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Abstract

The availability of mobile phone data has encouraged the development of dif-
ferent data-driven tools, supporting social science studies and providing new
data sources to the standard official statistics. However, this particular kind
of data are subject to privacy concerns because they can enable the inference
of personal and private information. In this paper, we address the privacy is-
sues related to the sharing of user profiles, derived from mobile phone data, by
proposing PRIMULE, a privacy risk mitigation strategy. Such a method relies
on PRUDEnce [1], a privacy risk assessment framework that provides a method-
ology for systematically identifying risky-users in a set of data. An extensive
experimentation on real-world data shows the effectiveness of PRIMULE strat-
egy in terms of both quality of mobile user profiles and utility of these profiles
for analytical services such as the Sociometer [2], a data mining tool for city
users classification.

Keywords: Mobile Phone Data, Call Detail Record, Privacy, Anonymization

1. Introduction

Nowadays, mobile devices record digital traces of different human activi-
ties such as movements, purchase transactions, preferences, opinions, and so
on. Thus, they are an important source of information that enables the study
of environmental monitoring, transportation, social networks, innovative de-
mographic indexes and human behavior. In particular, the availability of CDR
(Call Detail Record) data produced by mobile phones stimulated the research for
sophisticated data mining algorithms suitable for understanding people habits
and mobility patterns [3]. This type of data has been used also for monitoring
population movements and displacement after disasters, such as earthquakes [4],
for helping decision making in public health, particularly when considering the
dynamics and spread of infectious diseases and the consequences of a natural
disaster [5].

The opportunity of exploiting big data has attracted also the interest of
official statistics [6]. Indeed, currently, a hot topic in official statistics is the
exploitation of big data in combination with traditional data sources, in order
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to improve quality, timeliness and spatio-temporal granularity of statistical in-
formation. As an example, in [2], Furletti et al. presented the Sociometer, a
data mining tool for classifying users by means of their calling habits, uses the
calling activities to infer a presence indicator of different categories of people in
a city. It takes advantage of a methodology able to construct an aggregate and
compact user call profile.

The use of human data for both understanding social phenomena and the
development of data-driven services is getting common, but at the same time,
raises the concern on leakage of personal information or re-identification. In
fact, numerous services have been temporarily put to halt or even out of service
because of such issues1,2. In practice, nowadays, the knowledge discovery related
to human behavior comes with unprecedented opportunities and risks. The
paradoxical situation we are facing is that we are running the risks, without
fully catching the opportunities of big data. Indeed, on the one hand, we feel
that our private space is vanishing in the digital world, and our personal data
can be used without feedback and control; on the other hand, the same data are
seized in the databases of companies (Telcom companies, insurance companies,
and so on), which use legal constraints on privacy as a reason for not sharing
it with science and society at large, keeping this precious source of knowledge
locked to data analysts or service developers.

In Europe, policy-makers have addressed this problem with the General Data
Protection Regulation (GDPR) [7]. This regulation responds to privacy and
data protection threats associated with new data practices by strengthening
protections for individuals, and also by harmonizing the legal framework to
enable data to flow better within Europe. The GDPR introduces the practice
of a Data Protection Impact Assessment and the application of the Privacy-by-
Design principle in the creation of information systems. Thus, it is necessary to
keep under control the privacy risk of users in the data and to enable knowledge
discovery from raw data while preventing privacy violations by-design.

In this paper, we address the problem of guaranteeing privacy protection
while using individual profiles for the extraction of additional knowledge, hid-
den in the data, by sophisticated data mining processes. In particular, our main
goal is to guarantee privacy protection during the application of the Sociometer
[2], that is considered a valuable tool for official statistics [8]. To this end, we
propose PRIMULE (Privacy RIsk Mitigation for User profiLEs), a privacy risk
mitigation strategy for making private a set of user profiles. PRIMULE relies on
PRUDEnce [1], a privacy risk assessment framework that provides a methodol-
ogy for systematically identifying risky-users in a set of data. PRIMULE, on the
basis of the privacy risk assessment of user profiles, acts making similar profiles
indistinguishable to eliminate possible risky profiles.

We conduct a detailed analysis of our approach using a real data set. In par-
ticular, we used a CDR dataset that covers 139 municipalities of Tuscany with

1Yomiuri - https://goo.gl/Pxiuny
2Tom Tom - https://goo.gl/J8tcuc
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85 million CDRs from about 3 million customers in the month of November 2016
(4 weeks). The deep experimentation shows the effectiveness of PRIMULE. In-
deed, after the privacy risk mitigation, the quality of the profiles is high in terms
of similarity with respect to the original ones. This fact is also confirmed by the
utility of the private profiles for the Sociometer, which is measured both in terms
of classification and quantification performance. Empirical results demonstrate
a good classification and quantification especially for the city user category of
residents. In each experiment, we perform a comparison of PRIMULE against
a method based on differential privacy [9]. Again, experiments show that our
proposal provides much better results in terms of data quality and service utility.

The rest of this paper is organized as follow. Firstly, in Section 2 we report
some relevant literature about privacy in mobile phone data. Then, in Section
3, we describe the basis of our work: i) the individual user profile describing the
calling activity, ii) the Sociometer framework, and iii) the PRUDEnce frame-
work used for the assessment and the mitigation of the privacy risk. In Section
4, we introduce the problem definition while in Sections 5 & 6 we present the
privacy attack model and our mitigation strategy PRIMULE. In Section 7, we
show the results of our experiments on real data, bringing in evidence the effec-
tiveness of our approach on both individual privacy and accuracy of the results.
Finally, Section 8 concludes the paper.

2. Related work

Relatively little work has addressed privacy issues in the publication and
analysis of GSM data. In the literature, many works treating mobile phone
data state that there is no privacy issue or at least the privacy problems are
mitigated by the high spatial coverage of the cell phone. However, Golle and
Partridge [10] showed that a fraction of the US working population can be
uniquely identified by their home and work locations even when those locations
are not known at a fine scale or granularity. For this reasons, the risk in releasing
locations traces of mobile phone users appears very high.

Privacy risks, even in the case of releasing of location information with not
fine granularity, are studied in [11], where authors present a study on 30 billion
CDRs from a nationwide cellular service provider in the United States. They
observed several location information for about 25 million mobile phone users in
a period of three months. This study highlights important factors that can have
a relevant impact on the anonymity. Examples are the value of N in finding the
top N locations, the granularity level of the released locations, the availability
of additional social information about users, and geographical regions.

