Note also that if the user does not specify the response format the default format is assumed.

An example of the structure of the search-specification is reported below:

<search-condition>
 <meta_format name=” …” result_set_format_name=”..”/>
 <information_space>
 <collections>
 <collection name="…." />
 <collection name="…." />
 ……
 </collections>
 <op value=""/>
 </information_space>
 <top_documents value="…."/>
 <filtering value=”it” name=”dc:language”>
 <filtering-condition target=”en”>
 <leaf attribute="subject" value="" rel-op=”” />
 </filtering-condition>
 </filtering>
</search-condition>

The filtering condition selects which documents published by a set of specific authorities/collection,
belong to the result. Note that if collections are specified, the authorities are ignored.

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 134

At present, the search-condition includes information about the authorities/collections that store
documents relevant to the request of the client. If the authorities/collections are not specified, the
QM performs the query on all authorities. In the future, techniques that allow the QM to select
automatically the authorities/collections that publish documents compliant with the filtering-
condition will be considered.

The formats available can be selected from the list returned by the ListResultFormats.

Example Request:
/OLP/QM/1.0/SearchAcross/%s

Example Response:
<?xml version="1.0" encoding="UTF-8"?>
< SearchAcross version="1.0">
 <result-set name=”21908123” count=”98”>
 <document handle="scholnet.csp/2001-TR-009" version=”12” rank=“0.9084948“>
 <olms:ol xmlns:olms="http://labserv.iei.pi.cnr.it/OLP/htdocs/olms/NameSpace/"
 xmlns:dcq="http://dublincore.org/documents/2000/07/11/dcmes-qualifiers/"
 xmlns:dc="http://purl.org/dc/elements/1.1/">
 <dc:title>A document test</dc:title>
 <dc:date>2001/06/12</dc:date>
 </olms:ol>
 </document>
 <document handle="scholnet.trs/2001-TR-023" version=”2” rank=”0.5434534”>
 <olms:ol xmlns:olms="http://labserv.iei.pi.cnr.it/OLP/htdocs/olms/NameSpace/"
 xmlns:dcq="http://dublincore.org/documents/2000/07/11/dcmes-qualifiers/"
 xmlns:dc="http://purl.org/dc/elements/1.1/">
 <dc:title>A document test2</dc:title>
 <dc:date>2001/08/12</dc:date>
 </olms:ol>
 </document>
 </result-set>
</ SearchAcross >

GetMetadataDocuments
Version: 1.0
Fixed args: result-set
Optional args: start, results
Return MIME type: text/xml
Return Status Codes: 200, 400, 501

Allows to retrieve the metadata of the documents belonging to the result-set generated by a previous
query. The set of returned documents is defined by the range (start, start + results]. If the results is
not specified, the default value will be assumed. If the start value is not specified the interval will
start with the first element not yet returned to the user.
Returns a structured response that contains a list in which each element of the list provides
information on and a link to a document.

Example Request:
/OLP/Index/1.0/GetMetadataDocuments/3213112131?start=10&results=20
Example Response:
<?xml version="1.0" encoding="UTF-8"?>
<GetMetadataDocuments version="1.0">
 <document handle="scholnet.csp/2001-TR-009" version=”1”>
 <olms:ol xmlns:olms="http://labserv.iei.pi.cnr.it/OLP/htdocs/olms/NameSpace/"
 xmlns:dcq="http://dublincore.org/documents/2000/07/11/dcmes-qualifiers/"
 xmlns:dc="http://purl.org/dc/elements/1.1/">
 <dc:title>A document test</dc:title>

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 135

 <dc:date>2001/06/12</dc:date>
 </olms:ol>
 </document>
 <document handle="scholnet.trs/2001-TR-023" version=”2”>
 <olms:ol xmlns:olms="http://labserv.iei.pi.cnr.it/OLP/htdocs/olms/NameSpace/"
 xmlns:dcq="http://dublincore.org/documents/2000/07/11/dcmes-qualifiers/"
 xmlns:dc="http://purl.org/dc/elements/1.1/">
 <dc:title>A document test2</dc:title>
 <dc:date>2001/08/12</dc:date>
 </olms:ol>
 </document>
</ GetMetadataDocuments >

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 136

16. PERSONALIZED INFORMATION DISSEMINATION SERVICE

The Personalized Information Dissemination Service (PIDS) is independent of the rest of the
Scholnet system. The PIDS and Scholnet communicate via the OpenDLib Protocol. The PIDS
automatically notifies a user when a new document, matching the user’s interests (called topics), is
available in the Scholnet digital library. Inside the PIDS, each topic is defined in terms of
categories, such as ACM and AMS, plus additional free keywords that further refine the topic
description. The user may handle the definitions of his/her own topics, that is, create, list, edit, and
delete them.
The PIDS will send out alerts of documents matching the user-specified topics by e-mail. This can
be initiated in two different ways: by the PIDS scheduler which at fixed time intervals will retrieve
(pull) a list of metadata records from the Scholnet library; by any service which may send (push) a
list of metadata records to the PIDS. The metadata records received by either of these two
procedures will be matched against all topics of all users, and the users for which relevant matches
have been identified will then be notified.

16.1 STATE
The PIDS thus handles two types of objects, PIDS internal objects and the metadata records needed
for communication with Scholnet. Internally, the PIDS keeps track of a user database and a topic
database.

Metadata records
The PIDS receives a list of XML-encoded metadata records in Dublin Core qualified3 format from
the Scholnet system as a result of an execution of either a push or a pull metadata operation (see the
functional description of the pull/push metadata use case). The format of the metadata records is as
in the Scholnet system proper.

PIDS User Database
The PIDS internal user database is compatible with the Scholnet one, but contains additional
information about each user, i.e. the user’s e-mail address and pointers to the topics of interest to
that user. Thus each record in the user database consists of:

Attribute Type Constraint
user-id Mandatory String

alphanumeric characters plus underscore

email-address Mandatory String
alphanumeric characters plus [-_@%]

topic-id Mandatory List
list of alphanumeric characters plus underscore

PIDS Topic Database
Every topic in the PIDS internal topic database has a unique identifier. Associated with each topic,
there is a topic label (the name of the topic), as well as lists of free keywords given by the user and
of categories (e.g. ACM categories) which the user has selected as being relevant for the topic.
Finally each object in the topic database contains a flag specifying whether to notify the user or not.
Thus we have:

3 See http://www.dublincore.org/documents/dcmes-xml/

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 137

Attribute Type Constraint
topic-id Mandatory String

alphanumeric characters plus underscore

topic-label Mandatory String
alphanumeric characters plus underscore

keywords Optional List
list of alphanumeric characters plus
underscore

categories Optional List
list of alphanumeric characters plus
underscore

notification-flag Mandatory Binary

16.2 PERSONALISATION VERBS
In this section, we present the functionality provided by the PIDS for reactive communication with
the Scholnet system. In addition, the PIDS expects the Scholnet system to support the reverse
situation, i.e. the retrieval of records inserted into the Scholnet database after a certain point in time.
Finally, the PIDS supports a range of internal functions for its own processing and communication
between its different parts, i.e., the PIDS scheduler, the profile manager, the topic matching filter,
and the deliverer which notifies the users.
This verb set is divided into two sub-sets: Service Information Verb and Service Specific Verb as
reported in the following table

Service Information Verb Service Specific Verb
Identify MatchMetadata
ListVerbs CreateTopic
DescribeVerb ListTopics
 EditTopic
 DeleteTopic

Identify
Version: 1.0
Fixed args: none
Optional Args: none
Return MIME type: text/xml
Return Status Codes: 200, 400, 501

Returns a structured response containing the name and other information about the service.

Example Request:
/OLP/PIDS/1.0/Identify

Example Response:
<?xml version="1.0" encoding="UTF-8"?>
<Identify version="1.0">
 <service-name>PIDS Server</service-name>
 <base-url>http://labserv.iei.pi.cnr.it:8119</base-url>
 <protocol-version>1.0</protocol-version>
 <admin-email> straccia@iei.pi.cnr.it </admin-email>
 <description>
 <content-description>

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 138

 a human readable description of the content stored in the PIDS
 </content-description>
 </description>
</Identify>

ListVerbs
Version: 1.0
Fixed args: none
Optional Args: none
Return MIME type: text/xml
Return Status Codes: 200, 400

Returns a structured response containing the name of the verbs defined by this service.

Example Request:
/OLP/PIDS/1.0/ListVerbs

Example Response:
<?xml version="1.0" encoding="UTF-8"?>
<ListVerbs version="1.0">
 <verb>Identify</verb>
 <verb>ListVerbs</verb>
 <verb>DescribeVerb</verb>
 <verb>MatchMetadata</verb>
 <verb>CreateTopic</verb>
 <verb>ListTopics</verb>
 <verb>EditTopic</verb>
 <verb>DeleteTopic</verb>
</ListVerbs>

DescribeVerb
Version: 1.0
Fixed args: verb
Optional Args: version
Return MIME type: text/xml
Return Status Codes: 200, 400

Returns a structured response that contains a list in which each element of the list provides
information on a version of the specified verb that is supported by this service. The following
information may be provided at the verb or version level.
description, description of the verb or a specific version
note, information pertaining to the verb or a specific version
Each element of the list contains the following information:
version number of the verb.
arguments, a list of the names of the fixed and optional arguments, if any, accepted by the verb in
that version.
example template of request to this repository, with fixed arguments indicated in brackets
returns, optional, contains information about response format.
Note that a service may implement more than one version of a verb.

Example Request:
/OLP/PIDS/1.0/DescribeVerb/ListTopics

Example Response:
<?xml version="1.0" encoding="UTF-8"?>
 <DescribeVerb version="1.0">
 <verb name="ListTopics">
 <description>

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 139

Returns a structured response that contains a list of all topic-ids corresponding to the given user-
id.

 </description>
 <versions>
 <version id="1.0">
 <arguments>
 <fixed>
 <arg name="user-id" />
 </fixed>
 <optional>
 </optional>
 </arguments>
 <example>http://../OLP/PIDS/1.0/ListTopics/{example}</example>
 </version>
 </versions>
 </verb>
 </DescribeVerb>

MatchMetadata
Version: 1.0
Fixed args: metadata-record-list
Optional Args: none
Return MIME type: none
Return Status Codes: 200, 400

Returns a status code indicating whether the PIDS was able to process the list of metadata records
or not, i.e., whether the records were successfully matched against all topics of all users and
whether notifications were successfully sent out to the users concerned.

Example Request:
/OLP/PIDS/1.0/MatchMetadata

CreateTopic
Version: 1.0
Fixed args: user-id, topic-id, topic-label, notification-flag
Optional Args: keywords, categories
Return MIME type: none
Return Status Codes: 200, 400, 503

This verb will be used either to create a new topic or to edit an existing one. In the former case, the
topic-id will be empty and PIDS will be able to calculate a unique one through the user-id. In the
latter case, the topic-id will uniquely identify the topic that the user wants to modify.
The mandatory binary element notification-flag is an On/Off flag specifying whether to notify the
user or not (1 is ON, 0 is OFF).

Example Request:
/OLP/PIDS/1.0/CreateTopic

ListTopics
Version: 1.0
Fixed args: user-id
Optional Args: none
Return MIME type: text/xml
Return Status Codes: 200, 400

Returns a structured response that contains a list of all topic-ids corresponding to the given user-id.

Example Request:
/OLP/PIDS/1.0/ListTopics

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 140

Example Response:
<?xml version="1.0" encoding="UTF-8"?>
<ListTopics version="1.0">
 <topic topic-id="1a"
 topic-label="Personal Assistant"
 keywords="laptops, palmtop, personal digital assistants"
 categories="ACM - C.5.3 - Portable devices"
 notification-flag="1"/>
 <topic

topic-id="2b"
topic-label="Digital Libraries"
categories="ACM - H.3.7 - Digital Libraries"
notification-flag="1"/>

 <topic topic-id="3.5"
topic-label="Digital Network"
keywords="networks"
categories="ACM - C.2.1 - ISDN"
notification-flag="0"/>

 <topic topic-id="21a"
topic-label="Distributed programming"
categories="ACM - D.1.3 - Distributed programming"
notification-flag="1"/>

</ListTopics>

EditTopic
Version: 1.0
Fixed args: topic-id
Optional Args: none
Return MIME type: text/xml
Return Status Codes: 200, 400

Example Request:
/OLP/PIDS/1.0/EditTopic

Example Response:
<?xml version="1.0" encoding="UTF-8"?>
<EditTopic version="1.0">
 <topic topic-id="1a"
 topic-label="Personal Assistant"
 keywords="laptops, palmtop, personal digital assistants"
 categories="ACM - C.5.3 - Portable device"
 notification-flag="1"/>
</EditTopic>

DeleteTopic
Version: 1.0
Fixed args: topic-id
Optional Args: none
Return MIME type: none
Return Status Codes: 200, 400

Example Request:
/OLP/PIDS/1.0/DeleteTopic

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 141

17. HYPERMEDIA ANNOTATION SERVICE

The Hypermedia Annotation Service will integrate annotation and reference linking features into
the digital library infrastructure. It stores annotations on documents and makes them available to
authorised users.
The Hypermedia Annotation Service is an independent service that can be distributed on multiple
servers and it will be based on the Semantic Index System (SIS) developed by FORTH
[http://www.ics.forth.gr/proj/isst/Systems/sis.html]. The Semantic Index System (SIS) is a tool for
describing and documenting large evolving varieties of highly interrelated data, concepts and
complex relationships, as opposed to large homogeneous populations in fixed formats (handled by
traditional DBMS). The Hypermedia Annotation Service communicates with Scholnet via the Open
Library Protocol.

17.1 STATE
The Hypermedia Annotation Service will provide the capability to view and/or update the
Annotation Server SIS database through XML documents. The Hypermedia Annotation Service
handles two types of objects: annotations and annotation metadata. The annotation repository stores
only the annotations while the annotation metadata are the result of a mapping between the
annotation record and OLAP.

Annotations
Annotations are identified by handles in the same way as documents are. Handles are a kind of
URN that includes two parts, a naming authority and a string, separated by a slash. Each annotation
keeps references to the handles of the annotated documents or annotations and pointers inside a
document if the annotation refers to specific parts of a document. For each referred document, the
system also keeps a short description of the document (title, author, etc.) in accordance with the
OLAP metadata record of the document in the repository.
The annotation record includes the following fields:

Attribute Type Constraint
annotation-id Mandatory Handle unique identifier of the annotation in the system

author Mandatory String loginname of user who created the annotation

project Optional List list of project names whose members can access the
annotation

group Optional List list of group names whose members can access the
annotation

subject Optional List list of keywords

type Mandatory String

annotation type (Comparison,
Multidocument Agreement,
Multidocument Disagreement,
Reference, Similar with, Missing
Reference, Rating, Comment,
Agreement, Disagreement,
Explanation, Question)

text Optional String free text

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 142

date Mandatory Date creation date

program Optional List list of keywords providing a working program/project
context to the annotation

links Optional Tuple linkType, toValue

 linkType Mandatory String

linkType is the type of relation between the annotation
and the referred object (e.g. rates, describes similar
work with, agrees with, disagrees with, explains,
inspires, …)

 toValue Mandatory String

ToValue is the referred object and can be a Scholnet
DL Document handle, a pointer inside a Scholnet DL
Document handle, an external URL or a Scholnet
Annotation handle

Annotation metadata

Each annotation is associated with a metadata record in Dublin Core qualified (DCMeS
http://www.dublincore.org/documents/dcmes-qualifiers/) format. The mapping between the
Annotation Record (AR) and the Dublin Core metadata record (dc) is the following:

dc:creator = AR.author
dc:subject = "Annotation", AR.subject, AR.type
dc:description = AR.text
dc:date.modified = AR.date
dc:type = "text"
dc:format = Scholnet_annotation.dtd (the XML DTD that will be defined for annotations)
dc:identifier = AR.annotation-id
dc.relation.references = AR.program, AR.links.toValue
dc:rights = AR.group, AR.project

17.2 HYPERMEDIA ANNOTATION VERBS
In this section, we present the functionality provided by the Hypermedia Annotation Service for
communication with the Scholnet system.
This verb set is divided into two sub-sets: Service Information Verb and Service Specific Verb as
reported in the following table4:

Service Information Verb Service Specific Verb
Identify BeginSession
ListVerbs EndSession
DescribeVerb FetchAnnotation
 CreateAnnotation
 UpdateAnnotation
 SearchAnnotation

4 See Appendix A for verb’s DTDs

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 143

 GetRefDocuments
 GetAnnotationsofDocument
 DeleteAnnotation
 DisplayAnnotations

Identify
Version: 1.0
Fixed args: none
Keyword Args: none
Return MIME type: text/xml
Return Status Codes: 200, 400, 501

Returns a structured response containing the name and other information about the service.

Example Request:
/OLP/HAS/1.0/Identify

Example Response:
<?xml version="1.0" encoding="UTF-8"?>
<Identify version="1.0">
 <serviceName>Hypermedia Annotation Service</serviceName >
 <baseURL>http://annotationserver.ics.forth.gr:8080</baseURL>
 <protocolVersion>1.0</protocolVersion>
 <adminEmail>maria@ics.forth.gr</adminEmail>
 <description>
 <authorities>
 <description>
 This Hypermedia Annotation Server handles annotations related to documents that

belong to a subset of the overall set of authorities.
 </description>
 </authorities>
 <contentDescription>
 a human readable description of the content stored in the Hypermedia Annotation Service
 </contentDescription>
 </description>
</Identify>

ListVerbs
Version: 1.0
Fixed args: none
Keyword Args: none
Return MIME type: text/xml
Return Status Codes: 200, 400

Returns a structured response containing the name of the verbs defined by this service.

Example Request:
/OLP/HAS/1.0/ListVerbs

Example Response:
<?xml version="1.0" encoding="UTF-8"?>
<ListVerbs version="1.0">
 <verb>Identify</verb>
 <verb>ListVerbs</verb>
 <verb>DescribeVerb</verb>

<verb>BeginSession</verb>
<verb>EndSession</verb>
<verb>FetchAnnotation</verb>
<verb>CreateAnnotation</verb>
<verb>UpdateAnnotation</verb>
<verb>SearchAnnotation</verb>

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 144

<verb>GetRefDocuments</verb>
<verb>GetAnnotationsofDocument</verb>
<verb>DeleteAnnotation</verb>
<verb>DisplayAnnotations</verb>

</ListVerbs>

DescribeVerb
Version: 1.0
Fixed args: verb
Keyword Args: version
Return MIME type: text/xml
Return Status Codes: 200, 400

Returns a structured response that contains a list in which each element of the list provides
information on a version of the specified verb that is supported by this service. The following
information may be provided at the verb or version level.
description, description of the verb or a specific version
note, information pertaining to the verb or a specific version
Each element of the list contains the following information:
version number of the verb.
arguments, a list of the names of the fixed and keyword arguments, if any, accepted by the verb in
that version.
example template of request to this repository, with fixed arguments indicated in brackets
returns, optional, contains information about response format.
Note that a service may implement more than one version of a verb.

Example Request:
/OLP/HAS/1.0/DescribeVerb/FetchAnnotation

Example Response:
<?xml version="1.0" encoding="UTF-8"?>
 <DescribeVerb version="1.0">
 <verb name="FetchAnnotation">
 <description>

Returns an XML document that contains a description of the annotation corresponding to the
given AnnotationID.

 </description>
 <versions>
 <version id="1.0">
 <arguments>
 <fixed>
 <arg name="AnnotationID" />
 </fixed>
 <keyword>
 </keyword>
 </arguments>
 <example>http://../OLP/HAS/1.0/FetchAnnotation/{example}</example>
 </version>
 </versions>
 </verb>
 </DescribeVerb>

BeginSession
Version: 1.0
Fixed args: login
Keyword Args: grouplist, projectlist
Return MIME type: text/xml
Return Status Codes: 200, 400

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 145

A session with the annotation server for the specified user is started and a unique session id is
returned. The list of groups and/or projects to which the user has access is specified. These lists
will control access of the user to annotations for the current session (until EndSession is called)

Example Request:
/OLP/HAS/1.0/BeginSession/maria@ics.forth.gr?grouplist=scholnet

Example Response (success):
<?xml version="1.0" encoding="UTF-8"?>
<BeginSession version="1.0" login=maria status="OK">
 <sessionid>HAS987</sessionid>
</BeginSession>

Example Response (failure):
<?xml version="1.0" encoding="UTF-8"?>
<BeginSession version="1.0" login=maria status="Error: A session cannot be started"/>

EndSession
Version: 1.0
Fixed args: sessionid
Keyword Args: none
Return MIME type: text/xml
Return Status Codes: 200, 400

The session with the annotation server with sessionid is ended.

