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Abstract

This study investigated the biodegradation behavior of cotton fabrics treated with polypyrrole, a
polymer with conductive and antibacterial properties. Fabric samples were buried in compost-
enriched soil for 10, 30 and 90 days. The biodegradation level was initially estimated by a visual
inspection of the fibers and by the determination of the fabric weight loss. Other physical-chemical
changes of fibers during the biodegradation process were analyzed by microscopy, thermal analyses
and infrared spectroscopy. The surface resistivity of the fabrics was also measured. The results
obtained comparing the bare cotton samples and the polypyrrole-added ones suggested that, on the
one hand, polypyrrole hindered/delayed the biodegradation of cotton in compost-enriched soil,
probably exercising its inherent antimicrobial feature during the first period of burial. On the other
hand, over time, polypyrrole seemed to represent the first compound attacked by the microorganisms,
preserving the cotton substrate. Despite the absence of dedicated literature regarding polypyrrole
biodegradation, the mechanism hypothesized in this paper involves the loss of conjugation, as a
consequence of de-doping, oxidized functionalities up to local cycle breaking.

1. Introduction

In the last years, the serious issue of textile waste accumulation has raised attention all over the world. The
clothing industry is one of the most polluting industries, producing more than 92 million tons of textile in 2013
and it is expected that fashion waste will reach about 148 million tons by 2030 [1-3].

This negative aspect in the next years will tend to increase because of the continuing trends in fast fashion
fueled by growing global consumerism, wealth and population [4]. In fact, the fast fashion phenomenon
involves a reduced garment usage time before it is discarded due to quick style changes and low quality/
price [5, 6].

One of the parameters to take into account to evaluate the sustainability of textile products is, for instance,
their biodegradability and this is true for conventional cloths, but also for advanced materials, such as smart
textiles [7]. Biodegradation routes can imply anaerobic or aerobic digestion, or landfilling to pass from large or
complex molecules to simple, small, and nontoxic compounds, as a consequence of various microorganisms’
activity [7]. These actions involve various stages, namely (i) bio-deterioration (the combined intervention of
microbial communities and abiotic factors to break the materials into fragments), (ii) depolymerization
(operated by microorganisms’ secreted enzymes and free radicals capable of polymer cleavage), (iii) assimilation
into the plasma membrane of the biological agent and, finally, (iv) mineralization [8].

Many studies are focused on the biodegradation of polymers like polyethylene, polyethylene terephthalate,
etc or bio-based polymers in different environments (soil, seawater, etc) and different microorganisms and
enzymes have been identified [9—12]. Egan et al [4] reported and listed some of the enzymes capable of catalyzing
the depolymerization of common textile polymers in the primary degradation steps (and the related products).
These enzymes were protease for silk, wool, polylactic acid, and polyamides, cutinase for polyesters and nitrilase
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for polyacrylonitrile, to give some examples. In real conditions, the primary degradation is also influenced by
environmental abiotic factors such as heat, UV radiation, oxygen, water, mechanical stress, pH, etc [13].

Synthetic fibers, often from a petrochemical origin, represent a large part of the global textile market (around
64% by volume), producing 111 million metric tons of fiber annually [4]. Especially due to their hydrophobic
and crystalline features, these polymers are generally recalcitrant to biodegradation [14], taking 30 to 40 years to
break and another hundred years to decay completely [ 15]. Nevertheless, Wang et al [ 9], for instance, subjected
films of polyamide 4 to biodegradation in four types of soils. The results showed that the highest degradation
occurred in composted soil in 60 days since almost no residual films were observed therein with respect to other
soil types. PA4 degradation was promoted by bacteria such as Ensifer and Luteimonas, which play a key role in
nitrogen fixation.

On the contrary, natural fibers, which come from plants or animals, are renewable thanks to their biological
origin and exhibit biodegradability in their natural forms, taking weeks to years to disintegrate in a landfill
[4, 15]. In particular, cotton, the most widely used natural fiber available, is composed of cellulose, a
biodegradable polymer that consists of glucose monomers linked together by 3-glycosidic linkages [16, 17].

