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ABSTRACT
The accuracy of many classification algorithms is known to
suffer when the data are imbalanced (i.e., when the distribu-
tion of the examples across the classes is severely skewed).
Many applications of binary text classification are of this
type, with the positive examples of the class of interest far
outnumbered by the negative examples. Oversampling (i.e.,
generating synthetic training examples of the minority class)
is an often used strategy to counter this problem. We present
a new oversampling method specifically designed for classi-
fying data (such as text) for which the distributional hy-
pothesis holds, according to which the meaning of a feature
is somehow determined by its distribution in large corpora
of data. Our Distributional Random Oversampling method
generates new random minority-class synthetic documents
by exploiting the distributional properties of the terms in
the collection. We discuss results we have obtained on the
Reuters-21578, OHSUMED-S, and RCV1-v2 datasets.

1. INTRODUCTION
Many applications of binary text classification exhibit se-
vere data imbalance, i.e., are characterized by sets of data
in which the examples of one class are far outnumbered by
the examples of the other. Such cases are especially frequent
in information retrieval and related tasks, where the binary
distinction to be captured is between a class of interest and
“the rest”, i.e., between the (typically few) documents rele-
vant to a certain concept (e.g., as expressed by a query) and
the (typically many) documents unrelated to it. This phe-
nomenon is exacerbated in applications of multi-label multi-
class (MLMC) text classification, i.e., applications where,
given a set C = {c1, ..., c|C|} of classes, each document may

be labelled by several classes at the same time1. In these
applications the average prevalence (i.e., relative frequency)
of a class is low, since C typically exhibits a power-law be-
haviour, with few classes having high prevalence and very

1MLMC classification is typically solved by training |C| in-
dependent binary classifiers, one for each class of interest.
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many classes having low or very low prevalence.
Severe imbalance is known to degrade the performance of

a number of inductive learning algorithms, such as decision
trees, neural networks, or support vector machines [8]. The
main approaches previously proposed for solving this prob-
lem may be grouped into the following classes: [7, 9]: (i)
data-level approaches, which perform a random resampling
of the dataset in order to rebalance class prevalences (ii) al-
gorithmic approaches, which focus on adapting traditional
classification methods to scenarios where data are imbal-
anced; and (iii) cost-sensitive learning approaches, that com-
bine the data-level and algorithmic approaches by imposing
a higher cost on the misclassification of examples from the
minority class. We here focus on approaches of type (i), most
of which rely on oversampling the minority class (i.e., adding
new minority-class training examples, typically duplicates or
quasi-duplicates of the existing ones) and/or undersampling
the majority class (i.e., removing some majority-class exam-
ples from the training set), with the goal of rebalancing the
class distribution in the training set.

We propose a novel method based on oversampling the
minority class, and specifically designed to deal with types
of data (such as text) where the distributional hypothesis
(according to which the meaning of a feature is somehow
determined by its distribution in large corpora of data – see
[6]) may be assumed to hold. Our method, dubbed Distri-
butional Random Oversampling (DRO), consists of extend-
ing the standard vector representation (based on the bag-
of-words model) with random latent dimensions based on
distributional properties of the observed features. We as-
sign to each document a discrete probabilistic function that
operates in a latent space and is queried as many times as
desired in order to oversample a given document (i.e., to
produce distributionally similar versions of it). Since this
generative function is based on the distributional hypoth-
esis, the expectation is that the variability introduced in
the newly generated examples reflects semantic properties
of the terms that occur in the document being oversampled.
We present the results of experiments conducted on pop-
ular text classification benchmarks such as Reuters-21578,
OHSUMED-S, and RCV1-v2.

Our method is presented in Section 2; Section 3 discusses
our empirical results, while Section 4 concludes.

2. THE LATENT SPACE OVERSAMPLING
FRAMEWORK

We assume a binary classification context, with classes C =
{c, c}. Let Tr = {d1, . . . , d|Tr|} be a set of training docu-
ments and F = {t1, . . . , t|F |} its vocabulary. We useW|Tr|×|F |



to denote the document-term matrix, where wij ∈ R is the
weight of term tj in document di as computed by a weighting

function. By
#�

d i ∈ R|F | we denote the vectorial represen-
tation of document di.

