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Abstract

We propose a way to model the underdetection of infected and removed individuals in a com-

partmental model for estimating the COVID-19 epidemic. The proposed approach is demonstrated

on a stochastic SIR model, specified as a system of stochastic differential equations, to analyse data

from the Italian COVID-19 epidemic. We find that a correct assessment of the amount of underde-

tection is important to obtain reliable estimates of the critical model parameters. The adaptation

of the model in each time interval between relevant government decrees implementing contagion

mitigation measures provides short-term predictions and a continuously updated assessment of the

basic reproduction number.
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1 Introduction

In early 2020 the outbreak of SARS-CoV-2 started in Wuhan, China and spread to several other

countries, causing the respiratory disease named COVID-19. At the end of January 2020, WHO

(World Health Organisation) declared the outbreak to be a Public Health Emergency of International

Concern, the highest level of alarm ([58]).
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One of the many challenges of the COVID-19 pandemic is the estimation of the fraction of in-

fected people with mild or no symptoms that escape testing and tracing, as it has been estimated

that asymptomatic persons account for approximately 40% to 45% of SARS-CoV-2 infections and

can transmit the virus to others for an extended period ([44]). Therefore, the greater the underde-

tection (or underreporting) rate is, the more difficult it is to understand the real dynamics of the

epidemic. This can affect both government actions and individual behaviour, reducing the adherence

of people to containment measures, for instance, if the epidemic is perceived as less severe than it is

described. There are two main causes of underdetection, namely the specificity of the SARS-CoV-2

virus inducing asymptomatic or mildly symptomatic cases which are hardly monitored or detected in

large populations, and the emergency preparedness of national health systems in making available,

and carrying out, the necessary amount of tests, as recommended by WHO ([59]), to both control the

spread of the pandemic and determine the level of community transmission. Moreover, it has been

estimated that, at the beginning of the epidemic, even the number of symptomatic cases was largely

under-ascertained ([50], [47]). In an epidemiological approach, seroprevalence studies, where the host

immune response to SARS-CoV-2 infection is measured in blood samples as a proxy for previous in-

fections, have been implemented worldwide to enable estimates of the true extent of infection ([11]).

However, these studies are time- and resource-intensive and the resulting estimates can be affected

by a high, often overlooked, uncertainty ([10]). In addition to seroprevalence studies, underreporting

assessments have been carried out, for instance, from the number of reported deaths ([22], [45]) com-

paring the Case Fatality Rate (CFR) to an estimate of the key parameter, Infection Fatality Rate

(IFR) ([52]); from exported cases and air travel volume ([56]); from epidemiological and population

data using deterministic models ([34]); by post-stratification sampling techniques ([2]) or by also us-

ing information on testing and countries characteristics ([35]). Depending on different approaches,

countries and analysis period considered, the estimated fraction of underdetected infections can vary

remarkably ([42]). Underdetection, however, should not only be estimated as a fixed fraction, but

its dynamic nature should also be considered in any modelling approach aiming at understanding

the dynamics of the epidemic and forecasting its short-term development, since the estimation of the

true number of infected (symptomatic, mild and asymptomatic cases) is fundamental to decide the

implementation or lifting of containment measures and their subsequent evaluation.

In this work we propose to couple a stochastic compartmental model for the description of the

dynamics of the transmission of SARS-CoV-2 with an observation equation that relates the actual

numbers of infected and removed to the observed ones. The proposed approach is illustrated on the

Italian data.

Since the onset of the pandemic, the popular SIR model, introduced about ten years after the

1918 influenza pandemic ([33]) has been widely applied. A recent systematic review found that about
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46% of the studies resulting from a search of the keywords related to SARS-CoV-2, and its modelling

and prediction over the time period from 1st January 2020 to 30th November 2020, were based on a

simple compartmental model, namely SIR and SEIR, both as deterministic or stochastic models ([27]).

