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1 INTRODUCTION

Testing is a fundamental part of software engineering: it is a practical means to reveal faults, and revealing
and removing faults ultimately contribute to improve the quality of software systems. Given its paramount
importance, software testing has received much attention from researchers since the early days of the software
engineering discipline. As testing usually involves a very costly process, a great amount of this research
effort has focused on devising cost-effective testing techniques.

Closely related with cost reduction, one major problem of testing is deciding when to stop, i.e., when one
has maximized the chances of revealing faults on a reasonable effort. In principle, there is always a gain in
carrying out new tests because of the possibility of revealing further faults. However, this gain reduces as
testing proceeds, and so does the cost-effectiveness of testing.

Coverage testing is a widespread approach: it aims at guaranteeing that the tests execute relevant parts
of the software code, motivated by the intuition that if a fault is not executed, it cannot be revealed. On
the one side, coverage measures can support the decision of when to stop testing by defining a priori some
coverage target (test adequacy). On the other side, when the coverage achieved is not sufficient, the coverage
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report identifies the parts of the software system that have not been exercised, which can be useful for test
suite enhancement (test selection).

The history of coverage testing dates back to the 70’s when Goodenough and Gerhart [17, 18] introduced
the notion of an ideal test criterion, i.e., the criterion that defines what constitutes an adequate test set: a
test criterion should be reliable and valid. To be considered reliable, a test criterion should guarantee the
selection of tests that are consistent in their ability to reveal faults. To be considered valid, a test criterion
should ensure that for every fault in a program, there exists a complete set of test data capable of revealing
that fault. This definition, however, is not practically applicable: showing that a test criterion is reliable
and valid would require to know a priori the faults in the program [21, 51].

In 1988, Frankl and Weyuker proposed the applicable family of data flow testing criteria [13]. This seminal
work represented a shift from theoretical to practical in dealing with test adequacy criteria. The criteria
proposed prior to that work could not achieve 100% coverage, because of infeasible paths. After Frankl
and Weyuker redefined existing adequacy criteria to cover the entities that could be reached, achieving full
coverage (100%) was now possible (under the assumption that path executability is known).

In the years that followed, countless new coverage criteria have been proposed in the literature [53] and,
even though they may target widely different entities, they are all based on the same underlying principle:
the kind of entities to be covered is identified (they could be statements, branches, paths, functions, and so
on), and a program is not considered to be adequately tested until all entities (or a given percentage thereof)
have been executed at least once. Thus coverage is measured as the ratio or percentage of covered entities
with respect to the total number of entities in the program under test.

Indeed, a large part of research on coverage testing has focused on identifying increasingly demanding
and sophisticated criteria, motivated by the need to do more comprehensive testing. In our work, we depart
from such thread of literature, and take a completely different stand: since testing resources are usually
limited, we observe that the effort spent to cover all entities indiscriminately may be not well employed. We
propose instead that coverage adequacy requirements should apply only to those entities that are relevant
in the usage scope.

As a matter of fact, while the purpose of coverage is to ensure that all parts of code are exercised, this
could not be a proper objective in all contexts. Due to the constantly increasing complexity of software
systems, achieving full coverage becomes more difficult and, at the same time, less meaningful for some
development paradigms (e.g., component-based development, service-oriented architecture, cloud computing),
because it is not always the case that all entities are of interest in every context. Consider, for example, the
case of black-box reuse [38] with in-house component development. In such case, existing software artifacts
found in in-house repositories are used to build new software, but modifications (e.g., refactoring) are not
allowed. The reuse asset must be used “as is” because other in-house software could depend on it. Assuming
that the reused component is being tested in the new context where not all of its methods are of interest,
does it make sense to aim for full coverage of the component’s code?

Because testing is costly and the number of tests that can be executed is limited, we propose to
opportunistically revise the definition of coverage testing to account for the usage context. More precisely,
our proposal is to take into account the way the software system is going to be used to identify the relevance
of each entity to the specific scope. We use the term “Relative Coverage” to refer to this customized

Manuscript submitted to ACM



Revisiting software coverage criteria 3

usage-centric way of measuring coverage. To clarify, relevant is different from infeasible (as considered in
Frankl and Weyuker’s applicable criteria [13]): an entity could be perfectly executable because there exist
some inputs that cover it, but not relevant because such inputs are never invoked.

Relative coverage is a generic notion: indeed, the usage context can be declined into many different
testing scenarios and induce as many different implementations of the relative coverage measure. In previous
works [28, 31, 32], we have in fact defined different instances of relative coverage and shown the validity
of the specific approaches. In this paper, we aim at providing the broad theoretical framework of relative
coverage and at showing how the previous approaches, individually defined and validated, are actually
specific instantiations of one same concept that we considered in each work from different perspectives. It
is only by merging together previous works into a unified presentation that we can properly explain the
potential of the “relative coverage” concept. We believe that the concept of relative coverage constitutes an
important building brick of the software testing discipline: both in theory, because it allows to account for
usage context in testing foundations (thus further extending current formulation as in [45]), and in practice,
because it supports the development of more cost-effective testing techniques and tools.

In summary, the contributions of this paper include:

• A formal (re)definition of coverage (of which traditional coverage is a specific instantiation);
• A revisitation of testing foundations highlighting the importance and implications of including usage

context as one additional dimension of the theory;
• A comparative summary of empirical evaluations of relative coverage approaches collected from

previous work, plus a discussion of other possible benefits from further applications of the concept.

The paper is organized as follows: In the next section we review related work; then in Section 3 we present
three scenarios to motivate the need for relative coverage measures. In Section 4 we provide the formal
definition of relative coverage, and in Section 5 we revise the foundations of testing in light of usage scope.
Applications of the new coverage definition are hence presented both in Section 6, where we summarize
some results already achieved in previous own work that correspond one-to-one to the three scenarios of
Section 3, and in Section 7, where we hint at further potential applications worth of future study. Finally,
Section 8 concludes the work.

