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Machine learning inverse problem for topological
photonics
Laura Pilozzi 1, Francis A. Farrelly1, Giulia Marcucci 1,2 & Claudio Conti1,2

Topology opens many new horizons for photonics, from integrated optics to lasers. The

complexity of large-scale devices asks for an effective solution of the inverse problem: how

best to engineer the topology for a specific application? We introduce a machine-learning

approach applicable in general to numerous topological problems. As a toy model, we train a

neural network with the Aubry–Andre–Harper band structure model and then adopt the

network for solving the inverse problem. Our application is able to identify the parameters of

a complex topological insulator in order to obtain protected edge states at target frequencies.

One challenging aspect is handling the multivalued branches of the direct problem and

discarding unphysical solutions. We overcome this problem by adopting a self-consistent

method to only select physically relevant solutions. We demonstrate our technique in a

realistic design and by resorting to the widely available open-source TensorFlow library.
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The rapidly growing interest in topological photonics1,2 is
leading to the design of complex structures for many
applications of optical topological insulators3. One leading

goal of topological photonics is photon transport protected from
unwanted random scattering. This is achieved by realizing ana-
logs of the quantum Hall effect4–6 through magnetic-like
Hamiltonians in photonic systems7. In the optical domain,
topological insulators8 have been implemented in modulated
honeycomb lattices7, in arrays of coupled optical-ring resona-
tors9, and optical quantum walks10. Geometry-independent
topological structures have been proposed to obtain non-
reciprocal single mode lasing11–14 as well as systems with
balanced gain and loss for parity-time symmetric structures with
topological order15,16. Emulations of four-dimensional (4D)
physics have also been reported17,18. By using one-dimensional
(1D) Harper modulations, it is possible to simulate two-
dimensional (2D) topological systems. Similarly, by 2D topolo-
gical systems, one can simulate 4D ones, as recently investigated
in refs.17,18.

One challenge in this field is to find an effective methodology
for the inverse problem in which the target optical properties
result from topological characteristics. Although various com-
putational techniques are available, these require specific imple-
mentations tailored to the task at hand. Machine learning
(ML)19–21 has recently been proposed as an encompassing
technology for dealing with greatly differing problems through a
unified approach. ML techniques have shown a remarkable
growth in sophistication and application scope in multiple
fields22–24; ML offers exciting perspectives in topological photo-
nics. ML is applied in two main classes of problems: (i) classifi-
cation for categorizing information and (ii) regression to predict
continuous values, both typically performed by supervised
training. Unlike parametric regression—in which a best fit of the
data is determined on the basis of a specific function—ML
regression employs a neural network (NN) emulating the beha-
vior of the data on which it has been trained: “the NN learns the
model”.

In this paper, we employ ML regression for solving the inverse
problem in topological photonics. We apply advanced ML tech-
niques to design photonic topological insulators enabling inno-
vative applications through custom tailoring of desired optical
parameters. In our approach, we introduce a twist in order to
ensure that only physically possible solutions are found. This
twist is based on a self-consistent cycle in which a tentative
solution obtained from the inverse problem NN is run through
the direct problem NN in order to ensure that the solution
obtained is indeed viable. This has the added benefit of checking
that multivalued degeneracy has been effectively removed.

Results
We consider one of the simplest structures that support nontrivial
topological properties. In 1D systems, synthetic magnetic fields
occur by lattice modulation25 of the optical structure. In the
Aubry–Andre–Harper (AAH) model26,27, identical sites—reso-
nators, two-level atoms, waveguides, etc.—are centered at posi-
tions zn ¼ do nþ ηδHn

� �
, with n an integer label, do the primary

lattice period, η the modulation strength, and δHn ¼
cos 2πβnþ ϕð Þ the Harper modulation27. The parameter β is the
frequency of the Harper modulation. Together, β and the phase
shift ϕ furnish the topological properties by a “2D ancestor”
mapping28. The 2D ancestor is characterized by the dependence
of the dielectric function on the coordinate z and on the para-
meter ϕ, which acts as a periodic artificial coordinate. Hence, the
phase ϕ can be treated as a wave vector in a fictitious auxiliary
direction28. For β= p/q with p > 0 and q > 0 integers, the lattice

displays two commensurate periods with q sites zn in the unit-cell.
Properly chosen parameters give rise to nontrivial topological
phases with protected states at the border of the structure. These
“edge-states” are hallmarks of topological insulators. The phase ϕ
tunes edge-state eigenfrequency in the photonic band-gaps.