Moreover, as a parsimonious model able to allowing measurement and forecast of the impact of non-

pharmacological interventions such as social distancing, the SIR model still maintains a primary role

in the analysis of the early phase of COVID-19 outbreak ([5],[13]). Then, we considered a simple SIR

model to exemplify the proposed approach to deal with underdetection in a compartmental model. A

few other approaches have been found in literature. In [12] the initial number of susceptible individuals,

as well as the proportionality factor relating the detected number of positives with the actual (and

unknown) number of infected individuals, were included among the parameters of a SIRD model. A

Poisson model was used in [28] to link the reported numbers of infected and removed to the true

numbers of infected and removed as described by a time-varying SIR. The SIR model has also been

extended by introducing several different compartments ([57]) in an attempt to capture the whole

complexity of the pandemic. Some extended SIR models, in particular, include the compartment

of asymptomatic or some other distinction between detected and undetected infected ([26], [18],[24],

[38]) to take into account underreporting. However, in previous work ([6]) it was shown that, while

the parameters of the SIR model can be uniquely determined from the temporal evolution of the

normalised curve of removed individuals, the same is not true for more complex models. Thus, the

SEIR and other models should not be used in the absence of additional information that could be

obtained from clinical studies. The lack of clinical information had a significant impact on the early

modeling of Italian data, given that Italy was the third country in the world and the first in the Western

world to incur the pandemic ([4]). Moreover, in Italy as in other countries, at the beginning of the

epidemic underdetection was very high due to limited testing capacity and inadequate availability

of both personal protective equipment and ventilators that forced the Italian government to restrict

testing to people with severe cases and priority risk groups ([8]).

The article is organised as follows. In Section 2 we introduce the stochastic SIR model, and we

propose to model the fraction of reported cases as a random variable with a beta distribution and

suggest a way to parameterise the beta distribution that relies on the Infection Fatality Rate and its

crude estimate, the Case Fatality Rate. In Section 3 we suggest a method to compare the simulated

and the observed epidemic dynamics using the model estimated via the Rao-Blackwellised particle

filter (RBPF) algorithm reported in Appendix A ([19]). We also present a way to obtain short-term

forecast on the dynamics. In Section 4, we apply the filtering algorithm to a simulated dataset to

assess its behaviour and to introduce notation and terminology to be used later. We also make a few

considerations on the problems arising in parameter estimation. In Section 5 we apply our method

to the Italian data of both the first and the second infection wave, obtaining a good fit, along with
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a forecast that could be valid only in the short-term. We also consider the problem of assigning

the correct observation error distribution using available information on the Infection Fatality Rate

and compare the simulated dynamics to the result of a sample serological survey carried out by Istat

(Italian national statistical office) and the Italian Ministry of Health between May and July 2020.

This comparison indicates that our model, when properly calibrated, provides a realistic assessment

of the state of the epidemic. A section with some final remarks concludes the article.

2 Stochastic SIR model with underdetection

Consider a population and denote by St the fraction of susceptible individuals at time t, by It the

fraction of infected individuals and by Rt the fraction of removed individuals (survivors and dead).

We suppose that the population is closed, then St + It + Rt = 1 for every time t. The deterministic

SIR model can be written 
dSt
dt = −βItSt
dIt
dt = βItSt − γIt
dRt
dt = γIt

(1)

where β is the disease transmission rate, that is, the fraction of all contacts, between infected and

susceptible people, that become infectious per unit of time and per individual in the population, and γ

is the removal rate. The parameters β and γ allow us to approximate the basic reproduction number

R0 (or ratio, also called basic reproductive number or ratio) that can be thought of as the expected

number of infected people generated by an infected individual in a population where all individuals

are susceptible to infection. Despite its conceptual simplicity, R0 is usually estimated with complex

mathematical models developed using various sets of assumptions ([17]). In the above SIR model it

holds

R0 =
β

γ
,

where the parameters β and γ are unknown and have to be estimated. We suppose that these

parameters are subject to uncertainty and change in time as follows

βt = β0 + σw
(1)
t γt = γ0 + ηw

(2)
t (2)

with w
(1)
t and w

(2)
t independent Wiener noises. That is, βt is supposed normally distributed with mean

β0 and variance σ2t and γt is normally distributed with mean γ0 and variance η2t. For alternative ways

to introduce stochasticity, see [23]. The parameters σ and η measuring the noise intensity are assumed

known and sufficiently small to obtain positive βt and γt with probability approximately equal to one.