The biodegradation process causes depolymerization of the cellulose macromolecules, which is translated
into a decreased molecular weight and strength, increased solubility and changed crystallinity [18, 19]. This
depolymerization is initiated by microorganisms present in soil, water and air, that cause the hydrolytic and
oxidative degradation of cellulose [18, 19]. The secreted enzymes, called cellulases, promote the break of
biologically created chemical bonds and modify the chemistry of cellulose [4, 16]. These enzymes can be divided
into endoglucanases, which are capable of hydrolyzing the G—1, 4-glycosidic linkages present in amorphous
cellulose, and cellobiohydrolases that can react with the end groups of cellulose [16].

Fungi and bacteria represent the major source of cellulolytic enzymes, but act in two different modes to
degrade cotton fabrics. Fungi belonging to the genera Alternaria sp., Trichoderma sp. [20], Penicillium sp. and
Aspergillus sp., attack fibers from the inside towards the outer layer of fibers. On the contrary, Bacillus sp. and
Clostridium sp. proceed from the cotton fiber surface towards the inner parts and make more effort to carry out
the process because they need a higher percentage of moisture, which requires the fabric to be saturated
throughout the whole process of degradation [19].

Complete biodegradation of cellulose under aerobic conditions results in carbon dioxide and water and,
under anaerobic conditions, in carbon dioxide, methane and water, which present no harm to the environment
[16,21]. Besides the type of microorganism considered, also the type of environment (natural, man-made
environments) is a variable factor that can influence the biopolymer’s degradation mechanism [16]. Depending
on the soil type, a 10-week period of keeping cellulose in soils led to 82%—95% degradation [22].

On the other hand, fabrics and textile materials are widely used in geotechnical engineering [23-26] and
agriculture [27] because they are cheap, light and easy to install. In geotechnical engineering, they are called
geotextiles. The requirements for long-term applications include a low biodegradability in soil. Most geotextiles
consist of synthetic polymers [24, 26], such as polyolefins, polyesters and polyamides. However, when natural
fibers [23, 26, 28] or biopolymers [24, 26] are used, additives can be added to improve their stability [29]. The
additives can include coatings of bitumen [30, 31], for instance. In the soil, synthetic polymers may degrade into
small particles (i.e., microplastics) by mechanical and chemical actions and additives can be leached, causing
potential adverse effects to the environment [24].

One of the most utilized and suitable polymers for deposition on textile and geotextile materials is
polypyrrole (PPy), a nitrogen-containing polymer obtained by chemical oxidative polymerization of the
monomer pyrrole [32], because it is easy to synthesize, possesses good stability and it is a conductive polymer
[33-36], thanks to its extended 7-conjugated backbone long chain [37]. Along the PPy chain, positive charges
can be introduced, which are counter-balanced by anionic counter-ions (dopants or doping agents), such as
sulfonates [38] (scheme 1). In detail, according to [39], during doping, PPy is oxidized and a m-electron is
removed from the neutral PPy chain, changing its structure from the benzenoid structure (aromatic) to a
quinoid form. Subsequently, a polaron is formed, and with further oxidation, a second electron is eliminated
from the PPy chain, leading to the formation of a doubly charged bipolaron. PPy can be, therefore, considered an
ionic complex consisting of cations and embedded counter-ions. Moreover, due to the presence of these positive
charges, polypyrrole exercises good antibacterial properties against both Gram-positive and Gram-negative
bacteria on textiles [41].

Polypyrrole has often been taken into account as a suitable compound for biodegradable systems, although
no specific studies, to the best of the author’s knowledge, have been devoted to the biodegradation pathways of
polypyrrole [33, 42-47].

In the present work, cotton fibers were treated with polypyrrole and buried in a controlled lab soil
environment. Using the untreated cotton samples as a control, this study aimed to investigate the behavior of
cotton fibers treated with PPy over time in order to understand if this type of treatment promoted or delayed the
natural biodegradation process of cotton in soil. Untreated cotton and treated cotton samples were taken from
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Scheme 1. Polypyrrole with benzenoid structure (top) and quinoid structure in bipolaron form (bottom), where X is the doping
agent [37, 39, 40].

the compost-enriched soil after 10, 30 and 90 days. Physical-chemical changes after different periods of
biodegradation were determined from electron microscopic, thermal and spectroscopic analyses, in addition to
surface resistivity measurements.