Example Request:
/OLP/HAS/1.0/EndSession/HAS987

Example Response (success):
<?xml version="1.0" encoding="UTF-8"?>
<EndSession version="1.0" sessionid="HAS987" status="OK"/>

Example Response (failure):
<?xml version="1.0" encoding="UTF-8"?>
<EndSession version="1.0" sessionid="HAS987" status="Error: The session cannot be ended. Service is still
processing."/>

FetchAnnotation
Version: 1.0
Fixed args: sessionid, annotation_handle
Keyword Args: none
Return MIME type: text/xml
Return Status Codes: 200, 400

The annotation with annotation_handle is retrieved from the annotation server and an xml
document with all relevant information is returned if the user who started the session has access to
this annotation.

Example Request:
/OLP/HAS/1.0/FetchAnnotation/ HAS987/ics.forth/ ann01

Example Response (success):
<?xml version="1.0" encoding="UTF-8"?>
 <FetchAnnotation version="1.0" sessionid="HAS987" annotation_handle ="ics.forth/ ann01” status="OK">
 <annotation>
 <handle>ics.forth/ann01</handle>
 <description>
 <type>Agreement</type>
 <subject>Testing</subject>

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 146

 <text>"testing annotation service"</text>
 <program>Scholnet</program>
 </description>
 <userinfo>
 <author>Manolis Tzobanakis</author>
 <project>Scholnet</project>
 <group>ISL</group>
 </userinfo>
 <links>
 <linktype>agrees with</linktype>
 <tovalue>Doc02102001</tovalue>

 <linktype>disagrees with</linktype>
 <tovalue>Doc01102001</tovalue>

 </links>
 <date>2001-10-2</date>
 </annotation>
</FetchAnnotation>

Example Response (failure):
<?xml version="1.0" encoding="UTF-8"?>
<FetchAnnotation version="1.0" sessionid="HAS987" annotation_handle ="ics.forth/ ann01” status="Error:
The annotation_handle does not exist in the annotation server."/>

CreateAnnotation
Version: 1.0
Fixed args: sessionid, document_handle
Fixed_post args: file
Keyword Args: none
Return MIME type: text/xml
Return Status Codes: 200, 400

This verb creates an annotation for the document specified with document_handle. The annotation
is transmitted as an HTTP POST request where the input stream is a MIME type text/xml. The verb
delivers a confirmation message.

Example Request:
/OLP/HAS/1.0/CreateAnnotation/HAS987/ics.forth/TR001

In addition an input stream should be supplied with the POST that includes this request.

Example POST request:
<?xml version="1.0" encoding="UTF-8"?>
 <CreateAnnotation version="1.0">
 <annotation>
 <description>
 <type>Agreement</type>
 <subject>Testing</subject>
 <text>"testing annotation service"</text>
 <program>Scholnet</program>
 </description>
 <userinfo>
 <author>Manolis Tzobanakis</author>
 <project>Scholnet</project>
 <group>ISL</group>
 </userinfo>
 <links>
 <linktype>agrees with</linktype>
 <tovalue>Doc02102001</tovalue>
 </links>
 <date>2001-10-2</date>
 </annotation>

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 147

</CreateAnnotation>

UpdateAnnotation
Version: 1.0
Fixed args: sessionid, annotation_handle
Fixed_post args: file
Keyword Args: none
Return MIME type: text/xml
Return Status Codes: 200, 400

This verb updates the annotation annotation_handle. The annotation is transmitted as an HTTP
POST request where the input stream is a MIME type text/xml. The verb delivers a confirmation
message.

Example Request:
/OLP/HAS/1.0/UpdateAnnotation/HAS987/ics.forth/ann001
In addition an input stream should be supplied with the POST that includes this request

Example Response (failure):
<?xml version="1.0" encoding="UTF-8"?>
<UpdateAnnotation version="1.0" sessionid="HAS987" annotation_handle ="ics.forth/ ann01” status="Error:
User is not authorised to update the annotation"/>

SearchAnnotation
Version: 1.0
Fixed args: sessionid
Fixed_post args: search_specification
Keyword Args: none
Return MIME type: text/xml
Return Status Codes: 200, 400

This verb searches the annotation database for annotations that match the query specified in the
search_specification. The search_specification is passed as an HTTP POST request of an XML
file.
The verb returns a structured response that contains a list with basic information regarding the
annotations that matched the query.

Example Request:
/OLP/HAS/1.0/SearchAnnotation/HAS987

Example Response:
<?xml version="1.0" encoding="UTF-8"?>
 <SearchAnnotation version="1.0" sessionid="HAS987" status="OK">
 <description>

A list of annotation URLs that match a search pattern.
 </description>
 <annotationlist>
 <annotation>
 <handle>ics.forth/ann003</handle>
 <description>
 <subject>Testing</subject>
 <type> Agreement </type>
 </description>
 <userinfo>
 <author>Manolis Tzobanakis</author>
 </userinfo>
 </annotation>
 <annotation>
 <handle>ics.forth/ann045</handle>
 <description>

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 148

 <subject>Testing</subject>
 <type>Rating</type>
 </description>
 <userinfo>
 <author>Maria Theodoridou</author>
 </userinfo>
 </annotation>
 </annotationlist>
</SearchAnnotation>

GetRefDocuments
Version: 1.0
Fixed args: sessionid, annotation-handle
Keyword Args: none
Return MIME type: text/xml
Return Status Codes: 200, 400

This verb returns the list of document handles referenced by the annotation with annotation-handle
from the annotation server.

Example Request:
/OLP/HAS/1.0/GetRefDocuments/HAS987/ics.forth/ann001

Example Response (success):
<?xml version="1.0" encoding="UTF-8"?>
 <GetRefDocuments version="1.0" sessionid="HAS987" status="OK">
 <handle>ics.forth/ann001</handle>
 <referenced-docs>
 <handle>ics.forth/doc01</handle>
 <handle>ics.forth/doc04</handle>
 <handle>ics.forth/doc25</handle>
 </referenced-docs>
</GetRefDocuments>

GetAnnotationsofDocument
Version: 1.0
Fixed args: sessionid, document-handle
Keyword Args: none
Return MIME type: text/xml
Return Status Codes: 200, 400

This verb returns the list of annotation handles that reference the document with document-handle.

Example Request:
/OLP/HAS/1.0/GetAnnotationsofDocument/HAS987/ics.forth/doc001

Example Response (success):
<?xml version="1.0" encoding="UTF-8"?>
 <GetAnnotationsofDocument version="1.0" sessionid="HAS987" status="OK">
 <handle>ics.forth/doc001</handle>
 <referenced-by-annt>
 <handle>ics.forth/annt01</handle>
 <handle>ics.forth/annt03</handle>
 <handle>ics.forth/annt10</handle>
 </referenced-by-annt>
</GetAnnotationsofDocument >

DeleteAnnotation
Version: 1.0
Fixed args: sessionid, annotation-handle

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 149

Keyword Args: none
Return MIME type: text/xml
Return Status Codes: 200, 400

This verb deletes the annotation with annotation-handle from the annotation server and delivers a
confirmation message as a receipt.

Example Request:
/OLP/HAS/1.0/DeleteAnnotation/HAS987/ics.forth/ann001

DisplayAnnotations
Version: 1.0
Fixed args: sessionid
Keyword Args: document-handle, annotation-handle, URL, option, format
Return MIME type: text/xml
Return Status Codes: 200, 400

Generates an XML document with basic information about the annotations associated with the
specified input. If option is "immediate" only the immediately associated annotations (first level
annotations) are included in the returned XML stream. If option is "all", then all associated
annotations (all levels of annotations) are included in the returned XML stream. Default value for
option is "immediate". The optional keyword format can take the following values:

• short (default): only the subject, type, program and text of the annotation is included in
the XML stream.

• long: information about the author, project, group, date are also included in the XML
stream.

Example Request:
/OLP/HAS/1.0/DisplayAnnotation/HAS987?DocumentID=ics.forth/TR001&option=immediate

Example Response:

<?xml version="1.0" encoding="UTF-8"?>
 <DisplayAnnotations version="1.0" sessionid="HAS987" status="OK">
 <annotatedObject>
 <handle>ics.forth/TR001</handle>

 <annotation>
 <handle>ics.forth/ann001</handle>
 <description>

<type>rating</type>
<text>10</text>
<program>scholnet</program>

 </description>
 </annotation>
 <annotation>
 <handle>ics.forth/ann002</handle>
 <description>

<type>agreement</type>
<text>excellent paper</text>
<subject>architectural specifications</subject>

 </description>
 </annotation>

 </annotatedObject>
 </DisplayAnnotations>

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 150

18. MULTILINGUAL THESAURUS SERVICE

The Multilingual Thesaurus Service is an independent service based on the SIS Thesaurus
Management System (SIS-TMS) [http://www.ics.forth.gr/proj/isst/Systems/sis-tms.html]. The SIS-
TMS consists of a tool to develop multilingual thesauri and a terminology server for cataloguers
and for distributed access to heterogeneous electronic collections. The Multilingual Thesaurus
Service communicates with Scholnet via the OpenDLib Protocol.

18.1 STATE
The Multilingual Thesaurus Service will provide the capability to view and/or update the SIS-TMS
database through XML documents. The basic notion of SIS-TMS is a thesaurus concept which is
described by an XML document (see Appendix D). The user will be able to view and/or edit this
document.

18.2 MULTILINGUAL THESAURUS VERBS
In this section, we present the functionality provided by the Multilingual Thesaurus Service for the
communication with the Scholnet system.
This verb set is divided into two sub-sets: Service Information Verb and Service Specific Verb as
reported in the following table:

Service Information Verb Service Specific Verbs Administration Specific

Verbs
Identify BeginSession MoveHierarchy
ListVerbs EndSession CreateNewHierarchy
DescribeVerb CreateTerm CreateHierarchy
 UpdateTerm DeleteHierarchy
 RenameTerm CreateFacet
 DeleteTerm ReleaseThesaurus
 ListTerms
 ListTerm
 ListTranslations
 ListThesauri
 SetThesaurus
 SearchTerm

Identify
Version: 1.0
Fixed args: none
Keyword Args: none
Return MIME type: text/xml
Return Status Codes: 200, 400, 501

This verb returns a structured response containing the name and other information about the service.

Example Request:
/OLP/MTS/1.0/Identify

Example Response:
<?xml version="1.0" encoding="UTF-8"?>
<Identify version="1.0">
 <serviceName>Multilingual Thesaurus Service</serviceName >
 <baseURL>http://thesaurusserver.ics.forth.gr:8080</baseURL>
 <protocolVersion>1.0</protocolVersion>

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 151

 <adminEmail>martin@ics.forth.gr</adminEmail>
 <description>
 <contentDescription>
 a human readable description of the content stored in the Multilingual Thesaurus Service
 </contentDescription>
 </description>
</Identify>

ListVerbs
Version: 1.0
Fixed args: none
Keyword Args: none
Return MIME type: text/xml
Return Status Codes: 200, 400

Returns a structured response containing the name of the verbs defined by this service.

Example Request:
/OLP/MTS/1.0/ListVerbs

Example Response:
<?xml version="1.0" encoding="UTF-8"?>
<ListVerbs version="1.0">
 <verb>Identify</verb>
 <verb>ListVerbs</verb>
 <verb>DescribeVerb</verb>
 <verb>BeginSession</verb>
 <verb>EndSession</verb>
 <verb>CreateTerm</verb>
 <verb>UpdateTerm</verb>
 <verb>RenameTerm</verb>
 <verb>DeleteTerm</verb>
 <verb>ListTerms</verb>
 <verb>ListTerm</verb>
 <verb>ListTranslations</verb>
 <verb>ListThesauri</verb>
 <verb>SetThesaurus</verb>
 <verb>SearchTerm</verb>
 <verb>MoveHierarchy</verb>
 <verb>CreateNewHierarchy</verb>
 <verb>CreateHierarchy</verb>
 <verb>DeleteHierarchy</verb>
 <verb>CreateFacet</verb>
 <verb>ReleaseThesaurus</verb>
</ListVerbs>

DescribeVerb
Version: 1.0
Fixed args: verb
Keyword Args: version
Return MIME type: text/xml
Return Status Codes: 200, 400

Returns a structured response that contains a list in which each element of the list provides
information on a version of the specified verb that is supported by this service. The following
information may be provided at the verb or version level.
description, description of the verb or a specific version
note, information pertaining to the verb or a specific version
Each element of the list contains the following information:
version number of the verb.

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 152

arguments, a list of the names of the fixed and keyword arguments, if any, accepted by the verb in
that version.
example template of request to this repository, with fixed arguments indicated in brackets
returns, optional, contains information about response format.
Note that a service may implement more than one version of a verb.

Example Request:
/OLP/MTS/1.0/DescribeVerb/DisplayTerm

Example Response:
<?xml version="1.0" encoding="UTF-8"?>
 <DescribeVerb version="1.0">
 <verb name="ListTerm">
 <description>

Returns an XML document that contains a description of the term corresponding to the given
target term.

 </description>
 <versions>
 <version id="1.0">
 <arguments>
 <fixed>
 <arg name="targetterm" />
 </fixed>
 <keyword>
 </keyword>
 </arguments>
 <example>http://../OLP/MTS/1.0/ListTerm/{example}</example>
 </version>
 </versions>
 </verb>
 </DescribeVerb>

BeginSession
Version: 1.0
Fixed args: login, thesaurusname
Keyword Args: none
Return MIME type: text/xml
Return Status Codes: 200, 400

A session with the thesaurus server for the specified user is started. If the MTS is able to link the
session to the thesaurus with the specified thesaurusname a unique sessionid will be returned.

Example Request:
/OLP/MTS/1.0/BeginSession/maria@ics.forth.gr/ACMenglish

Example Response (success):
<?xml version="1.0" encoding="UTF-8"?>
 <BeginSession version="1.0" thesaurusname="ACMen" status="OK">
 <sessionid>MTS00234</sessionid>
 </BeginSession>

Example Response (failure):
<?xml version='1.0' encoding='UTF-8'?>
<BeginSession version='1.0' thesaurusname='ACMen’ status='Error: ErrorMessage'/>

EndSession
Version: 1.0
Fixed args: sessionid
Keyword Args: none

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 153

Return MIME type: text/xml
Return Status Codes: 200, 400

The session with sessionid with the thesaurus server is ended.

Example Request:
/OLP/MTS/1.0/EndSession/MTS000001

Example Response (success):
<?xml version='1.0' encoding='UTF-8'?>
 <EndSession version='1.0' sessionid='MTS000001' status='OK'/>

Example Response (failure):
<?xml version='1.0' encoding='UTF-8'?>

<EndSession version='1.0' sessionid='MTS000001' status='Error: Session ID does not exist'/>

CreateTerm
Version: 1.0
Fixed args: sessionid, termname, broaderterm
Keyword Args: none
Return MIME type: text/xml
Return Status Codes: 200, 400

This verb creates a new term in the thesaurus. The new term is added to the knowledge base and is
associated with the given broader term with a BT relation. It is also classified in its broader term
hierarchies

Example Request:
/OLP/MTS/1.0/CreateTerm/MTS000001/Data mining/Database Applications

Example Response (success):
<?xml version='1.0' encoding='UTF-8'?>

<CreateTerm version='1.0' sessionid='MTS000001' status='OK'>
 <new term>Data mining</new term>
 </CreateTerm>

Example Response (failure):
<?xml version='1.0' encoding='UTF-8'?>
 <CreateTerm version='1.0' sessionid='MTS000001' status='ErrorMessage'/>

UpdateTerm
Version: 1.0
Fixed args: sessionid, targetterm
Fixed_post args: file
Keyword Args: none
Return MIME type: text/xml
Return Status Codes: 200, 400, 503

Updates an existing term in the thesaurus. This is transmitted as an HTTP POST request where the
input stream is a MIME type text/xml.

Example Request:
/OLP/MTS/1.0/UpdateTerm/ MTS000456/Data mining

In addition an input stream should be supplied with the POST that includes this request.

RenameTerm
Version: 1.0
Fixed args: sessionid, oldName, newName
Keyword Args: none

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 154

Return MIME type: text/xml
Return Status Codes: 200, 400

Renames an existing term in the thesaurus. If the newName is an existing term in the thesaurus, then
the request will fail.

Example Request:
/OLP/MTS/1.0/RenameTerm/MTS000001/databases/databases and GIS.

Example Response (success):
<?xml version='1.0' encoding='UTF-8'?>
 <RenameTerm version='1.0' sessionid='MTS000001' status='OK'>
 <old name>databases</old name>
 <new name>databases and GIS</new name>
 </RenameTerm>

Example Response (failure):
<?xml version='1.0' encoding='UTF-8'?>
 <RenameTerm version='1.0' sessionid='MTS000001' status='Error: Cannot rename term since the new
name already exists'/>

DeleteTerm
Version: 1.0
Fixed args: sessionid, targetterm
Keyword Args: none
Return MIME type: text/xml
Return Status Codes: 200, 400

Example Request:
/OLP/MTS/1.0/DeleteTerm/ MTS000001/Data mining

Example Response (success):
<?xml version='1.0' encoding='UTF-8'?>
 <DeleteTerm version='1.0' sessionid='MTS000001' status='OK'>
 <deleted term>Data mining</deleted term>
 </DeletedTerm>

Example Response (failure):
<?xml version='1.0' encoding='UTF-8'?>
 <DeleteTerm version='1.0' sessionid='MTS000001' status='Error:ErrorMessage'/>

ListTerms
Version: 1.0
Fixed args: sessionid, typeofdisplay, option
Keyword Args: target, typeofterm
Return MIME type: text/xml
Return Status Codes: 200, 400

A list of terms can be obtained in several ways depending on the level of a term and the type of
display. Typeofdisplay can take one of two possible values: alphabetic, hierarchical. Terms may be
listed either alphabetically or hierarchically. In the later case, the display may be either textual in
the form of an indented list or graphical in the form of a tree.

In any type of display, the user may select one of the following options:

ALLTERMS: Display all terms independently of their level in the Classification System according
to their type (obsolete, new, revised, etc.) which is given in the typeofterm keyword.
ALLTERMSBYHIER: Display all terms of a specified hierarchy according to their type (obsolete,
new, revised etc.) which is given in the typeofterm keyword. The name of the hierarchy is given in
the target keyword.

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 155

TOPHIER: Display top level hierarchies, which consists of the 11 first level nodes of the ACM
Classification System. The typeofdisplay can only be alphabetic with this option.
ALLNT: Display all levels below a term. The name of the term is given in the target keyword.
ALLBT: Display all levels above a term. The name of the term is given in the target keyword.