Substituting the expression (2) for β and γ in system (1), we obtain the following stochastic SIR
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model: 
dSt = −β0ItStdt− σItStdw(1)

t

dIt = (β0ItSt − γ0It) dt+ σItStdw
(1)
t − ηItdw

(2)
t

dRt = γ0Itdt+ ηItdw
(2)
t

(3)

The introduction of noise in the parameters β and γ no longer grants the condition St+It+Rt = 1.

We can enforce it by replacing St by 1− It −Rt in the second and third equations and removing the

first equation to obtain the reduced system dIt = (β0It(1− It −Rt)− γ0It) dt+ σIt(1− It −Rt)dw
(1)
t − ηItdw

(2)
t

dRt = γ0Itdt+ ηItdw
(2)
t

(4)

Denoting by Xt = (It, Rt)
T the state vector, by Wt =

(
w

(1)
t , w

(2)
t

)T
the vector of independent Wiener

processes and by θ0 = (β0, γ0)
T the parameter vector, we can rewrite the system (4) in vectorial form:

dXt = h (Xt) θ0dt+ g (Xt) dWt (5)

where

h (Xt) =

 It(1− It −Rt) −It

0 It

 ; g (Xt) =

 σIt(1− It −Rt) −ηIt

0 ηIt

 . (6)

We call Xt the state of the system, which for COVID-19 is unobservable, and introduce Yt to denote

what can actually be observed, in accordance with the terminology derived from state-space modelling.

We suppose that each component of the observation vector Yt+1 is given by the product of the

corresponding component of Xt+1 and a random variable: Yt,1

Yt,2

 =

 Ut,1Xt,1

Ut,2Xt,2

 (7)

where Ut,1 and Ut,2 are independent and identically beta distributed random variables with shape

parameters a and b. (In the following, by U , Y and X with no subscript we mean scalar random

variables distributed as Ut,i, Yt,i, and Xt,i, respectively, i = 1, 2). The observation error in SIR models

has been considered in other frameworks using different formulations (see, for example, [54]). Finally,

we assume that the initial distribution of θ0 is Gaussian with mean µ0 and covariance matrix Σ0.

2.1 Assigning parameters of the observation error distribution

The choice of a and b at the beginning of a new epidemic, in the absence of epidemiological information,

is very critical and we propose to refer to the Infection Fatality Ratio (IFR), the ratio of COVID-19

deaths to total infections of SARS-CoV-2, including asymptomatic and undiagnosed infections. The

IFR is a fundamental quantity to estimate the severity of the epidemic, but it can only be known at
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the end of the epidemic and after testing the entire population. An accurate estimation is therefore

challenging in general and especially for COVID-19 ([39]), and the Case Fatality Ratio (CFR), the

ratio of COVID-19 deaths to confirmed cases, is usually considered as a rough estimate. By definition,

the CFR is greater than the IFR. At any time t an estimate CFRt of the CFR and an estimate IFRt

of the IFR are related by the simple relationship

CFRt =
Dt

Robs,t
=
Dt

Rt
× Rt

Robs,t
= IFRt ×

Rt

Robs,t
(8)

where Dt denotes all deaths by time t and Robs = Y2 = U2X2 ([25]).

Since by (8)

Robs,t =
IFRt

CFRt
×Rt , (9)

the ratio IFRt/CFRt can be regarded as the underreporting factor that we have modelled as the U

beta random variable introduced earlier.

Given estimates IFRt as t = 1, . . . , T and the corresponding observed sequence of CFRt, we

would obtain a sample u1 = IFR1/CFR1, . . . , uT = IFRT /CFRT and an estimate of a and b by any

established method. Using the method of moments, for example, and considering an estimate IFR of

the IFR to substitute IFRt, we would get

â = ū

(
ū(1− ū)

s2u
− 1

)
= ū1/CFR

{
ū1/CFR(1− IFR ū1/CFR)

s21/CFR

− IFR

}

b̂ = (1− ū)

(
ū(1− ū)

s2u
− 1

)
=

1− IFR ū1/CFR

IFR

{
ū1/CFR(1− IFR ū1/CFR)

s21/CFR

− IFR

} (10)

where ū and s2u are the sample mean and variance of (u1, . . . , uT ) and ū1/CFR and s21/CFR are the

sample mean and variance of 1/CFR1, . . . , 1/CFRT . These equations show that the choice of IFR

affects both parameters.