2 RELATED WORK

In their already cited seminal work “An Applicable Family of Data Flow Testing Criteria” [13], Frankl
and Weyuker proposed to circumvent the problem of non-applicability of the data flow testing criteria by
requiring the test data to exercise only those definition-use associations that are executable. In other words,
they proposed to change the denominator of the coverage equation to exclude the infeasible paths. Although
determining the executable paths is, in general, an undecidable problem, the prospect of being able to
achieve the usually much-desired 100% coverage, encouraged the proposal and evaluation of a multitude of
adequacy criteria in the years to follow. Our work is similar to that of Frankl and Weyuker in the sense that
our proposal involves another change in the denominator of the coverage equation. This time, we propose
the exclusion of entities that are not relevant to a given testing context, even if they are perfectly feasible.

Using a different terminology, a similar notion of “testing scope” was introduced in 1997 by Rosenblum [41]
in his definition of a formal model of test adequacy for component-based software. His model was defined in
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terms of subdomain-based test adequacy criteria as proposed in [14], and includes the concepts of adequate
unit testing and adequate integration testing. Considering the case of a program P that invokes a component
M, he divided the input domain of M between the input subdomains that are “relevant” for P (i.e.,
containing inputs that would be invoked by executing P) and those that are irrelevant. Our work is more
closely related with his notion of adequate integration testing of components, whereby a component M
should be tested with inputs that are relevant for P (i.e., with inputs of M that P uses for its traversals
of M), but not with inputs that would never invoked by P. In contrast, traditional coverage of M would
require anyhow to cover all entities, regardless their relevance. Rosenblum’s notion of adequacy is very similar
to relative coverage. However, he focused on defining an appropriate adequacy criterion for component-based
software only. In our work, instead, we revisit in general the topic of coverage testing and propose that
coverage criteria should be redefined to account for the way the software, component-based or otherwise, is
used in order to provide more meaningful coverage metrics.

Staats et al. [45] introduced a framework that allows the investigation of the interrelationships between
four testing artifacts: specifications, programs, tests, and oracles. The novelty of the proposed framework,
which is an extension of Gourlay’s functional description of testing [19], was the introduction of oracles as
an artifact that should be considered while conducting research on software testing. The authors claim
that most researchers consider pairs of artifacts (programs and tests in the majority of the cases), but the
interrelationship between oracles and programs, or that of oracles and tests, have received little attention. In
the same work, they also defined the notion of “complete adequacy criterion”, which is a criterion specified
in terms of both the test set and the oracle used. Thus another way of introducing our work could be by
extending their framework, which we do later in Section 5.

The very term relative coverage has been used in other works before ours. In the work by Bartolini et
al. [4] the term is used with the same meaning of our work, i.e., test coverage is measured considering the
portions of the system that a relevant to a particular user or user profile. In fact, the work presented in [4]
inspired part of the research presented here. Interestingly, we found that relative coverage was also early
used by Majumdar and Sen [24] for the empirical evaluation of hybrid concolic testing: they explain that –
as a test subject they used a part of a large data structure library – “the absolute branch coverage” would
have been very low and would not reflect the true branch coverage in relation to the part they only used.
This is precisely our motivation in proposing relative coverage measures.

On the other hand, most previous works [1, 7, 11, 25] use the term of relative coverage in a sense that is
different from the one we adopt in our work. Precisely they define coverage measures that are relative, but to
some aspect (e.g., fault severity, coupling pairs) other than the usage scope. The authors of [7], for example,
assume the existence of a fault model that assigns weights to each potential error in an implementation, and
their relative coverage computes the error weight revealed by a test suite T as a fraction of the weight of all
traces in T .

In another thread of literature, instead, there are works that do not explicitly use the term relative
coverage [36, 37] but that could be presented in terms of the framework we will introduce in Section 5.
In [36], for example, the authors introduced a testing criterion called field-exhaustive testing that requires
a user-provided limit on the size of data domains, which would fit our definition of usage scope. In [37],
the authors introduced value-based coverage and suggested that test cases should contribute differently
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to the coverage measure depending on the relevance of the input data they exercise. Our definition of
relative coverage can deal with different weights for different groups of entities and could be easily applied
in the context depicted in [37]. According to our framework, [36] and [37] could be considered as different
instantiations of relative coverage.

3 MOTIVATION

To better motivate the relative coverage we will introduce in Section 4, here we present some examples of
testing scenarios where having usage as another test dimension is important to compute meaningful coverage
metrics.

3.1 Testing of Reused Code in a New Context

When a program uses reused code or third-party components in a context that is different from the original
one, some of their entities (e.g., branches) might never be exercised. Consider, for example, the small
example function displayed in Listing 1.

1 def example funct ion (x , y ) :
2 i f x > 0 :
3 . . . # f a u l t 1
4 else :
5 . . .
6 . . . # f a u l t 2
7 i f y > 0 :
8 . . .
9 else :

10 . . .

Listing 1. example function with two faulty statements

As highlighted in Listing 1, we assume two faulty statements in the example function. The first one can
only be triggered if line 3 is executed: hence only test cases with x bigger than 0 are likely to reveal this fault.
The second fault, on the other hand, can only be triggered when line 6 is traversed: hence only test cases
with x equal to or less than 0 are likely to expose this fault. Let us now assume that the aforementioned
code is going to be reused in a scope in which x is guaranteed to be always bigger than 0. In that case, line
6 would never be reached and so fault 2 would never be triggered. In our terminology, fault 2 is said to be
an out-of-scope fault, whereas fault 1 that can be triggered under the known constraint is an in-scope fault.
We will provide more formal definitions of in-scope fault and out-of-scope fault in the next section.