Example Request:
/OLP/MTS/1.0/ListTerms/ MTS000456/alphabetic/ALLTERMS

Example Response (success):
<?xml version='1.0' encoding='UTF-8'?>
<ListTerms version='1.0' sessionid='MTS000456' status='OK'>
 <term>

<Name>Abstract data types</Name>
<Type>ACMenDescriptor</Type>
<Hierarchy>Software</Hierarchy>

</term>
 <term>

<Name>Abstracting methods</Name>
<Type>ACMenDescriptor</Type>
<Hierarchy>Information Systems</Hierarchy>

</term>
 <term>

<Name>Abuse and crime involving computers</Name>
<Type>ACMenNewDescriptor</Type>
<Hierarchy>Computing Milieux</Hierarchy>

</term>
……

</ListTerms>

Example Response (failure):
<?xml version='1.0' encoding='UTF-8'?>
 <ListTerms version='1.0' sessionid='MTS000456' status='Error:ErrorMessage'/>

Example Request:
/OLP/MTS/1.0/ListTerms/ MTS000456/hierarchical/ALLTERMS

Example Response (success):
<?xml version='1.0' encoding='UTF-8'?>
<ListTerms version='1.0' sessionid='MTS000456' status='OK'>
 <term>

 <Name>Computing Methodologies</Name>
 <Type>ACMenDescriptor</Type>
 <Hierarchy>Computing Methodologies</Hierarchy>
 <Narrower_Term>

 <Concept_Name>GENERAL</Concept_Name>
 <Concept_Name>SYMBOLIC AND ALGEBRAIC MANIPULATION</Concept_Name>
 <Concept_Name>ARTIFICIAL INTELLIGENCE</Concept_Name>
 ……..
 </Narrower_Term>
 </term>
 <term>

 <Name>GENERAL</Name>
 <Type>ACMenDescriptor</Type>
 <Hierarchy>Computing Methodologies</Hierarchy>
 </term>
 <term>

 <Name>SYMBOLIC AND ALGEBRAIC MANIPULATION</Name>
 <Type>ACMenRevisedDescriptor</Type>
 <Hierarchy>Computing Methodologies</Hierarchy>

 <Narrower_Term>

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 156

 <Concept_Name>General</Concept_Name>
 <Concept_Name>Expressions and Their Representation</Concept_Name>
 <Concept_Name>Algorithms</Concept_Name>
 ……..
 </Narrower_Term>
 </term>
</ListTerms>

Example Request:
/OLP/MTS/1.0/ListTerms/ MTS000456/alphabetic/ALLTERMSBYHIER?target=Computing Methodologies

Example Response (success):
<?xml version='1.0' encoding='UTF-8'?>
<ListTerms version='1.0' sessionid='MTS000456' status='OK'>
 <term >Algebraic algorithms</term>
 <term >Algorithms</term>
 <term>Analogies</term>
 <term>Antialiasing</term>
 …….
</ListTerms>

Example Request:
/OLP/MTS/1.0/ListTerms/ MTS000456/alphabetic/TOPHIER

Example Response (success):
<?xml version='1.0' encoding='UTF-8'?>
<ListTerms version='1.0' sessionid='MTS000456' status='OK'>
 <hierarchy>Computer Applications</hierarchy>
 <hierarchy>Computer Systems Organization</hierarchy>
 <hierarchy>Computing Methodologies</hierarchy>
 <hierarchy>Computing Milieux</hierarchy>
 <hierarchy>Data</hierarchy>
 <hierarchy>General Literature</hierarchy>
 <hierarchy>Hardware</hierarchy>
 <hierarchy>Information Systems</hierarchy>
 <hierarchy>Mathematics of Computing</hierarchy>
 <hierarchy>Software</hierarchy>
 <hierarchy>Theory of Computation</hierarchy>
</ListTerms>

Example Request:
/OLP/MTS/1.0/ListTerms/MTS000456/hierarchical/ALLNT?target=SYMBOLIC AND ALGEBRAIC
MANIPULATION

Example Response (success):
<?xml version='1.0' encoding='UTF-8'?>
<ListTerms version='1.0' sessionid='MTS000456' status='OK'>
 <term>
 <name> SYMBOLIC AND ALGEBRAIC MANIPULATION</name>
 <ntterm>General</ntterm>
 </term>
 <term>

<name> SYMBOLIC AND ALGEBRAIC MANIPULATION </name>
<ntterm>Expressions and Their Representation</ntterm>

 </term>
 <term>

<name>Expressions and Their Representation</name>
<ntterm>Representations (general and polynomial)</ntterm>

 </term>
 <term>

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 157

<name>Expressions and Their Representation</name>
<ntterm>Simplification of expressions</ntterm>

 </term>
 <term>

<name>SYMBOLIC AND ALGEBRAIC MANIPULATION</name>
<ntterm>Algorithms</ntterm>

 </term>
 <term>

<name>Algorithms</name>
<ntterm>Algebraic algorithms</ntterm>

 </term>
 <term>

<name>Algorithms</name>
<ntterm>Analysis of algorithms</ntterm>

 </term>
 <term>

<name>Algorithms</name>
<ntterm>Nonalgebraic algorithms</ntterm>

 </term>
……

</ListTerms>

Example Request:
/OLP/MTS/1.0/ListTerms/ MTS000456/alphabetic/ALLBT?target=Algorithms
Example Response (success):
<?xml version='1.0' encoding='UTF-8'?>
<ListTerms version='1.0' sessionid='MTS000456' status='OK'>

<term>Computing Methodologies</term>
 <term>SYMBOLIC AND ALGEBRAIC MANIPULATION</term>
</ListTerms>

ListTerm
Version: 1.0
Fixed args: sessionid, targetterm
Keyword Args: option
Return MIME type: text/xml
Return Status Codes: 200, 400

For targetterm, retrieves all the information regarding the term. If option is LONG then all the
information regarding the term is returned. If option is SHORT the thesaurus is only checked to see
whether the target term is contained in the thesaurus of not. The default value of option is LONG.

Example Request:
/OLP/MTS/1.0/ListTerm/ MTS000001/Algorithms

Example Response (success):
<?xml version='1.0' encoding='UTF-8'?>
<ListTerm version='1.0' sessionid='MTS000001' status='OK'>
 <Concept>
 <Definition>
 <Name>Algorithms</Name>

 <Scope_Note> scope note of term</Scope_Note>
 <Thesaurus>ACMen</Thesaurus>
 <Type>ACMenDescriptor</Type>
 <Hierarchy>Computing Methodologies</Hierarchy>
 </Definition>
 <Intra_Thesaurus>
 <Broader_Term>
 <Concept_Name>SYMBOLIC AND ALGEBRAIC MANIPULATION</Concept_Name>
 </Broader_Term>
 <Narrower_Term>

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 158

 <Concept_Name>Algebraic algorithms</Concept_Name>
 </Narrower_Term>
 <Narrower_Term>
 <Concept_Name>Analysis of algorithms</Concept_Name>
 </Narrower_Term>
 <Narrower_Term>
 <Concept_Name>Nonalgebraic algorithms</Concept_Name>
 </Narrower_Term>
 <Related_Term>
 <Concept_Name>Numerical Algorithms and Problems</Concept_Name>
 <Concept_Name>Nonnumerical Algorithms and Problems</Concept_Name>
 </Related_Term>
 </Intra_Thesaurus>
 </Concept>
 </ListTerm>

Example Response (failure):
<?xml version='1.0' encoding='UTF-8'?>
 <ListTerm version='1.0' sessionid='MTS000001' status='Error:ErrorMessage'/>

Example Request:
/OLP/MTS/1.0/ListTerm/ MTS000001/Algorithms?option=SHORT

Example Response (success):
<?xml version='1.0' encoding='UTF-8'?>
 <ListTerm version='1.0' sessionid='MTS000001' status='OK'>
 <Concept>
 <Definition>
 <Name>Algorithms</Name>
 <Type>ACMenDescriptor</Type>
 <Hierarchy>Computing Methodologies</Hierarchy>
 </Definition>
 </Concept>
</ListTerm>

ListTranslations

Version: 1.0
Fixed args: sessionid, thesaurusname
Fixed_post args: list of targetterms
Keyword Args: option
Return MIME type: text/xml
Return Status Codes: 200, 400

The list of targetterms is passed through an HTTP POST request. For each targetterm in the list, all
links of the targetterm to equivalent terms in the thesaurusname are collected. If option is BT then
the broader terms of targetterm with equivalent terms in thesaurusname are collected. If option is
NT then the narrower terms of targetterm with equivalent terms in thesaurusname are collected. If
option is BOTH then both broader and narrower terms of targetterm with equivalent terms in
thesaurusname are collected.

Example Request:
/OLP/MTS/1.0/ListTranslations/ MTS000456/ACMde?option=BOTH

An input stream should be supplied with the POST that includes this request:

<?xml version="1.0" encoding="UTF-8"?>
<ListTranslations version="1.0">
 <term>Applications and Expert Systems</term>
 <term>Speech recognition and synthesis</term>

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 159

</ ListTranslations >

Example Response:
<?xml version="1.0" encoding="UTF-8"?>
<ListTranslations version="1.0" status="OK">
 <translatedterm>
 <translation>
 <term>Applications and Expert Systems</term>
 <equivalence>
 <Union>
 <Intersection>
 <Concept_Name>Anwendung</Concept_Name>
 <Concept_Name>Kuenstliche Intelligenz</Concept_Name>

 </Intersection>
 <Concept_Name>Experten System</Concept_Name>
 </Union>
 </equivalence>
 </translation>
 <btterm>
 <translation>
 <term>ARTIFICIAL INTELLIGENCE</term>
 <equivalence>
 <Concept_Name>Kuenstliche Intelligenz</Concept_Name>
` </equivalence>
 </translation>
 </btterm>
 <ntterm>
 <translation>

 </translation>
 </ntterm>
 </translatedterm>
 <translatedterm>
 <translation>
 <term>Speech recognition and synthesis</term>
 <equivalence>
 <Union>
 <Concept_Name>Spracherkennung</Concept_Name>
 <Concept_Name>Spracheingabe</Concept_Name>
 <Concept_Name>Sprachausgabe</Concept_Name>
 </Union>
 </equivalence>
 </translation>
 <btterm>
 <translation>

 </translation>
 </btterm>
 <ntterm>
 <translation>

 </translation>
 </ntterm>
 </translatedterm>
</ListTranslations>

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 160

ListThesauri
Version: 1.0
Fixed args: sessionid
Keyword Args: none
Return MIME type: text/xml
Return Status Codes: 200, 400

This verb lists all the available thesauri in the system.

Example Request:
/OLP/MTS/1.0/ListThesauri/ MTS000001

Example Response (success):
<?xml version="1.0" encoding="UTF-8"?>
<ListThesauri version="1.0" sessionid='MTS000001' status="OK">
 <thesaurus>ACMen</thesaurus>
 <thesaurus>ACMit</thesaurus>
 <thesaurus>ACMgr</thesaurus>
 <thesaurus>ACMse</thesaurus>
 <thesaurus>ACMde</thesaurus>
 <thesaurus>ACMcz</thesaurus>
 <thesaurus>ACMfr</thesaurus>
</ListThesauri>

Example Response (failure):
<?xml version='1.0' encoding='UTF-8'?>
 <ListThesauri version='1.0' sessionid='MTS000001' status='Error: Failed to List Thesauri'/>

SetThesaurus
Version: 1.0
Fixed args: sessionid, thesaurusname
Keyword Args: none
Return MIME type: text/xml
Return Status Codes: 200, 400

The user may use this verb in order to change the thesaurus with which he is currently working. He
has to provide the name of the new thesaurus as argument.

Example Request:
/OLP/MTS/1.0/SetThesaurus/MTS000001/greek

Example Response (success):
<?xml version='1.0' encoding='UTF-8'?>
 <SetThesaurus version='1.0' sessionid='MTS000001' status='OK'>
 <oldthesaurus>ACMfr</oldthesaurus>
 <newthesaurus>ACMgr</newthesaurus>
 </SetThesaurus>

Example Response (failure):
<?xml version='1.0' encoding='UTF-8'?>

 <SetThesaurus version='1.0' sessionid='MTS000001' status='Error: greek is not a valid Thesaurus'/>

SearchTerm
Version: 1.0
Fixed args: sessionid, string
Keyword Args: none
Return MIME type: text/xml
Return Status Codes: 200, 400

Selects thesaurus terms whose name matches (completely or partially) the given pattern. Both

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 161

precise match and left/right truncation is supported:
*string: Matches the terms that end by string
string*: Matches the names that start by string
string or string: Matches the names that contain the substring string

Example Request:
/OLP/MTS/1.0/SearchTerm/ MTS000001/*method*

Example Response (success):
<?xml version="1.0" encoding="UTF-8"?>
<SearchTerm version="1.0" sessionid=' MTS000001’ status="OK">
 <term>Access methods</term >
 <term>Abstracting methods</term >

<term>Indexing methods</term >
<term>Evaluation/methodology</term >
<term>Theory and methods</term >
 …..

</ SearchTerm>

Example Response (failure):
<?xml version='1.0' encoding='UTF-8'?>
 <SearchTerm version='1.0' sessionid='MTS000001' status='Error: ErrorMessage'/>

MoveHierarchy
Version: 1.0
Fixed args: sessionid, targetterm, currenthierarchy, newhierarchy,
NewBTterm
Keyword Args: Option
Return MIME type: text/xml
Return Status Codes: 200, 400

Depending on the value of Option:
MOVE_NODE_ONLY: The target term is detached from the CurrentHierarchy and classified in
the new hierarchy. A broader term relation is established between the target term and the
NewBTterm.
MOVE_NODE_AND_SUBTREE: The target term and its subtree of broader term relations are
detached from the CurrentHierarchy and are reclassified in the new hierarchy. A broader term
relation is established between the target term and the NewBTterm.
CONNECT_NODE_AND_SUBTREE: The targetterm and its subtree of broader term relations
are NOT detached from the CurrentHierarchy and are classified in multiple in the new hierarchy. A
broader term relation is established between the target term and the NewBTterm.

Example Request:
/OLP/MTS/1.0/MoveHierarchy/MTS000001/User Issues/Information Systems/Mathematics of
Computing/MATHEMATICAL SOFTWARE?option=CONNECT_NODE_AND_SUBTREE

Example Response (success):
<?xml version='1.0' encoding='UTF-8'?>
 <MoveHierarchy version='1.0' sessionid='MTS000001' status='OK'>
 <targetterm>User Issues</targetterm>
 <currenthierarchy>Information Systems</currenthierarchy>
 <newhierarchy>Mathematics of Computing</newhierarchy>
 <newbtterm>MATHEMATICAL SOFTWARE</newbtterm>
 </MoveHierarchy>

Example Response (failure):
<?xml version='1.0' encoding='UTF-8'?>
 <MoveHierarchy version='1.0' sessionid='MTS000001' status='ErrorMessage'/>

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 162

CreateNewHierarchy
Version: 1.0
Fixed args: sessionid, hierarchyname, facetname
Keyword Args: none
Return MIME type: text/xml
Return Status Codes: 200, 400

Example Request:
/OLP/MTS/1.0/CreateNewHierarchy/MTS0000001/Hardware/ACMFacet

Example Response (success):
<?xml version='1.0' encoding='UTF-8'?>
 <CreateNewHierarchy version='1.0' sessionid='MTS000001' status='OK'>

<newhierarchy>Hardware</newhierarchy>
<facet>ACMFacet</facet>

 </CreateNewHierarchy>

Example Response (failure):
<?xml version='1.0' encoding='UTF-8'?>
 <CreateNewHiearchy version='1.0' sessionid='MTS000001' status='Error: ErrorMessage'/>

CreateHierarchy

Version: 1.0
Fixed args: sessionid, hierarchyname
Keyword Args: none
Return MIME type: text/xml
Return Status Codes: 200, 400

Adds a set of terms as instances under an existing hierarchy in the thesaurus. The set of terms is
transmitted as an HTTP POST request where the input stream is a MIME type text/xml.

Example Request:
/OLP/MTS/1.0/CreateHierarchy/ MTS000456/Hardware

An input stream should be supplied with the POST that includes this request:

<?xml version="1.0" encoding="UTF-8"?>
<CreateHierarchy version="1.0">
 <term>GENERAL</term >
 <term>CONTROL STRUCTURES AND MICROPROGRAMMING</term >

<term>ARITHMETIC AND LOGIC STRUCTURES</term >
<term>MEMORY STRUCTURES</term >
 …..

</CreateHierarchy>

DeleteHierarchy
Version: 1.0
Fixed args: sessionid, hierarchyname
Keyword Args: none
Return MIME type: text/xml
Return Status Codes: 200, 400

Deletes the hierarchy with name hierarchyname from the thesaurus. All objects under the hierarchy
that are not under another hierarchy are also deleted. Any links from the objects that are being
deleted and any objects pointed by these links are also deleted – if they can be deleted (checked by
the Semantic Checker).

Example Request:

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 163

/OLP/MTS/1.0/DeleteHierarchy/ MTS000456/Hardware

CreateFacet
Version: 1.0
Fixed args: sessionid, facetname
Keyword Args: none
Return MIME type: text/xml
Return Status Codes: 200, 400, 404

Creates a new facet in the thesaurus with name facetname.

Example Request:
/OLP/MTS/1.0/CreateFacet/ MTS000001/ACMFacet

Example Response (success):
<?xml version='1.0' encoding='UTF-8'?>
 <CreateFacet version='1.0' sessionid='MTS000001' status='OK'>
 <facet>ACMFacet</facet>
 </CreateFacet>

Example Response (failure):
<?xml version='1.0' encoding='UTF-8'?>
 <CreateFacet version='1.0' sessionid='MTS000001' status='Error: ErrorMessage'/>

ReleaseThesaurus
Version: 1.0
Fixed args: sessionid, thesaurusname
Keyword Args: none
Return MIME type: text/xml
Return Status Codes: 200, 400

Releases a new version of the thesaurus with name thesaurusname.

Example Request:
/OLP/MTS/1.0/ReleaseThesaurus/ MTS000456/ACMgr

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 164

19. USER INTERFACE

The SCHOLNET User Interface can be considered as a finite state machine. Each state of the
machine defines a frame set according to the current navigation position and context. For instance,
if users decids to Browse for a text document within a specific collection, their menu selections will
define the current state of the machine, which can be seen as a three-dimensional coordinate
(Collection, Function, Document Type). Also their identity will be considered. The initial state of
the machine is used to visualize the “entry page” of SCHOLNET. It consists of an HTML page
divided into 5 frames (see the picture below). The top frame contains the choices available for the
dimension “document type”, which are “All” for all types of documents, “Text” for only text
documents, “Multimedia” for Multimedia documents and “Annotations” for the annotations on
documents. The left–hand side frame contains the choices for the dimension “Collection”. The
number of entries in this menu is dynamic, since the available collections in SCHOLNET can be
changed and extended by a collection administrator. The right-hand side frame contains the choices
for the type of function a user intends to perform. The functions are: “Search”, “Browse”, “Edit”,
“Submit” and “Administrate”. The frame in the top left corner only contains a link for invoking the
login procedure. Therefore, users can use the system without being logged in, but with only a
limited set of functionality available. They will be treated as a guest user. The large frame at the
centre of the browser window is called “focus” and will display all the main functionality of the
system, according to the choices selected in the other frames. For instance, if a user selects the
search function in the function menu, a specific collection in the collection menu, as well as the
“text” button in the document type menu, the focus will display a search form for text documents
within the chosen collection. Once the search form has been filled and submitted, the focus will
then also contain the retrieved results of the search procedure.

Login

All Text Multimedia Annotations

Collection1
Collection2
Collection3

.

.

.

FOCUS

Search
Browse

Edit
Submit

Administrate

Each state of the underlying finite state machine also implies the availability of a specific
functionality. It may happen that a particular combination of menu choices excludes and therefore
narrows the possibility to select choices in other menus. For instance, it could be specified that a
given collection does not contain multimedia documents. Choosing this Collection implies that the
Multimedia button in the top frame will be disabled. The context is also defined by the current user
profile. A guest user may not be allowed to submit a document, consequently the “submit” button
will not be active for that user. Moreover, if the authenticated user (i.e. a user who succeeds in the
login procedure) is not an administrator, the “Administrate” function will not be accessible. The
kind of administration tools that have to be shown after pressing the “Administrate” button will
depend on the profile of the user logged in. Every kind of selection within the menus takes the
current state and context into account. This means, for instance, that if a user is browsing a
collection for multimedia documents, pressing the “search” button will imply performing a search
only within the sub-part of the collection reached by the browsing process in the previous step.

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 165

19.1 STATE
In this section we describe the data structure, its abstract type, and give a brief textual description of
each object managed by the SCHOLNET User Interface Service.

Frame Set
A Frame Set is the visualization Unit for the SCHOLNET User Interface. Each service request
invokes a new Frame Set according to the resulting context. The Frame Set consists of an HTML-
document describing the hierarchical arrangement of the frames. Each frame described is an
HTML-document.

19.2 SCHOLNET USER INTERFACE VERBS
In this section, we present the set of user interface verbs. This set is divided into sub-sets as
reported in the following table:

VERBS

INCLUDING SESSION DATA

GENERATE

- generateFrameSet
- generateTopicForm
- generateSearchForm
- generateAnnotationForm
- generateSubmissionForm
 generateUserProfileEditForm
 generateGroupMaintenanceForm
 generateGroupCreationForm
 generateTermEditForm

SUBMIT

- submitTopicForm
- submitSearchForm
- sendWithdrawRequest
- submitAnnotationForm
- submitSubmissionForm
- submitGroupChanges
- submitGroupCreationForm
- submitThesaurusSearch
- performThesaurusChange

DISPLAY

- displayDocumentStructure
- displayGroupInfo
- displayThesaurus
- displayTermTranslation

WITHOUT SESSION DATA

GENERATE
- generateRegistrationForm
- generateKeyFrameMosaic
- generateTimeIntervalForm

SUBMIT - submitRegistrationForm

DISPLAY

- displayBrowseResult
- displaySearchResult
- displayAnnotation
- displayMetadata
- displayMMDocument
- downloadMMDocument
- displayTextDocument
- downloadTextDocument

SESSION MANAGEMENT - login
- initialize

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 166

Identify
Version: 1.0
Fixed args: none
Optional Args: none
Return MIME type: text/xml
Return Status Codes: 200, 400

Returns a structured response containing the name and other information about the service.

Example Request:
/OLP/UserInterface/1.0/Identify

Example Response:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE Identify SYSTEM "P:\Projects\SCHOLNET\XML\identify.dtd">
<Identify version="1.0">
 <service-name>UserInterface</service-name>
 <base-url>http://ipsi.fraunhofer.de:8119</base-url>
 <protocol-version>1.0</protocol-version>
 <admin-email>frommholz@ipsi.fraunhofer.de</admin-email>
 <descriptions>
 <content-description>
The User Interface is responsible for interaction with the user. Most of the underlying functionality is called

and integrated by the UI.
 </content-description>
 </descriptions>
</Identify>

ListVerbs
Version: 1.0
Fixed args: none
Optional Args: none
Return MIME type: text/xml
Return Status Codes: 200, 400

Returns a structured response containing the name of the verbs defined by this service.