Our photonic topological insulator is an array of layers A of
normalized thickness ξ= LA/do, centered in zn, in an homo-
geneous bulk of material B. This kind of structure can be effec-
tively modeled by the transfer matrix technique16,29, as reported
in Fig. 1a. In this figure A0 and An are the initial and final
amplitudes of the right-traveling waves; while B0 and Bn are their
equivalent for the left-traveling wave amplitudes. As detailed in
Methods, we obtain the transfer matrix for the single period T(1)

(ω, ϕ, ξ) with elements Tð1Þ
11 , T

ð1Þ
12 , T

ð1Þ
21 , and Tð1Þ

22 . Figure 1a shows
the final wave amplitudes An, Bn by the n-fold repeated action of
T(1)(ω, ϕ, ξ) on A0, B0. The dielectric constant profile - for the
case β= 1/3 is schematically illustrated in Fig. 1b.

For η= 0, we have a periodical unmodulated structure with
frequency bandgaps labeled by an integer i. For η ≠ 0, each gap of
the unmodulated structure splits into q gaps, each one labeled by
indices (i, j) (j= 1, …, q)30. This splitting is shown in Fig. 1c for
β= 1/3 with respect to the variable χ= ϕ+ π(2β− 1)/2.

As detailed in Methods and illustrated in Fig. 1d, enforcing
boundary conditions at the left edge31,32 and defining the func-
tion Q(ω, ϕ, ξ) enables one to establish the presence of edge states
corresponding to poles ωt of the reflection coefficient. However,
the function ωt= ω(χ, ξ) cannot be analytically inverted to
express the geometrical parameters χ and ξ in terms of the vari-
able ωt. Exploiting ML techniques, we solve this inverse problem
and design topological insulators with target edge modes. The
inverse problem in artificial NN theory—and therefore in ML—is
widely discussed in numerical modeling, engineering, and other
fields33–37. Regression in ML optimizes an NN so that a given
vector input (Rn) will result in a scalar (R) output, emulating the
behavior of the training data. A regressive NN is a configuration
of computational layers such that a specific set of input nodes I is
connected to a single output node, through a configurable set of
Nh hidden layers each containing ni nodes hij, where i= 1, …. Nh

and j= 1, …. ni. Examples of such regressive NNs are shown in
Fig. 2a, b. A generic node k+ 1, j, shown in Fig. 2c, receiving as
inputs hki, with i= 1, …. nk, yields on output

hkþ 1j ¼ g
P

l wkþ 1jklhkl þ bkþ 1j

� �
, with g(x) being a nonlinear

activation function, wk + 1jkl the weight of hkl on hk+1j with a bias
term bk + 1j. Following accepted practice, our activation function
is g(x)= tanh(x).

Optimization of the NN is performed by minimizing a cost
function by a gradient descent method that updates weights and
biases. In the initial state, weights wijkl are selected from a trun-
cated normal and biases are set to zero. Training applies this
procedure to a dataset randomly split into two separate classes: (i)
an actual training set and (ii) a validation set. The network is
iteratively updated until the error on the validating dataset con-
verges to a given rate.

The inverse topological problem at hand is to obtain the
desired optical behavior: a target edge-state at frequency ωt, which
is an input to the design (Fig. 2a). ML techniques achieve this
result by modeling the multidimensional nonlinear relationships
among all the structure parameters ωt, χ, β, ϵA, ϵB, and ξ. In our
specific case, the dataset fixes ϵA, ϵB, β at the values ϵA ¼ 9,
ϵB ¼ 4 and β= 1/3.