When the spatial granularity level of the cell data is combined with time
information and a unique handset identifier, all this information can be used to
track people movements. This requires that a good privacy-preserving technique
has to be applied when we analyze such data. Unfortunately, many current pro-
posals, such as those presented in [12, 13], do not consider this aspect. However,
the work in [13] is very interesting because studies user re-identification risks in
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GSM networks in the case user historical data is available to characterize the
mobile users a priori.

In [14], a study on re-identification of CDRs is presented, applying spatial
and temporal generalizations. In particular, this paper is based on the concepts
of unicity [15] and other related ones, which represents the percentage of users
in a dataset who are re-identified by using p randomly selected data points from
each user’s records. This is a concept very related to our privacy risk; the main
difference is that we do not pick random data points but we systematically select
temporal slots as background knowledge. Noriega et al. [14] used similar levels
of aggregation w.r.t. ours (indeed, they also use the municipality level for space
and temporal slots of 6, 12 and 24 hours), but they assessed utility based on
a qualitative survey targeted to experts, while we tested the usefulness of our
strategy comparing the performance obtained by a service using original and
private data.

In [16], de Montjoye et al. present a summary of the main models to treat the
privacy problem in mobile phone data (although they are quite general to be ap-
plied in a variety of different contexts), spacing from limiting the release of data
(e.g., under legal contracts or using privacy-through-security approaches), trans-
forming the data by adding technical difficulties to attempts at re-identifying
individuals, using synthetic data, or relying on a question-and-answer model,
where answers can be both at the level of individuals or, more often, groups of
individuals.

Also Argaoui et al. [17] propose a review of existing anonymization tech-
niques, suggesting, for CDR, to apply reversible anonymization (essentially,
cryptographic techniques) for all the data contained in the CDR, except for
the URL visited by the customers, because the telecommunication operator
have not in any case the legal right to consult this latter information.

In [18], authors presents a statistical disclosure control methods applied to
CDRs. They focus on data obtained in a stream fashion, so the primary goal of
the implemented method must be the efficiency.

In [19], we can find a useful survey on mobile phone data analyses. It starts
with the study of the social networks generated by the mobile call graphs, then
it provides some examples of services that it is possible to construct adding
geographical information, i.e., cell towers, and temporal information. Finally, it
reports some studies about privacy. As typical solutions, Blondel et al. [19] sug-
gest to operate small modification of datasets, or to change frequently pseudo-
identifiers: every day (as in [11]) or even every 6 hours (like in [20]). Unfor-
tunately, this can lead strong limitation on analyses and services that can be
performed. Otherwise, Blondel et al. [19] report results of [21], where it is
suggested to use synthetic data, which can reproduce many features of mobility
of users of Los Angeles and New York, to model the movements of people.

In order to enable a privacy-respectful management of data, Cavoukian con-
ceived the Privacy-by-Design paradigm [22]. This model represents a profound
innovation w.r.t. the traditional methods: the idea is to have a significant shift
from a reactive model to proactive one, i.e., preventing privacy issues instead
of remedying to them. In [23], Monreale et al. investigated the application of
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Privacy-by-Design in data mining domains, providing evidences that this prin-
ciple can ensure a quality leap in the conflict between data protection and data
utility. In this paper, we can also find an application of the Privacy-by-Design
model on mobile phone data; while this is the starting point of our work, in
[23] no general framework is implemented and, more important, no mitigation
strategy is suggested to limit the privacy risk.

Another model of anonymization is the Differential Privacy, a privacy notion
introduced in [9] by Dwork. The key idea is that the privacy risks should not
increase for a respondent as a result of occurring in a dataset. Differential
privacy ensures, in fact, that the ability of an adversary to inflict harm should
be essentially the same, independently of whether any individual opts in to, or
opts out of, the dataset. This privacy model is called ϵ-differential privacy, due
to the level of privacy guaranteed ϵ. It assures a record owner that any privacy
breach will not be a result of participating in the database since nothing, or
almost nothing, that can be discovered from the database with his/her record
that could not have been discovered from the one without his/her data [24].
Moreover, in [9], it is formally proved that ϵ-differential privacy can provide
a guarantee against adversaries with arbitrary background knowledge. This
strong guarantee is achieved by comparison with and without the record owner’s
data in the published data. It is important to note that the parameter ϵ, which
specifies the level of privacy guaranteed, is public [25].
Here, we do not report the formal definitions of this privacy model, but we only
describe one of the fundamental concepts of this technique, which is the global
sensitivity [9]. The global sensitivity of a query is a function that maps under-
lying datasets to (vectors of) reals. Intuitively, the global sensitivity represents
how much the result of a query can change when it is performed on the dataset
or on a dataset close to it.
There are two popular mechanisms to achieve differential privacy: Laplace mech-
anism, which supports queries whose outputs are numerical [26], and exponential
mechanism, which works for any queries whose output spaces are discrete [27].
The basic idea of the Laplace mechanism is to add noise to aggregate queries
(e.g., counts) or queries that can be reduced to simple aggregates. This mecha-
nism is suitable for our aim, since we have (aggregation of) numerical values.

Regarding the Differential Privacy [9, 25] in CDR data, in [28] authors apply
Geometrical mechanism to a predetermined partition of a territory, using also
Voronoi tessellation to keep track of the presence of individuals. In this paper,
clustering and sampling with Fourier-based perturbation are used. Another
work is [29], which presents DP-WHERE, an extension of [21] that includes
differential privacy. However, Mir et al. [29] apply differential privacy only
to aggregate information, such as the probability distribution of the homes (or
workplaces) over the grid cells, the numbers of calls per day made by the users
or the hourly distribution of the calls.

In [30], Acts et al. point out that risks related to privacy can be present also
in aggregated information, since attackers can reconstruct even entire individual
trajectories from aggregate location data, if aggregates are periodically and suf-
ficiently frequently published (e.g., in every half an hour). Indeed, uniqueness
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(which is one of the fundamental properties of location trajectories, as reported
in [15], along with predictability, and regularity) is considered to have devastat-
ing effect on the utility of anonymized datasets, due to the fact that location
data is typically high-dimensional and sparse. In this paper, authors present
a method based on perturbation of location data, where a maximum number
of observations is fixed (i.e., only a certain number of data per user, randomly
selected, is maintained), in order to obtain a bound on the sensitivity level.

While Differential Privacy model offers strong guarantees regardless of any
background knowledge an adversary can have, we could apply Privacy-by-Design
paradigm tailoring the anonymization strategy on a specific (but not necessarily
weak) background knowledge and on the service we want to deploy with mobile
phone data. A privacy model that works well with Privacy-by-Design is k-
anonymity [31, 32], which aims to ensure that each individual in a dataset
cannot be distinguished from at least k − 1 individuals whose information are
also in the dataset.