Example Request:
/OLP/UserInterface/1.0/ListVerbs

Example Response:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE ListVerbs SYSTEM "P:\Projects\SCHOLNET\XML\listverbs.dtd">
<ListVerbs version="1.0">
 <verb>GenerateFrameSet</verb>
 <verb>GenerateTopicForm</verb>
 <verb>GenerateSearchForm</verb>
 <verb>GenerateAnnotationForm</verb>
 <verb>GenerateSubmissionForm</verb>
 <verb>GenerateKeyFrameMosaic</verb>
 <verb>GenerateTimeIntervalForm</verb>
 <verb>SubmitTopicForm</verb>
 <verb>SubmitSearchForm</verb>
 <verb>SendWithdrawRequest</verb>
 <verb>SubmitAnnotationForm</verb>
 <verb>SubmitSubmissionForm</verb>
 <verb>DisplayDocumentStructure</verb>
 <verb>GenerateRegistrationForm</verb>
 <verb>SubmitRegistrationForm</verb>
 <verb>DisplayBrowseResults</verb>
 <verb>DisplaySearchResults</verb>
 <verb>DisplayAnnotation</verb>

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 167

 <verb>DisplayMetadata</verb>
 <verb>DisplayMMDocument</verb>
 <verb>DisplayTextDocument</verb>
 <verb>DownloadTextDocument</verb>
 <verb>Login</verb>
 <verb/>
</ListVerbs>

DescribeVerb
Version: 1.0
Fixed args: verb
Optional Args: version
Return MIME type: text/xml
Return Status Codes: 200, 400

Returns a structured response that contains a list in which each element of the list provides
information on a version of the specified verb that is supported by this service. The following
information may be provided at the verb or version level.

• description, description of the verb or a specific version
• note, information pertaining to the verb or a specific version

Each element of the list contains the following information:
• version number of the verb.
• arguments, a list of the names of the fixed and keyword arguments, if any, accepted by the

verb in that version.
• example template of request to this repository, with fixed arguments indicated in brackets
• returns, optional, contains information about response format.

Note that a service may implement more than one version of a verb.

Example Request:
/OLP/UserInterface/1.0/DescribeVerb/GenerateFrameSet

Example Response:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE DescribeVerb SYSTEM "P:\Projects\SCHOLNET\XML\describeverb.dtd">
<DescribeVerb version="1.0">
 <verb name="GenerateFrameSet">
 <description>Generates the frame set.</description>
 <versions>
 <version id="1.0">
 <returns>text/html</returns>
 <arguments>
 <keyword>
 <arg name="collectionState"/>
 <arg name="functionState"/>
 <arg name="typeState"/>
 <arg name="inititalize"/>
 </keyword>
 </arguments>
 <example>/OLP/UserInterface/1.0/generateFrameSet?initialize=yes</example>
 </version>
 </versions>
 </verb>
</DescribeVerb>

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 168

inizialize
Version: 1.0
Fixed Args: none
Optional Args: none
Return MIME type: text/html

This is the first verb to be called; it initializes the service. Region descriptions, search methods,
meta formats, browsable fields etc. are retrieved from a number of services.

Example Request:
/OLP/UserInterface/1.0/initialize

generateFrameSet
Version: 1.0
Fixed Args: none
Optional Args: collectionState, functionState, typeState, initialize
Return MIME type: text/html

This service generates the frame set. The new state of the three menus (Collection, Function and
Type) can be given. Only those states are changed which are given as arguments. If, for example,
the new state of the Collection menu is given, only this will be changed; all others will be left
unchanged. The state of the three menus is described in terms of a finite state machine.

initialize can have values: yes or no (default: no). If yes, the frame set will be initialized (i.e. the
SCHOLNET entry-page will be visualized), regardless of any other given arguments.

Example Request:
/OLP/UserInterface/1.0/generateFrameSet?initialize=yes

generateTopicForm

Version: 1.0
Fixed Args: none
Optional Args: none
Return MIME type: text/html

Creates a form to choose topics (for the personalized dissemination service). The list of topics that
can be chosen choose depends on the user as he/she may already have made selection sessions. The
current session information (UserID, State, …) will be stored and accessed globally.

Example Request:
/OLP/UserInterface/1.0/generateTopicForm/

generateUserProfileEditForm

Version: 1.0
Fixed Args: none
Optional Args: none
Return MIME type: text/html

Creates a form to edit the user’s profile. The current session information (UserID, State, …) will be
stored and accessed globally.

Example Request:
/OLP/UserInterface/1.0/generateUserProfileEditForm/

generateGroupCreationForm

Version: 1.0
Fixed Args: none

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 169

Optional Args: none
Return MIME type: text/html

Generates a form to create a new group. The current session information (UserID, State, …) will be
stored and accessed globally.

Example Request:
/OLP/UserInterface/1.0/generateUserProfileEditForm/

generateSearchForm

Version: 1.0
Fixed Args: collectionState, typeState
Optional Args: none
Return MIME type: text/html

Creates the search form. The current session information (UserID, State, …) will be stored and
accessed globally.

Example Request:
/OLP/UserInterface/1.0/generateSearchForm/cID/tID

generateAnnotationForm

Version: 1.0
Fixed Args: DocumentID
Optional Args: none
Return MIME type: text/html

Creates the form to insert annotations. The current session information (UserID, State, …) will be
stored and accessed globally.

Example Request:
/OLP/UserInterface/1.0/generateAnnotationForm/d243

generateSubmissionForm

Version: 1.0
Fixed Args: typeState
Optional Args: none
Return MIME type: text/html

Creates the form to submit a new document. The current session information (UserID, State, …)
will be stored and accessed globally.

Example Request:
/OLP/UserInterface/1.0/generateSubmissionForm/tID

generateKeyFrameMosaic
Version: 1.0
Fixed Args: documentID
Optional Args: searchList, anchorFrameID, typeOfSort
Return MIME type: text/html

This service will be called when the selected MM document is available in MPEG 7 format. A
frame containing an arrangement of the key frames of the document, plus some forms for
performing searches etc. are displayed. A search list can be given; in this case, only those key
frames containing the terms in this search list are displayed. The sequence in which the keyframes
appear can be determined by time or by subject. A frame (the anchor frame) can be selected by the
user; this frame will be displayed first and all other key frames will be ranked according to their
similarity to this anchor frame.

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 170

Example Request:
/OLP/UserInterface/1.0/generateKeyFrameMosaic/d101?searchList=xml,xslt&typeOfSort=time

Generates a new key frame mosaic. These frames are sorted with respect to time; only those key frames
containing the terms “xml” and “xslt” in their metadata are displayed.

generateTimeIntervalForm

Version: 1.0
Fixed Args: documentID
Optional Args: none
Return MIME type: text/html

For multimedia documents, a form is created in which the user can specify a time interval to display
only a certain part of a multimedia document. The document id is needed in order to have the
duration of the document.

Example Request:
/OLP/UserInterface/1.0/generateTimeIntervalForm/d101

generateTermEditForm

Version: 1.0
Fixed args: none
Fixed_post Args: <term data in XML>
Optional Args: none
Return MIME type: text/html

Generates a window within which to edit or create thesaurus terms. The term data is in XML, and
an XML stream will be sent to the appropriate verbs of the Thesaurus service.

Example Request:
/OLP/UserInterface/1.0/generateTermEditWindow/<xml-data>

generateGroupMaintenanceForm

Version: 1.0
Fixed Args: none
Optional Args: none
Return MIME type: text/html

Generates a window in which groups are shown. The user can select from this list and visualize
detailed information for a group and edit this group. The current session information (UserID, State,
…) will be stored and accessed globally.

Example Request:
/OLP/UserInterface/1.0/generateGroupMaintenanceForm

submitTopicForm

Version: 1.0
Fixed Args: none
Keyword_post Args: <List of POST-Input Fields>
Return MIME type: text/html

This service will be called when the topic form is submitted. The current session information
(UserID, State, …) will be stored and accessed globally.

Example Request:
/OLP/UserInterface/1.0/submitTopicForm?field1=value1&field2=value2&……

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 171

submitUserProfile
Version: 1.0
Fixed Args: none
Keyword_post Args: <List of POST-Input Fields>
Return MIME type: text/html

This service will be called when the user profile is submitted. The current session information
(UserID, State, …) will be stored and accessed globally.

Example Request:
/OLP/UserInterface/1.0/submitUserProfileForm?field1=value1&field2=value2&……

submitGroupCreationForm

Version: 1.0
Fixed Args: none
Keyword_post Args: <List of POST-Input Fields>
Return MIME type: text/html

This service will be called when a new group is created. The current session information (UserID,
State, …) will be stored and accessed globally.

Example Request:
/OLP/UserInterface/1.0/submitGroupChanges?field1=value1&field2=value2&……

submitGroupChanges
Version: 1.0
Fixed Args: none
Keyword_post Args: <List of POST-Input Fields>
Return MIME type: text/html

This service will be called when group changes are submitted. Users can be added/deleted to a
group, group properties can be changed etc. The current session information (UserID, State, …) will
be stored and accessed globally.

Example Request:
/OLP/UserInterface/1.0/submitGroupChanges?field1=value1&field2=value2&……

submitSearchForm

Version: 1.0
Fixed Args: collectionState, typeState
Keyword_post Args: <List of POST-Input Fields>
Return MIME type: text/html

This service will be called when the search form is submitted. The current session information
(UserID, State, …) will be stored and accessed globally.

Example Request:
/OLP/UserInterface/1.0/submitSearchForm/cID/tID?field1=value1&field2=value2&……

submitThesaurusSearch
Version: 1.0
Fixed Args: sessionid, searchString
Optional Args: none
Return MIME type: text/html

This service is used to perform a search in the thesaurus. Search results are displayed. The current
session information (UserID, State, …) will be stored and accessed globally.

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 172

Example Request:
/OLP/UserInterface/1.0/submitSearchForm/cID/tID?field1=value1&field2=value2&……

sendWithdrawRequest
Version: 1.0
Fixed Args: DocumentID
Optional Args: none
Return MIME type: text/html

This service will be called when the withdraw request is activated. If the user is not author of the
document, the request will be sent to the administrator who is responsible for the document. The
current session information (UserID, State, …) will be stored and accessed globally.

Example Request:
/OLP/UserInterface/1.0/sendWithdrawRequest/d357

submitAnnotationForm

Version: 1.0
Fixed Args: DocumentID
Keyword_post Args: <List of POST-Input Fields>
Return MIME type: text/html

This service will be called when the annotation form is submitted. The current session information
(UserID, State, …) will be stored and accessed globally.

Example Request:
/OLP/UserInterface/1.0/submitAnnotationForm/d323?field1=value1&field2=value2&……

submitSubmissionForm

Version: 1.0
Fixed Args: collectionState, typeState
Keyword_post Args: <List of POST-Input Fields>
Return MIME type: text/html

This service will be called when the submission form is submitted. The current session information
(UserID, State, …) will be stored and accessed globally.

Example Request:
/OLP/UserInterface/1.0/submitSubmissionForm/cID/tID?field1=value1&field2=value2&……

displayThesaurus
Version: 1.0
Fixed Args: none
Optional Args: thesaurusName, sessionid, typeOfDisplay, option,

targetTerm, typeOfTerm, targetLanguage
Return MIME type: text/html

The thesaurus will be displayed with this verb. If no thesaurus name is given, a menu from which
one can be selected is first displayed and a thesaurus session is then started.
The current session information (UserID, State, …) will be stored and accessed globally.

Example Request:
/OLP/UserInterface/1.0/displayThesaurus?thesaurusName=acm?sessionid=acb123?typeofdisplay=HIERAR
CHICAL

See Thesaurus Service for a description of keyword arguments.

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 173

displayTermTranslation
Version: 1.0
Fixed Args: sessionid, targetterm, thesaurusname
Keyword Args: none
Return MIME type: text/html

A new window is opened in which the translation(s) of a thesaurus term are presented.

Example Request:
/OLP/UserInterface/1.0/displayTermTranslation/abc123/database/acm

displayTermInfo
Version: 1.0
Fixed Args: none
Optional Args: sessionid, term
Return MIME type: text/html

Displays detailed information for a given term. The current session information (UserID, State, …)
will be stored and accessed globally.

Example Request:
/OLP/UserInterface/1.0/displayTerminfo/abc123/computers

displayDocumentStructure
Version: 1.0
Fixed Args: none
Optional Args: expanded
Keyword_post Args: XMLStream
Return MIME type: text/html

The document structure is a tree; each node in this tree represents e.g. a chapter, section, paragraph,
or Language, Subpart, Scene (for an MM document). If a node is expanded (i.e. the node is selected
and its sons are displayed), the expanded optional Argument is updated with the id of the
expanded node and the service is called again. The displayDocumentStructure service is called
either by a OLP service or by itself. In every case, the whole document structure (including the
metadata) will be provided as an XML-Stream, which will be transformed into an HTML-
representation with respected to the expanded tree nodes.
The current session information (UserID, State, …) will be stored and accessed globally.

Example Request:
/OLP/UserInterface/1.0/displayDocumentStructure/d1?expanded=id1,id2?XMLStream=<?XML><tree>……

shows the structure of the document with the id d1; the nodes with the ids id1 and id2 are expanded.

generateRegistrationForm

Version: 1.0
Fixed Args: none
Optional Args: none
Return MIME type: text/html

Generates the registration form.

Example Request:
/OLP/UserInterface/1.0/generateRegistrationForm

submitRegistrationForm

Version: 1.0
Fixed Args: none
Optional Args: <List of POST-Input Fields>

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 174

Return MIME type: text/html

This service will be called when the registration form is submitted.

Example Request:
/OLP/UserInterface/1.0/generateRegistrationForm/?field1=value1&field2=value2&……

displayGroupInfo
Version: 1.0
Fixed Args: groupname
Optional Args: none
Return MIME type: text/html

Displays information on a specific group. If the user is owner of the group, the group settings can
be edited.

Example Request:
/OLP/UserInterface/1.0/displayGroupInfo/myGroup

displayBrowseResults
Version: 1.0
Fixed Args: none
Keyword_post Args: XMLStream
Return MIME type: text/html

In each Browsing Step, OLP calls the displayBrowseResults service and provides an XML-Stream,
which will be parsed and transformed to HTML

Example Request:
/OLP/UserInterface/1.0/displayBrowseResults?XMLStream=<?XML><result>……

displaySearchResults
Version: 1.0
Fixed Args: none
Keyword_post Args: XMLStream
Return MIME type: text/html

OLP calls the displaySearchResults service and provides an XML-Stream, which will be parsed and
transformed to HTML.

Example Request:
/OLP/UserInterface/1.0/displaySearchResults?XMLStream=<?XML><result>……

displayAnnotation
Version: 1.0
Fixed Args: none
Keyword_post Args: XMLStream
Return MIME type: text/html

A service of the annotation module calls the displayAnnotation service and provides an XML-
Stream, which will be parsed and transformed to HTML

Example Request:
/OLP/UserInterface/1.0/displayAnnotation?XMLStream=<?XML><annotation>……

displayMetadata
Version: 1.0
Fixed Args: none
Keyword_post Args: XMLStream
Return MIME type: text/html

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 175

A service of OLP calls the displayMetadata service and provides an XML-Stream, which will be
parsed and transformed to HTML

Example Request:
/OLP/UserInterface/1.0/displayMetadata?XMLStream=<?XML><metadata>……

displayMMDocument
Version: 1.1
Fixed Args: none
Optional Args: MMLink, Start, End
Return MIME type: depends on the document type

This service displays a multimedia document (by automatically invoking an appropriate plug-in).
The start and end point of a time interval can be given (in the form hhmmss).

Example Request:
/OLP/UserInterface/1.0/displayMMDocument?MMLink=http://www.video.org?Start=000434?End=010934

requests the time interval 00:04:34 to 01:09:34 of the MM document to be displayed.

downloadMMDocument
Version: 1.0
Fixed Args: none
Optional Args: MMLink, Start, End
Return MIME type: depends on the document type

This service downloads a multimedia document (by automatically invoking a document-save-
request). The start and end point of a time interval can be given (in the form hhmmss).

Example Request:
/OLP/UserInterface/1.0/downloadMMDocument?MMLink=http://www.video.org?Start=000434?End=010934

requests the time interval 00:04:34 to 01:09:34 of the MM document to be downloaded.

displayTextDocument
Version: 1.1
Fixed Args: none
Optional Args: DocLink
Return MIME type: depends on the document type (e.g. text/html,
text/pdf,…)

This service displays a text document (by automatically invoking an appropriate plug-in).

Example Request:
/OLP/UserInterface/1.0/displayTextDocument?MMLink=http://www.document.org

downloadTextDocument
Version: 1.1
Fixed Args: none
Optional Args: DocLink
Return MIME type: depends on the document type (e.g. text/html,
text/pdf,…)

This service downloads a text document (by automatically invoking a document-save-request).

Example Request:
/OLP/UserInterface/1.0/downloadTextDocument?MMLink=http://www.document.org

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 176

performThesaurusChange
Version: 1.0
Fixed Args: thesaurusname
Keyword Args:
Return MIME type: none

Performs all operations necessary to change the thesaurus. DisplayThesaurus is then invoked.

login
Version: 1.0
Fixed Args: none
Fixed_post Args: username, password
Optional Args: none
Return MIME type: text/html

After the login procedure, the system authenticates the user by calling this service. The current
session information is updated.

Example Request:
/OLP/UserInterface/1.0/login

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 177

20. META SERVICE

The Meta Service manages the meta information that permits the distribution and replication of the
services on multiple servers. It gathers information from all the servers, organises the information
service space in a map, and disseminates this map to all other servers on demand.

The Meta Service thus organises the overall information service space into different regions. Each
region contains complete information on a set of servers that provide the Scholnet services.
The replicated servers of a region are organised according to a priority value. At system start-up, the
Meta Service administrator assigns this priority with respect to a logical optimised organisation of
the servers. For each service request, servers will request information from the Meta Service in
order to retrieve the URL of the servers that can satisfy the given request, selecting the server with
the highest priority.

The Meta Service dynamically updates the priority values in order to maintain the best connectivity
between servers. In other words, when a network or server failure occurs, rather than continuing to
use the failing primary server that hosts a service before invoking the alternative one, the Meta
Service assigns a temporary highest priority to another server. All other servers of the region will
use the alternative server, immediately adapting the request routing. In this way, the best
connectivity of the region is always maintained.

To implement this behaviour, each server sends a notification to the Meta Service when a server is
not available. The Meta Service keeps track of the success or failure history of each server and
using a simple adaptive algorithm manages the priority values. If a specific server repeatedly fails
within a specified period and a secondary server exists that hosts the service, a low priority is
assigned to the unreliable server and a higher value is assigned to the appropriate backup server.
This change in the priority values remains for a fixed period, after which the original values are re-
assigned if the server becomes stable again.

The distributed servers of the overall infrastructure are organised taking into account the publishing
authorities served by each server. Each Repository and Library Management server specifies the
publishing authority that they manage. The Meta Service administrator determines how the services
around these authorities will be organised. He/she has to specify, for example, the primary Index
server that indexes the documents published by an authority, plus a backup Index server for that
authority.

The Meta Service also maintains service descriptions that make it possibleto provide the distributed
or replicated services with a common configuration. The Index and Browse Services, for example,
can manage generic bibliographic metadata but the format of this metadata must be the same on
each server that hosts one of these services. For this reason, the Meta Service manages the
Index/Browse configuration description, which contains the bibliographic metadata, the set of
indexed fields and the result formats.

The administrators are those users authorised to use the Meta Service to manage the meta
information. Administrators are currently defined at system set-up time.

Communication with the Meta Service takes place via the OpenDLib Protocol (OLP).

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 178

20.1 STATE
The Meta Service maintains a descriptive record for each of the digital library services. The format
of these records is service type dependent. The Meta Service stores also descriptive records for each
of the existing Publishing Authorities and Regions.
The digital library administrator fills some of the information stored in these records at set-up time.
This information is briefly listed below organised by service type.

Publishing Authority
A naming authority is an entity that is authorised to create new handles. Naming authorities are
hierarchically organised, with periods as the separators. For example CNR, CNR.IEI,
CNR.IEI.MultimediaDepartment.
The list of authorities managed by a Meta Service is set up at time of configuration of the service,
and can only be changed manually by the administrator of the service.

Collection
For each Collection server, the Meta Service administrator has to specify its address, and has to
identify one of them as the master Collection Service. All other information, such as the version of
the OLP protocol verbs supported by the specific Collection server, is gathered by the Meta Service
directly querying the server.

Repository
For each Repository server, the Meta Service administrator only has to specify its address. All other
information, such as the version of the OLP protocol verbs supported by the specific Repository
server or the list of authorities hosted in it, is gathered by the Meta Service directly querying the
server.

Multimedia Storage
For each Multimedia Storage server, the Meta Service administrator only has to specify its address.
All other information, such as the version of the OLP protocol verbs supported by the specific
Multimedia Storage server, is gathered by the Meta Service directly querying the server.

Library Management
For each Library Management server, the administrator of the Meta Service only has to specify its
address. All other information, such as the version of the OLP protocol verbs supported by the
specific Repository server or the list of authorities managed by it, is gathered by the Meta Service
directly querying the server.

Index
For each Index server, the administrator has to specify the list of authorities indexed, and its
address. He/she also has to specify the service configuration parameters, such as the bibliographic
metadata that the service will manage, the set of fields to index, and the possible result formats. All
other information, such as the version of the OLP protocol verbs supported by the specific Index
server or the indexed language supported, is gathered by the Meta Service directly querying the
server.