In a context where best practices for reusability can be adopted, the natural path to follow would be to
refactor the code illustrated in Listing 1 and remove its unused parts. However, for a particular kind of
software reuse, namely black-box reuse [38], the reused asset (e.g., a component or a method) must be used
as is because other in-house software could depend on it. In that case, the application of traditional testing
techniques might result in the generation of unnecessary test cases or in misleading coverage measures. In
Section 6.1, we provide a brief summary of how we leveraged usage information (the reuse context) to apply
our notion of relative coverage and provide meaningful coverage information for the context of black-box
reuse.
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3.2 Testing in the Absence of Code Coverage Metrics

Service Oriented Architecture (SOA) is a very attractive architectural pattern as it allows pieces of software
developed by independent organizations to be dynamically composed to provide richer functionality [4].
However, the same reasons that enable flexible compositions also prevent the application of some traditional
testing approaches. Web services usually expose just an interface, which is enough to invoke the service’s
operations and to develop some general (black-box) test cases. Such an interface, however, is not sufficient
for testers willing to evaluate the integration quality between their applications and the independent web
services.

For a better illustration of this scenario, let us consider the example of a service provider S implementing
a Travel Reservation System (TRS). The TRS includes several operations relative to flight and hotel booking,
car reservation, user registration, login and payment. These operations are made available through the
service public interface and many operations can be associated with a same group (e.g., the flight booking
group contain the operations FlightLookup, CheckSeatAvailability, getFlightTicketPrice, and so on). The
services made available by the TRS can be used by many consumers, and each consumer can use a different
combination of operations. Service Consumer A, for example, could use operations from the flight booking,
payment, user registration, and login groups, suggesting that it is a service being used in a travel agency. A
different consumer, say Service Consumer B, could use operations from car reservation, user registration,
login, and payment, suggesting that the service is being used by a car rental company. Service consumers A

and B are different clients making use of the same service provider.
Let us now assume that a new service, say Service Consumer N , is developed. It is used in a travel

agency and it is implemented to invoke the operations available from: flight booking, hotel booking, user
registration, login, and payment. Operations from the car reservation group are never used. To diligently
test the integration of the new service N with the TRS, a tester creates a test suite to exercise the operations
implemented by the new service N as well as the operations used from the service provider S.

Because of the separation of concerns, a core principle of SOA, the tester of service N cannot have access
to the code of service provider S. For clients to receive code coverage information, the service provider S

should be willing to implement an intermediate coverage service (such as the one proposed by Bartolini et
al. in [4], for example) that would still adhere to the SOA requirements. Black-box coverage criteria (e.g.,
operation coverage) should also be implemented through the intermediate coverage service.

However, even if S is willing to make this effort, the simple adoption of traditional coverage metrics
would not be helpful for its clients. The reason is that it is not the case that clients would be interested in
thoroughly assessing all the operations provided by S. Assuming operation coverage, for example, traditional
coverage would be calculated by dividing the amount of operations that N invokes by the total amount of
operations available in the service provider S, including the ones related to the car reservation group which
are never invoked by N . If the tester is deliberately not interested in some operations, which, in fact, is the
case in this example, this coverage information would not be meaningful.

The testing scenario illustrated here is similar to the one previously depicted for software reuse in the
sense that some operations from S are integrated with new code and (re)used in a different context. For the
testing of N , we would like to measure coverage over the actually relevant operations (in-scope entities),
and not over the whole set of operations available. In Section 6.2, we briefly summarize our proposal of a
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coverage criterion that customizes coverage information for a given user by leveraging usage information
from similar users in a collaborative testing approach.

3.3 Testing of Systems with Heterogeneous Customer Base

The user’s perceived reliability of a system can vary across users depending on how they use the system [33].
To illustrate that, let us consider the example of a publication management system used by different types
of users. Table 1 lists the different roles and how frequently they use the various operations provided by
the system. There are the authors, who use the system mainly to add new publications and to browse the
existing ones. The librarians, who make sure that all the publications added to the database meet the
library guidelines. Librarians are also in charge of making weekly backups to make sure that the database
containing the publications of their respective institutes is safe. And there are the system administrators,
who are in charge of adding and removing users, granting permissions according to the user role, and making
daily backups of the whole system to make sure that all the publications are safe.

Table 1. Operational Profiles for a Publication Management System

Operations Occurrence Probability

Authors Librarians System
Administrators

Add publication 0.30 0.15 0.00
Browse publication 0.70 0.45 0.00
Add user 0.00 0.20 0.20
Remove user 0.00 0.10 0.10
Set/Update user permissions 0.00 0.05 0.28
Database backup 0.00 0.05 0.42

Now suppose that, after the last update, the publication management system started presenting intermit-
tent issues during the backup operation. These issues go unnoticed by the authors as they do not make
use of the backup operation. This group of users feels that the system is reliable as it effectively fulfills the
users’ needs. The librarians notice occasional problems while performing the backup. For them, the system
is fairly reliable as it meets their needs most of the time. The system administrators, on the other hand,
will notice the failures in the backup operation very frequently as they need to perform this action on a
daily basis. Their opinion regarding the system’s reliability is certainly very different from the other groups
of users. This is a classic scenario of a system with heterogeneous customer base. In Section 6.3, we briefly
discuss our proposal of a coverage criterion for deciding when to stop testing and for selecting test cases
when the testing activities are carried out with a specific group of users in mind.

4 RELATIVE COVERAGE

Coverage is generally calculated as the ratio between the entities covered and the total number of entities
(see Equation 1). In this traditional way of measuring coverage, the number of entities expected to be
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covered always embraces the full set of available entities of a given kind.

Traditional coverage = number of covered entities
number of available entities · 100(%) (1)

The notion of Relative Coverage, presented here, focuses on having a flexible and context-dependent
number of targeted entities by taking into consideration the way a given program is going to be exercised by
its users, i.e., by taking the testing scope into consideration. We define testing scope, or simply scope, as
follows:

Definition 4.1 ((Testing) Scope). A subset of the (testing) input domain. More formally, given the input
domain D of a program P , and given a set C of constraints over D, a (testing) scope S is defined by the set
of (test) input values to program P that satisfy the constraints C.