To conclude our overview on existing methods and techniques, the idea to
exploit clustering techniques to achieve anonymity is not new, but it is already
described in the literature, as in [33, 34, 35].
In [33], Le Freve et al. use a greedy partitioning algorithm, where the defined
regions cover the domain space. Authors also introduce the relaxed partition-
ing, that allows a potential overlap in the generalization, i.e., the same Quasi-
Identifier value can be generalized in different ways if it belongs to different
records. A Quasi-Identifier (QI) is a piece of information that is not a unique
identifiers, but is sufficiently well correlated with an entity, and it can be po-
tentially combined with other quasi-identifiers to create a unique identifier. We
rely on the possibility to generalize the same QI in different values, but we sim-
plify the algorithm: in our work, we do not need to choose how to partition the
space, since for us the QIs are always treated together, like a unique block.
In [34], Byun et al. provide a greedy algorithm that populates a cluster at the
time, assigning the closest record among the free ones, and they change cluster
when it reaches the desired dimension. Our algorithm, instead, assigns records
to clusters only basing on global order, ensuring that each assignment is a global
optimum and not a local one.
In [35], Lin and Wei create the various clusters at the same time, and then
they adjust the clusters removing and reassigning records to clusters. On the
contrary, our method is an iterative and a greedy one, so the solution is built
incrementally, but each decision is definitive.
Moreover, the quality evaluation of the previous works is based on information
loss or similar metrics. To the best of our knowledge, we are the first that apply
a clustering algorithm to reach anonymity and evaluate their solution with a
real service.

3. Background

GSM (Global System for Mobile Communications) Network is a mobile net-
work that enables the communications between mobile devices. The GSM pro-
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tocol is based on a cellular network architecture, where a geographical area is
covered by a number of antennas emitting a signal to be received by mobile
devices. Each antenna covers an area called cell. In this way, the covered area
is partitioned into a number of, possibly overlapping, cells, uniquely identified
by the antenna. Cell horizontal radius varies depending on antenna height,
antenna gain, population density and propagation conditions from a couple of
hundred meters to several tens of kilometers. A Call Detail Record (CDR)
is a log data documenting each phone communication that the telecom oper-
ator stores for billing purposes. The format of the CDR used in this work is
the following: ⟨Timestamp,Caller id, d, Cell 1, Cell 2⟩, where Caller id is the
pseudo-identifier of the user that called, Timestamp is the starting time of the
call, d is its duration, Cell 1 and Cell 2 are the identifiers of the cells where
the call respectively started and ended.

3.1. Individual Call Profiles

The concept of Individual Call Profile (ICP) is introduced in [2]. The ICP
is an aggregated spatio-temporal profiles of an user, computed by applying spa-
tial and temporal breaks on user’s CDRs (Figure 1). In our case, the spatial
aggregation is at the municipality level, while the temporal aggregation is by
week, where each day of a given week is grouped on weekdays and weekend. We
define an ICP for each municipality. A further temporal partitioning is applied
to the daily hours. A day is divided into three time-slot, representing interesting
partitioning w.r.t. to user profiling. We represent the ICP as a matrix, where
values in each cell represent the number of days when call events occurred (i.e.,
independently by the total number of calls), normalized with the number of
days composing that slot. For example, if an individual performs one call on
Monday, ten calls on Tuesday, and two calls on Friday in the whole week, the
value in the weekdays of that week will be: (1+ 1+ 1)/5 = 0.6. Once each ICP
is built, we can assume that a call event occurred in a specific municipality is a
proxy of user presence in that territory and in that temporal slot.

Figure 1: Individual call profile (ICP). Here, for the sake of simplicity, the intensity of presence
is correlated with the saturation of the color instead of the percentage value representing the
number of call activities.
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3.2. Sociometer

ICPs are the input of Sociometer [36], a distributed data mining process
for classifying users call behaviors. Sociometer relies on an analytical process
consisting of several phases, showed in Figure 2. In particular, phase 1 involves
the ICP Building introduced in Section 3.1. Then, we group similar ICPs for
Prototypes Extraction. The third part of the process (Prototype Labeling) assigns
labels to the centroid of each prototype computed in the previous phase. The
last phase is the Label Propagation: when each point of each prototype is labeled,
it propagates the label of the prototypes to all the similar ICPs.

At the end of the process, for each ICP, we obtain a label that characterizes
the individual in a specific class. In particular, five classes are considered:

• Residents: individuals who live and work in the same area; for this reason,
their presence is significant across all days and all time slots for the specific
municipality.

• Dynamic Residents: people who reside in some municipality A but work
in a different one (B). The presence in A is expected to be significant
always, except during working days and working hours (i.e., the time slot
P2 of Figure 1).

• Commuters: people who reside (i.e., are Dynamic Resident) in some mu-
nicipality B and whose work or study place is in A. The presence in A is
expected to be almost exclusively concentrated during working days and
working hours (i.e., the time slot P2 of Figure 1).

• Visitors: people that visit a municipality only a few times in the period.

• Passing by individuals: persons who are not actually living in a certain
territory, but they merely traveled by the area covered by cells of the
considered municipality.

Through the dataset of labeled user profiles, we can also quantify the differ-
ent classes of individuals present in the area and the flows of individuals among
the different regions.

3.3. PRUDEnce

The Sociometer analyzes data gathered by a Data Provider (a telecom op-
erator), and it could also be applied externally to the environment of the Data
Provider (DP), for example because it does not have the necessary resources
to run the service. For this reason, the DP could have the need to share data
of its users with an external entity, i.e., a Service Developer (SD). As already
discussed in Section 2, mobile phone data are personal data, thus it is necessary
to ensure the right to privacy of the individuals described in the data.

As a consequence, the DP needs a mechanism to measure the privacy risk
and to apply safeguards on risky data to get the desirable level of privacy pro-
tection. To this end, the DP can count on the framework PRUDEnce [1]. This
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Figure 2: Sociometer. Starting from raw call data record, in phase 1, we first build for each
user, for each zone an Individual Call Profile (ICP). Then, we apply a clustering algorithm to
group users with similar behavior (phase 2). From each cluster, we extract a centroid (phase
3), and we label it w.r.t. the closest representative archetypes (phase 4).

framework, relying on the Privacy-by-Design paradigm [22, 37], offers a method-
ology that, by a privacy risk assessment module and a privacy risk mitigation
module, first measures the empirical privacy risk of a specific set of data, and,
then, reduces that risk if it is not compliant with the needs of the DP.