We present a general framework for oversampling, that we
dub Latent Space Oversampling (LSO); our Distributional
Random Oversampling method will be a specific instantia-
tion of it. In LSO we oversample minority-class documents
by extending the original feature space F with an additional
latent space L. Each new synthetic example ok for a doc-

ument di will be expressed as #�o k = [
#�

d i;
#�v k] ∈ R|F |+|L|,

where
#�

d i ∈ R|F | is the (fixed) observed part in the origi-
nal feature space (i.e., a copy of the i-th row of W ), and
#�v k ∈ R|L| is the variable part in the latent space L, which
is generated by some stochastic function.

The vector expansion involves a two-step process for each
document di, i.e., (i) the estimation of model parameters Θi

for di via a parameter estimation criterion Ψ(W,di), such
that Θi ← Ψ(W,di) is calculated only once for each example
di; and (ii) the generation of the variable part #�v k ← G(Θi),
obtained by means of a generation function G. This func-
tion is called several times for each minority-class example
until the desired level of balance is reached, and exactly once
for each majority-class example, since we neither oversample
nor undersample majority-class examples. The oversampled
matrix is then re-weighted (e.g., in order to bring to bear
updated idf values, and in order to perform correct length
normalization) before training the classifier. Each test docu-
ment dt is also expanded to the enlarged vector space before
being fed to the classifier; the only difference with the expan-
sion process we carry out for training documents is that any
global knowledge involved in the estimation of parameters
Θt comes from the training data.

Different oversampling strategies could thus be defined by
considering different parameter estimation criteria Ψ and
different generation functions G. In the following sections
we first illustrate one possible such strategy, based on proba-
bilistic topic models (Section 2.1); we then present our DRO
method based on the distributional hypothesis (Section 2.2).

2.1 Latent Dirichlet Oversampling
One possible instantiation of the LSO framework is what we
will here call Latent Dirichlet Oversampling (LDO). LDO
relies on Latent Dirichlet Allocation (LDA – [1]), a prob-
abilistic topic model that assumes, in order to define the
model parameters and the generative function, that each
(observed) document in a collection is generated by a mix-
ture of (unobserved) topics. As the weight wij we here take
the raw number of occurrences of term tj in document di.

As the parameter estimation criterion ΨLDO we may choose
any Bayesian inference method (such as Variational Bayes
or Gibbs Sampling). The document-specific model parame-
ters are Θi = [θi;ϕ], where θi is the topic distribution of di
and ϕ is the per-topic word distribution obtained from Tr.

We will choose a generation function GLDO that returns a
vectorial representation of a bag of n words, each of which is
drawn by first choosing a topic zk ∼ Multinomial(θi), and
then choosing a term tj ∼ Multinomial(ϕzk ). We set n =
length(di) (i.e., to the total number of word occurrences in
di) so that the synthetic bag of words will allocate the same
number of term occurrences as the original document (thus
preserving sparsity in the new space). Note that, in this case,
the latent space is mirroring the original feature space, with
a dedicated latent dimension for each term in the vocabulary,

i.e., |L| = |F |. LDO assumes each minority-class document
to be governed by similar topic distributions, causing the
variable part of oversampled documents to exhibit topically
similar patterns.

2.2 Distributional Random Oversampling
We propose Distributional Random Oversampling (DRO), a
different instantiation of LSO. DRO is based on the hypoth-
esis that related documents (such as, e.g., the minority-class
documents) may be expected to contain semantically similar
words, and relies on a direct application of the distributional
hypothesis, by virtue of which the meaning of feature tj is

embedded in column
#�
t Tj ∈ R|Tr| of matrix W . Unlike in

LDO, we here take weight wij to be generated by a real-
valued weighting function such as, e.g., tfidf or BM25.

As the parameter estimation criterion we take a function
ΨDRO that returns Θi = (pi1, . . . , p

i
|Tr|), where pik will be

used as parameters of a multinomial distribution for docu-
ment di. Parameter pik is computed as

pik =

∑
tj∈di

#�
t Tj [k] · wij · s(tj)

|Tr|∑
k=1

∑
tj∈di

#�
t Tj [k] · wij · s(tj)

(1)

i.e., by (i) summing together the k-th components
#�
t Tj [k] of

the (length-normalized) feature vectors
#�
t Tj (i.e., the columns

of the W matrix) corresponding to all unique terms tj ∈ di,
weighted by (a) their relative importance with respect to
the document (the wij component) and by (b) their relative
importance with respect to the classification task (the s(tj)

component)2, and (ii) normalizing to satisfy
∑|Tr|
k=1 p

i
k = 1.