First, we generate a dataset to train our NNs by numerically
computing the complex roots of Tð1Þ

12 ðω; χ; ξÞ covering the region
of interest for parameters χ and ξ. The real part of these roots,
shown in Fig. 3a, represents the edge states dispersion. Interest-
ingly the same dataset can be used both for the inverse and direct
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NN training phase, by suitably selecting the features and target
fields. The inverse problem NN (Fig. 2a) targets a value χ= χo, a
topological parameter on the basis of features including ωt. For a
direct problem (Fig. 2b), the mode frequency ωt would be the
target of a network whose features include the topological para-
meters (χ, ξ).

The dataset contains various branches since there exist an edge
state for each band gap (i, j) with j ≠ 3, as results by Eq. (2) in
Methods. Due to the folding of the Brillouin zones, the edge state
frequency ω(χ, ξ) is then a multi-mode function, which we unfold
by introducing a label m±

ij for each mode; here i= 1,…∞ and j=
1, …q, while the sign ± indicates modes in the positive/negative χ
domain. In Fig. 3a, data points with different ij values are iden-
tified with different colors, and solving the inverse problem is a
matter of determining when these surfaces intercept a specific
target value of the ω axis. Three outcomes are possible: a single
value for χ and ξ when a monotonic mode surface is intercepted,
no solution for values of ω laying between surfaces, and multiple
solutions in other cases. This implies that the feature set (χ, ξ,
m±

ij ) is insufficient. To tackle this problem, we take into account
the trend s±= sgn(dωt/dχ) as an additional variable. The NNs
with this enlarged feature set are illustrated in Fig. 2a, b.

In the terminology used in ML, the mode index m±
ij and trend

s± labels are "categorical features'' and lead to two possible courses

of action for the actual implementation of the NNs used in our
problem. One in which a single NN is constructed in a hybrid
feature space with both continuous variables (real valued ξ's and
χ's) and categorical features, as illustrated in Fig. 2b. Another
course is to adopt multiple independent NNs, one NN for each
mode and each trend.

The single NN approach is hindered by the presence of dis-
continuities in the features domain: with respect to the ω variable
they are a consequence of the fact that edge states fall within the
bulk energy gaps; with respect to the χ variable these arise from
considering only the left-edge states. Figure 3a clarifies this aspect.
Due to these discontinuities, we have chosen to use multiple
independent NNs.

Moreover, when considering the solution provided by the
inverse NNs, we identify a specific problem in the use of ML as
they may furnish solutions that are not physical. An example of
this issue is given in Fig. 3b where—for a fixed band and a fixed
ξ—the curve representing ω as a function of χ is shown together
with its inverse (Fig. 3c). Inverting the function ω(χ), we consider
an interval of values for ω spanning from its minimum ωmin to
the maximum ωmax, but for the two branches of the inverse
function χ(ω)—identified by colors in Fig. 3c—the range of ω is
different. For example, for the red branch, the maximal value of ω
is ω′max<ωmax. When the target frequency is outside of this range,
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the NN produces an output outside of the physically acceptable
range for χ (see details in Supplementary Information: Supple-
mentary Figs. 1–3). The inverse NN can furnish spurious non-
physical solutions.

Our approach tackles this issue by a two-step self-consistent
cycle, detailed in the Supplementary Information (Supplementary
Fig. 4): (i) in the first stage, a desired input ωt forms part of the
feature set ωt ;m

±
ij ; s±

� �
resulting in the output χo of the inverse

NN; this set is used as input χo;m
±
ij ; s±

� �
to a direct problem

network; (ii) in the second stage, the target of this direct network
ωsc is compared with the input value ωt and χo is retained as a
solution of the inverse model if ωsc � ωtj j<δ with δ a user-defined
small positive quantity. The value of δ affects the model accuracy
(see Supplementary Fig. 5 and related comments). A reasonable
choice can be δ � Emax

j (with j= I,D), i.e., the maximum value of
the squared error functions for the inverse (I) and the direct (D)
networks.