In order to verify the risk of privacy, through PRUDEnce, the DP queries
its users data, producing a dataset suitable for the service to be developed (i.e.,
maintaining no more than the level of information really needed by the ser-
vice3). Then, relying again on PRUDEnce, the DP: (i) identifies the background
knowledge that an adversary might have about his/her target; (ii) simulates the
attack based on that background knowledge, computing the privacy risk values
for every individual; (iii) applies a privacy risk mitigation method (e.g., gen-
eralization [38], randomization [39], suppression [38]) on the dataset; and (iv)
delivers the sanitized dataset to a third party, i.e., the SD who wants to apply
the Sociometer.

PRUDEnce adopts the risk re-identification as privacy risk; the related at-
tacks assume that an adversary gains access to a dataset and, using some back-
ground knowledge about an individual under attack, he/she tries to re-identify

3This is compliant with the data minimization principle described in the GDPR
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that individual in the dataset. The background knowledge represents both the
kind and quantity of information known by the adversary. We use b to indicate
the specific background knowledge (e.g., the fact that a user performed a call in
a particular location on a specific day). An individual is hence associated with
several privacy risks, each for every background knowledge of an attack.

In the following, we provide the formalization of the above description, defin-
ing the measure that we use to quantify the privacy risk.
Let D be a database, D a dataset derived from D (e.g., an aggregated data for-
mat on time and/or space, such as the ICP introduced in Section 3.1), and Du

the set of records representing a user u in D, the probability of re-identification
is defined as follow.

Definition 1 (Probability of re-identification [1]). Given an attack, a func-
tion matching(d, b) indicating whether or not a record d ∈ D matches the back-
ground knowledge b, and a function M(D, b) = {d∈D|matching(d, b) = True},
we define the probability of re-identification of an individual u in dataset D as:
PRD(d = u|b) = 1

|M(D,b)| that is the probability to associate record d ∈ D to

individual u, given the background knowledge b.

Note that PRD(d=u|b) = 0 if the user u is not in D.

4. Problem definition and proposed solution

As discussed in Section 2, mobile phone data are subject to privacy issues.
Our aim is to enable the sharing of this kind of data achieving two important
but conflicting goals: on the one hand, we surely want that adequate privacy
guarantees are provided, in order to limit the privacy risk of the individuals de-
scribed in the data; on the other hand, shared data should not be too distorted,
in order to ensure that specific analyses, such as the Sociometer (Section 3.2),
are still possible, maintaining a good quality level of service.

Thus, we propose to apply the framework PRUDEnce (Section 3.3) to mo-
bile phone data, in particular to Individual Call Profiles (Section 3.1), in order
to generate a privacy-preserving version of them which can be used, for example,
to provide a privacy-aware census of population. First of all, the DP extracts
the set of ICPs related to the required territory and the specified time window.
Then, the DP evaluates the privacy risk associated with the set of ICPs, and,
finally, if this risk is above a certain threshold, a mitigation strategy to unsafe
ICPs is applied. At this point, only non-risky data will be shared with the SD,
which may apply the Sociometer to the received safe ICPs, thus labeling each
individual in the appropriate category of city users.

PRUDEnce strongly relies on the Privacy-by-Design paradigm [22], which,
in order to design a privacy-preserving framework, requires some assumptions
about: (i) the personal data that are the subject of the analysis; (ii) the attack
model, i.e., the purpose of a malicious party that has an interest in discovering
the sensitive data of certain individuals; (iii) the category of analytical queries
that are to be answered with the data.
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In our setting, the data are the ICPs, while the service to be provided is the
Sociometer. Thus, we still need to define:

• a possible attack model to quantify the privacy risk, and

• a mitigation strategy for the privacy risk whether it is above a specified
threshold.

Therefore, in Section 5, we describe the privacy risk assessment step, i.e.,
the attack model we want to simulate, while in Section 6, we focus on the task
of privacy risk mitigation, presenting PRIMULE, our solution for achieving a
trade-off between individual privacy and quality of the service.

5. Privacy Risk Assessment

The quantification of the probability of re-identification of each individual
in the data requires to simulate a privacy attack. Our attack model is based
on the linking attack [38], and it uses a specific and strong background knowl-
edge. Indeed, in our setting, the attack is based on a perfect knowledge by the
adversary of the call activities of his/her target in the observed area. In other
words, for a specific time window and geographical area, the idea is to quantify
the probability of re-identification of a target, in case the attacker would know
if and when his/her target performed a call.

Exact Background Knowledge. We assume that the attacker knows exactly the
call activities of a user U (i.e., the fact that he/she called someone and the time
of these calls) during a visit at a certain location, for a certain time window
(i.e., one week, two weeks, and so on). This means that with this knowledge,
the adversary can build the corresponding ICP denoted by PB, where PBij

represents a temporal slot (as shown in Figure 1). PBij = −1 if the attacker
does not have any information about the call activity of the user in the period
(i, j), while PBij = v (v ≥ 0) if from the background knowledge he/she derives
that the user was present in the area v times in the period (i, j). Note that for
this last period PBij is exactly equal to the one owned by the telco operator. As
an example, suppose that an adversary shadowed Mr. Smith for some period.
With this information, for this period he/she can build an ICP as accurate as
the one that can be found in the dataset.

Attack Model. The attacker, who gains access to the set of ICPs P, uses the
background knowledge PB on the user U to match all the profiles that include
PB. The set of matched profiles is the set C = {P ∈ P|∀ PBij ≥ 0.PBij = Pij}.

Once defined both the possible background knowledge and the attack model,
we can simulate this attack, in order to quantify the probability of re-identification
of the user U , which is 1

|C| . Clearly, a greater number of candidates corresponds

to a better privacy protection.
In this paper, we propose a mitigation strategy that directly integrates the
privacy risk assessment, which requires the simulation of this privacy attack.
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6. PRIMULE: Privacy RIsk Mitigation for User profiLEs

We figure out a method that is based on the knowledge of the Sociometer
process and has the goal to get a set of safe ICPs. A profile is considered safe if
it is indistinguishable from at least others k-1. In other words, considering our
attack model, a profile is safe if its probability of re-identification is at most 1

k ,
where k is a parameter of PRIMULE (Algorithm 1).

Thus, our basic idea is to create groups of indistinguishable profiles by ren-
dering equal those profiles which are already quite similar and thus assigning
the unsafe ICPs to the closest group. We conceive a mitigation strategy using
the k-anonymity privacy model depending on: i) the ICPs’ properties, ii) the
background knowledge and iii) the service to be developed. We recall that in
our setting the service goal is the classification of typologies of city users (res-
idents, commuters, dynamic residents, visitors and passing by individuals), as
discussed in Section 3. In the following, for the sake of simplicity, we consider
the probability of re-identification assuming the knowledge of the first 1/2/3/4
week(s). However, other portions of the ICPs can be considered and managed
by PRIMULE (see Section 6.2).