Query Mediator
For each Query Mediator server, the Meta Service administrator only has to specify its address. All
other information, such as the version of the OLP protocol verbs supported by the specific Query
Mediator server, is gathered by the Meta Service directly querying the server.

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 179

Browse
For each Browse server, the Meta Service administrator has to specify its address, and the
configuration parameters, such as the bibliographic metadata that the service will manage, the set of
browsable fields, and the possible results format. All other information, such as the version of the
OLP protocol verbs supported by the specific Browse server, is gathered by the Meta Service
directly querying the server.

Registry
The administrator of the Meta Service only has to specify the address of the Registry. All other
information, such as the version of the OLP protocol verbs supported by the Registry server, is
gathered by the Meta Service directly querying the server.

Personalized Dissemination
The Meta Service administrator only has to specify the address of the Personalized Dissemination
Service. All other information is gathered by the Meta Service directly querying the server.

Annotation
For each Annotation server, the Meta Service administrator has to specify its address and the list of
the authorities for which the server has to maintain the annotations. All other information is
gathered by the Meta Service directly querying the server.

Multilingual Resources
The Meta Service administrator only has to specify the address of the Multilingual Resources
Service. All other information is gathered by the Meta Service directly querying the server.

Regional Meta
The Meta Service administrator does not have to specify any information. Each server harvests the
information pertaining to its region from the Meta Service.

Region
The Region concept is used to organise the overall information service space in an optimised map
that automatically changes when the connectivity of a single server is compromised by network or
server failure.
Here below, we show a map that describes a region.
Service Server and Relation

QMS
 qm host="" port="" priority=""

 indexer host="" port="" priority=""
indexer host="" port="" priority=""

qm host="" port="" priority=""
 indexer host="" port="" priority=""

 authority name="" priority=""
BS
 browser host="" port="" priority=""

browser host="" port="" priority=""
CS
 collection host="" port="" priority=""

collection host="" port="" priority=""

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 180

LMS
 libmgt host="" port="" priority=""

 authority name="" priority=""
 authority name="" priority=""
libmgt host="" port="" priority=""
 authority name="" priority=""
 authority name="" priority=""

RMSS
 rms host="" port="" priority=""

rms host="" port="" priority=""
RES registry host="" port=""
PIDS pids name="" priority=""
MTS mts name="" priority=""

Let us suppose, for example, that we have the authorities A1, A2, A3, A4, and the indexes I1, I2, I3.
The administrator in a region may assign the following relationships:

Index Authority Priority

I1
A1 1
A2 2

I2
A3 2
A4 1
A2 3

I3

A1 2
A2 1
A3 1
A4 1

Using this information, the Query Mediator Service of the region knows that authority A1 is
indexed, at a given time, by I1 with priority 1 and by I3 with priority 2. Therefore, the Query
Mediator will first send a search request on authority A1 to index I1 and if it does not receive any
result will then send the same request to index I3.
In general, services use the map to retrieve the primary address of the server to which a request is to
be sent. A UI, for example, uses the map to retrieve the address of the QM to which a query is to be
sent, the address of the Browse to which browse requests are to be sent, the address of the Registry
where the user is to be authenticated, etc.

20.2 META VERBS
In this section, we present the set of the Meta verbs. This set is divided into three sub-sets: Service
Information Verb, Architecture Information Verb, and Service Specific Verb as reported in the
following table:

Service Information Verb Architecture Information

Verb
Service Specific Verb

DescribeVerb ListAnnotations RegionDescription
Identify ListAuthorities ServerBugReport
ListVerbs ListBrowsers ServiceConfigDescription
 ListCollections

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 181

 ListIndices
 ListLibMgts
 ListMultimediaStorages
 ListQueryMediators
 ListRegionalMetaServers
 ListRegions
 ListRepositories
 ListServices
 MDFDetails

Identify
Version: 1.0
Fixed args: none
Optional Args: none
Return MIME type: text/xml
Return Status Codes: 200, 400, 501

Returns a structured response containing the name and other information about the service.

Example Request:
/OLP/Meta/1.0/Identify

Example Response:
<?xml version="1.0" encoding="UTF-8"?>
<Identify version="1.0">
 <serviceName>Experimental OLP Meta Server</serviceName>
 <olp_base_url>http://labserv.iei.pi.cnr.it:8221</olp_base_url>
 <metaServiceURL>http://labserv.iei.pi.cnr.it:8221</metaServiceURL>
 <textualDescription/>
 <protocolVersion>1.0</protocolVersion>
 <adminEmail>pagano@iei.pi.cnr.it</adminEmail>
 <verbsInfo>
 <verbsSupported>
 <description/>
 <olp_base_url>http://labserv.iei.pi.cnr.it:8221/OLP/Meta/1.0/ListVerbs</olp_base_url>
 </verbsSupported>
 <verbsDescription>
 <description/>
 <olp_base_url>http://…:8221/OLP/Meta/1.0/DescribeVerb/DescribeVerb</olp_base_url>
 </verbsDescription>
 </verbsInfo>
 <submissionProcedure>
 <description>Submission procedure is not supported by this service.
 </description>
 <olp_base_url/>
 </submissionProcedure>
 <harvestInformation>
 <description>
 No information is available
 </description>
 <olp_base_url/>
 </harvestInformation>
 <useRestrictions>Terms and conditions are …...</useRestrictions>
 <contentInfo>
 <publishingAuthority>
 <description>
 A naming authority is an entity that is authorised to create new handles. Naming authorities are

hierarchically organised, with periods as the separators. For example CNR, CNR.IEI,
CNR.IEI.MultimediaDepartment.

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 182

 The list of authorities managed by a Meta Service is set up at time of configuration of the
service, and can only be changed manually by the administrator of the service.

 </description>
 <olp_base_url>http://labserv.iei.pi.cnr.it:8221/OLP/Meta/1.0/ListAuthorities</olp_base_url>
 </publishingAuthority>
 <collection>
 <description>
 Collection Service provides a virtual organisation of the documents stored in the repositories. It

supplies the information necessary to manage these virtual document aggregations. This
information is used by the other services to handle the collection objects enabling, for example,
the Query Mediator to perform a query on a specified collection, or the Browse to perform a
browse on a collection, and so on. It can be replicated on multiple servers.

 </description>
 <olp_base_url>http://labserv.iei.pi.cnr.it:8221/OLP/Meta/1.0/ListCollections</olp_base_url>
 </collection>
 <repository>
 <description>
 Repository stores documents that conform to the DoMDL document model. It can be distributed

on multiple servers because a Repository server can store documents published by different
authorities and different authorities can be hosted by different Repository servers.

 </description>
 <olp_base_url>http://labserv.iei.pi.cnr.it:8221/OLP/Meta/1.0/ListRepositories</olp_base_url>
 </repository>
 <multimediaStorage>
 <description>
 Multimedia Storage stores video documents (according to the DoMDL document model), and

supports their dissemination either as whole documents or as aggregations of scenes, shots
and frames. It can be distributed on multiple servers because a Multimedia Storage server can
store documents published by different authorities and different authorities can be hosted by
different Multimedia Storage servers.

 </description>
 <olp_base_url>http://..:8221/OLP/Meta/1.0/ListMultimediaStorages</olp_base_url>
 </multimediaStorage>
 <libraryManagement>
 <description>
 Library Management supports the submission, withdrawal, and replacement of documents. It

can be distributed on multiple servers because a Library Management server can manage
documents of different authorities published in different Repositories and different authorities
can be managed by different Library Management servers.

 </description>
 <olp_base_url>http://labserv.iei.pi.cnr.it:8221/OLP/Meta/1.0/ListLibMgts</olp_base_url>
 </libraryManagement>
 <index>
 <description>
 Index accepts queries and returns lists of document identifiers matching those queries. It can be

distributed and replicated on multiple servers. It is distributed because an Index server can
index documents published by different authorities that are stored in different Repositories. It is
replicated because the document published by different authorities can be indexed by different
Index servers.

 </description>
 <olp_base_url>http://labserv.iei.pi.cnr.it:8221/OLP/Meta/1.0/ListIndices</olp_base_url>
 </index>
 <queryMediator>
 <description>
 Query Mediator dispatches queries to appropriate index servers. It can be replicated on multiple

servers.
 </description>
 <olp_base_url>http://labserv.iei.pi.cnr.it:8221/OLP/Meta/1.0/ListQueryMediators</olp_base_url>
 </queryMediator>
 <browse>
 <description>

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 183

 Browse supports the construction of browsing indexes and the browsing of those indexes on
library contents. It can be replicated on multiple servers.

 </description>
 <olp_base_url>http://labserv.iei.pi.cnr.it:8221/OLP/Meta/1.0/ListBrowsers</olp_base_url>
 </browse>
 <registry>
 <description>
 Registry supports the storage and access of information about authors, individual users, and

user groups. Hosted by one server.
 </description>
 <olp_base_url/>
 </registry>
 <personalisedDissemination>
 <description>
 Personalised Dissemination supports the storage and execution of persistent queries, on a

collection. Hosted by one server.
 </description>
 <olp_base_url/>
 </personalisedDissemination>
 <annotation>
 <description>
 Annotation stores annotations on documents and makes them available to authorised users. It

can be distributed on multiple servers because an Annotation server can store annotations on
documents published by different authorities that are stored in different repositories.

 </description>
 <olp_base_url>http://labserv.iei.pi.cnr.it:8221/OLP/Meta/1.0/ListAnnotations</olp_base_url>
 </annotation>
 <multilingualThesaurus>
 <description>
 Multilingual Thesaurus maintains language resources, such as multilingual thesauri, which are

required to support cross-language functionality. Hosted by one server.
 </description>
 <olp_base_url/>
 </multilingualThesaurus>
 <regionalMeta>
 <description>
 Regional Meta Service maintains the information pertaining to the regions (see below). It is

replicated on multiple servers, one for each region.
 </description>
 <olp_base_url>http://labserv.iei.pi.cnr.it:8221/OLP/Meta/1.0/ListRegions</olp_base_url>
 </regionalMeta>
 <region>
 <description>
 The Region concept is used to organise the overall information service space in an optimised

map that automatically changes when the connectivity of a single server is compromised by
network or server failure.

 </description>
 <olp_base_url>http://labserv.iei.pi.cnr.it:8221/OLP/Meta/1.0/Regiondescription</olp_base_url>
 </region>
 </contentInfo>
</Identify>

ListVerbs
Version: 1.0
Fixed args: none
Optional Args: none
Return MIME type: text/xml
Return Status Codes: 200, 400, 501

Returns a structured response containing the name of the verbs defined by this service.

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 184

Example Request:
/OLP/Meta/1.0/ListVerbs

DescribeVerb
Version: 1.0
Fixed args: verb
Optional Args: version
Return MIME type: text/xml
Return Status Codes: 200, 400, 501

Returns a structured response that contains a list in which each element of the list provides
information on a version of the verb that is supported by this service. The following information
may be provided at the verb or version level.
description, description of the verb or a specific version
note, information pertaining to the verb or a specific version
Each element of the list contains the following information:
version number of the verb.
arguments, a list of the names of the fixed and optional arguments, if any, accepted by the verb in
that version.
example template of request to this LibMgt, with fixed arguments indicated in brackets
returns, optional, contains information about the response format.
Note that a service may implement more than one version of a verb.

Example Request:
/OLP/Meta/1.0/DescribeVerb/ListServices

ListServices
Version: 1.0
Fixed args: none
Optional Args: none
Return MIME type: text/xml
Return Status Codes: 200, 400, 501

Returns a structured response containing the list of all available services. Each element of the list
reports the name of the services, a brief description, and a short name used as key in the
RegionDescription verb.

Example Request:
/OLP/Meta/1.0/ListServices

Example Response
<?xml version="1.0" encoding="UTF-8" ?>
<ListServices version="1.0">
 <service name="Repository" key="repository" description="Repository Service"/>
 <service name="LibMgt" key="libmgt" description="Library Management Service"/>
 <service name="MDS" key="mds" description="Multimedia Document Storage and Delivery Service"/>
 <service name="Collection" key="collection" description="Collection Service"/>
 <service name="Index" key="indexer" description="Index Service"/>
 <service name="QM" key="qm" description="Query Mediator Service"/>
 <service name="Browse" key="browser" description="Browse Service"/>
 <service name="Registry" key="registry" description="Registry Service"/>
 <service name="PIDS" key="pids" description="Personalised Dissemination Service"/>
 <service name="HAS" key="annotation" description="Annotation Service"/>
 <service name="MTS" key="mts" description="Multilingual Thesaurus Service"/>
 <service name="Meta" key="rms" description="Regional Meta"/>
</ListServices>

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 185

ListRepositories
Version: 1.0
Fixed args: none
Optional Args: verbs, auths
Return MIME type: text/xml
Return Status Codes: 200, 400, 501

Returns a structured response containing the addresses of the servers hosting the Repository
Service.
The meaning of the optional arguments is as follows:
verbs: specifies the verbose mode of the response. For each server, the complete list of verbs
supported is returned. It assumes a Boolean value.
auths: the list of authorities hosted by each server is requested. It assumes a Boolean value.

Example Request:
/OLP/Meta/1.0/ListRepositories?auths=true&verbs=ture

Example Response:
<?xml version="1.0" encoding="UTF-8" ?>
<ListRepositories version="1.0">
 <repository port="8230" host="labserv.iei.pi.cnr.it">
 <verbs>
 <verb>BuildFormats</verb>
 <verb>DescribeVerb</verb>
 <verb>Disseminate</verb>
 <verb>Identify</verb>
 <verb>ListAuthorities</verb>
 <verb>ListBinders</verb>
 ……………
 </verbs>
 <authorities>
 <authority name="ercim.cnr.imc" display="CNR-IMC">
 <allowed-sets>
 <set>csp</set>
 <set>csp;trs</set>
 </allowed-sets>
 </authority>
 <authority name="ercim.cnr.iei" display="CNR-IEI">
 <allowed-sets>
 <set>csp</set>
 <set>csp;trs</set>
 <set>test</set>
 </allowed-sets>
 </authority>
 </authorities>
 </repository>
</ListRepositories>

ListMultimediaStorages
Version: 1.0
Fixed args: none
Optional Args: verbs, auths
Return MIME type: text/xml
Return Status Codes: 200, 400, 501

Returns a structured response containing the addresses of the servers hosting the Multimedia
Storage Service.
The meaning of the optional arguments is as follows:

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 186

verbs: specifies the verbose mode of the response. For each server, the complete list of verbs
supported is returned. It assumes a Boolean value.
auths: the list of authorities hosted by each server is requested. It assumes a Boolean value.

Example Request:
/OLP/Meta/1.0/ListMultimediaStorages?auths=true

Example Response:
<?xml version="1.0" encoding="UTF-8" ?>
<ListMultimediaStorages version="1.0">
 <mds port="8230" host="labserv.iei.pi.cnr.it">
 <authorities>
 <authority name="ercim.cnr.imc" display="CNR-IMC"/>
 <authority name="ercim.cnr.iei" display="CNR-IEI"/>
 </authorities>
 </mds>
</ListMultimediaStorages>

ListLibMgts
Version: 1.0
Fixed args: none
Optional Args: region, verbs, auths
Return MIME type: text/xml
Return Status Codes: 200, 400, 501

Returns a structured response containing the addresses of the servers hosting the LibMgt Service.
The meaning of the optional arguments is as follows:
region: specifies a region name. Only the list of the servers of the region is returned. If omitted, it
provides information about the overall set of LibMgt servers. If specified, the verbs and auths
parameters are ignored.
verbs: specifies the verbose mode of the response. For each server, the complete list of verbs
supported is returned. It assumes a Boolean value.
auths: the list of authorities hosted by each server is requested. It assumes a Boolean value.

Example Request:
/OLP/Meta/1.0/ListLibMgts?auths=true

Example Response:
<?xml version="1.0" encoding="UTF-8" ?>
<ListLibMgts version="1.0">
 <libmgt port="8230" host="labserv.iei.pi.cnr.it">
 <authorities>
 <authority display="cornell university, cs two-bad" name="ncstrl.cornell.two.bad" />
 <authority display="cornell university, cs one" name="ncstrl.cornell.one" />
 <authority display="cornell university, cs one-trs" name="ncstrl.cornell.one.trs" />
 <authority display="cornell university, cs two" name="ncstrl.cornell.two" />
 <authority display="cornell university, cs one-trs-good" name="ncstrl.cornell.one.trs.good" />
 </authorities>
 </libmgt>
</ListLibMgts>

ListIndices
Version: 1.0
Fixed args: none
Optional Args: region, verbs, auths
Return MIME type: text/xml
Return Status Codes: 200, 400, 501

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 187

Returns a structured response containing the addresses of the servers hosting the Index Service.
The meaning of the optional arguments is as follows:
region: specifies a region name. Only the list of the servers of the region is returned. If omitted, it
provides information about the overall set of Index servers. If specified, the verbs and auths
parameters are ignored.
verbs: specifies the verbose mode of the response. For each server, the complete list of verbs
supported is returned. It assumes a Boolean value.
auths: requests the list of authorities hosted by each server. It assumes a Boolean value.

Example Request:
/OLP/Meta/1.0/ListIndices?auths=true

Example Response:
<?xml version="1.0" encoding="UTF-8" ?>
<ListIndices version="1.0">
 <indexer port="8231" host="labserv.iei.pi.cnr.it" filtering_attribute=”dc:language” filtering_value=”en”

meta-format=”olms”>
 <authorities>
 <authority display="Cornell University, CS two-bad" name="ncstrl.cornell.two.bad" />
 <authority display="Cornell University, CS one" name="ncstrl.cornell.one" />
 </authorities>
 </indexer>
 <indexer port="8230" host="labserv.iei.pi.cnr.it" filtering_attribute=”dc:language” filtering_value=”it” meta-

format=”dc”>
 <authorities>
 <authority display="Cornell University, CS two-bad" name="ncstrl.cornell.two.bad" />
 <authority display="Cornell University, CS one" name="ncstrl.cornell.one" />
 </authorities>
 </indexer>
</ListIndices>

ListQueryMediators
Version: 1.0
Fixed args: none
Optional Args: region, verbs
Return MIME type: text/xml
Return Status Codes: 200, 400, 501

Returns a structured response containing the addresses of the servers hosting the Query Mediator
Service.
The meaning of the optional arguments is as follows:
region: specifies a region name. Only the list of the Query Mediator servers of the region is
returned. If omitted, it provides information about the overall set of Query Mediator servers. If
specified, the verbs parameter is ignored.
verbs: specifies the verbose mode of the response. For each server, the complete list of verbs
supported by the each server is returned. It assumes a Boolean value.

Example Request:
/OLP/Meta/1.0/ListQueryMediators?region=TEST

Example Response:
<?xml version="1.0" encoding="UTF-8" ?>
<ListQueryMediators version="1.0">
 <qm host="labserv.iei.pi.cnr.it" port="8119"/>
 <qm host="labserv.iei.pi.cnr.it" port="8129"/>
</ListQueryMediators>

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 188

ListBrowsers
Version: 1.0
Fixed args: none
Optional Args: region, verbs
Return MIME type: text/xml
Return Status Codes: 200, 400, 501

Returns a structured response containing the addresses of the servers hosting the Browser Service.
The meaning of the optional arguments is as follows:
region: specifies a region name. Only the list of the Browser servers of the region is returned. If
omitted, it provides information about the overall set of Browser servers. If specified, the verbs
parameter is ignored.
verbs: specifies the verbose mode of the response. For each server, the complete list of verbs
supported is returned. It assumes a Boolean value.

Example Request:
/OLP/Meta/1.0/ListBrowsers?region=TEST

Example Response:
<?xml version="1.0" encoding="UTF-8" ?>
<ListBrowsers version="1.0">
 <browser host="labserv.iei.pi.cnr.it" port="8111"/>
 <browser host="labserv.iei.pi.cnr.it" port="8112"/>
</ListBrowsers>

ListAnnotations
Version: 1.0
Fixed args: none
Optional Args: verbs, auths
Return MIME type: text/xml
Return Status Codes: 200, 400, 501

Returns a structured response containing the addresses of the servers hosting the Annotation
Service.
The meaning of the optional arguments is as follows:
verbs: specifies the verbose mode of the response. For each server, the complete list of verbs
supported is returned. It assumes a Boolean value.
auths: requests the list of authorities hosted by each server. It assumes a Boolean value.