We will choose a generation function GDRO that returns
a vectorial representation of a bag of n (latent) words, each
of which is drawn from lk ∼ Multinomial(Θi). Note that
in this case |L| = |Tr|. Similarly to the case of LDO we
set n = length(di), so that sparsity is preserved in the en-
larged feature space. In contrast to LDO, the multinomial
distribution of DRO is deterministically obtained from the
training collection, thus avoiding the need for computation-
ally expensive statistical inference methods.

Each test document is also expanded to the enlarged vec-
tor space before being fed to the classifier. In this case note
that, in Equation 1,

#�
t Tj – which encodes the distributional

knowledge – and s(tj) are the supervised components, i.e.,
they are obtained from Tr. Instead, wij is computed partly
from the document itself (e.g., the tf component) and partly
from the training set (e.g., the idf component).

In sum, the rationale of our method is to generate syn-
thetic minority-class vectors where the part corresponding
to the latent space is the result of a generative process that
brings to bear the distributional properties of the words con-
tained in the document being oversampled.

3. EXPERIMENTS
As the datasets for our experiments we use Reuters-21578,
OHSUMED-S, and RCV1-v2. All these collections are multi-
label, i.e., each document may be labelled by zero, one, or
several classes at the same time, which gives rise to |C| bi-
nary classification problems, with C the set of classes in the

2In this paper we compute s as the mutual information be-
tween the feature and C = {c, c}.



dataset. For Reuters-215783 we use the standard (“ModApté”)
split, which identifies 9,603 training documents and 3,299
test documents. We restrict our attention to the 115 classes
with at least one positive training example. OHSUMED-S
[4] consists instead of 12,358 training and 3,652 test MED-
LINE textual records from 1987 to 1991, classified according
to 97 MeSH index terms. RCV1-v24 comprises 804,414 news
stories generated by Reuters from Aug 20, 1996, to Aug 19,
1997. In our experiments we use the entire training set, con-
taining all 23,149 news stories written in Aug 1996; for the
test set we pick the 60,074 news stories written during Sep
1996. We restrict our attention to the 101 classes with at
least one positive training example.

As the evaluation measures we use microaveraged F1 (Fµ1 )
and macroaveraged F1 (FM1 ).

We compare the performance of LDO5 and DRO with
the following baselines: (i) Random Oversampling (RO),
a method that performs oversampling by simply duplicat-
ing random minority-class examples; (ii) Synthetic Minor-
ity Oversampling Technique (SMOTE – [2]), a method that
generates new synthetic minority-class examples as convex
linear combinations of the document di being sampled and a
document randomly picked among the k minority-class near-
est neighbours of di (typically using k = 5); (iii) Borderline-
SMOTE (BSMOTE – [5]), a more recent version of SMOTE
that only oversamples those borderline minority-class ex-
amples that would be misclassified as negatives by a k-NN
classifier; (iv) DECOM [3], a probabilistic topic model that
assumes all documents belonging to the same class to follow
the same topic distribution that, once determined, is used to
oversample minority-class examples following the LDA gen-
eration procedure6; (v) a bag-of-words model (BoW) where
no oversampling is performed. For LDA-based methods we
follow the related literature and set the number of topics
to 30; in order to favour convergence we set the number of
iterations to 3,000 and perform 10 passes.

As the learner of our experiments we adopt linear-kernel
SVMs (in the popular SVM-light implementation7); in all
our experiments we use the default SVM-light parameters.
All methods are fed with the same preprocessed version of
the datasets where, for each distinct binary decision prob-
lem, the top 10% most informative words have been selected,
using mutual information as the selection function and tfidf
as the weighting function. We perform oversampling of the
minority class until a desired prevalence α for the minority-
class is reached; we let α range on {0.05, 0.10, 0.15, 0.20}.
We do not consider undersampling in this paper, i.e., all
negative examples are picked exactly once. The results we
present are all averages across 5 random trials we have run
for each setting. For each dataset we partition the classes
into (i) HighPrevalence (HP), the classes with a prevalence
higher than 0.050; (ii) LowPrevalence (LP), the classes with
a prevalence in the range [0.015, 0.050]; and (iii) VeryLow-
Prevalence (VLP), the classes with a prevalence smaller than
0.015. The reason for partitioning the classes according to