Our approach is based on two major principles. The first one is that two
ICPs are indistinguishable if they exactly match w.r.t. the portion of adversary
background knowledge, because this is the actual data used to perform each
attack. For example, if we are considering a background knowledge of 2 weeks,
two individual call profiles are indistinguishable only if they are equal in the
portion of them corresponding to the first 2 weeks. The second idea at the base
of our reasoning is that indistinguishable profiles represent an equivalence class
w.r.t. the background knowledge, thus, each element in the class has the same
probability and we can manage the whole group as a single entity.

In a nutshell, the mitigation strategy creates groups of indistinguishable
ICPs, then, it tries to aggregate ICPs groups which are as much as possible
similar each other, two at a time. The aggregation strategy is a weighted average
between the two groups of profiles. However, different policies could be defined.
If the profiles are still not safe, the process is iterated.

6.1. Example of the working principle of the proposed strategy

In Figure 3, one can find a simplified example of the idea behind our ap-
proach. On the x−axis we indicate some single groups of indistinguishable ICPs
(from A to H) with the correspondent cardinality. On the y−axis is reported
the number of the current iteration step of the algorithm. We fix the privacy
threshold to k = 5, i.e., a probability of re-identification of 1

5 . In the picture the
unsafe groups B, C, D, F and G (i.e., groups with cardinality lesser than k) are
represented in red, and the safe groups A and H (i.e., groups with cardinality
higher or equal to k) are represented in black. In the first iteration, we merge
the groups B and C, both with cardinality equal to 2, creating a new group (i.e.,
BC), consisting of 4 ICPs. The 4 elements of the BC groups are not the original
ICPs coming from B and C, but are computed ICPs derived from the weighted
average of the original elements of B and C. In general, more than two groups
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can be aggregated at the same time, as we can see at Iteration 2. The process
is iterated until at least an unsafe group exists.
It is important to point out that the merging operations are performed if at
least one of the groups is unsafe. In the example, we can see how in Iteration 1
(B ∪ C) both starting groups (i.e., B and C) are unsafe, while in the Iteration
4 (A ∪BC) the A group is already safe. However, it represents the best option
(i.e., the most similar group) for the unsafe group BC; thus, we decide to merge
these two groups in order to minimize the transformation of ICPs.
The last case is represented by the H group, which is safe from the starting
point and it is not merged with any other group in the whole execution; this
because it is too far from all the unsafe groups.
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Figure 3: Example of the PRIMULE strategy.

Algorithm 1 PRIMULE(P, h, k, dist)

1: Inputs: The set of SCT profiles P, the list of indexes representing the portion of profile known
by the adversary h, the required group size k, the chosen distance dist.

2: Output: The privacy-preserving SCT profiles P̃ (if it is possible) and a flag that indicates if the
result is anonymous or not.

3: if |P| < k then
4: return P, false
5: //create two empty sets for groups (G) and unsafe groups (Gunsafe)
6: G = ∅; Gunsafe = ∅
7: //cluster profiles based on the background knowledge dimension
8: G = CreateGroups(P, h)
9: for all group g ∈ G do
10: count = ComputeCardinality(g)
11: if count < k then
12: Gunsafe = Gunsafe ∪ g

13: P̃ = ProfileMitigation(G, Gunsafe, h, k, dist)

14: return P̃, true

6.2. PRIMULE algorithm

Our strategy is shown in Algorithms 1 and 2. Algorithm 1 is composed of
the following procedures: i) risk assessment phase and ii) mitigation phase.
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Algorithm 2 ProfileMitigation(G, Gunsafe, h, k, dist)

1: Inputs: The set of group G, the set of unsafe group Gunsafe, the list of indexes representing
the portion of profile known by the adversary h, the required group size k, the chosen distance
dist.

2: Output: The privacy-preserving ICPs G̃.
3: G̃=G
4: while Gunsafe ̸= ∅ do
5: //create a list of couple of groups and relative distances (D = ⟨g1, g2, dist(g1, g2)⟩)
6: D = ∅
7: for all unsafe group g ∈ Gunsafe do
8: //search for the nearest group

9: dmin = ComputeMinimumDistance(g, G̃, dist, h)
10: gmin = ComputeMinimumDistanceGroup(g, G̃, dist, h)
11: D = D ∪ {g, gmin, dmin}
12: D = OrderByDistanceAsc(D)
13: //create empty list of updated group (Gmodified)
14: Gmodified = ∅
15: for all element d ∈ D do
16: g2 = TakeSecondGroup(d)
17: if g2 /∈ Gmodified then
18: //there is no conflict: merge the two groups
19: g1 = TakeFirstGroup(d)

20: G̃ = G̃ \ g1
21: G̃ = G̃ \ g2
22: Gunsafe = Gunsafe \ g1
23: Gunsafe = Gunsafe \ g2
24: new Ph = WeightedAverage(g1, g2, h)
25: new cardinality = |g1| + |g2|
26: UpdateInformation(g2, new Ph, new cardinality)
27: if new cardinality ≤ k then
28: Gunsafe = Gunsafe ∪ g2
29: G̃ = G̃ ∪ g2
30: Gmodified = Gmodified ∪ g2
31: return G̃

Risk assessment phase. The risk assessment phase (Algorithm 1, lines 3-12)
takes in input the set of original profiles P and the background knowledge
h, i.e., the list of cells indexes representing the portion of profile known by a
potential adversary. In the following, given h and a profile P , we denote by Ph

the portion of the profile identified by the cells indexes in h.
Firstly (line 3), it is checked if the total number of profiles is big enough to
guarantee a certain privacy threshold k. If no, the original profiles are returned,
along with the information that it was not possible to anonymize them (line
4). This can happen if the privacy threshold is too high and the municipality is
sparsely inhabited. Then, the algorithm groups together ICPs, having the same
values in the portion Ph, by the function CreateGroups (line 8) and, then (line
12), selects the unsafe groups, i.e., groups with cardinality lower than k.

Mitigation phase. The mitigation phase (line 13 of Algorithm 1) acts on unsafe
groups and is detailed in Algorithm 2, where:

1. For each unsafe group, the algorithm selects the nearest neighbor among
all the groups, i.e., both safe and unsafe groups (Algorithm 2, lines 7-11).
For identifying the nearest neighbor group the procedure uses a distance
function dist only on the portion of the profiles Ph. We recall that h
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identifies the cells indexes representing the background knowledge, i.e.,
the portion of profiles known by the adversary. Each couple of groups
represents a potential assignment of the unsafe group to the other one,
but, at this stage, no merging is performed yet.

2. The possible assignments found in the previous step are ordered from the
most promising one (Algorithm 2, line 12), i.e., considering increasing
distances.