2. Materials and methods

2.1. Materials

A cotton fabric (plain weave fabric suitable for ISO 105-F02, mass per unit area 110.75 gm ™ * determined in
accordance with ISO 3801, supplied by Testfabrics Inc., West Pittston, PA, USA) was used as the textile substrate
for polypyrrole deposition and as a reference sample.

Chemicals used for the synthesis of PPy were pyrrole 97% by Fluka (Germany), dicyclohexyl sulfosuccinate
sodium salt (DSS) by Fluka (Germany) and ferric chloride hexahydrate by Sigma-Aldrich (Germany).

The media used for evaluating the biodegradation of fabrics was a compost-enriched soil (COMPO Italia Srl,
Cesano Maderno MB, Italy). It is composed of neutral sphagnum, composted green soil improver and pumice
and it contains mineral fertilizer and guano. The pH(H,O) of the soil was measured as 7, the apparent density in
dry form is declared as 250 kg m > and the total porosity is 87.5% v/v.

2.2. PPy coating on cotton fabric

PPy deposition was carried out at room temperature by plunging the fabrics in a stirred ferric chloride and DSS
solution. After impregnation of 10 min, the monomer pyrrole (4 gL ~") was drop-wise added to the solution,
which became dark because of PPy production. Cotton fabrics were pulled out from the polymerization bath
after 4 h and dried at room temperature. A detailed procedure was reported in [38].

2.3. Soil burial test

Four beakers were filled with a total volume of ca. 1600 cm” of compost-enriched soil. Two of the four beakers
were placed in an oven at 105 °C for 24 h to obtain a reference sterilized soil (without active microorganisms)
[48]. The other two containers, covered with aluminum foils, were left under the fume hood. In the meantime,
the cotton and PPy-cotton samples were cut into a total of 12 pieces of about 4 cm?. Table 1 reports the sample
labels.

Three untreated cotton samples were put into the beaker containing the sterilized soil and three untreated
cotton samples were put into the beaker containing non-sterile soil. The same subdivision was done for the six
PPy-treated cotton samples in the other two soils (sterilized and non-sterile). Each fabric piece was buried about
3 cm deep from the surface and an identification flag was placed on the right of it to find and take the sample
more easily after the burial. Then, all the beakers were covered with aluminum foils. The samples were
withdrawn from the compost-enriched soil after 10, 30 and 90 days. All the soils were moistened every three days
with 10 ml of distilled water to avoid complete dryness. All the experiments were conducted in a conditioned
laboratory at 20 °C and 65% RH (relative humidity).

2.4. Characterization
After a gentle removal of excess soil matter from the samples, the fabrics were weighed before and after the
biodegradation process and were characterized with SEM, TGA, DSC, FTIR and electrical measurements.
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Table 1. Sample labels for each formulation/ biodegradation treatment.

Sample Composition Days of burial Type of soil
Cotton Standard Cotton — -
Cotton-PPy Cotton + PPy — —

A Cotton 10 Non-sterile
B Cotton 30 Non-sterile
C Cotton 90 Non-sterile
A(P) Cotton + PPy 10 Non-sterile
B(P) Cotton + PPy 30 Non-sterile
C(P) Cotton + PPy 90 Non-sterile
D Cotton 10 Sterilized
E Cotton 30 Sterilized
F Cotton 90 Sterilized
D(P) Cotton + PPy 10 Sterilized
EP) Cotton + PPy 30 Sterilized
E(P) Cotton + PPy 90 Sterilized

Morphological investigations were performed using an EVO 10 Scanning Electron Microscope (SEM, Carl
Zeiss AG, Oberkochen, Germany) with an acceleration voltage of 20 kV. The samples were sputter-coated with a
20 nm-thick gold layer in rarefied argon, using a Quorum Q150R ES Plus Sputter Coater.

For Thermogravimetric Analyses (TGA, Mettler Toledo TGA-DSC 1, Schwerzenbach, Switzerland), about 5
mg of the sample within an alumina pan was heated from 30 °C to 600 °C at a rate of 10 °C min~ ' in nitrogen
flow, 70 ml min . Derivative thermogravimetry (DTG) was used to identify the temperature of maximum
mass-loss rates.