In the above definition, the constraints can be as formal as algebraic expressions over P input variables,
or general properties delimiting the input domain D. Notice that in this work we are not providing a general
definition of an approach to identify the testing scope. Rather, we assume that the information regarding
the specific testing context is available, and provide some examples in the developed case studies.

The basic equation used to calculate relative coverage (see Equation 2) is analogous to that of traditional
coverage. Indeed, the only difference is that one should first identify the set of in-scope entities for a given
testing scope before computing coverage metrics. We use the term in-scope entities to refer to the entities
from the system under test that are relevant to a given testing scope. The remaining ones are referred to as
out-of-scope entities. In-scope entities and out-of-scope entities are more formally defined as follows:

Definition 4.2 (In-scope entities). The set of entities relevant to a given scope. More formally, given
a program P with entities {e1, e2, ..., en} and a scope S, the set of in-scope entities with regards to S is
Es = {ei1 , ei2 , ..., ein} such that ∀eij there exists some input v ∈ S that covers them.

Definition 4.3 (Out-of-scope entities). The set of entities that are not relevant to a given scope (they are
not covered by any input v ∈ S).

Relative coveragebasic = number of covered entities
number of in-scope entities · 100(%) (2)

Equation 2 improves on the traditional coverage equation as it focuses on the entities that are important
for the testing scope only. However, similarly to the traditional coverage, it considers that all the entities
contribute equally for the coverage measure, i.e., all the entities are considered to have the same importance
for the testing scope. This is not true for contexts where entities have different importance depending on
how frequently they are expected to be invoked in operation (e.g., in the context of operation profile based
testing). Thus, we provide a more generic definition for relative coverage (Equation 3) that can account for
different weights for the different groups of entities.

Relative coverage =

n∑
i=1

wixi

n∑
i=1

wi

· 100(%) (3)

where:
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n = number of groups of entities
xi = the rate of covered entities from group i

wi = the weight assigned to group i

Notice that when only one group of entities exist or when all the groups have the same weight, Equation 3
reduces to Equation 2.

Computing coverage metrics taking into account only the entities that are relevant to a given testing scope
is an attractive idea. However, it brings the difficult challenge of having to identify what are the in-scope
entities for a given testing scope, i.e., what entities go in the denominator of the coverage ratio? There is not
a unique answer, as it depends on the meaning attributed to scope. However, the good news is that different
techniques can be leveraged to automate the process of identifying the set of in-scope entities once a testing
scope is defined. In the following we provide a summary of different approaches we have proposed and the
results of evaluating the usefulness of relative coverage when used as adequacy and selection criteria.

Disclaimer. Having introduced the notion of relative coverage, two things need to be made clear. First,
the motivation behind the adoption of relative coverage is not in merely achieving a higher coverage score
(by getting rid of out-of-scope entities). Rather, it aims at providing a more realistic estimate of what could
be achieved by augmenting the test suite. On this regard, we stress that coverage metrics are useful to
guide developers and testers to find areas in the program that have not been exercised and as a stopping
criterion for the testing activities if a given target is defined in advance. However, they are not a measure of
quality or correctness of the program being tested. Achieving 100% of statement coverage is not necessarily
correlated to the quality of the testing performed as some paths may be missed, and even reaching 100%
path coverage, which is impractical in most of the cases (because of infeasible paths or because the program
may contains cycles, which would cause the number of paths to be infinite or too large, for example), is
not necessarily a guarantee of no remaining bug. If test cases are created just to increase the coverage rate
without the objective of exercising error-prone areas and possibly revealing faults, achieving high levels of
coverage does not help in gaining confidence about the level of quality of the software being tested.

Second, by proposing to focus the testing efforts on the in-scope entities we do not mean that less testing
should be carried out. It is a well-known fact that exhaustive testing is impractical in the vast majority of
the cases. As a result, typically some testing strategy is defined to make sure that the available resources
are used efficiently. However, it is also well known that the testing activities are often penalized in the case
of project time shortening. In a survey conducted by Torkar and Mankefors [47], 60% of the developers
claimed that verification and validation was the first thing that was neglected in case of time shortage
during a project. When feasible, covering even out-of-scope entities could provide enhanced confidence, but
if testing time and resources are limited, then it seems sensible to target first those entities that are in-scope,
because doing so we improve test effectiveness on relevant faults.

In Section 6 we will present the application of relative coverage to different testing contexts. We will
introduce new adequacy criteria and, for each one of them, we propose a different definition for what in-scope
means, which may depend on the context, on the user, or on another factor. We baptized each one of the
new adequacy criteria introduced with mnemonics for ease of association with the explored testing scenario,
but all of them are simply different instantiations of the relative coverage equation. More precisely, we will
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introduce: (i) “relevant coverage”, a coverage criterion tailored for the context of software reuse; (ii) “social
coverage”, a coverage criterion that customizes coverage information to given user by leveraging coverage
data from similar users; and (iii) “operational coverage”, a coverage criterion for test adequacy and selection
for operational profile based testing.

5 TESTING FOUNDATIONS RE-REVISITED

In the previous sections we have proposed a novel formulation of test coverage. In this section we look at
our proposal from a theoretical perspective and explain that the usage scope, which we have introduced
here to refine test coverage measures, should be added to the factors that impact the testing process.

The theoretical foundations of software testing have been studied since the early 80’s [19]. More recently,
Staats and coauthors [45] observe that existing formalizations of software testing suffer of two important
issues: namely, they overlook the role of test oracles, and do not consider all relevant interrelationships
among the factors involved in the testing process. Precisely, while previous frameworks consider three factors
as having a major role in testing: the program, the specification, and the tests themselves, Staats and
coauthors propose to also include the oracle as a fourth primary factor, and discuss all mutual relationships
among such four factors (which they also refer to as “testing artifacts”).