3http://bit.ly/1F8AFcO
4http://1.usa.gov/1mp7RGr
5For LDO we used the Gensim implementation of LDA
(see http://bit.ly/1Rl7pFV) which also allows estimating
the document-topic distribution of test examples.
6For this method, as suggested in [3], we used the MATLAB
implementation of Gibbs sampling available at http://bit.
ly/1Rl7DNl
7http://svmlight.joachims.org/

Dataset Training Test Features Classes HP LP VLP
Reuters-21578 9,603 3,299 23,563 115 3 50 62
Ohsumed-S 12,358 3,652 26,382 97 9 60 28
RCV1-v2 23,149 60,074 37,211 101 16 73 12

Table 1: Details on the 3 datasets used.
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HP

.05 .907 .907 .907 .907 .907 .907 .907

.10 .907 .907 .911 .904 .912 .909 .897

.15 .907 .910 .911 .902 .911 .908 .905

.20 .907 .909 .911 .899 .911 .911 .899

LP

.05 .633 .700 .754 .678 .650 .706 .761

.10 .633 .682 .718 .678 .639 .690 .766†

.15 .633 .662 .684 .678 .629 .679 .759†

.20 .633 .648 .654 .678 .629 .664 .764†

VLP

.05 .426 .485 .478 .426 .441 .484 .568†

.10 .426 .456 .416 .426 .418 .482 .568†

.15 .426 .473 .395 .426 .398 .476 .567†

.20 .426 .473 .387 .426 .398 .474 .570†

F
µ 1

HP

.05 .954 .954 .954 .954 .954 .954 .954

.10 .954 .952 .953 .952 .954 .953 .950

.15 .954 .953 .953 .951 .953 .952 .951

.20 .954 .953 .953 .950 .955 .952 .947

LP

.05 .767 .788 .809 .782 .773 .790 .810

.10 .767 .778 .784 .783 .762 .786 .812†

.15 .767 .770 .756 .783 .750 .777 .807†

.20 .767 .764 .731 .782 .738 .774 .805†

VLP

.05 .132 .319 .428 .212 .315 .310 .509†

.10 .132 .272 .357 .212 .280 .308 .515†

.15 .132 .269 .302 .212 .250 .289 .519†

.20 .132 .269 .277 .212 .240 .287 .507†

Table 2: Results on Reuters-21578.

prevalence is to allow the results to provide insights as to
which classes benefit from oversampling and which do not.

Table 1 shows some details of the document collections
used in the experiments. Tables 2 to 4 report the results
of our experiments in terms of FM1 and Fµ1 , for Reuters-
21578, OHSUMED-S, and RCV1-v2, respectively. Results
are reported at different levels α of oversampling; we use
boldface to highlight the best performing method, while
symbol “†” indicates that the method outperforms all oth-
ers in a statistically significant sense8. Note that, for each
block of 4 rows identifying a certain set of classes (HP, LP,
VLP), the results for BoW are always the same; this is ob-
vious since there is no oversampling in BoW, which thus
does not depend on the value of α. Note also that, in all
three tables, the first row of the HP results for α = 0.05
always contains identical values, since the HP classes have
a prevalence ≥ 0.05.

Overall, the results of these experiments indicate that
DRO is superior to the other six methods presented (in-
cluding LDO). In the low-prevalence groups (LP and VLP)
DRO is superior in most cases, across the different datasets
and the different degrees α of oversampling, and especially
so in terms of FM1 ; when DRO is not superior, the differ-
ences in performance with the top-performing method are
fairly small. This superiority is more pronounced for the
VLP classes, where DRO obtained 23 out of 24 best results,
almost always with very large margins. In the HP classes,
instead, our results do not reveal any clear winner, since the
best results are haphazardly distributed among all of the

8Two-tailed t-test on paired examples at 0.05 confidence
level.
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HP