Differential Scanning Calorimetry (DSC) was carried out with a DSC calorimeter (Mettler Toledo 821e,
Schwerzenbach, Switzerland) calibrated by an indium standard. The calorimeter cell was flushed with 100 ml
min ™' nitrogen. The run was performed from 30 °C to 500 °C, at the heating rate of 10 °C min~ ' and the mass
sample was about 5 mg. The data processing was conducted with STARe Software.

Fourier transformed infrared (FTIR) analysis was carried out using the attenuated total reflection (ATR)
technique in the range from 4000 to 650 cm ™' with 32 scansions and 4 cm ™' of band resolution by means of a
Thermo Nicolet iZ10 spectrometer (Thermo Fisher Scientific, Waltham, MA, USA) equipped with a Smart
EnduranceTM (ZnSe crystal) apparatus and the OMNIC 9 software.

Electrical measurements were performed on PPy-coated fabric samples cut in squares of 1 cm x 1 cm at
20 °Cand 65% RH by means of a digital multimeter Escort 170 used in resistance mode and connected with
two pins by each side in both weft and warp directions.

3. Results and discussion

3.1.Initial biodegradation assessment
Biodegradation behavior is well illustrated by photographs in figure 1 of samples taken from compost soil after
10 days, 30 days and 90 days.

First, among all the samples, only the untreated cotton buried in non-sterile compost soil, after 90 days, had
been completely degraded, being no longer identifiable in the soil matrix (figure 1(C)).

Comparing figures 1(A) and (D), it can be noticed that the untreated cotton buried in non-sterile compost
soil had become yellow-gray stained as a result of a preliminary degradation, whereas the same sample
(figure 1(D)) taken after 10 days from the sterilized compost soil had maintained the natural white color of the
fiber. After 30 days of burial, sample B was completely covered with soil (figure 1(B)), while 90 days were needed
to observe a fabric’s break into small pieces for the cotton buried in sterilized compost soil (figure 1(F)).

Instead, both after 10 days and after 30 days, no PPy-treated cotton fabrics had been degraded.

Regardless of the type of compost soil considered, sterilized or non-sterile, none of the PPy-treated samples
taken from the medium, even after 90 days, suffered a macroscopic degradation, as already seen for other
finished fabrics [5].

The compost-enriched soil containing sample F did not remain completely sterile until the 90th day; in fact,
atabout the 84th day, the presence of mold was observed. This event may have been caused by the prolonged
exposition to a non-sterile laboratory environment.

Regarding the weight variations after the burial period, it is worth noticing that bare cotton samples showed
the highest level of mass loss, as measured for samples B and F, which lost, respectively, 30 and 46% of their
initial weight.
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Figure 1. Photographs of untreated and PPy-treated cotton samples after 10, 30 and 90 days of soil burial.

In the case of PPy-treated samples, they showed non-significant or slight weight losses, reaching a maximum
of 7%. From a purely gravimetric comparison with other works in the literature, the present result demonstrated
an important stability of the PPy coating on cotton, whereas, for instance, in the paper of Benhalima et al [49],
hydrogels based on alginate and gelatin, despite of the addition of polypyrrole, were almost entirely biodegraded
after six months. Zare et al [42] reported that the degradation level of polypyrrole/dextrin composites was up to
74.5% in two months for the samples with low PPy:dextrin ratio, whereas for a higher presence of polypyrrole,
the material after burial remained intact. According to Bideau et al [50], films composed of TEMPO-oxidized
nanofibrillated cellulose /PPy, after 100 days of being buried, exhibited degradation of 38% (compared to the
53% of films without PPy). Such an overview gives us the possibility to realize that a remarkable influence on the
biodegradation behaviors of PPy-based materials is imputable to the amount of polypyrrole, the composition of
the matrix in which it is included and, plausibly, also the nature of the blend (2-D coating, bulk mixture, etc) that
can influence the exposure to biotic and abiotic agents [51].