Example Request:
/OLP/Meta/1.0/ListAnnotations?auths=1

Example Response:
<?xml version="1.0" encoding="UTF-8" ?>
<ListAnnotations version="1.0">
 <annotation host="labserv.iei.pi.cnr.it" port="8111">
 <authorities>
 <authority display="cornell university, cs two-bad" name="ncstrl.cornell.two.bad" />
 <authority display="cornell university, cs one" name="ncstrl.cornell.one" />
 <authority display="cornell university, cs one-trs" name="ncstrl.cornell.one.trs" />
 </authorities>
 </annotation>
 <annotation host="labserv.iei.pi.cnr.it" port="8112">
 <authorities>
 <authority display="cornell university, cs two" name="ncstrl.cornell.two" />
 <authority display="cornell university, cs one-trs-good" name="ncstrl.cornell.one.trs.good" />

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 189

 </authorities>
 </annotation>
</ListAnnotations>

ListCollections
Version: 1.0
Fixed args: none
Optional Args: region, verbs
Return MIME type: text/xml
Return Status Codes: 200, 400, 501

Returns a structured response containing the addresses of the servers hosting the Collection Service.
The meaning of the optional arguments is as follows:
region: specifies a region name. Only the list of the Collection servers of the region is returned. If
omitted, it provides information about the overall set of Collection servers. If specified, the verbs
parameter is ignored.
verbs: specifies the verbose mode of the response. For each server, the complete list of verbs
supported is returned. It assumes a Boolean value.

Example Request:
/OLP/Meta/1.0/ListCollections?region=TEST

Example Response:
<?xml version="1.0" encoding="UTF-8" ?>
<ListCollections version="1.0">
 <collection host="labserv.iei.pi.cnr.it" port="8111" master="yes"/>
 <collection host="labserv.iei.pi.cnr.it" port="8112" master="no"/>
</ListCollections>

ListRegionalMetaServers
Version: 1.0
Fixed args: none
Optional Args: region
Return MIME type: text/xml
Return Status Codes: 200, 400, 501

Returns a structured response containing the addresses of the servers hosting the Regional Meta
Service.
The meaning of the optional arguments is as follows:
region: specifies a region name. Only the list of the Browser servers of the region is returned. If
omitted, it provides information about the overall set of RMS servers.

Example Request:
/OLP/Meta/1.0/ ListRegionalMetaServers?region=TEST

Example Response:
<?xml version="1.0" encoding="UTF-8" ?>
<ListRegionalMetaServers version="1.0">
 <rms host="labserv.iei.pi.cnr.it" port="8111" priority=”1”/>
 <rms host="labserv.iei.pi.cnr.it" port="8112" priority=”2”/>
</ListRegionalMetaServers>

ListRegions

Version: 1.0
Fixed args: none
Optional Args: region

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 190

Return MIME type: text/xml
Return Status Codes: 200, 400, 501

Returns a structured response containing the addresses of the servers hosting the Regional Meta
Service.
The meaning of the optional arguments is as follows:
region: specifies a region name. Only the list of the Regional Meta server of the region is returned.
If omitted, it provides information about the overall set of Regional Meta servers.

Example Request:
/OLP/Meta/1.0/ListRegions?region=TEST

Example Response:
<?xml version="1.0" encoding="UTF-8" ?>
<ListRegions version="1.0">
 <region host="labserv.iei.pi.cnr.it" port="8000" name=”TEST”/>
</ListRegions>

ListAuthorities
Version: 1.0
Fixed args: none
Optional Args: none
Return MIME type: text/xml
Return Status Codes: 200, 400, 501

Returns a structured response containing the overall set of authorities that publish documents in the
environment.
For each element of the list the following information is returned:
name, an identifier used in any service request that includes the authority argument
display, a short description that can be displayed to the user

Example Request:
/OLP/Meta/1.0/ListAuthorities

Example Response:
<?xml version="1.0" encoding="UTF-8" ?>
<ListAuthorities version="1.0">
 <publisher display="CNR - Istituto CNUCE (Pisa)" authority="ercim.cnr.cnuce" />
 <publisher display="CNR - Istituto per le Applicazioni Telematiche (Pisa)" authority="ercim.cnr.iat" />
 <publisher display="CNR - Istituto di Elaborazione della Informazione (Pisa)" authority="ercim.cnr.iei" />
</ListAuthorities>

--

Version: 1.1
Fixed args: none
Optional Args: authorities
Optional_Post Args: authorities
Return MIME type: text/xml
Return Status Codes: 200, 400, 501

Returns a quite complex structured response containing a set of authorities that publish documents
in the environment. The set of authorities reported in the result take into account the set of
authorities specified as “authorities” argument. If the argument is not speicifed the overall set of
authorities is assument by default. If a list is apecified the “%20” separator has to be used, as
reported below:
authorities=scholnet.test%20ercim.cnr.iei%20ercim.cnr.gmd
For each authority of the list the following information is returned:
1) the metadata formats available for the documents published by the specified authority;

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 191

2) the repository server that stores the documents;
3) the libmgt server/s that can manage the submission/withdrawal phase;
4) the indexer server/s that index the documents;
5) the annotation server/s that maintain the annotation related to the documents published by the
specified authority.
When a registered user wants, for example, to submit a document, he/she selects the authority that
has to publish the document for him. The UI, therefore, has to select the LibMgt server to send the
request. Using the new response format of the ListAuthorities verb this selection is very simple.

Example Request:
/OLP/Meta/1.1/ListAuthorities

Example Response:
<?xml version="1.0" encoding="UTF-8" ?>
<ListAuthorities authorities_without_any_indexer="0" authorities_without_any_libmgt="0"

authorities_without_any_repository="0" version="1.1" authorities_processed="124">
 <publisher pretty="test authority" publisher="scholnet.test" authority="scholnet.test">
 <metadataformats>
 <metadataformat value="DC" source_format="no" />
 <metadataformat value="olms" source_format="yes" />
 </metadataformats>
 <services>
 <class value="repository">
 <repository port="8230" host="project.iei.pi.cnr.it" />
 </class>
 <class value="libmgt">
 <libmgt port="8229" host="project.iei.pi.cnr.it" />
 </class>
 <class value="indexer">
 <indexer filtering_attribute="dc:language" meta-format="olms" port="8228"

filtering_value="en" host="project.iei.pi.cnr.it" />
 <indexer filtering_attribute="dc:language" meta-format="olms" port="8229"

filtering_value="it" host="project.iei.pi.cnr.it" />
 <indexer filtering_attribute="dc:language" meta-format="olms" port="8230"

filtering_value="en" host="project.iei.pi.cnr.it" />
 </class>
 <class value="annotation">
 <annotation host=”…..” port=”….” />
 </class>
 </services>
 </publisher>
 <publisher ……
 …….
</ListAuthorities>

MDFDetails
Version: 1.0
Fixed args: none
Optional Args: none
Return MIME type: text/xml
Return Status Codes: 200, 400, 501

Returns a structured response containing the overall set of metadata format specifications that are
used in the environment.
For each element of the list the following information is returned:
value, an identifier used in any service request that includes the metadata argument
dtd, the reference to the DTD of the metadata

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 192

contenttype, the specification of the MIME type of the metadata
displayname, a short description that can be displayed to the user
pattern, the pattern that is used to store metadata manifestation
variable, is a list of names of variables to be used as input to the pattern. Valid variables are:
publisher, number, page, name plus any others defined. This information is used by the Repository
Service.
internal, flag used by the Repository Service
namespace, a list of the namespaces used by the metadata formats
doc, a long description that can be displayed to the user
starttag, the first tag of a metadata manifestation. Used by the Index Service.
memofield, a list of fields that may contain multiple lines text or blob data. Used by the UI.

Example Request:
/OLP/Meta/1.1/MDFDetails

Example Response:
<?xml version="1.0" encoding="UTF-8" ?>
<metadataformats>
 <metadataformat value="bib" contenttype="text/plain" displayname="cataloging information"
internal="1" pattern="%s.bib" variable="name">
 <namespace name="bibns" uri="ftp://nic.merit.edu/document/rfc/rfc1807.txt" />
 <doc />
 </metadataformat>
 <metadataformat value="dc" dtd="http://project.iei.pi.cnr.it:8221/OLP/htdocs/DTD/dc.dtd"
contenttype="text/xml" displayname="DC XML encoded cataloguing information"
pattern="%s_dc.xml" variable="name" internal="1">
 <namespace name="dc" uri="http://purl.org/dc/elements/1.1/" />
 <doc />
 <memofields>
 <memofield value="dc:description" />
 </memofields>
 </metadataformat>
 <metadataformat value="dcq" dtd="http://project.iei.pi.cnr.it:8221/OLP/htdocs/DTD/dcq.dtd"
contenttype="text/xml" displayname="DC qualified XML encoded cataloguing information"
pattern="%s_dcq.xml" variable="name" internal="1">
 <namespace name="dcq" uri="http://purl.org/dc/terms/" />
 <namespace name="dc" uri="http://purl.org/dc/elements/1.1/" />
 <doc />
 <memofields>
 <memofield value="dcq:description.abstract" />
 <memofield value="dc:description" />
 <memofield value="dcq:description.tableofcontents" />
 </memofields>
 </metadataformat>
<metadataformat value="rfc1807" dtd="http://proj.iei.pi.cnr.it:8221/OLP/htdocs/DTD/rfc1807.dtd"
contenttype="text/xml" displayname="RFC-1807 XML encoded cataloguing information"
pattern="%s_rfc1807.xml" variable="name" internal="1">
 <namespace name="rfc1807" uri="ftp://nic.merit.edu/document/rfc/rfc1807.txt" />
 <doc />

<memofields>
 <memofield value="rfc1807:description" />
 </memofields>
</metadataformat>
<metadataformat value="olms" dtd="http://project.iei.pi.cnr.it:8221/OLP/htdocs/DTD/olap.dtd"
contenttype="text/xml" internal="1" displayname="Open Library XML encoded cataloguing
information" pattern="%s_olms.xml" variable="name">
 <namespace name="dcq" uri="http://purl.org/dc/terms/" />
 <namespace name="dc" uri="http://purl.org/dc/elements/1.1/" />
 <namespace name="olms" uri="http://p.iei.pi.cnr.it:8221/OLP/htdocs/NameSpace/olms.xml" />

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 193

 <doc />
 <memofields>
 <memofield value="dc:description" />
 <memofield value="dcq:description.abstract" />
 <memofield value="olms:description.abstract.alternative" />
 <memofield value="dcq:description.toc" />
 <memofield value="olms:description.toc.alternative" />
 <memofield value="olms:note" />
 <memofield value="olms:note.retireval" />
 <memofield value="olms:note.withdraw" />
 <memofield value="olms:note.contact" />
 <memofield value="olms:note.collection" />
 <memofield value="olms:note.series" />
 <memofield value="olms:note.revision" />
 </memofields>
 </metadataformat>
 </metadataformats>

RegionDescription

Version: 1.0
Fixed args: none
Optional Args: region
Return MIME type: text/xml
Return Status Codes: 200, 400, 501

Returns a structured response containing the addresses of all servers grouped by region. The only
server that is not represented in this response is the Repository.
The meaning of the optional arguments is as follows:
region: specifies a region name. Only the list of the servers of the region is returned. If omitted, it
provides information about the overall set of servers.

Example Request:
/OLP/Meta/1.0/RegionDescription?region=TEST

Example Response:
<?xml version="1.0" encoding="UTF-8"?>
<RegionDescription version=”1.0”>
 <Regions>
 <region name="" symbol="">
 <qms>
 <qm host="" port="" priority="">
 <indexer host="" port="" priority=""/>
 <indexer host="" port="" priority="" />
 </qm>
 <qm host="" port="" priority="">
 <indexer host="" port="" priority="" >
 <authority name="" priority=""/>
 </indexer>
 </qm>
 </qms>
 <browsers>
 <browser host="" port="" priority=""/>
 <browser host="" port="" priority=""/>
 </browsers>
 <libmgts>
 <libmgt host="" port="" priority=""/>
 <libmgt host="" port="" priority=""/>
 </libmgts>
 <collections>
 <collection host="" port="" priority="" />

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 194

 <collection host="" port="" priority="" />
 </collections>
 <rmss>
 <rms host="" port="" priority=""/>
 <rms host="" port="" priority=""/>
 </rmss>
 <registry host="" port=""/>
 <mts host="" port=""/>
 <pids host="" port=””/>
 </region>
 </Regions>
</RegionDescription>

ServerBugReport
Version: 1.0
Fixed args: service, host, port
Optional Args: request, error_message
Return MIME type: text/plain
Return Status Codes: 200, 400, 501

Signals that an error occurred when sending a request to a server.
The mandatory arguments specify that the server hosting a given service is unreliable.
The meaning of the optional arguments is as follows:
request: specifies the request sent to the server .
error_message: specifies the error message returned by the server. If no value is specified the
default “time out” is assumed.
Returns 200 if the request is accepted, the appropriate error code otherwise.

Example Request:
/OLP/Meta/1.0/ServerBugReport/Repository/labserv.iei.pi.cnr.it/80?request=”OLP/Repository/1.0/ListVerbs”

ServiceConfigDescription
Version: 1.0
Fixed args: service
Optional Args: none
Return MIME type: text/xml
Return Status Codes: 200, 400, 501

Returns a structured response containing the configuration parameters of the service specified.
The accepted value for the service argument is listed by the ListServices as key value of each
service.

Example Request:
/OLP/Meta/1.0/ServiceConfigDescription/browser

Example Response:
<?xml version="1.0" encoding="UTF-8"?>
<ServiceConfigDescription version=”1.0”>
 <service name=”browser”>
 <meta-format name=”olms” uri="http://labserv.iei.pi.cnr.it/OLP/htdocs/olms/NameSpace/">
 <browsable-fields>
 <field name=”dc:creator”>
 <type>string</type>
 </field>
 <field name=”dc:date”>
 <type>%4d/%2d/%d(%d)</type>
 </field>

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 195

 ………
 </browsable-fields>.
 <result-formats>
 <format name=”short” default=”yes”>
 <field>dc:title</field>
 <field>dc:date</field>
 </format>
 <format name=”long”>
 <field>dc:creator</field>
 <field>dc:title</field>
 <field>dc:date</field>
 <field>dc:subject</field>
 </format>
 </result-formats>
 </meta-format>
 <meta-format name=”” uri=””>
 …..
 </meta-format>
 </service>
</ServiceConfigDescription

Example Request:
/OLP/Meta/1.0/ServiceConfigDescription/indexer

Example Response:
<?xml version="1.0" encoding="UTF-8"?>
<ServiceConfigDescription version=”1.0”>
 <service name=”indexer”>
 <meta-format name=”olms” uri="http://labserv.iei.pi.cnr.it/OLP/htdocs/olms/NameSpace/">
 <filtering value=”en” name=”dc:language” default=”true”>
 <indexed-fields>

 <field name=”dc:creator”>
 <type>string</type>
 </field>
 <field name=”dc:date”>

 <type>%4d/%2d/%d(%d)</type>
 </field>

 <field name=”dc:description” support_feedback=”yes”>
 <type>%4d/%2d/%d(%d)</type>
 </field>

 <field name=”dcq:description.abstract” support_feedback=”yes”>
 <type>%4d/%2d/%d(%d)</type>
 </field>
 ………
 </indexed-fields>
 <result-formats>
 <format name=”short” default=’yes’>
 <field>dc:title</field>
 <field>dc:date</field>
 </format>
 <format name=”long”>
 <field>dc:creator</field>
 <field>dc:title</field>
 <field>dc:date</field>
 <field>dc:subject</field>
 </format>
 </result-formats>
 </filtering>
 <filtering value=”%lang” name=”dc:language”>
 <indexed-fields>

 <field name=”dcq:title.alternative”>

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 196

 <type>string</type>
 </field>
 <field name=”dcq:abstract.alternative”>

 <type>string</type>
 </field>
 ………
 </indexed-fields>
 <result-formats>
 <format name=”short” default=’yes’>
 <field>dc:title</field>
 <field>dc:date</field>
 </format>
 <format name=”long”>
 <field>dc:creator</field>
 <field>dc:title.alternative</field>
 <field>dc:date</field>
 <field>dc:subject.alternative</field>
 </result-formats>
 </filtering>
 </meta-format>
 <meta-format name=”” uri=””>
 …..
 </meta-format>
 </service>
</ServiceConfigDescription

Example Request:
/OLP/Meta/1.0/ServiceConfigDescription/qm

Example Response:
<?xml version="1.0" encoding="UTF-8"?>
<service name="qm">
 <verb name="SearchAcross">
 <meta-format name="olms" uri=" http://labserv.iei.pi.cnr.it/OLP/htdocs/olms/NameSpace/">
 <filtering value="en" name="dc:language" default="true">
 <indexed-fields>
 <field name="olms:subject.ccs" type="direct" ord="1">
 <type>string</type>
 </field>
 <field name="dcq:description.abstract" type="calculated" ord="2">
 <type>string</type>
 </field>
 </indexed-fields>
 </filtering>
 <filtering value="%lang" name="dc:language">
 <indexed-fields>
 <field name="olms:subject.ccs.alternative" type="direct" ord="1">
 <type>string</type>
 </field>
 <field name="dcq:description.abstract.alternative" type="calculated" ord="2">
 <type>string</type>
 </field>
 </indexed-fields>
 </filtering>
 </meta-format>
 </verb>
</service>

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 197

21. A METADATA EDITOR FOR MULTIMEDIA DOCUMENTS

This section introduces a new tool that will be implemented in the Scholnet project to support the
user in the production of the metadata descriptions of multimedia documents.

21.1 REQUIREMENTS
Editing metadata for multimedia structured documents such as, for example, videos of lectures,
tutorials, etc., is not always a straightforward task. According the DoMDL model there are different
levels of description: versions views and manifestations. Each of these has its own specific
metadata descriptive fields. Moreover, views may be composed of several parts, and, again, each of
these parts may have its own description. Unlike Scholnet textual documents, the parts of a
Scholnet audio/video will rarely be derivable automatically. Although there are tools for automatic
scene detection of video material, these are not applicable for most of the Scholnet documents. A
change of scene is seldom an indication of a meaningful breakdown in the video of a lecture. For
this type of document the structuring must mainly be performed by a human that applies some
criteria based on the content and the semantics of the lecture itself.
In some cases, for example, when the documents are in MPEG7 or SMILE formats, some of the
descriptive metadata are stored with the content and can be extracted automatically. This metadata
must be profitably exploited to reduce the effort of the cataloguer.

A semi-automatic metadata editor to support the partitioning of video documents and the creation
and editing of the metadata descriptions associated with them will be implemented as part of the
Scholnet project to meet the above specific requirements. The next sections specifies this tool.

21.2 METADATA EDITOR USE CASE

1. Preconditions:
The typical cataloguer workflow scenario is the following:

1. A new audiovisual document is digitazed and/or transformed from one digital format into
another.

2. The document is processed for automatic metadata extraction.
3. When the metadata extraction has been completed, the manual editing of the metadata

guided by the editor can start.

Main flow
The user typically edits the textual description for typos or factual content, reviews or sets values
for the metadata fields, selects and adjusts the bounds of the document parts, removes unwanted
segments and merges multiple documents. This phase is usually performed starting from the top
level of the model (the DoMDL document), and is continued by modifying/editing the lower-level
objects connected to the document (i.e., Version, View and Manifestation).

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 198

Scholnet
DB

Medata
Editor

local disk

Export metadata

Import medata

Load
Metadata

Save
Metadata

Edit Metadata/
AudioVideo document

Metadata editor
client machine

Figure 1: The workflow of the main metadata editor functionalities.

The following functions will be provided in order to support this behaviour (see Figure 1):

Load metadata description
Allows the user to load metadata descriptions that have been previously exported from the Scholnet
database and locally stored in the XML format (see Figure 2).

Figure 2: Loading the metadata description

Display metadata description
Used to browse the model (represented by a tree structure) and to display all the metadata
descriptions associated with the objects of the model (see Figure 3).

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 199

Figure 3: The structure of the loaded document

Modify metadata field values
By clicking on the icon representing an entity of the loaded document a popup menu can be
accessed (see Figure 4) that allows the user to open a window (see Figure 5) in order to modify the
metadata descriptions.

Figure 4: Modifying the Metadata descriptions

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 200

Figure 5: Editing the metadata descriptions

Navigate through the audio/video document
The audio/video documents are stored as View of the DoMDL Document. The View can represent
the hierarchy of the video segmentation (For instance, a Video can be divided in scenes, shots, etc).
Through the metadata editor it is possible to visualize this segmentation (see Figure 6).

Figure 6: Navigating the Document Video View.

Video access
The video can be played by means of the video document interface provided by the editor. The
editor offers user an interface similar to a VCR (see Figure 7).

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 201

Figure 7: Playing the video and editing the View.

Editing of the audio/video document
The user can delete/add new segments in the Video Views using the same window as that used to
play the video. (see Figure 7).

Save metadata description
The modified metadata can be saved locally for importing in the Scholnet database.

21.3 ARCHITECTURAL CHOICES
As the metadata editing phase will usually take some time, the editor will work off-line, i.e. the user
will work on a local copy of the metadata. This simplifies the interface for communication between
the editor and the Library Management Service and has the advantage of allowing the user to work
on a connectionless machine.
The metadata editor will be composed of two different components (see the figure below).

The MMEditor Core will implement the functionality described in the previous section. It will not
be hard-wired with a particular metadata attribute set; the metadata schema will be defined in the
W3C XML Schema Definition (XSD) and will be used by the editor as the configuration file for the
metadata model. The advantage of this choice is that it will be possible to adapt it to work with
metadata formats that differ in their set of fields. This will be achieved by allowing the editor to
recognise a subset of the types available for the XSD schemas: xsd:string, xsd:bool, xsd:date,
xsd:float, xsd:integer and a set of new types to support the multimedia data.