3. Starting from the first couple, we perform the assignment procedure: we
check whether the selected group was previously merged with other groups
(Algorithm 2, line 17); if not, we merge the two groups (Algorithm 2, lines
19-26) and we check if the new group has a size of at least k (Algorithm 2,
line 27). The merging operation also requires to make all the ICPs in the
new group equal with respect to the portion of the profile identified by h.
Therefore, the elements in the new group are transformed in such a way
that the portion Ph of each profile is updated by computing the weighted
average of all profiles in the group. In other words, for each group g the

algorithm computes new Ph as follows: ∀(i, j) ∈ h. new Ph
ij =

∑
P∈g Pij

|g| .

Steps 1) and 2) are not deterministic because it is possible to have two equidis-
tant groups from the same unsafe group, and two different couples of groups
can have the same distance. This choice is reasonable for providing an efficient
solution for the mitigation process. Obviously, we could add some clauses, like
favoring bigger/smaller groups, in order to render the process deterministic.

The control described in Step 3) and reported in Algorithm 2, line 17 is nec-
essary because the simultaneous crossed assignments can lead to the following
situation. A and B are the nearest neighbors, thus: i) A is selected and merged
with B, creating the group A ∪ B, and ii) the group B is selected for being
merged with A, but the two single groups no longer exist.

Computation Costs. We conclude with a final consideration regarding the time
computational cost: the matching phase and the computation of distances can
be performed in parallel, relying on distributed technologies like Map-Reduce.
In order to assign each unsafe group to the nearest one, we adopt a k-nearest-
neighbor strategy based on an implementation of the k-d tree [40]. Building a
static k-d tree from n points costs n× log(n), while finding one nearest neighbor
in a balanced k-d tree with randomly distributed points takes log(n) time.

6.3. Correctness of PRIMULE

Now, we provide the proof of the algorithm termination (Theorem 6.1) and
of the achievement of privacy requirements (Theorem 6.2).

Theorem 6.1. Algorithm 2 terminates.

Proof. If the privacy threshold k is greater than the number of ICPs, then the
mitigation approach cannot succeed, and the Algorithm 1 immediately termi-
nates. Otherwise, the algorithm terminates when there are no element left in
Gunsafe. In each iteration, we compute the nearest neighbor for every unsafe
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group (as far as it can be, there is always a nearest neighbor), and we join two
groups if there is not any conflict. A conflict occurs when a group is already
treated in the current iteration, so at least the first attempt (the one that joins
the two nearest groups) will succeed. Therefore, in every iteration, the number
of (unsafe) group decreases by at least 1. Hence, the algorithm terminates.

Theorem 6.2. Algorithm 2 satisfies the privacy risk requirement.

Proof. Established that there is an adequate number of ICPs (see Algorithm 1),
the correctness of Theorem 6.2 is straightforward due to the presence of the loop.
The program only terminates when there are no existing groups smaller than k,
i.e., it terminates only when all the profiles have a probability of re-identification
at most 1

k respect to the input background knowledge.

6.4. Information loss

We can measure utility through well-known metrics, such as the information
loss based on the Mean Square Error (MSE), presented in the Domingo-Ferrer
and Torra work [41]. Indeed, our resulting clusters have an MSE which is:
1
n

∑n
i=1(xi − x′

i)
2, where 1 . . . n are the indexes of original ICPs, and xi and x′

i

are respectively the original ICPs and the corresponding private version, limited
to the portion of the profile known by a potential adversary, i.e., Ph, as explained
in Section 6.2. This measure enables the identification of the maximum informa-
tion loss that could be obtained with the PRIMULE transformation. Indeed, in
the worst case we would obtain a single cluster, where the centroid is equals to
the weighted average of the ICPs’ values of all the original clusters. So, in this
case, the information loss is given by 1

n

∑n
i=1(xi − x̂)2, where x̂ is the weighted

average, cell by cell, of all the Ph. This represents a superior bound of the
actual information loss.

7. Experiments

In this section, we compare the results of the evaluation of our approach,
showing the outcome of the application of the Sociometer on three different sets
of data. We present the Sociometer applied to ICPs treated with PRIMULE,
our ad hoc mitigation strategy (Section 6.2), comparing its outcomes with the
Sociometer applied to profiles without any kind of sanitization (i.e., this repre-
sents our baseline, since the ICPs are the original ones) and to profiles perturbed
by an approach based on the differential privacy paradigm. For our experiments,
we start from a CDR dataset that regards the territory of a significant part of
Tuscany (139 municipalities out of 279). The dataset was provided by one of
the major Italian mobile operators, and it consists of about 85 million CDRs
from about 3 million customers. The covered period is the month of Novem-
ber 2016 (4 weeks). This data are already pseudonymized, and the pseudo-ids
change every 4 weeks. Thus, we cannot link individuals among different sup-
plies of data, and, for our purposes, 4 weeks represent the maximum possible
background knowledge.
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In our experiments, we managed data, and we implemented our algorithms
using Spark on a Hadoop cluster composed by 4-nodes, each one with 6-cores
Intel XEON@2.93Ghz, 24GB Ram, and 2 TB storage capacity.

In the following, we show the evaluation of our approach by varying the
parameter k (the threshold of the minimum number of indistinguishable profiles)
from 10 to 100. Moreover, we use the Euclidean distance function to compute
the profile similarity, and we set the background knowledge to 4 weeks.

Differentially Private Approach. As reported in Section 2, the Differential Pri-
vacy model provides strong privacy guarantees once the sensitivity of the query
is established. Moreover, the Laplace mechanism is useful when data are nu-
meric. Thus, we implemented an approach based on Differential Privacy as a
competitor. The comparison has the goal to evaluate the performance of the
two approaches in terms of user profiles utility. We are aware that differential
privacy based approaches do not take into consideration any background knowl-
edge and thus provide a different privacy guarantee. However, this analysis is
useful to deeply understand the data utility implications that sometimes could
lead to make data useless.

Basically, we add appropriately chosen random noise to the true query an-
swer (i.e., the real value of each ICP’s position), and we return the noisy answer.
We apply the Differential Privacy fixing the sensitivity to 1 (i.e., the maximum
value that each cell of the ICPs can have), and we extract an appropriate noise
for each cell of each ICP; finally, we add these noise values to the ICPs, ob-
taining a differentially private version of it. Since the new values can be lower
than 0 or greater than 1 (i.e., they can represent not informative values for
the Sociometer), we apply a post-processing that forces the values inside the
admissible range (i.e., from 0 to 1). Since it is a post-processing procedure this
step does not affect the privacy guarantees [42]. Note that decreasing ϵ, a pub-
licly known parameter, leads to greater privacy protection. This is due to the
fact that the magnitude of the noise drawn from a Laplace distribution, which
depends on both the global sensitivity of the query and the desired privacy level
ϵ, becomes higher. In the following, we provide an example of a profile obtained
by applying this approach, varying the privacy parameter ϵ.