3.2. Analysis of surface morphology (SEM)

A more accurate picture of the biodegradation process was obtained by SEM analysis. Figure 2 shows the
scanning electron microscope images of the untreated cotton and PPy 4 g ™' treated cotton fabrics after
different stages of biodegradation.

Micrographs of Cotton and Cotton-PPy are used as references. In the case of Cotton-PPy, polypyrrole was
entrapped in the fabric structure, but not uniformly distributed (green arrow). Considering the untreated cotton
fabrics buried in non-sterile compost-enriched soil for 30 days (B), it seems that the fibers have partially lost their
initial morphology, being less linked together and creating empty spaces. The presence of extraneous particles
from the soil is evident (a detail of which is reported in B) [18, 21].

Sample C(P), PPy-treated cotton fabric after 90 days in non-sterile compost-enriched soil, showed a less
damaged fiber network; still, pieces of residual soil are visible, see also C(P)". Therefore, it was possible to verify
that cotton fabrics treated with PPy followed a slower biodegradation trend than cotton fabric.

Unexpectedly, after 90 days of burial in sterilized soil, cotton sample F demonstrated the signs of
microorganism presence that colonized the surface (as already anticipated by the visual inspection of mold in the
beaker). On the contrary, this phenomenon was not detected in F(P), which mostly maintained its integrity,
except for some minor damage. Regarding the presence of mold, it is worth recalling that it has to be correlated
to the presence of fungi and these kinds of microorganisms can combine biochemical and physical actions due to
their hyphal apparatus [52].
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Figure 2. SEM images of the samples cotton, cotton-PPy, B, C(P), F, F(P) and details of higher magnifications B and C(P) labeled as B*
and C(P)". Green arrows indicate PPy deposition, the orange arrow points out soil residues and the light blue arrow signals the
presence of mold.

3.3. Thermal analyses

DSC analyses were conducted on all the samples, a selection of which is reported in figure 3. All the events
detected were endothermic. The first phenomenon (I) is generally attributed to water evaporation [53], whereas
in zone I1I, the peak of cotton cellulose thermal degradation occurs [54] (ca. at 370 °C). More precisely, in zone
111, cellulosic materials are subjected to a complex overlapping of different events, namely the fusion of their
crystalline part (endothermic) and the depolymerization (exothermic) [55]. Zone II presents a peak (or a
complex signal) only in the case of PPy-treated samples and, indeed, it is an index of PPy decomposition during
which conjugated double bonds and polymer rings are broken (range 205 °C-315 °C) [56, 57]. Inregion I, the
samples with polypyrrole showed a more pronounced peak, due to the overlapping of an additional event given
by the PPy glass transition, as already pointed out in the literature [42, 58, 59]. Indeed, the ratio between the areas
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Figure 3. DSC outcomes for Cotton, Cotton-PPy, and buried samples C(P) (PPy-treated sample in non-sterile soil for three months)
and B (cotton sample in non-sterile soil for one month). Zones I, Il and I1I, comprised in the colored frames, are attributed to different
thermal-induced phenomena.

subtended under the peaks of region I and region III for samples with PPy was more than doubled with respect to
non-modified cotton fabrics. Another aspect to consider was the relationship between zone Il and zone III. Over
time, the intensity of the peak related to PPy presence (region IT) became less significant and the DSC profiles
more resembled that of the bare cotton. This fact is also corroborated by the temperature trend of such peaks. In
the case of PPy-added samples, the peak related to cellulose decomposition (zone IIT) shifted at higher
temperatures from 10 to 90 days, coinciding, after three months, to that of bare cotton. This trend was evident
both in the case of sterilized and non-sterilized soil: it can be hypothesized, therefore, that a certain effect of the
soil/moisture occurred regardless of the microorganism action and that, over time, the microbiome tended to
be restored since the soil was kept in a non-sterile environment.