With the aim to provide a uniform and coherent support to empirical research works that reason on
testing methods, Staats and coauthors continue by revisiting the widely referred Gourlay’s framework [19]:
the latter established a mathematical relation among sets of specification S, programs P and tests T, and
used an ok predicate over a test t ∈ T , a specification s ∈ S, and a program p ∈ P as the only possible
oracle. More formally, Gourlay’s framework defined a theoretical predicate corr(p, s) over specifications
and programs implying that a program p is correct with respect to a specification s, and postulated that
∀p ∈ P,∀s ∈ S,∀t ∈ T, corr(p, s) =⇒ ok(t, p, s). Note that the above formula provides a foundation
that justifies the usual approximation we do in testing, i.e., drawing conclusions about the ideal (but not
observable) notion of correctness of a program p with respect to a specification s based on a sample of
observations of the behavior of p (the executed tests).

In revisiting the above formal framework, Staats and coauthors: introduced a set O of test oracles (in
place of the unique oracle ok), where a test oracle o is a predicate over programs and tests; defined a
new corrt predicate over tests, program and specifications that holds if and only if when running test t,
specification s holds for program p; and discussed the mutual relationships among oracles, tests and program
correctness. For clarity, in the following we refer to such revisited formulation as the SWH framework (from
the initials of authors).

Our notion of scope-based testing considers that the effectiveness and completeness of a testing process
should also depend on how the software is used. In fact, we argue that Staats and coauthors [45] still
missed another important factor of software testing theory that is the usage scope. As we have discussed
in the previous sections, a same program can be used in many different ways and this should be taken
into account to discuss about a program “correctness”. In this regard, the revisited SWH framework is
still incomplete, as it does not allow to include in the assessment of test techniques the many possible user
profiles, and does not support reasoning about user-centered measures of correctness: though, such notion
Manuscript submitted to ACM
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of the user-profile is important in several testing approaches, such as for instance testing for reliability
improvement or evaluation [34].

Therefore, abstracting the notion of scope-based testing here introduced, we also propose a revised
conceptual framework for the testing process as illustrated in Figure 1, which expands the SWH one with
usage scope U as a fifth factor.

In SWH the authors provided an intuitive diagrammatic vision of the testing factors and their relationships,
as a graph with four nodes: program P, specification S, tests T and oracle O, and all logical one-to-one
relations between such nodes as annotated edges. We add to that graph a fifth node U for usage scope,
and drawing all possible connections to account for all possible logical relations we obtain an hexahedron.
Instead of annotating its edges as in SWH framework, for readability the relations between nodes are then
reported in Table 2.

Fig. 1. Relationships between testing factors including the usage scope U)

We also re-revisit the formal testing foundations by Staats and coauthors as follows: we define the usage
scope u ∈ U as a predicate over tests and specifications, such that u(t, s) holds if the test t is in scope.
In contrast, existing frameworks all considered u as always true. Then we replace the corrt predicate in
the revisited framework with a further modified corrr predicate over tests, programs and specifications,
such that: ∀p ∈ P,∀s ∈ S, corr(p, s) =⇒ ∀t ∈ T : u(t, s), corrr(t, p, s). That is to say, in our re-revisited
framework we approximate the ideal notion of correctness of p with respect to s with a sample of test
observations relative to a user’s point of view, formalized by the set U .

In plain words, Staats and coauthors expanded Gourlay’s original framework by taking into account that
for a same set of tests different oracles could provide different approximations of correctness. On top of this,
our further reformulation can allow to also take into account that even using a same oracle, different usage
scopes can provide different observation views (i.e., different test sets), and hence again different correctness
approximations.
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Table 2. Relationships between testing factors

Specification (S) Program (P ) Tests (T ) Oracles (O) Usage (U)

(S)
S may
guide P
implemen-
tation

S may
guide T
selection

S may
guide O
derivation

S may
guide U
definition

(P )
P attempts
to im-
plement
S

Syntactic
structure
may guide
test selec-
tion

Observability
of P limits
information
available to
O

Usefulness
of P parts
is deter-
mined by
U

(T )

Tests de-
signed to
distinguish
incorrect P
from S

Semantics
determines
propaga-
tion of
errors of
each test

Tests
suggest
variables
worth
observing

T can be
weighted ac-
cording to
U

(O) O approxi-
mates S

O may
predicate
over P
paths

Combination
of O and T
determines
efficacy
of testing
process

Combination
of O and U
determines
efficacy
of testing
process

(U)
U captures
a subset of
S

U deter-
mines the
parts of P
that are
relevant

U impacts
on test
process ef-
fectiveness

U limits O
scope

It is beyond the scope of this paper to fully expand the theoretical implications of usage scope in testing
foundations. We only briefly and informally discuss here a couple of examples: how our formulation can
more comprehensively support reasoning about the testability of a software program (also discussed in SWH
[45]) and how it allows for modeling operational testing (not discussed in SWH [45]).

Testability. Among other works discussing testing theory, Staats and coauthors revisit Voas’s definition of
software testability, defined as the probability that the program will fail if faulty [48, 49]. In [45], the authors
focus most of their discussion on showing how such definition is incomplete because it lacks to consider the
impact of the oracle in revealing a fault, in particular in fault propagation. This observation is true, and
indeed the incompleteness of Voas’s original definition of testability and the need to also take into account
the oracle coverage was already recognized and addressed in [6]. In the latter, Bertolino and Strigini defined
a program’s testability as the probability that a test on an input drawn from a specified input distribution is
rejected, given a specified oracle and given that the program is faulty. However, what we want to notice here
is that both Voas’s (incomplete) definition of testability, and the following (revised) one are also conditional
on the input distribution: indeed, a program may yield different testability measures depending on the input
tests. This can be discussed in our framework, but not in SWH.
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Operational Testing. In [12], Frankl and coauthors propose an analytical framework in which they model
and compare Operational testing vs. “Debug‘” testing. To distinguish the two approaches, they observe
that the probability of failure for a randomly selected test input (and hence a program’s reliability) depends
on two factors: i) the operational profile that assigns different selection probabilities to the points in
the input domain, and ii) an hypothetical labeling of all such points as failing or successful. Based on
such concept, operational testing focuses on developing an input profile that approximates as closely as
possible the distribution by which the software will be used in the field (mostly regardless of input labeling).
Debug testing instead applies methods or heuristics to maximize the probability to find inputs labeled as
failing (mostly regardless of the operational profile). Our re-revisited framework can support reasoning of
operational testing properties properly taking into account how it is used.