The training dataset was generated with 11 sets of ξ ranging
from 0.10 to 0.20 in steps of 0.01 and for each set χ spans −π to π
with 997 equally spaced values. Results based on using an array of
NNs each composed of 5 hidden layer of 131 nodes are shown in
Fig. 4 together with its training set (colored lines). The model was
developed using 80% of the dataset randomly chosen, the rest
being used for validation and comprising of 250,000 steps.
Training each model takes about 8 min on our hardware using a
single Nvidia GP-GPU Tesla K20c. The purple dots in Fig. 4 are
based on 100 values of ξ while exploring the ω domain with a
resolution of 10−5. Each array element is trained for a specific
value of the categorical features and pertains to either the positive
or the negative χ domain.

The results of applying the direct and inverse NNs, portrayed
in Fig. 4a, b, respectively, show that the proposed method gives
accurate solutions matching the original data in the whole range
of interest. Figure 4 clearly shows that our ML strategy solves the
inverse topological design problem.

Discussion
The inverse problem in topological design is solved by a super-
vised ML regression technique. We employ a self-consistent
procedure to rule out unphysical solutions enabling tailored
engineering of protected edge-states. We successfully tackle
multivalued functions introducing categorical features, as the
trend, which tags training data according to their gradient’s sign.
Discontinuous domains are effectively treated by adopting mul-
tiple independent NNs each one specific to its domain. Our
general method can be extensively applied—well beyond the
example considered in this work—and may also be exploited for

other physical systems in topological science, as polaritonics38,39,
quantum technologies and ultra-cold atoms40,41. The method is
scalable to very complex structures involving hundreds of topo-
logical devices, as those recently considered for large scale syn-
chronization42, and frequency comb generation43, eventually
including non-Hermitian systems44,45. Further applications
include 2D and 3D topological systems11 and quantum sources
and simulations17,18.

Methods
TensorFlow. Tensorflow is Google’s versatile open-source multiplatform dataflow
library capable of efficiently performing ML tasks such as implementing NNs
(https://tensorflow.org). Multidimensional data arrays, referred to as “tensors” are
executed on the basis of stateful dataflow graphs, hence the name TensorFlow. For
our final code implementation, Tensorflow version 1.3 with python API bindings
was used.

The nature of our problem is such that there is a discontinuity in ξ= 0 which
cannot be correctly handled by a single NN bridging this point; this is relevant to
both the inverse and direct cases. Breaking up the dataset into two parts to be used
for two separate NNs is the simplest solution to this problem.

Another interesting aspect is related to the fact that the feature set in our inverse
and direct NNs contain both continuous and discrete variables. The discrete
variables can either be treated as such or handled by constructing multiple NNs
each relative to a specific value of the discrete variable. The trend variable which
has two possible values is one such case as is the mode number. In our code, we
have implemented a flexible system which allows one to decide which discrete
variables are to be included in each NN, the others being broken up into arrays of
NNs one for each value of the variable. Once the bookkeeping issues have been
tackled, this generalized approach allows one to tailor the problem to the given
dataset.

Transfer matrix. Given the stepped and periodic dielectric function of period
D= qdo:

εϕðzÞ ¼
εA zn � LA=2 � z � zn þ LA=2

εB zn þ LA=2 � z � znþ1 � LA=2

�
;

in each layer, the electric field can be represented as the superposition of a left- and
a right-traveling wave. Applying the boundary conditions, the matrices

Mαγ ¼
qγ þ qα
2qγ

1 rαγ
rαγ 1

 !

with α, γ=A or B and rαγ ¼ qγ�qα
qγþqα

, describe the light propagation through the

interfaces, having introduced qα ¼ ðω=cÞ ffiffiffiffiffi
ϵα

p
, while the propagation within each

layer A and B is given by:

TA ¼ eiqAdoξ 0

0 e�iqAdoξ

 !
;

TBn
¼ eiqBdosn 0

0 e�iqBdosn

 ! ;

where sn= [zn+1− zn− LA]/do are the normalized thicknesses of the B layers.
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From these, we obtain the transfer matrix for the single period T(1)(ω), the
matrix connecting the fields in the left side of the elementary cell to the ones in the
right side:

Tð1Þ ¼
Yq�1

i¼0

TBðq�iÞM

with M=MABTAMBA. The quantity ρ ¼ � 1
2TrT

ð1Þðω; ϕ; ξÞ allows one to locate
bulk bands in the regions where ρ21, and gaps where ρ2 > 1. Alternatively, the
amplitude r1ðω;ϕ; ξÞj j2 of the reflection coefficient of the structure28

r1ðω;ϕ; ξÞ ¼ eikðωÞD � Tð1Þ
11 ðω; ϕ; ξÞ

Tð1Þ
12 ðω;ϕ; ξÞ

; ð1Þ

where eik(ω)D is an eigenvalue of the matrix T(1)(ω, ϕ, ξ), can also be used to locate
the gaps of the system.

Band structure of the unmodulated system. The unmodulated structure (η= 0)
features stopbands at ~ω0 = ω0d0=c= π=

ffiffiffiffiffi
εA

p þ ð1� ξÞ ffiffiffiffiffi
εB

p� �
, where ξ= LA/do is

the characteristic size ratio.

Q(ω, ϕ, ξ) function. To determine the existence of the edge states, one needs to
specify the boundary conditions on each edge of the structure. For the left edge,
this condition is given by:

0 ¼ qb þ qað ÞA1 þ qb � qað ÞB1;

where A1 and B1 are the amplitudes of the right and left-traveling waves in the first
layer of the structure. This condition can be reformulated as

det b1; a1ð Þ ¼ 0

with b1= ((qa− qb), (qa+ qb))T and a1= (A1, B1)T, and together with the eigen-

values λ± and eigenvectors v± ¼ Tð1Þ
12 ; λ± � Tð1Þ

11

� �
of the transfer matrix T(1), it is

possible to determine the existence and dispersion of edge states.
Following refs.31,32, it can be in fact shown that a proportionality relation exists

between the boundary vector b1 and the eigenvectors v± of the transfer matrix. So
the condition for the existence of the edge states is given by det(b1, v±)= 0 in a
gap where λ±j j<1. This entails searching for the zeros of the function Fl,±=

qA � qBð Þ λ ± � Tð1Þ
11

� �
− Tð1Þ

12 qA þ qBð Þ.
Specifically, the real part of Fl,±= 0 yields the function Q(ω, ϕ, ξ)=

Re Tð1Þ
12 qA þ qBð Þ

n
− qA � qBð Þ Tð1Þ

22 � Tð1Þ
11

� �
=2
o
and, as shown in Fig. 1c, this

implies that edge states exist only in the gaps where |ρ| > 1 and Q(ω, ϕ, ξ) · ρ > 0. At
the same time, edge states cannot exist in gaps where Q(ω, ϕ, ξ) does not change
sign. Moreover, due to a bulk-boundary correspondence46, the number of these
edge modes is equal to the modulus of the associated topological invariant |νij|,
given by the winding number of the reflection coefficient:

νij ¼
1
2πi

Zπ
�π

dχ
∂lnðr1ðω; χÞÞ

∂χ
; ð2Þ

i.e., the extra phase (divided by 2π) of r∞ (ω, χ) when χ varies in the range (−π, π)
with ω in the stop band47.

By relying on the transfer matrix method, our approach can be applied to a
general class of problems and thus makes it suitable for a wide range of systems
beyond our baseline AAH model. Specifically, it can be extended to many physical
systems whose behavior is described by a gapped unitary operator, e.g., photonic
Floquet topological insulators7,48 and photonic topological quantum walks10.
Analogously to the AAH model, the edge states of these systems can be defined
with an equivalent Fl,±(ω, p1, ..pn) function, where (p1, ..pn) are relevant parameters
describing the structure. The imaginary component of Fl,±(ω, p1, ..pn)= 0 furnishes
the dispersion relations of the edge modes and hence the training dataset of our ML
inverse problem.

Code availability. The code developed for the present study is available from the
corresponding author on reasonable request.

Data availability
The datasets generated during the current study are available from the corresponding
author on reasonable request.
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