Regarding the enthalpies implied in the thermal events of zone II (cellulose), we could not find a trend.
Indeed, even for synthetic polymers, it is not always obvious which structural parts are damaged by
microorganisms. It is often thought that the amorphous regions are more susceptible to biodegradation and
therefore, they are the first point of biotic attack, causing an apparent enhancement of crystallinity that can be
shown by DSC [60—62]. An important criterion related to the cellulose hydrolysis rate, which is at the basis of its
biodegradation, involves and is proportional to the adsorption capacity of cellulases and endoglucanases: the
maximum adsorption constant of these enzymes was demonstrated to be significantly improved at low
crystallinity indices [63]. Moreover, abiotic factors, such as water, are also known to exert an influence primarily
on the amorphous regions of cellulose [64]. In the present work, the absence of a crystallinity trend, beyond the
intrinsic issue of this determination for a semicrystalline natural macromolecule such as cotton cellulose [65],
can be derived by the prolonged period in contact with microorganisms and water that could have affected both
the amorphous and the crystalline portions to similar extent [66].

Thermogravimetric analyses were also carried out and some exemplifying profiles are reported in figure 4.
The first observation concerned the lowest residue at 600 °C for bare cotton, whereas the behavior of the other
samples mirrored the presence of the deposited polypyrrole (higher for about 12 wt%). The trend of the thermal
degradation of the cotton fabric, consisting of two major stages of cleavage of glycosidic linkages followed by
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Figure 4. TGA curves and related first derivatives (DTG) for Cotton, Cotton-PPy, and buried samples C(P) (PPy-treated sample in
non-sterile soil for 90 days) and D(P) (PPy-treated sample in sterile soil for 10 days).

Table 2. Values of T}y, and Tsgo, (°C).

Parameter Cotton Cotton-PPy A(P) B(P) C(P) D(P) EP) F(P)

T1o9 (°C) 321 248 250 279 304 256 276 291
Ts00 (°C) 353 335 345 347 352 343 350 358

dehydration and charring reactions [67], was modified after the addition of polypyrrole. Indeed, a steeper curve
between 200 and 300 °C, in correspondence with both a DTG broad signal and the above-mentioned DSC peak
(zone II), can be evidenced. This finding is in agreement with other studies on PPy-treated cellulose [68-70],
suggesting that PPy enhances carbonizing reactions, reducing the temperature of thermal degradation. Samples
C(P) and D(P), buried in very different conditions, reflected more the profile of the bare cotton and the as-
prepared cotton-PPy, respectively. This way, C(P), kept for three months buried in the presence of active
microorganisms, demonstrated the signs of PPy ‘consumption’, favoring the exposition of the cotton substrate
as the principal component of the analyzed material. As a result, the buried fabrics showed again thermal
degradation at higher temperatures. On the contrary, D(P), buried for only ten days in a sterilized medium,
mostly maintained the original Cotton-PPy behavior. In table 2, values of T/ o, and Tsge, (°C) are reported: they
refer to the temperatures at which the 10% and 50% weight loss is recorded, respectively. These data confirmed
the progressive restoration of cotton thermal stability throughout the burial period.

3.4. ATR-FTIR characterization
Figure 5 displays the range 2000-650 cm ' of some ATR-FTIR spectra, in which the vibrational features’
variations were detected. The bare cotton sample signals were particularly modified between 1750 and
1500 cm ™!, where the small signal at 1630 cm ™, related to adsorbed water [71], underwent the enhancement of
its intensity and wideness and the appearance of another peak at about 1530 cm ™' (orange frame in figure 5(a)).
This variation is progressively more intense, passing from sample B (non-sterile soil, 30 days of burial) to sample
F (sterilized soil, 90 days of burial, after the emergence of mold on the soil surface). One of the reasons can lie in
the presence of the degradation products of cotton. Enzymes produced by bacteria and fungi in the soil are able
to catalyze the hydrolytic degradation of cellulose macromolecules, breaking of (1—4) glycosidic bonds and
forming aldehyde groups, as well as the oxidative degradation of cellulose, which causes the opening of the
(-d-glucopyranose rings and the formation of carboxylic and aldehyde groups [19]. Moreover, these spectral
variations can be attributed to residues from microorganisms: it has already been found that these new bands,
characteristic of amide groups (Amide I and Amide II), can derive from fiber-bound proteins produced by
microbial growth [18, 19, 21]. Moreover, a decreased intensity of the signals centered in the zone of 1000 cm™
and 1375 cm™ ' may indicate a change from high crystalline to amorphous cellulose [19, 21].