6 APPLICATIONS OF RELATIVE COVERAGE

We have discussed so far a conceptual idea of a customized usage-centric way for measuring coverage. The
idea is not only important from a theoretical viewpoint, but can also find useful applications in practical
testing: in some previous works we have applied it to real-world case studies and quantitatively evaluated
the results of adopting relative coverage in different domains.

In the next sections we provide, for each one of the scenarios illustrated in the Motivation (Section 3), a
brief summary of how we applied the notion of relative coverage for the given context and the main results
achieved. For a quick overview, Table 3 summarizes and compares the application of relative coverage for
the different contexts.

6.1 Relevant Coverage

For the scenario illustrated in Section 3.1, where source code is reused “as is” and refactoring is not an
option, an ideal coverage criterion should be capable of measuring the extent to which the portions of the
reused code that are relevant to new context are exercised.

In [29] we introduced relevant coverage: a coverage criterion tailored for the context of black-box reuse.
For the relevant coverage, the in-scope entities are those that are relevant for the new (reuse) context.
Entities from the legacy code of the reused assets that are not expected to be invoked in the new (reuse)
context, on the other hand, are considered to be out-of-scope.

For identifying the entities that are relevant to the new context (i.e., the in-scope entities), the testing
scope must be known. Once the input domain constraints are defined, the testing scope can be mapped into
in-scope entities. Different strategies could be adopted for performing this mapping, e.g., dynamic symbolic
execution (DSE) [8]; program slicing [9]; a reachability algorithm applied on top of the static call graph of
the target program [40]; among others. In [29] we used DSE guided by the input domain constraints for
exploring the source code.

We conducted experiments to evaluate the usefulness of relevant coverage as both adequacy and selection
criterion. When used as an adequacy criterion, the main result observed was that relevant coverage was
capable of achieving high levels of coverage with much smaller tests suites, when compared with traditional
coverage, and with little impact on the fault detection capability [27]. As for selection criterion, besides
using the relevant coverage for test case selection, we used it also to minimize and prioritize test suites [31]:
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when applied to test case selection and minimization our approach considerably reduced the test suite
size, with small to no additional impact on fault detection capability (considering both in-scope and all
faults); when applied to test case prioritization, our approach improved the average rate of faults detected
when considering faults that are in scope, while remaining competitive when considering all faults. Refer
to [27, 31] for detailed results.

6.2 Social Coverage

For the scenario illustrated in Section 3.2, where the user does not have access to the source code, we
introduced social coverage [26, 28], a coverage criterion that customizes coverage information in a given
context based on coverage data collected from similar users.

Social coverage was conceived for black-box environments having some notion of testing community (i.e.,
several users/programs using/testing the service under test). The notion of testing community is important
to allow coverage information to be leveraged in a collaborative testing approach. For social coverage to
work, the service under test should be willing to collect and to share usage information with its users.

For social coverage the in-scope entities are those that are invoked by similar users, whereas the entities
that are never invoked by similar users are considered to be out-of-scope. Thus, for identifying the entities
that are in-scope to a given user U , the service under test first identifies which users are similar to U and
then it suggests which entities could be of interest to user U .

For evaluating the social coverage we applied it in the context of a real-world service-oriented application
and we were able to predict the entities that would be of interest for a given user with an average precision
of 97% and average recall of 75% [28]. As part of our future work, we plan to evaluate the effectiveness of
social coverage for test adequacy and selection.

6.3 Operational Coverage

For the scenario illustrated in Section 3.3 we introduced in [30] a coverage criterion for operational profile-
based testing that takes into account how much the program’s entities are exercised so to reflect the profile
of usage into the measure of coverage.

Operational profile-based testing and coverage-based testing provide two quite diverse software testing
approaches. The former is a black-box approach: the test cases are selected from the input domain, trying
to reproduce how the software will be used in practice, with the aim of rapidly detecting those failures
that would occur most frequently in operation. The latter is white-box: a program is tested until all, or a
pre-defined percentage of, targeted code entities (e.g., statements or branches) have been executed at least
once. By mapping operations (black-box) into code entities (white-box), operational coverage allows us to
use these two approaches in combination.

Operational coverage assumes the existence of an operational profile, which is a quantitative characteriza-
tion of how a system is used [33]. The operational profile could be derived by domain experts during the
specification stage, or it could be obtained from real world usage, e.g., by monitoring field data by means of
an infrastructure such as Gamma [35].

For relevant coverage and for social coverage presented in the previous sections, an entity is either in-scope
or out-of-scope. Operational coverage further classifies the in-scope entities into different importance groups
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according to their frequency of usage. For doing that we make use of program spectra [20]. A program
spectrum characterizes a program’s behavior by recording the set of entities that are exercised as the program
executes. More precisely, for operational coverage we use count spectrum, which indicates the number of
times a given entity was executed. The hit spectrum, on the other hand, which is used by relevant coverage
and by social coverage, only indicates whether or not a given entity has been executed (hit). Once the
entities are classified into different importance groups we can assign the weights of each group and calculate
operational coverage as in Equation 3.

We conducted experiments to evaluate the adoption of operational coverage as (i) an adequacy criterion,
i.e., to assess the thoroughness of a black box test suite derived from the operational profile, and as (ii) a
selection criterion, i.e., to select test cases for operational profile-based testing. The results of our studies,
reported in [32], showed that operational coverage is better correlated than traditional coverage with the
failure probability of test cases derived according to the user’s profile. This result suggests that our approach
could provide a good stopping rule for operational profile-based testing. With respect to test case selection,
our investigations revealed that operational coverage outperforms traditional coverage in terms of test suite
size and fault detection capability when we look at the average results.