7.1. Effect of the mitigation strategies on ICPs

In order to show the effect of the two privacy transformations on the single
ICPs, we report in Figure 4 some private versions of one of the original ICPs,
and we highlight the differences. The different versions of ICPs depicted in
the figure correspond to different levels of privacy protection. Figure 4 (a)
reports the ICPs obtained applying PRIMULE, our ad hoc mitigation strategy,
with k = 10, 50, 100, while Figure 4 (b) shows the ICPs obtained applying the
differentially private approach with ϵ = 1, 2, 10. In both cases, we provide a
comparison with the original ICP. As we can see, there are some fluctuations in
the single values of the ICPs obtained by our strategy, but the general behavior
of the individual is preserved since we try to merge similar profiles. In the
differentially private ICPs, we decided to vary the privacy threshold given by
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(a) PRIMULE

(b) Differential Privacy

Figure 4: Example of one ICP transformed using the two mitigation strategies, and varying
the correspondent privacy protection level.

the ϵ parameter, which affects the shape of Laplace distribution and, thus, the
magnitude of the noise added to the original values (we recall that greater ϵ
leads to lower privacy protection). In particular, we chose ϵ = 1 that is often
considered the maximum valid value [43], but also other occasionally used values
as ϵ = 2 [44, 45] and ϵ = 10 [46]. Here, we observe that with ϵ = 1, we have
important variations w.r.t. the original ICP. As an example, we can observe
the second column, where the 0 value (which represents an absence during the
specific period) becomes 1 (which indicates that the individual performed at
least a call in both the weekend days), and, vice-versa, the last 1 becomes 0.
This behavior is due to the fact that this approach does not try to preserve the
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general profile, but it only aims to hide the real values of ICPs.

(a) PRIMULE effects on similarity (b) Differential privacy effects on similarity

Figure 5: Cumulative curves, for both approaches and varying the privacy parameters, repre-
senting the ICPs having a certain similarity with the original correspondent profile.

Now, we can analyze the global situation of the two transformations on
ICPs. In particular, we show how much the proposed mitigation strategy and
the one based on differential privacy affect the real values of ICPs. Hence, in
Figure 5 we report the similarity of the original ICPs w.r.t. the sanitized ones,
both with the PRIMULE approach (Figure 5 (a)) and the differential privacy
strategy (Figure 5 (b)). In the picture, we illustrate the similarity with respect
to the Euclidean distance since is one of the simplest distances that can be used.
The two plots show the cumulative curves that represent the percentage of ICPs
having a certain similarity with respect to their correspondent original ICPs. As
already reported in the previous analysis, for both the mitigation approaches,
we also show what happens to vary the correspondent privacy parameter, i.e.,
the indistinguishability threshold k and the privacy budget ϵ.

As one can see in Figure 5 (a), with k = 100 we have that around 50% of
sanitized ICPs are almost identical to the original ones (similarity greater than
0.95). Decreasing the privacy threshold to k = 10, we get a massive increase of
data quality since around 70% of ICPs have this high value of similarity.

On the contrary, the cumulative curves depicted in Figure 5 (b) have a totally
different shape. Even using a quite weak privacy guarantee, i.e., ϵ = 10, we have
that less of 10% of sanitized ICPs have a similarity with the original ones of
at least 0.8. Instead, about 80% of sanitized ICPs have a maximum similarity
with their correspondent ones of around 0.7. This is drastically reduced if we
increase the privacy budget to 3: a similarity of at least 0.7 is obtained only
by 3% of ICPs, while 80% of ICPs have a maximum similarity of around 0.4.
If we increase the privacy guarantees again, we have that the vast majority of
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sanitized ICPs have a similarity with the original data between 0.25 and 0.4
when ϵ = 2 and between 0.2 and 0.3 when we fix ϵ = 1.

7.2. Sociometer application on both real and private data

In this section, we evaluate the impact of our mitigation strategy on the clas-
sification and quantification of the five categories recognized by the Sociometer.
To this end, we apply the Sociometer to the original data and to the private
data and analyze the results. We compare the impact of both our mitigation
strategy and that one based on differential privacy.

To evaluate the effects on the classification, we analyze the confusion matri-
ces by considering the result of the Sociometer applied to the original ICPs as
the actual class of city users, since we do not have any other official information
about their real labels. We also report an analysis of the f-score. To assess the
effects of the privacy transformations, we compare the results of the quantifica-
tion task on the original data with those obtained applying the quantification
on private data.

Classification Evaluation. Figure 6 & Figure 7 show the confusion matrices
obtained by applying the Sociometer on ICPs anonymized by our strategy and
the differential private approach, respectively.

Figure 6 highlights that, for lower privacy levels (i.e., k = 10 and k =
20), visitors, dynamic residents and residents are quite well preserved. On the
contrary, passing by individuals are misclassified because they are confused with
visitors (actually, these two classes are really similar in terms of call activities).
Commuters tend to disappear because they are very few (only 3% of the total
number of individuals), so for our algorithm is quite difficult to find similar
groups that are also commuters. If we increase the privacy level to higher
values (i.e., k = 50 and k = 100, which are quite high thresholds), we can see
that all the classes apart from residents are mainly classified as visitors.
However, it is worth to notice that the increase in the privacy level does not
determine a decay in the quality of the residents’ classification. This result is due
to the fact that these users are individuals with quite equally distributed calls
in the period, so our mitigation strategy succeeds in maintaining this variety.
This is a quite remarkable result because it can enable the development of
other analytical tools able for example to discover fictitious residences: this is
a notorious problem in Italy, where many people declare fictitious residences in
order to avoid payment of taxes.
Visitors are quite correctly labeled, too. However, this set of users includes a
quite large number of dynamic residents. This could be due to the fact that
dynamic residents call prevalently during the weekends and evenings, so it is very
likely that they have an ICP quite similar to a visitor, e.g., a tourist. For the
same reason, dynamic residents are very often misclassified as visitors. Finally,
commuters are often classified as visitors. Once again, it is quite straightforward
to establish that these two categories can have quite similar profiles, at least in
a time window of one month, like in our case.
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It is worth noting that these results are referred to the general situation, i.e., an-
alyzing ICPs without dividing them by their municipalities. We chose to report
only the total situation, i.e., a summarization of all the municipalities because
our experiments show that the population density of the municipalities does
not affect the general structure of matrices too much. Indeed, all the confusion
matrices related to the same privacy threshold but to different municipalities
show the same behavior.