The characteristic peaks of Cotton-PPy have been described by [34, 72]. The signals around 1525 and
1435 cm ™' are due to symmetric and asymmetric ring stretching modes, respectively. The band at 1525 cm ™" is

1
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Figure 5. ATR-FTIR spectra of cotton (a) and PPy-treated cotton (b) fabrics at different stages of degradation in sterile and non-sterile
compost soil (selected range: 2000-650 cm™ ).

attributed to C=C and C-N ring stretching vibrations and the band around 1275 cm™ is assigned to C-H and
C-N in-plane deformation modes of PPy. Furthermore, PPy has a band at about 1000 cm™" corresponding to
other C-H and N-H in-plane deformation vibrations, and a band at about 960 cm™" assigned to C—C out-of-
plane ring deformation. The spectrum showed another characteristic PPy peak at ca. 1135 cm ™, which has been
assigned to the bipolaronic (sulfonic groups) [42]. The peak at about 1080 cm™" is ascribable to the in-plane
deformation vibration of NH™ groups, which are formed in the PPy chains by protonation.

In the case of the PPy-treated samples examined in this work, the only compromised specimen seemed to be
C(P) (non-sterile soil, 90 days of burial). This fact is supported by the carbonyl group peak at 1720 cm ™', as an
index of the oxidation products or ring-opening of PPy (orange frame in figure 5(b)) [73-75]. Along the
spectrum of C(P), the differences in the intensity and positions of the peaks at 1295, 1150 and 1096 cm ™" are also
other signs of surface modifications occurring on the samples. In particular, we interpreted these spectral feature
changes as the appearance of raw cotton peaks [76, 77], thus, as evidence that non-sterile soil likely erodes the
PPy layer, slowly exposing cellulose again. However, the signal at 1295 cm ™', accompanied by emerging small
peaksat 1332 and 1355 cm ™', can indicate the presence of newly formed compounds from the PPy degradation,
such as N-(3-oxopropyl)formamide and 3-formyl-aminopropanoic acid [78], or of aminoacids derived from
microorganism residues [79] (eventually covered in the region of Amide I and II by PPy bands). Moreover, in the
zone of the fingerprints (light blue frame in figure 5(b)), some signals became stronger. According to the
literature, that spectral region corresponds to C—H out-of-plane ring deformation and C-H rocking vibration
(780 and 680 cm ") [34]. For this reason, a change in the quinoid structure of polypyrrole can be hypothesized
[74, 80]. Moreover, as reported in [34, 72], the shoulder band centered at about 1020 cm™ is the result of the
overlaying bands attributed to functional groups of cotton cellulose, namely the C-C, C-O and C-O-C
stretching vibrations. It is evident that in C(P), the intensity is higher, which is a further confirmation of the
partial depletion of the PPy layer, leaving the cellulosic substrate more exposed.

3.5. Surface electrical resistivity and degradation mechanism hypothesis

The surface electrical resistivity of the PPy-coated fabric used as a reference (Cotton-PPy) was 0.45 k{2 /square in
the warp direction and 0.52 k(2 /square in the weft direction. After 10 days, the resistivity increased in both
directions by 3.5-fold for samples in contact with the non-sterile soil A(P) and 1.5-fold for the fabric kept in
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sterilized soil D(P). After 90 days, the resistivity increment was 27—30 folds (warp) for both F(P) and C(P) (kept in
sterilized and non-sterile soil, respectively), whereas, in the weft direction, C(P) was more resistive of 40 folds
with respect to Cotton-PPy and 1.6 folds more resistive than F(P). These results confirmed that the PPy layer
depletion was stronger in the presence of active microorganisms.