The importance groups as well as the weights assigned to them play a fundamental role in the operational
coverage computation. In [32] we assigned more weight to the group of entities frequently exercised and
less weight to the group of entities scarcely exercised, so to privilege those entities that are expected to be
exercised more often by the program’s users. In different contexts, however, the testing objective could be
different. For example, one could be interested in testing the areas of the program that are less frequently
exercised in the attempt of finding possibly latent, difficult to find, faults. In that case, more weight should
be assigned to the group of entities scarcely exercised [5]. As for any testing strategy, considering the context
and the testing objectives is of fundamental importance when defining the operational coverage parameters.

Table 3. Examples of relative coverage applied to different contexts

Relevant Coverage Social Coverage Operational Coverage

Coverage context:
A coverage criterion tai-
lored for the context of
black-box reuse

A coverage criterion that
customizes coverage infor-
mation to a given user
based on coverage data
from similar users

A coverage criterion for the
context of operational pro-
file based testing

White-box vs Black-box: White-box Black-box
Maps operations (black-
box) into source code en-
tities (white-box)

Type of program spectrum
used by the coverage met-
ric:

Hit spectrum Hit spectrum Count spectrum

Which entities are in-
scope?

Set of entities that are rel-
evant for the new (reuse)
context

Set of entities that are in-
voked by similar users

Set of entities that are rel-
evant to the user’s opera-
tional profile

Manuscript submitted to ACM



16 Breno Miranda and Antonia Bertolino

Table 3. Examples of relative coverage applied to different contexts

Relevant Coverage Social Coverage Operational Coverage

Which entities are out-of-
scope?

Set of entities from the
legacy code of the reuse as-
sets that are never invoked
in the new (reuse) context

Set of entities that, al-
though reachable, are
never invoked by the
target user or by similar
users

Entities that are not rel-
evant to the user’s opera-
tional profile

Different weighting for the
in-scope entities?

No. All the in-scope enti-
ties are considered to have
the same importance, i.e.,
they contribute equally to
the coverage metric.

No. All the in-scope enti-
ties are considered to have
the same importance, i.e.,
they contribute equally to
the coverage metric.

Yes. In-scope entities can
be further classified into
different groups according
to their frequency of us-
age for a given operational
profile. Each importance
group contributes in a dif-
ferent way to the coverage
metric.

Ways for identifying the
set of in-scope entities that
we have already explored:

Identification of the in-
put domain constraints +
guided dynamic symbolic
execution

Identification of similar
users based on their histor-
ical usage of the target pro-
gram/code

Derived from the opera-
tional profile

Alternative ways for iden-
tifying the set of in-scope
entities:

Reachability algorithm on
the static call graph of the
given program; Program
slicing

Clustering techniques; Dif-
ferent similarity metrics
can be adopted

Real usage data collected
using profiling techniques
(as in continuous testing,
for example)

Main results achieved
when used as an Adequacy
Criterion:

Fewer test cases required
(when compared with tradi-
tional coverage) to achieve
a given coverage goal with
little impact on the fault
detection capability.

N/A

Operational coverage is
better correlated with fail-
ure probability when com-
pared to traditional cover-
age
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Table 3. Examples of relative coverage applied to different contexts

Relevant Coverage Social Coverage Operational Coverage

Main results achieved
when used as a Selection
Criterion:

When applied to test case
selection and minimization
our approach considerably
reduced the test suite size,
with small to no addi-
tional impact on fault de-
tection capability (consid-
ering both in-scope and
all faults). When applied
to prioritization, our ap-
proach improved the av-
erage rate of faults de-
tected when considering
faults that are in scope,
while remaining competi-
tive when considering all
faults.

N/A

Test suites selected using
operational coverage were
able to find more faults
(when compared to tradi-
tional coverage) in the ma-
jority of the cases investi-
gated.

Other results:

We evaluated the effective-
ness of our approach in pre-
dicting the set of in-scope
entities based on the analy-
sis of similar users. Our ap-
proach achieved precision
rates ranging from 73% to
97% (depending on the Jac-
card similarity coefficient
adopted) and recall rang-
ing from 67% to 75%.

7 FURTHER IMPLICATIONS FOR SOFTWARE ENGINEERING

7.1 Test Oracles

The availability of some mechanism for determining whether the execution of a test case has passed or
failed is a fundamental assumption when conducting software testing. Such a mechanism is called a test
oracle [3, 22]. Achieving high levels of coverage is not sufficient per se to guarantee that appropriate testing
has been accomplished: if the test cases exercise some entities without having proper oracles, test success
cannot guarantee that the expected behavior of the software under testing is satisfied. In other words,
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without strong and accurate test oracles, test cases are not helpful in revealing potential faults. This is
in line with the work from Zhang and Mesbah [52] that found that test suite’s effectiveness is strongly
correlated with the number of test assertions and assertion coverage.

Test oracles generation as well as their quality evaluation is not in the scope of this work. If we were
to describe our work based on the framework from Staats et al. [45], in all the experiments reported in
Section 6 we changed the coverage criteria and kept the oracles constant as we reused the ones that were
made available with the subjects that we investigated. However, as we propose to focus the testing effort
on the entities that are relevant for a given testing context, one immediate impact that relative coverage
might have concerning test oracles is that, by minimizing the number of entities to be covered, the expected
number of test oracles required might also decrease. Naturally, the savings in test effort would be more
pronounced in the cases where the test oracles need to be derived manually. Another possible impact is that
some instantiations of relative coverage might require oracles capable of adapting the program’s expected
output based on the user (this is evident for operational coverage, for example). In the future we plan to
investigate more deeply the influence of test oracles on the performance of relative coverage.