.05 .753 .753 .753 .753 .753 .753 .753

.10 .753 .758 .756 .754 .755 .757 .752

.15 .753 .764 .767 .763 .760 .765 .753

.20 .753 .769 .771 .767 .763 .769 .756

LP

.05 .479 .557 .603 .571 .538 .569 .588

.10 .479 .552 .578 .570 .532 .565 .588†

.15 .479 .526 .550 .569 .525 .555 .578

.20 .479 .514 .524 .568 .523 .542 .576

VLP

.05 .354 .385 .455 .458 .354 .396 .451

.10 .354 .372 .433 .448 .352 .378 .469

.15 .354 .363 .440 .448 .330 .373 .455

.20 .354 .364 .427 .448 .314 .376 .476

F
µ 1

HP

.05 .801 .801 .801 .801 .801 .801 .801

.10 .801 .803 .803 .802 .802 .803 .798

.15 .801 .804 .806 .805 .804 .804 .795

.20 .801 .805 .807 .806 .805 .805 .795

LP

.05 .616 .662 .672 .666 .647 .668 .647

.10 .616 .657 .654 .669 .644 .665 .640

.15 .616 .645 .625 .666† .640 .658 .626

.20 .616 .642 .595 .666† .633 .652 .620

VLP

.05 .282 .299 .518 .437 .365 .313 .552†

.10 .282 .241 .484 .416 .328 .262 .570†

.15 .282 .198 .446 .416 .311 .243 .553†

.20 .282 .200 .415 .416 .291 .251 .553†

Table 3: Results on OHSUMED-S.

baselines. Moreover, the best system is not substantially
better to BoW in the vast majority of cases, which makes
the idea of oversampling such classes questionable.

In sum, the results seem to indicate that the smaller the
prevalence of the minority class is, the higher is the gain
that can be obtained due to the use of DRO. This is an ap-
pealing feature for an oversampling method. We attribute
this behaviour to DRO’s distributional nature, which en-
ables the information of the entire collection to contribute
in the generation of each synthetic example (whereas RO
and SMOTE-based methods are limited to local informa-
tion provided by one or two examples, respectively). This
could be advantageous for ill-defined classes (as those be-
longing to LP and VLP). It may instead introduce noise,
or even some redundancy, for well-defined ones (i.e., those
in HP); this suggests that the best policy may be that of
applying DRO to low- or very-low prevalence classes only,
while leaving high-prevalence classes untouched.

4. CONCLUSIONS
We have presented a new oversampling method for imbal-
anced text classification, based on the idea of assigning a
probabilistic generative function to each minority-class doc-
ument in the training set, a function that can be iteratively
queried until the desired level of balance is reached. This
probabilistic function is built upon distributional represen-
tations of the words contained in the document being over-
sampled, which allows the model to introduce some random
variability in the new examples while preserving the under-
lying semantic properties motivated by the distributional
hypothesis.
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HP

.05 .843 .843 .843 .843 .843 .843 .843

.10 .843 .848 .848 .846 .845 .847 .839

.15 .843 .848 .848 .848 .845 .847 .838

.20 .843 .846 .845 .848† .844 .846 .838

LP

.05 .489 .600 .616 .573 .577 .613 .617

.10 .489 .602 .603 .582 .587 .619 .631†

.15 .489 .597 .584 .583 .591 .617 .632†

.20 .489 .594 .563 .584 .593 .614 .629†

VLP

.05 .048 .249 .257 .148 .263 .269 .295

.10 .048 .237 .210 .148 .271 .261 .294†

.15 .048 .228 .186 .148 .265 .252 .297†

.20 .048 .220 .172 .148 .267 .245 .295†

F
µ 1

HP

.05 .877 .877 .877 .877 .877 .877 .877

.10 .877 .878 .878 .878 .877 .877 .873

.15 .877 .877 .877 .878 .877 .876 .871

.20 .877 .876 .875 .878 .876 .875 .869

LP

.05 .638 .676 .674 .666 .663 .677 .664

.10 .638 .685 .672 .678 .673 .691† .683

.15 .638 .680 .656 .680 .675 .688† .680

.20 .638 .676 .637 .680 .675 .683† .674

VLP

.05 .106 .408 .408 .268 .426 .446 .489†

.10 .106 .391 .343 .268 .431 .437 .489†

.15 .106 .379 .303 .268 .429 .424 .497†

.20 .106 .367 .283 .268 .430 .415 .493†

Table 4: Results on RCV1-v2.
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