Also in light of the other characterization outcomes, these latter results can lead to hypothesizing the
degradation routes. Although the persistency of the black color indicated a certain maintenance of the PPy
structure, the increase in resistivity [81] (and, therefore, the reduction in conductibility) was an index of alocal
loss in conjugation that can be related to soil chemical and biological agents (and their synergy [62, 82]). As
already discussed in [83], overoxidation processes, de-doping of the polymer and chemical attack of
nucleophiles (like water molecules) can occur. Polypyrrole has also been found able to interact with organic
matter, which is normally present in soil, such as humic acids, probably inducing a further alteration [84, 85].
The formation of carbonyl groups and changes in quinoid structure (see ATR-FTIR interpretation), able to
interrupt the conjugation, has already been described when PPy was maintained in an air environment and in
the presence of the more powerful oxidizer ozone (even causing the breaking of PPy cycle) [86-90]. Liu et al [91],
for instance, deepened the action of humidity on conductivity: H,O easily attacks the sites with the lower
electron density, like N of PPy. The initial conductivity decay was ascribed to the dopant counter-ions being
expelled after the nucleophilic attack of the chemisorbed water molecules on the electroactive centers,
decreasing the concentration of the positive charge carriers. The removal of counter-ions from the polymer
matrix reduced the positively charged nitrogen to its neutral state, causing the conductivity to decrease. A de-
doping/re-doping effect, resulting in partial conductivity losses, has also been hypothesized in the presence of
inorganic species, such as chlorine anions [92], which can disrupt the conjugation when attached to the PPy
chain with covalent bonds [93].

From a biological point of view, instead, both fungi and bacteria present in soil are efficient in degrading
recalcitrant molecules, thanks to the production of enzymes such as mono- and di-oxygenases, dehydrogenases,
laccases and hydroxylases, as already reported for N-containing heterocycles [78, 94—98]. In arecent review,
studies on bacterial degradation of heterocycles, and in particular carbazole, have been reported, in which the
main strains involved were Pseudomonas, Sphingomonas, Ralstonia, Bacillus, Gordonia, Mycobacterium,
Nocardioides, Xanthomonas, and Janthinobacterium [99], which can be found in natural environments [100].
Similarly, works on different bacterial strains capable of metabolizing indole (which contain a pyrrole ring) were
collected by Arora et al[101]. In the same review, a fungal degradation pathway of indole operated at the expense
of the N-heterocyclic ring was described. The endophytic fungus Phomopsis liquidambari initially oxidized the
indole to oxindole and isatin. Then, isatin was transformed into 2-dioxindole, which was further converted to
2-aminobenzoic acid via pyridine ring cleavage [98]. The main enzymes involved were found to be lignin
peroxidase and laccase, where the latter uses molecular oxygen to oxidize various aromatic and nonaromatic
compounds by a radical-catalyzed reaction mechanism [98] and are known to easily degrade nitrogen-
containing structures [102]. Moreover, there is considerable evidence that pyrroles can be metabolized by
cytochromes P450, as monooxygenases or multifunctional oxidases [103], which constitute a large family of
heme proteins that can selectively catalyze the oxidation of a wide variety of endogenous compounds and
xenobiotics including environmental pollutants [ 104, 105]. For instance, in Dalvie et al [ 103], it was affirmed
that P450-catalyzed oxidations occur predominantly at the carbon atoms adjacent to the pyrrolyl nitrogen,
generating the corresponding 3- or 4-pyrrolin-2-ones, presumably via an initial epoxide intermediate.

4, Conclusions

The degradation of PPy-finished cotton fabrics buried in compost-enriched soil was studied using a variety of
characterization techniques. The degradation of the fabrics was followed over a 3-month period, with samples
analyzed at regular intervals to understand the gradual changes in the fabric features.

Inspection of samples removed from the test soil after different burial times showed that the progress of the
rotting process caused by microorganisms in the soil was much more intensive for the untreated than for the
PPy-treated cotton samples. In particular, after 90 days of burial, the untreated cotton buried in the compost-
rich soil was degraded to such an extent that it fell into unidentifiable pieces. Polypyrrole, instead, functioned as
asort of protective layer for the cotton substrate, probably due to its inherent antimicrobial characteristics; still,
it has been supposed to be the first available point of attack for the action of biota and chemical agents present in
the soil, since PPy progressive degradation was detected.

This work is significant since the comprehension of the biodegradation process of such materials can be
helpful both in terms of the assessment of their stability performances and of their end-of-life management. As a
perspective, ad hoc microbiological studies and an in-depth analysis of molecular changes in PPy can be
carried out.
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