The format chosen to exchange document metadata to/from the editor will be XML.

MMEditor -
Scholnet
gateway

MMEditor
Core

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 202

The MMEditor Core will be instantiated to work with the Scholnet metadata formats.
Communication with the rest of the Scholnet architecture will take place via the MMEditor-
Scholnet gateway. This gateway will transform the output produced by the MMEditor core
instantiated for Scholnet into the format required by the submit request of the Library Management
service.

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 203

22. POSSIBLE FUTURE EXTENSIONS

The design an extensible DL system is one of the main objectives of Scholnet. This has motivated
our decision to define an open architecture and protocol in such great detail
In its basic version Scholnet offers a set of generic services to support scholarly communities.
However, the current level of openness allows extensions to meet the more specific requirements
dictated by a particular scholarly community. As an example of a possible extension, we discuss
here how a service for supporting citation and linking might be added to the current version of the
Scholnet system.

Reference linking is the ability to access cited documents immediately from the citing paper.
Citation is the reverse facility, i.e. the possibility of knowing the list of documents citing a given
paper. The most well-known system for supporting both services is ResearchIndex
[ResearchIndex]. This service seeks to build a large on-line database of citation information in the
field of computer science. An emerging application in the area of reference and citation is SFX
[SFX]. This is an advanced reference linking system that takes the user’s context into account.
Another new application in this field has recently been implemented at Cornell University
[Bergmark]. The aim of this service is to create a reference linking layer on the Web that provides
sufficient data for a variety of value-added reference linking applications. This service partially
exploits the ResearchIndex software to build valued-added surrogates to enhance the reference
linking behaviour of Web documents. A surrogate is a digital library object that encapsulates
reference linking information relating to one single item on the Web. In this service, reference
linking is distributed across the collection of surrogate objects, and all the data relating to one item
is grouped together within a single surrogate. The Reference Linking service functionality is
accessible through a set of well-defined APIs, which enable access to the on-line document
metadata and its references. These APIs are:
• getLinkedText – returns the content of the paper augmented with reference linking information
• getReferenceList – returns the references contained in this paper
• getMyData –returns the paper’s own metadata
• getCurrentCitationList – returns the list of work citing this paper to the best of the surrogate’s

knowledge
A Reference Linking service might be implemented in Scholnet by integrating Cornell’s Reference
Linking service (CRLS) in the Scholnet architecture. The first step for this integration would be the
construction of a software layer that transforms each APIs into a Scholnet protocol verb. At this
point, several integration strategies are possible. The simplest is:
1. Create an instance of the CRLS service for each Repository service and associate the two kinds

of services
2. Add a new view “surrogate” to the structure of the documents. This step is trivial since the

whole Scholnet system is parametric with respect to the type of document views.
3. Modify the Library Management service so that, whenever it receives a submission, it asks to

the CRLS service to create a surrogate manifestation. This manifestation is then stored as an
external manifestation of the surrogate view in the Repository service.

4. Transform the CRLS service into a service that supports a DistributedInput replication
typology. This is required if a global view of the citations of a document is required.

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 204

23. REFERENCES

[Bergmark]???manca nomi An Architecture for an Automatic Reference Linking, Proc. of the 5th
European Conference on Digital Library, Lecture Notes in Computer Science 2163, Darmstadt,
Germany, Sept 2001.
[DESIRE] DESIRE metadata registry: a prototype registry developed as part of the EC funded
DESIRE project, http://www.ariadne.ac.uk/issue25/app-profiles/1
[Dienst] Dienst Protocol. http://www.cs.cornell.edu/cdlrg/dienst/protocols/DienstProtocol.htm
[ETRDL] ERCIM Technical Reference Digital Library. http://dienst.iei.pi.cnr.it/
[Heery00] Rachel Heery and Manjula Patel. Application profiles: mixing and matching metadata
schemas, October 2000, http://www.ariadne.ac.uk/issue25/app-profiles/
[OAI] Open Archives Initiatives. http://www.openarchives.org/
[Research Index] S. Lowrence, C.L. Giles and K. Bollacker, Digital Libraries and autonomous
citation indexing, IEEE Computer 32 (6) ,1999, http://www.researchindex.com.
[SFX] H. Van de Sompel and P. Hochstembach, Reference linking in an hybrid library
environment, part 2:SFX, a generic linking solution, D-Lib Magazine 5 (4),1999.
[ScholnetD2.1.1] Functionality and Efficiency Tests Report: Scholnet Project IST-199-20664,
Report D2.1.1. June 2001.
[ScholnetTA] A Digital Library Testbed to Support Networked Scholarly Communities.
ScholnetProject IST-199-20664 Technical Annex, 2000.
[UML] Hans-Erik Eriksson and Magnus Penker. UML Toolkit. John Wiley & Sons, Inc.

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 205

24. APPENDIX A: LIST OF ACRONYMS

DoMDL Document Model for Digital Library
DC Dublin Core
DCQ Dublin Core Qualified
ETRDL ERCIM Technical Reference Digital Library
HAS Hypermedia Annotation Service
GUI Graphical User Interface
LibMgt Library Management Service
MDS Multimedia Document Storage and Delivery Service
MIME Multipurpose Internet Mail Extensions
MTS Multilingual Thesaurus Service
OAI Open Archives Initiative
OLAP OpenDLib Application Profile
OLCM OpenDLib Collection Metadata profile
OLGM OpenDLib Group Metadata profile
OLMS OpenDLib Metadata Set
OLUM OpenDLib User Metadata profile
OLP OpenDLib protocol
PIDS Personalised Information Dissemination Service
QM Query Mediator Service
SIS-TM SIS Thesaurus Management System
SMS Structure Metadata Set
URI Unique Resource Identifier
URN Uniform Resource Name

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 206

25. APPENDIX B: THE OPENDLIB APPLICATION PROFILE

This Appendix lists the fields of the OpenDLib Architecture Profile (OLAP), their schemas (when
their values are taken from existing controlled vocabularies) and their description. It also provides
an XML DTD for OLAP.

The OLAP fields and their definition

Element Name Scheme Element definition

dc:title A name given to the resource. In the
case of OLA documents we expect that
this is written in English. When the
document is in another language, this
field contains a translation of the
title in English.

dc:creator The entity primarily responsible for
the content of the resource.

dc:subject The topic of the content of the
resource

dc:description A description of the content of the
resource

dc.contributor An entity making contributions to the
content of the resource.

dc:publisher An entity responsible for making the
resource available

dc:date A date associated with an event in the
life cycle of the resource.

dc:type The nature or genre of the content of
the resource

dc:format The physical or digital manifestation
of the resource

dc:identifier An unambiguous reference to the
resource within a given context

dc:source A reference to a resource from which
the present resource is derived.

dc:language A language of the intellectual content
of the resource

dc.relation A reference to a related resource
dc:coverage The extent or scope of the content of

the resource
dc:rights Information about rights held in and

over the resource
dcq:title.alternative Any form of the title used as a

substitute or alternative to the
formal title of the resource. In the
specific case of OLA documents this
field contains the title if this is in
a language different from English.

dcq:description.abstract A summary of the content of the
resource. In the case of OLA documents
we expect that this is written in
English

dcq:description.tableofcontents A list of subunits of the content of
the resource

dcq:date.issued Date of formal issuance (e.g.,

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 207

publication) of the resource
dcq:date.available Date (often a range) when the resource

will become or did become available
dcq:date.created Date of creation of the resource
dcq:date.valid Date (often a range) of validity of a

resource
dcq:date.modified Date on which the resource was changed
dcq:coverage.temporal Temporal characteristics of the

intellectual content of the resource
dcq:coverage.spatial Spatial characteristics of the

intellectual content of the resource
dcq:subject.keyword
dcq:subject CCS

MSC
olms:subject.keyword.alternativ
e

olms:subject.alternative CCS
MSC

olms:description.abstract.alter
native

 This field has the same meaning as
dcq.description.abstract except that
it contains the abstract written in a
language different from English.

olms:description.tableofcontent
s.alternative

olms:note Textual notes about the document
olms:note.retrieval
olms:note.withdraw
olms:note.contact
olms:note.collection
olms:note.series

The OLAP DTD

<!ENTITY dcns 'http://purl.org/dc/elements/1.1/'>
<!ENTITY dcqns 'http://purl.org/dc/terms/'>
<!ENTITY olmsns 'http://project.iei.pi.cnr.it:8221/OLP/htdocs/NameSpace/olms.xml'>
<!-- Declare convenience entities for XML namespace declarations -->
<!ENTITY % dcnsdecl 'xmlns:dc CDATA #FIXED "&dcns;"'>
<!ENTITY % dcqnsdecl 'xmlns:dcq CDATA #FIXED "&dcqns;"'>
<!ENTITY % olmsnsdecl 'xmlns:olms CDATA #FIXED "&olmsns;"'>
<!ELEMENT olms:ol (dc:title+, olms:title.alternative*, dc:creator+, dc:subject+, dcq:subject.keyword*,
dcq:subject.ccs*, dcq:subject.msc*, olms:subject.alternative*, olms:subject.keyword.alternative*,
olms:subject.ccs.alternative*, olms:subject.msc.alternative*, dc:description*, dcq:description.abstract+,
olms:description.abstract.alternative*, dcq:description.toc*, olms:description.toc.alternative*, dc:contributor*,
dc:publisher+, dc:date*, dcq:date.issued+, dcq:date.available+, dcq:date.created*, dcq:date.valid*,
dcq:date.modified*, dc:type+, dc:format*, dc:identifier*, dc:source*, dc:language+, dc:relation*, dc:coverage*,
dcq:coverage.temporal*, dcq:coverage.spatial*, dc:rights*, olms:note*, olms:note.retrieval*,
olms:note.withdraw*, olms:note.contact*, olms:note.collection+, olms:note.series*, olms:note.revision*)>
<!ATTLIST olms:ol
 xmlns:dc CDATA #FIXED "http://purl.org/dc/elements/1.1/"
 xmlns:dcq CDATA #FIXED "http:// purl.org/dc/elements/1.1/"
 xmlns:olms CDATA #FIXED "http:// project.iei.pi.cnr.it:8221/OLP/htdocs/NameSpace/olms.xml'"
>
<!ELEMENT dc:title (#PCDATA)>
<!ELEMENT dc:creator (#PCDATA)>
<!ELEMENT dc:subject (#PCDATA)>
<!ELEMENT dc:description (#PCDATA)>

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 208

<!ELEMENT dc:contributor (#PCDATA)>
<!ELEMENT dc:publisher (#PCDATA)>
<!ELEMENT dc:date (#PCDATA)>
<!ELEMENT dc:type (#PCDATA)>
<!ELEMENT dc:format (#PCDATA)>
<!ELEMENT dc:identifier (#PCDATA)>
<!ELEMENT dc:source (#PCDATA)>
<!ELEMENT dc:language (#PCDATA)>
<!ELEMENT dc:relation (#PCDATA)>
<!ELEMENT dc:coverage (#PCDATA)>
<!ELEMENT dc:rights (#PCDATA)>
<!ELEMENT dcq:subject.keyword (#PCDATA)>
<!ELEMENT dcq:subject.ccs (#PCDATA)>
<!ELEMENT dcq:subject.msc (#PCDATA)>
<!ELEMENT dcq:description.abstract (#PCDATA)>
<!ELEMENT dcq:description.toc (#PCDATA)>
<!ELEMENT dcq:date.issued (#PCDATA)>
<!ELEMENT dcq:date.available (#PCDATA)>
<!ELEMENT dcq:date.created (#PCDATA)>
<!ELEMENT dcq:date.valid (#PCDATA)>
<!ELEMENT dcq:date.modified (#PCDATA)>
<!ELEMENT dcq:coverage.temporal (#PCDATA)>
<!ELEMENT dcq:coverage.spatial (#PCDATA)>
<!ELEMENT olms:title.alternative (#PCDATA)>
<!ELEMENT olms:subject.alternative (#PCDATA)>
<!ELEMENT olms:subject.keyword.alternative (#PCDATA)>
<!ELEMENT olms:subject.ccs.alternative (#PCDATA)>
<!ELEMENT olms:subject.msc.alternative (#PCDATA)>
<!ELEMENT olms:description.abstract.alternative (#PCDATA)>
<!ELEMENT olms:description.toc.alternative (#PCDATA)>
<!ELEMENT olms:note (#PCDATA)>
<!ELEMENT olms:note.retrieval (#PCDATA)>
<!ELEMENT olms:note.withdraw (#PCDATA)>
<!ELEMENT olms:note.contact (#PCDATA)>
<!ELEMENT olms:note.collection (#PCDATA)>
<!ELEMENT olms:note.series (#PCDATA)>
<!ELEMENT olms:note.revision (#PCDATA)>

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 209

26. APPENDIX C: MAPPING THE ETRDL METADATA FORMAT INTO

OLMS

This Appendix reports the mapping between the ETRDL supported metadata format and OLAP.
This mapping is used in order to transform the metadata descriptions of the documents handled by
the ETRDL digital library into OLAP valid metadata descriptions.

ETRDL Formats OLAP
Element name Type Element name Type
Id URN dc:identifier URI
Entry Month_alphabetic, Day, Year dcq:date.available ISO8601
Organization String dc:publisher string
Title String dc:title string
Type String dc:type string
Revision String olms:note.revision string
Withdraw String olms:note.withdraw string
Author String dc:creator string
Corp-author String dc:contributor string
Contact String olms:note.contact string
Date Month_alphabetic, Day, Year dcq:date.issued ISO8601
Other_Access URL dc:identifier URI
Retrieval String olms:note.retrieval string
Keyword String dcq:subject.keyword string
ACM String dcq:subject.ccs string
MSC String dcq:subject.msc string
CR-Category String dc:subject string
Period String dcq:coverage.temporal W3C-DTF
Series String olms:note.series string
Language String dc:language RFC 1766
Notes String olms:note.text string
Abstract String dcq:description.abstract string
LocAbstract String olms:description.abstract.alte

rnative
string

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 210

27. APPENDIX D: THE STRUCTURE METADATA SET

This Appendix reports the DTDs that specify the Structure Metadata Set. The SMS describes the
structure of a DoMDL document.

SMS DTD
<!ELEMENT Structure (document+)>
<!ELEMENT document (view+)>
<!ATTLIST Structure
 version CDATA #REQUIRED
>
<!ATTLIST document
 handle CDATA #REQUIRED
 version CDATA #REQUIRED
>
<!ENTITY % view.dtd SYSTEM "http://labserv.iei.pi.cnr.it/OLP/htdocs/sms/DTD/view.dtd">
%view.dtd;

VIEW DTD
<!--ATTRIBUTES min, max, ord e ref_version: integer; ATTRIBUTE multiple: boolean-->
<!ELEMENT view ((manifestation+ | view*)*, (manifestation+ | view*)*)*>
<!ATTLIST view
 name CDATA #REQUIRED
 type (metadata | body | reference | choice) #REQUIRED
 display CDATA #IMPLIED
 min CDATA #IMPLIED
 max CDATA #IMPLIED
 ord CDATA #IMPLIED
 ref-handle CDATA #IMPLIED
 ref-version CDATA #IMPLIED
 ref-view CDATA #IMPLIED
 transcoding (no | yes) #REQUIRED
 downloading (no | yes) #REQUIRED
 delivering (no | yes) #REQUIRED
>
<!ENTITY % manifestation.dtd SYSTEM "http://labserv.iei.pi.cnr.it/OLP/htdocs/sms/DTD\manifestation.dtd">
%manifestation.dtd;

MANIFESTATION DTD
<!ELEMENT manifestation EMPTY>
<!ATTLIST manifestation
 name (bib | olms | rfc1807 | html | postscript | xml | gif | bib | pdf | postscript-part | inline | inline-part |
composite-part |) #REQUIRED
 content-type CDATA #REQUIRED
 display CDATA #IMPLIED
 URI CDATA #IMPLIED
 type (inside | outside) #IMPLIED
 min CDATA #IMPLIED
 max CDATA #IMPLIED
 multiple (1 | 0) #IMPLIED
 size CDATA #IMPLIED
>

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 211

28. APPENDIX E: THE OPENDLIB USER METADATA PROFILE

This Appendix lists the fields of the OpenDLib User Metadata (OLUM) profile. It also provides it
with an XML DTD.

The OLUM fields and their definition

D
A

TA
 HandleList Optional Set set of document handles associated

with the user (the user is the owner
of these documents)

R
IG

H
TS

Authorities Optional Set set of authorities in which the user
can submit documents. If the set is
empty the user cannot submit
documents.

Collection-Adm Optional Boolean specifies whether the user can
administer the Collection Service

LibMgt-Adm Optional Set specifies the set of authorities that
can be administered with the
Library Management Service

Repository-Adm Optional Set specifies the set of authorities that
can be administered

Registry-Adm Optional Boolean specifies whether the user can
administer the Registry Service

Thesaurus-Adm Optional Boolean specifies whether the user can
administer the Thesaurus Service

The OLUM DTD
<!ELEMENT login (#PCDATA)>
<!ELEMENT fullname (#PCDATA)>
<!ELEMENT institution (#PCDATA)>
<!ELEMENT address (#PCDATA)>
<!ELEMENT email (#PCDATA)>
<!ELEMENT phone (#PCDATA)>
<!ELEMENT comment (#PCDATA)>
<!ELEMENT authorities (authority+)>
<!ELEMENT repository-adm (authorities+)>
<!ELEMENT libmgt-adm (authorities+)>
<!ELEMENT authority (#PCDATA)>
<!ELEMENT documents (handle+)>

 Attribute Obligation Type Constraint/Comment

SE
TT

IN
G

S

Login Mandatory String alphanumeric characters plus
underscore, unique in the system

Password Mandatory String user's password to the system
FullName Mandatory String user's first name(s) and surname
Email Mandatory String valid e-mail contact for the user
Institution Optional String user's institution
Address Optional String contact address for the user
Phone Optional String contact phone for the user
Comment Optional String any text

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 212

<!ELEMENT handle (#PCDATA)>
<!ELEMENT collection-adm EMPTY>
<!ATTLIST collection-adm
 value (0 | 1) #REQUIRED
>
<!ELEMENT registry-adm EMPTY>
<!ATTLIST registry-adm
 value (0 | 1) #REQUIRED
>
<!ELEMENT thesaurus-adm EMPTY>
<!ATTLIST thesaurus -adm
 value (0 | 1) #REQUIRED
>
<!ELEMENT userprofile (login, fullname, email, institution, address, phone, comment, documents,
authorities, repository-adm, libmgt-adm, collection-adm, registry-adm, thesaurus-adm)>

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 213

29. APPENDIX F: THE OPENDLIB GROUP METADATA PROFILE

This Appendix lists the fields of the OpenDLib Group Metadata (OLGM) profile. It also provides it
with an XML DTD.

The OLGM fields and their definition

 Attribute Obligation Type Constraint/Comment

SE
TT

IN
G

S

GroupName Mandatory String alphanumeric characters plus
underscore, unique in the system

Description Mandatory String short description of the group
Owner Mandatory String login of the group owner, must

already be registered
UserList Optional Set login of each registered user

belonging to the group
Comment Optional String any text
Public Mandatory Boolean default value is true.

The OLGM DTD
<!ELEMENT groupname (#PCDATA)>
<!ELEMENT description (#PCDATA)>
<!ELEMENT owner (#PCDATA)>
<!ELEMENT comment EMPTY>
<!ELEMENT public EMPTY>
<!ATTLIST public
 value (0 | 1) #REQUIRED
>
<!ELEMENT userlist (login+)>
<!ELEMENT login (#PCDATA)>
<!ELEMENT groupprofile (groupname, description, owner, comment, public, userlist)>

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 214

30. APPENDIX G: THE OPENDLIB COLLECTION METADATA PROFILE

This Appendix lists the fields of the OpenDLib Collection Metadata (OLCM) profile. It also
provides it with an XML DTD.