7.2 Software Instrumentation

Instrumentation is a technique that adds extra code to a program or environment for monitoring/changing
some program behavior [15]. It can be used for many things, including simulation, performance analysis,
software profiling, etc. When used for collecting coverage metrics, the current instrumentation techniques
generally involve compiling and linking the application program along with instrumented code. Because this
process usually implies some overhead on the program’s runtime, a lot of research has been conducted in
the pursuit of more cost-effective methods and techniques for collecting coverage data [2, 10, 46]. Relative
coverage requires upfront identification of the set of in-scope entities (i.e., those entities that would be of
interest in a given context). Thus, the adoption of our approach requires fewer points of instrumentation
to be added in the code, which is reflected directly in the program’s runtime. Further benefits could be
achieved if our approach is combined with a lightweight instrumentation technique (e.g., [23]). We plan to
investigate this in future work.

7.3 Test Case Generation

Given the high costs associated with the creation of test cases, many approaches and tools have been
proposed for the automated generation of test cases targeting maximized coverage of some predefined
criterion [16, 39, 43]. With relative coverage, instead of targeting maximized coverage, it is possible to guide
the test case generation towards the parts of the software that are relevant for the testing scope. As relative
coverage presupposes the upfront identification of the in-scope entities, such information could be used for
guiding the generation task. To minimize the risks of coverage-directed test case generation as reported
in [44], the set of in-scope entities could be used as a supplement — and not as a target per se — for the
test generation. In our future work, we plan to further investigate the effectiveness of test case generation
approaches guided by relative coverage.
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7.4 Regression Testing

Most regression test selection (RTS) techniques select tests based on information about the code of the
program and the modified version [42]. Coverage-based techniques aim at identifying code entities (e.g.,
functions, statements, etc) that have been modified, or may be affected by the modifications, with respect
to the previous version of the program, and select tests from an existing test suite to exercise those entities.
During the test execution phase, if coverage is computed to assess the selection or to track the progress
of the test execution, the percentage of covered entities is meaningless if measured in the traditional way
considering all the program entities. If, on the other hand, coverage is computed on the current version
of the program based on the set of entities that have been affected (added/modified), what we would call
in-scope entities, it might be possible to assess how the selected test cases cover the new/modified parts of
the program. Assessing the coverage of a RTS test suite considering only the set of affected entities can,
thus, be interpreted as an instantiation of relative coverage according to our framework and definitions.

8 CONCLUSIONS AND FUTURE WORK

We have proposed a conceptual framework that revisits the goals of coverage test criteria, from targeting
indiscriminately all the entities in the software under test to instead concentrating the testing effort on those
entities that are relevant in the usage context. Under such novel perspective, coverage testing assumes a
different meaning, because it becomes relative to user, similarly to the notion of software reliability testing.

The notion of relative coverage changes the way coverage is measured, not the definition or identification
of entities. To make the approach applicable, though, we need a technique for distinguishing relevant entities
from not relevant ones. In the paper we have provided a few examples of instantiations of scope-based
coverage, which span both white-box and black-box criteria. We have also instantiated a more sophisticated
measure of relevance that not only takes into account whether an entity should be covered or not (hit-
spectrum), but also considers if the entity should be covered more or less frequently (count-spectrum).
Preliminary experimentation carried out in related works (summarized in Section 6) has shown that using
relative coverage as a test adequacy or selection criterion can improve the cost-effectiveness of testing in
comparison with traditional coverage testing, both by requiring less test cases before a desired coverage
measure is reached, and by finding more in-scope faults with a same test effort.

We stress that the motivation behind relative coverage is not that of reducing test cases, but that of
better targeting the available amount of test cases. In other words, scope-based coverage may leave parts of
software untested, based on the knowledge that those parts are not going to be executed. Thus, a component
that has been tested within some scope and is later tested in a different scope, needs to be tested again.
This is not different from what Weyuker recommended in [50].

Many future research directions can be pursued from here. In fact, the notion of relative coverage is
orthogonal to existing test criteria and in principle could be introduced to revise any existing coverage
technique. Therefore, in addition to the approaches of Relevant, Social and Operation coverage exemplified
in the paper, other criteria could be conceived. For example, we have studied control-flow based criteria,
but also data-flow based criteria could be made relative to user’s spanning over the data-input domain.
Moreover, we would like to explore other possible techniques to identify the relevant entities. Other potential
applications of scope-based coverage have been discussed in Section 7.
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Finally, although we have carried out our evaluations using real-world programs, we would like to
experiment the actual costs and benefit of relative coverage in industrial world.

ACKNOWLEDGMENTS

Breno Miranda wishes to thank the postdoctoral fellowship jointly sponsored by CAPES (Coordination for
the Improvement of Higher Education Personnel) and FACEPE (Foundation for Science and Technology
Development of the State of Pernambuco) (APQ-0826-1.03/16; BCT-0204-1.03/17).

REFERENCES
[1] Andrea Arcuri and Gordon Fraser. 2011. On parameter tuning in search based software engineering. In International

Symposium on Search Based Software Engineering. Springer, 33–47.
[2] Matthew Arnold and Barbara G Ryder. 2001. A framework for reducing the cost of instrumented code. Acm Sigplan

Notices 36, 5 (2001), 168–179.
[3] Earl T Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo. 2015. The oracle problem in software

testing: A survey. IEEE transactions on software engineering 41, 5 (2015), 507–525.
[4] Cesare Bartolini, Antonia Bertolino, Sebastian Elbaum, and Eda Marchetti. 2011. Bringing white-box testing to service

oriented architectures through a service oriented approach. Journal of Systems and Software 84, 4 (2011), 655–668.
[5] Antonia Bertolino, Breno Miranda, Roberto Pietrantuono, and Stefano Russo. 2017. Adaptive Coverage and Operational

Profile-based Testing for Reliability Improvement. In Proceedings of the 39th International Conference on Software
Engineering (ICSE ’17). IEEE Press, Piscataway, NJ, USA, 541–551. DOI:http://dx.doi.org/10.1109/ICSE.2017.56

[6] Antonia Bertolino and Lorenzo Strigini. 1996. On the Use of Testability Measures for Dependability Assessment. IEEE
Trans. Software Eng. 22, 2 (1996), 97–108. DOI:http://dx.doi.org/10.1109/32.485220
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