(a) k = 10 (b) k = 20

(c) k = 50 (d) k = 100

Figure 6: Confusion matrices obtained using PRIMULE, varying the privacy protection pa-
rameter from k=10 to k=100, respectively the lowest and highest privacy thresholds we tested.

In Figure 7, we report the confusion matrices of the Sociometer applied to
the differentially private data. Here, for ϵ = 1, 2, 3 (Figure 7 (a), (b) and (c),
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(a) ϵ = 1 (b) ϵ = 2

(c) ϵ = 3 (d) ϵ = 10

Figure 7: Confusion matrices obtained using the differential privacy approach, varying the
privacy protection from ϵ = 1 to ϵ = 10, respectively the highest and the lowest privacy
thresholds we tested.

respectively) we observe how the almost totality of individuals are labeled as
residents. This is due to the fact that introducing noise for each cell, the 0s tend
to disappear, and thus, all the ICPs become quite dense, with call activities dis-
tributed in the whole period, i.e., they correspond to residents. This is a direct
consequence of the general solution offered by differential privacy approaches:
the strong point is that they can work with low adjustment to several scenarios;
the weakness is that they are not suited for a specific case, thus they cannot
take into consideration any particular properties regarding the data (ICPs) or
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the service (the Sociometer) during the data transformation.
If we increase ϵ to 10, we have a different situation: residents are well preserved,
but the other actual classes are split among the different labels. However, even
using a very big ϵ, we obtain values that are worse than the one obtained using
PRIMULE, since visitors are not well predicted either.

In Figure 8, we report the f-score obtained with PRIMULE (Figure 8 (a)) and
with the differential privacy approach (Figure 8 (b)), showing the distribution of
values for all the municipalities under analysis. We observe that the f-score for
both passing by individuals and commuters is very low in the median. However,
for the remaining classes, using PRIMULE we obtain quite sparse results, but
the f-score medians are around 0.5 for visitors, around 0.7 for residents and
above 0.9 for dynamic residents. On the contrary, using the differential privacy
strategy, values are more stable but always below 0.5 for all categories.

(a) PRIMULE f-score (k = 20) (b) Differential privacy f-score (ϵ = 10)

Figure 8: f-score comparison.

Quantification Evaluation. The quantification task [47] aims to accurately esti-
mate the number of positive cases (or class distribution) in a test set, using a
training set that may have a substantially different distribution. Figure 9 shows
the presences in any user category measured after applying our method with
k = 10 and k = 100, compared with those computed after applying the Differ-
ential Privacy approach with ϵ = 1. Once again, our ground truth is defined
as the stock of presences observed by the Sociometer technique applied to the
original data. Here, we prefer to show the results associated to actual munici-
palities (instead of a summarization), because we want to show the real amount
of individuals in each category, instead of the percentage, in order to provide a
more accurate picture of the real situation. Moreover, the quantification results
present a greater variability among the cities. For the sake of simplicity, the
figure refers to four cities of different sizes, which are quite representative of our
findings. In order to perform the comparison using only one plot per munici-
pality, we decided to limit the shown results concerning the chosen parameters.
Indeed, we report two instances of PRIMULE, in order to investigate its out-
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come better, and only one case of the differentially private approach. In this
latter case, in order to be as fair as possible, we choose to display the greater ϵ,
which is worse for the privacy perspective but it is the better in terms of utility.

Our methodology provides a good estimation of the individual presences for
the resident, dynamic resident and passing by categories.We obtain an over-
estimation of visitors and completely destroys the information regarding the
commuter. This behavior is generally present in all four cities albeit with a
different impact. In the specific cases of Pisa and Vecchiano, many passing bys
are classified as visitors. This outcome is due to the fact that ICPs belonging to
these two categories are very similar since their correspondent individuals are
present only a few times. However, it is important to point out that if we would
join visitors and passing by users into a single category, the quantification would
give quite accurate results in all the municipalities.

On the other hand, it is immediately evident that the differential privacy
technique tends to turn a large majority of users into residents, even if we are
reporting results using a high ϵ parameter. This result has already been observed
in Figure 7 and in the description of the general confusion matrix. The same
considerations about the reason of this overestimation hold.

8. Conclusion

In this paper, we have studied the problem of guaranteeing privacy protec-
tion for individual user profiles, which describe the call activity registered by
mobile phones. Our mitigation strategy, called PRIMULE, provides privacy pro-
tection by making similar profiles indistinguishable to eliminate possible risky
cases. The proposed approach relies on the privacy risk assessment framework
PRUDEnce [1] for the identification of risky profiles. PRIMULE is particularly
tailored to individual call profiles, which are the building blocks of the Sociome-
ter [2]. In the definition of the mitigation strategy, we took into consideration
how the Sociometer works for trying to maintain some properties in the pro-
files useful for the quality of this service. However, we observe that PRIMULE
may be applied to mitigate the privacy risk of any set of profiles represented by
numerical matrices.

After proving the theoretical privacy protection provided by PRIMULE, we
have also demonstrated its effectiveness by a wide set of experiments on CDR
data covering the territory of Tuscany. The results showed that the quality
of the profiles is good in terms of both classification and quantification perfor-
mance for some important categories of city users. In particular, the private
version of profiles enables a good quantification especially of residents, while in
terms of classification the Sociometer is able to get a good performance also for
visitors. Experiments also showed a high similarity between original and private
ICPs, suggesting that we could go a step further the Sociometer goal, trying to
conceive new services that need a similar kind of data.

In each experiment, we also compared PRIMULE against a method based
on differential privacy [9]. Our results showed that, in general, PRIMULE
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Figure 9: Quantification, in four different municipalities, of the five categories labeled by the
Sociometer applied to the original ICPs, to the ICPs returned by our mitigation approach
(varying the anonymity threshold k) and to the differentially private ICPs. Florence (a) and
Pisa (b) are quite large cities (their mobile users are around 350K and 180K, respectively),
while Collesalvetti (c) and Vecchiano (d) are small towns (around 44K and 30K callers).

outperforms the differential privacy approach since the latter tends to transform
any user profile into profiles representing residents.

As future work, we can try both to consider different attacks and to improve
the ad hoc mitigation strategy. As an example, we could extend the background
knowledge, and thus the attacks, by considering more than one municipality at
the same time. Regarding the mitigation strategy, we could evaluate the nearest
profiles with other distance functions, such as cosine similarity, gravity model or
even a distance tailored to the service. Lastly, we could consider distance matrix
approximation methods in order to reduce the impact on the computational time
of the distance between groups.
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