The OLCM fields and their definition

Element Name Scheme Element definition

collectionId The unique identifier of the
collection

name The name of the collection
description The textual description of the

collection
subject A list of free text keywords that

describe the subject of the collection
owner The login of the creator of the

collection
membershipCondition A set of pairs (Authority, Condition)

with the following meaning:
Authority: authority that publishes
documents in the collection
Condition: filter for selecting the
documents of the collection among
those published by the authority

services A set of service descriptions. Each
service description reports the name
of the service and its verbs (with the
specification of the version) that can
be used on the collection

parentCollection The parent collection CollectionId.
This information is used to build a
hierarchy between collections in order
to present them in a more usable and
meaningful way to the end-user

The OLCM DTD

<!ELEMENT collection (owner, services, parent-collection, membership-condition)>
<!ATTLIST collection
 name CDATA #REQUIRED
 description CDATA #REQUIRED
 subject CDATA #IMPLIED
 id CDATA #REQUIRED
>
<!ELEMENT owner (login, passwd)>
<!ELEMENT login (#PCDATA)>
<!ELEMENT passwd (#PCDATA)>
<!ELEMENT services (service+)>
<!ATTLIST service
 name CDATA #REQUIRED
>
<!ELEMENT service (verb+)>
<!ELEMENT verb EMPTY>
<!ATTLIST verb
 name CDATA #REQUIRED
 version CDATA #IMPLIED

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 215

>
<!ELEMENT parent-collection EMPTY>
<!ATTLIST parent-collection
 id CDATA #REQUIRED
>
<!ELEMENT membership-condition (pair+)>
<!ELEMENT pair (authorities, condition)>
<!ELEMENT authorities (authority+)>
<!ELEMENT authority EMPTY>
<!ATTLIST authority
 name CDATA #REQUIRED
>
<!ELEMENT condition (leaf, op?, condition?)>
<!ATTLIST condition
 value CDATA #REQUIRED
>
<!ELEMENT leaf (#PCDATA)>
<!ELEMENT op (#PCDATA)>

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 216

31. APPENDIX H: THE THESAURUS CONCEPT DTD

This Appendix describes the SIS Thesaurus Management System (SIS-TMS). SIS-TMS consists of
a tool to develop multilingual thesauri. The basic notion of SIS-TMS is a thesaurus concept which
is described by an XML document

<!ELEMENT Concept (Definition , Intra_Thesaurus , Inter_Thesauri , Administration_Description)>
<!ELEMENT Definition (Name , Scope_Note , Thesaurus , Type , Hierarchy*)>
<!ELEMENT Intra_Thesaurus (Broader_Term , Narrower_Term , Related_Term , Alternative_Term ,
Used_For_Term)>
<!ELEMENT Inter_Thesauri (Exact_Equivalence* , Broader_Equivalence* , Narrower_Equivalence* ,
Inexact_Equivalence*)>
<!ELEMENT Administration_Description (Created_By , Last_Modified , Found_In , Not_Found_In)>
<!ELEMENT Name (#PCDATA)>
<!ELEMENT Scope_Note (#PCDATA)>
<!ELEMENT Thesaurus (#PCDATA)>
<!ELEMENT Type (#PCDATA)>
<!ELEMENT Hierarchy (#PCDATA)>
<!ELEMENT Broader_Term (Concept_Name*)>
<!ELEMENT Narrower_Term (Concept_Name *)>
<!ELEMENT Related_Term (Concept_Name *)>
<!ELEMENT Alternative_Term (English | French | Italian)>
<!ELEMENT Used_For_Term (English , French , Italian)>
<!ELEMENT English (term*)>
<!ELEMENT French (term*)>
<!ELEMENT Italian (term*)>
<!ELEMENT Concept_Name (#PCDATA)>
<!ELEMENT Union (Intersection* , Concept_Name*)>
<!ELEMENT Intersection (Concept_Name*)>
<!ELEMENT Exact_Equivalence (Thesaurus , (Concept_Name | Union | Intersection))>
<!ELEMENT Broader_Equivalence (Thesaurus , (Concept_Name | Union | Intersection))>
<!ELEMENT Narrower_Equivalence (Thesaurus , (Concept_Name | Union | Intersection))>
<!ELEMENT Inexact_Equivalence (Thesaurus , Concept_Name)*>
<!ELEMENT Created_By (Date , Time , Creator)>
<!ELEMENT Last_Modified (Date , Time , Creator)>
<!ELEMENT Found_In (Source)>
<!ELEMENT Not_Found_In (Source)>
<!ELEMENT Date (#PCDATA)>
<!ELEMENT Time (#PCDATA)>
<!ELEMENT Creator (#PCDATA)>
<!ELEMENT Source (Author , Title , Publisher , ISBN)>
<!ELEMENT Author (#PCDATA)>
<!ELEMENT Title (#PCDATA)>
<!ELEMENT Publisher (#PCDATA)>
<!ELEMENT ISBN (#PCDATA)>
<!ELEMENT Belongs_To (#PCDATA)>
<!ELEMENT term (#PCDATA)>

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 217

32. APPENDIX I: DTD

This Appendix contains the DTDs that specify the format of the response of each verb.
REPOSITORY
Identify
<!ELEMENT Identify (serviceName, olp_base_url, metaServiceURL, textualDescription, protocolVersion, adminEmail, verbsInfo,
submissionProcedure, harvestInformation, useRestrictions, contentInfo)>
<!ATTLIST Identify
 version CDATA #REQUIRED
>
<!ELEMENT adminEmail (#PCDATA)>
<!ELEMENT authorities (description, olp_base_url)>
<!ELEMENT contentDescription (#PCDATA)>
<!ELEMENT contentInfo (contentDescription, authorities, sets, metadataFormats, documentStructure)>
<!ELEMENT description (#PCDATA)>
<!ELEMENT documentStructure (description, olp_base_url, olp_dtd_url)>
<!ELEMENT harvestInformation (description, olp_base_url)>
<!ELEMENT metaServiceURL (#PCDATA)>
<!ELEMENT metadataFormats (description, olp_base_url, olp_dtd_url)>
<!ELEMENT olp_base_url (#PCDATA)>
<!ELEMENT olp_dtd_url (#PCDATA)>
<!ELEMENT protocolVersion (#PCDATA)>
<!ELEMENT serviceName (#PCDATA)>
<!ELEMENT sets (description, olp_base_url)>
<!ELEMENT submissionProcedure (description, olp_base_url)>
<!ELEMENT textualDescription EMPTY>
<!ELEMENT useRestrictions (#PCDATA)>
<!ELEMENT verbsDescription (description, olp_base_url)>
<!ELEMENT verbsInfo (verbsSupported, verbsDescription)>
<!ELEMENT verbsSupported (description, olp_base_url)>

ListVerbs
<!ELEMENT ListVerbs (verb+)>
<!ATTLIST ListVerbs
 version CDATA #REQUIRED
>
<!ELEMENT verb (#PCDATA)>

DescribeVerb
<!ELEMENT DescribeVerb (verb)>
<!ELEMENT verb (description, versions+)>
<!ELEMENT description (#PCDATA)>
<!ELEMENT versions (version+)>
<!ELEMENT version ((arguments | returns+ | example* | note*), (arguments | returns+ | example* | note*))*>
<!ELEMENT arguments (fixed?, keyword?)>
<!ELEMENT returns (#PCDATA)>
<!ELEMENT example (#PCDATA)>
<!ELEMENT note (#PCDATA)>
<!ELEMENT fixed (arg*)>
<!ELEMENT keyword (arg*)>
<!ELEMENT arg EMPTY>
<!ATTLIST DescribeVerb
 version CDATA #REQUIRED
>
<!ATTLIST verb
 name (Identify | ListVerbs | DescribeVerb | ListAuthorities | ListSets | ListBinders | ListEncodings |
ListMetaFormats | ListSubmissionFormats | ListContents | ListVersions | Terms | Structure | Manifestations |
Disseminate | Submit | NewVersion | Withdraw) #REQUIRED
>
<!ATTLIST version
 id CDATA #REQUIRED
>

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 218

<!ATTLIST arg
 name CDATA #REQUIRED
>

ListAuthorities
<!ELEMENT ListAuthorities (authority+)>
<!ELEMENT authority (allowed-sets)>
<!ELEMENT allowed-sets (set+)>
<!ELEMENT set EMPTY>
<!ATTLIST ListAuthorities
 version CDATA #REQUIRED
>
<!ATTLIST authority
 name CDATA #REQUIRED
 display CDATA #REQUIRED
>
<!ATTLIST set
 name CDATA #REQUIRED
>

ListSets
<!ELEMENT ListSets (set+)>
<!ELEMENT set ((display | allowed-authorities | set*), (display | allowed-authorities | set*))*>
<!ELEMENT allowed-authorities (authority+)>
<!ELEMENT display (#PCDATA)>
<!ELEMENT authority EMPTY>
<!ATTLIST ListSets
 version CDATA #REQUIRED
>
<!ATTLIST authority
 name CDATA #REQUIRED
>
<!ATTLIST set
 name CDATA #REQUIRED
>

ListBinders
<!ELEMENT ListBinders (binder+)>
<!ELEMENT binder (#PCDATA)>
<!ATTLIST ListBinders
 version CDATA #REQUIRED
>

ListEncodings
<!ELEMENT encoding (#PCDATA)>
<!ELEMENT ListEncodings (encoding+)>
<!ATTLIST ListEncodings
 version CDATA #REQUIRED
>

ListMetaFormats
<!ELEMENT ListMetaFormats (meta_format+)>
<!ATTLIST ListMetaFormats
 version CDATA #REQUIRED
>
<!ELEMENT meta_format (namespace+)>
<!ATTLIST meta_format
 name (bib | olms | rfc1807) #REQUIRED
 dtd CDATA #IMPLIED

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 219

>
<!ELEMENT namespace EMPTY>
<!ATTLIST namespace
 name (bibns | dc | dcq | olms | rfc1807) #REQUIRED
 uri CDATA #REQUIRED
>

ListSubmissionFormats
<!ELEMENT ListSubmissionFormats (manifestation+)>
<!ATTLIST ListSubmissionFormats
 version CDATA #REQUIRED
>
<!ENTITY % manifestation.dtd SYSTEM "http://labserv.iei.pi.cnr.it/OLP/htdocs/sms/DTD/manifestation.dtd">
%manifestation.dtd;

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT manifestation EMPTY>
<!ATTLIST manifestation
 name (doc | html | postscript | xml | gif | bib | pdf | postscript-pageimage | inline) #REQUIRED
 content-type CDATA #REQUIRED
 display CDATA #IMPLIED
 filename CDATA #IMPLIED
 min CDATA #IMPLIED
 max CDATA #IMPLIED
 multiple (1 | 0) #IMPLIED
 size CDATA #IMPLIED
>

ListContents
<!ELEMENT ListContents (document+)>
<!ELEMENT document (#PCDATA)>
<!ATTLIST ListContents
 count CDATA #IMPLIED
 version CDATA #REQUIRED
>
<!ATTLIST document
 handle CDATA #REQUIRED
>

ListVersions
<!ELEMENT ListVersions (version+)>
<!ELEMENT version ((date | comment), (date | comment))*>
<!ELEMENT comment (#PCDATA)>
<!ELEMENT date (#PCDATA)>
<!ATTLIST ListVersions
 version CDATA #REQUIRED
>
<!ATTLIST version
 id CDATA #REQUIRED
>

Terms
<!ELEMENT Terms (text)>
<!ATTLIST Terms
 version CDATA #REQUIRED
>
<!ELEMENT text (#PCDATA)>

Structure

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 220

<!ELEMENT Structure (document+)>
<!ELEMENT document (view+)>
<!ATTLIST Structure
 version CDATA #REQUIRED
>
<!ATTLIST document
 handle CDATA #REQUIRED
 version CDATA #REQUIRED
>
<!ENTITY % view.dtd SYSTEM "http://labserv.iei.pi.cnr.it/OLP/htdocs/sms/DTD/view.dtd">
%view.dtd;

<!--ATTRIBUTES min, max, ord e ref_version: integer; ATTRIBUTE multiple: boolean-->
<!ELEMENT view ((manifestation+ | view*)*, (manifestation+ | view*)*)*>
<!ATTLIST view
 name CDATA #REQUIRED
 type (metadata | body | reference | choice) #REQUIRED
 display CDATA #IMPLIED
 min CDATA #IMPLIED
 max CDATA #IMPLIED
 ord CDATA #IMPLIED
 ref-handle CDATA #IMPLIED
 ref-version CDATA #IMPLIED
 ref-view CDATA #IMPLIED
>
<!ENTITY % manifestation.dtd SYSTEM "http://labserv.iei.pi.cnr.it/OLP/htdocs/sms/DTD\manifestation.dtd">
%manifestation.dtd;

<!ELEMENT manifestation EMPTY>
<!ATTLIST manifestation
 name (bib | olms | rfc1807 | html | postscript | xml | gif | bib | pdf | postscript-part | inline | inline-part |
composite-part |) #REQUIRED
 content-type CDATA #REQUIRED
 display CDATA #IMPLIED
 filename CDATA #IMPLIED
 min CDATA #IMPLIED
 max CDATA #IMPLIED
 multiple (1 | 0) #IMPLIED
 size CDATA #IMPLIED
>

Manifestations
<!ELEMENT Manifestations (document)>
<!ELEMENT document (manifestation+)>
<!ATTLIST Manifestations
 version CDATA #REQUIRED
>
<!ATTLIST document
 handle CDATA #REQUIRED
 version CDATA #REQUIRED
>
<!ENTITY % manifestation.dtd SYSTEM "http://labserv.iei.pi.cnr.it/OLP/htdocs/sms/DTD\manifestation.dtd">
%manifestation.dtd;

Submit
<!ELEMENT Submit ((handle | set+), (handle | set+))*>
<!ELEMENT handle (#PCDATA)>
<!ELEMENT set ((display | set?), (display | set?))*>
<!ELEMENT display (#PCDATA)>
<!ATTLIST Submit
 version CDATA #REQUIRED

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 221

>
<!ATTLIST set
 name CDATA #REQUIRED
>

NewVersion
<!ELEMENT NewVersion (version)>
<!ELEMENT version ((date | comment*), (date | comment*))*>
<!ELEMENT comment (#PCDATA)>
<!ELEMENT date (#PCDATA)>
<!ATTLIST NewVersion
 version CDATA #REQUIRED
>
<!ATTLIST version
 id CDATA #REQUIRED
>

Withdraw
<!ELEMENT Withdraw (handle)>
<!ELEMENT handle (#PCDATA)>
<!ATTLIST Withdraw
 version CDATA #REQUIRED
>

Library Management
Identify
<!ELEMENT Identify ((service-name | base-url | protocol-version | admin-email | descriptions*), (service-
name | base-url | protocol-version | admin-email | descriptions?))*>
<!ATTLIST Identify
 version CDATA #REQUIRED
>
<!ELEMENT admin-email (#PCDATA)>
<!ELEMENT base-url (#PCDATA)>
<!ELEMENT descriptions EMPTY>
<!ELEMENT protocol-version (#PCDATA)>
<!ELEMENT service-name (#PCDATA)>

ListVerbs
<!ELEMENT ListVerbs (verb+)>
<!ATTLIST ListVerbs
 version CDATA #REQUIRED
>
<!ELEMENT verb (#PCDATA)>

DescribeVerb
<!ELEMENT DescribeVerb (verb)>
<!ELEMENT verb (description, versions+)>
<!ELEMENT description (#PCDATA)>
<!ELEMENT versions (version+)>
<!ELEMENT version ((arguments | returns+ | example* | note*), (arguments | returns+ | example* | note*))*>
<!ELEMENT arguments (fixed?, keyword?)>
<!ELEMENT returns (#PCDATA)>
<!ELEMENT example (#PCDATA)>
<!ELEMENT note (#PCDATA)>
<!ELEMENT fixed (arg*)>
<!ELEMENT keyword (arg*)>
<!ELEMENT arg EMPTY>
<!ATTLIST DescribeVerb

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 222

 version CDATA #REQUIRED
>
<!ATTLIST verb
 name (Identify | ListVerbs | DescribeVerb | AdminLoginForm | AdminLogin | IncomingSubmitForm |
ApproveSubmit | IncomingWithdrawForm | ApproveWithdraw | RejectForm | Reject | ShowBibRecord |
ShowStructureRecord | UserSubmitForm | UserSubmit | UserEditForm | UserSubmitNewVersion |
UserWithdrawForm | UserWithdraw) #REQUIRED
>
<!ATTLIST version
 id CDATA #REQUIRED
>
<!ATTLIST arg
 name CDATA #REQUIRED
>

ApproveSubmit
<!ELEMENT ApproveSubmit ((handle | set), (handle | set))*>
<!ATTLIST ApproveSubmit
 version CDATA #REQUIRED
>
<!ELEMENT display (#PCDATA)>
<!ELEMENT handle (#PCDATA)>
<!ELEMENT set (display, set*)>
<!ATTLIST set
 name CDATA #REQUIRED
>

ApproveWithdraw
<!ELEMENT ApproveWithdraw (handle)>
<!ATTLIST ApproveWithdraw
 version CDATA #REQUIRED
>
<!ELEMENT handle (#PCDATA)>

Reject
<!ELEMENT Reject ((title | type), (title | type))*>
<!ATTLIST Reject
 version CDATA #REQUIRED
>
<!ELEMENT title (#PCDATA)>
<!ELEMENT type (#PCDATA)>

UserWithdraw
<!ELEMENT UserWithdraw ((handle | type), (handle | type))*>
<!ATTLIST UserWithdraw
 version CDATA #REQUIRED
>
<!ELEMENT handle (#PCDATA)>
<!ELEMENT type (#PCDATA)>

UserSubmit
<!ELEMENT UserSubmit (doc-id)>
<!ATTLIST UserSubmit
 version CDATA #REQUIRED
>
<!ELEMENT doc-id (#PCDATA)>

UserSubmitNewVersion
<!ELEMENT UserSubmitNewVersion (doc-id)>

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 223

<!ATTLIST UserSubmitNewVersion
 version CDATA #REQUIRED
>
<!ELEMENT doc-id (#PCDATA)>

Personalisation Handler
Identify
<!ELEMENT Identify ((serviceName | baseURL | protocolVersion | adminEmail | description?), (serviceName
| baseURL | protocolVersion | adminEmail | description?))*>
<!ELEMENT serviceName (#PCDATA)>
<!ELEMENT baseURL (#PCDATA)>
<!ELEMENT protocolVersion (#PCDATA)>
<!ELEMENT adminEmail (#PCDATA)>
<!ELEMENT description (contentDescription)>
<!ELEMENT contentDescription (#PCDATA)>
<!ATTLIST Identify
 version CDATA #REQUIRED
>

ListVerbs
<!ELEMENT ListVerbs (verb+)>
<!ATTLIST ListVerbs
 version CDATA #REQUIRED>
<!ELEMENT verb (#PCDATA)>

DescribVerb
<!ELEMENT DescribeVerb (verb)>
<!ELEMENT verb (description, versions+)>
<!ELEMENT description (#PCDATA)>
<!ELEMENT versions (version+)>
<!ELEMENT version ((arguments | returns+ | example* | note*),(arguments | returns+ | example* | note*))*>
<!ELEMENT arguments (fixed?, keyword?)>
<!ELEMENT returns (#PCDATA)>
<!ELEMENT example (#PCDATA)>
<!ELEMENT note (#PCDATA)>
<!ELEMENT fixed (arg*)>
<!ELEMENT keyword (arg*)>
<!ELEMENT arg EMPTY>
<!ATTLIST DescribeVerb
 version CDATA #REQUIRED
>
<!ATTLIST verb
 name (Identify | ListVerbs | DescribeVerb | MatchMetadata | CreateTopic | ListTopics | EditTopic |
 DeleteTopic) #REQUIRED
>
<!ATTLIST version
 id CDATA #REQUIRED
>
<!ATTLIST arg
 name CDATA #REQUIRED
>

Topic
<!ELEMENT topic EMPTY>
<!ATTLIST topic
 topic_id CDATA #REQUIRED
 topic_label CDATA #REQUIRED
 keywords CDATA #IMPLIED
 acm_categories CDATA #IMPLIED

SCHOLNET IST - 1999 - 20664 A Digital Library Testbed to Support Networked Scholarship Communities

 224

 notification_flag (1 | 0) #REQUIRED
>

ListTopics
<!ELEMENT ListTopics (topic*)>
<!ATTLIST ListTopics
 version CDATA #REQUIRED
>
<!ENTITY % topic.dtd SYSTEM "http://labserv.iei.pi.cnr.it/OLP/htdocs/olms/Dtd/\topic.dtd">
%topic.dtd;

EditTopic
<!ELEMENT EditTopic (topic)>
<!ATTLIST EditTopic
 version CDATA #REQUIRED
>
<!ENTITY % topic.dtd SYSTEM "http://labserv.iei.pi.cnr.it/OLP/htdocs/olms/Dtd/\topic.dtd">
%topic.dtd;

ANNOTATION

DisplayAnnotations
<!ELEMENT annotatedObject (document | annotation | docURL)>
<!ELEMENT document (handle)>
<!ELEMENT annotation (handle, description , userinfo , links , date)>
<!ELEMENT docURL (handle)>
<!ELEMENT handle (#PCDATA)>
<!ELEMENT description (type , subject* , text , program*)>
<!ELEMENT userinfo (author , project , group)>
<!ELEMENT links (linktype+, tovalue+)>
<!ELEMENT type (#PCDATA)>
<!ELEMENT subject (#PCDATA)>
<!ELEMENT text (#PCDATA)>
<!ELEMENT program (#PCDATA)>
<!ELEMENT author (#PCDATA)>
<!ELEMENT project (#PCDATA)>
<!ELEMENT group (#PCDATA)>
<!ELEMENT linktype (#PCDATA)>
<!ELEMENT tovalue (#PCDATA)>
<!ELEMENT date (#PCDATA)>