The fatality ratio approach has the advantage that the IFR is a pure number and information on

its value can be gathered from different populations. Then, in practice, we may estimate the sample

mean and variance of 1/CFR1, . . . , 1/CFRT from the observed fatality and removal data, and assign

â and b̂ for a selected IFR. If a range of values is available for the IFR from another source, such

as a confidence or a credibility interval, we may repeat the analysis with the IFR varying within the

interval and evaluate the sensitivity of the results.

3 Parameter estimation, filtering, forecasting, and goodness-of-fit

To estimate the parameter θ0 we propose a Rao-Blackwellised particle filter (RBPF) algorithm based

on the Euler discretisation of the stochastic system (5):

Xt+1 = Xt + h(Xt)θ0∆t+ g(Xt)∆Wt, t = 0, 1, 2, . . . (11)
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where we also use t for discrete time to save notation. The RBPF algorithm is described in Appendix

A. This algorithm allows us to jointly calculate, at each time step, the estimated parameter and the

state of the system using a noisy observation of the state as input.

To visualise how well the SIR model fits the observations, we need a way to compare the simulated

trajectories with the observed data. We have supposed that the observations are smaller than the

true value of the state X; therefore we have to scale them by a factor that makes them comparable to

the filtered state. A scaling factor is suggested by constructing a prediction interval of the state X at

each observation time. Note that from (7) the random variable Y/X is a pivotal quantity with beta

distribution and we may state that

1− q = P

(
u q

2
≤ Y

X
≤ u1− q

2

)
= P

(
Y

u1− q
2

≤ X ≤ Y

u q
2

)
(12)

where u q
2

and u1− q
2

are the q
2 and the 1 − q

2 percentiles of the beta distribution of U . Then, the

corresponding prediction interval for X, after observing y, is(
y

u1− q
2

,
y

u q
2

)
(13)

and a natural scaling factor for a point prediction of X is the median of U , yielding that the simulated

trajectories of the model can be compared to the observed data by scaling them as y/u0.5. The feature

of (13) is that it does not depend on the SIR modelling assumption, but only on the observation error

assumption, and, therefore, it offers a way to see how well the SIR dynamic follows the (transformed)

data.

The model can also be used to predict the future behaviour of the epidemic. Let y1:t be the time

series of observations up to time t; for a fixed initial state x0, the RBPF algorithm provides a sample

x
(i)
0:t, i = 1, . . . ,M , to approximate the posterior distribution of the state p(x0:t|y1:t). Furthermore,

the conditional distributions of θ0 given x0:t, p(θ0|x0:t), is Gaussian with mean µt = E(θ0|x0:t) and

covariance matrix Σt = Cov(θ0|x0:t). The RBPF algorithm produces a sample (µ
(i)
t ,Σ

(i)
t ) of conditional

mean vectors and covariance matrices given x
(i)
0:t. To forecast Xt+k given y1:t, we aim at computing

E(Xt+k|y1:t). If we fix θ0 and x0:t, and run model (11) for k time steps, we obtain a value for Xt+k

as a function fk(x0:t, θ0, ξ), in which ξ indicates the sequence of increments ∆Ws, s = t+ 1, . . . , t+ k.

Using fk(x0:t, θ0, ξ), the conditional expectation is

E(Xt+k|y1:t) =

∫
fk(x0:t, θ0, ξ)p(ξ)p(θ0|x0:t)p(x0:t|y1:t) dξdθ0dx0:t (14)

where conditional independence of θ0 on y1:t given x0:t allows for substitution of p(θ0|x0:t, y1:t) by

p(θ0|x0:t). Then, if for each i we draw θ
(i)
0 from p(θ0|x(i)0:t) and ξ(i) from the distribution of the Wiener

process increment, the predictive expectation of Xt+k is approximated by

E(Xt+k|y1:t) '
1

M

M∑
i=1

fk(x
(i)
0:t, θ

(i)
0 , ξ(i)) . (15)

7



0 10 20 30 40 50 60 70

time (days)

0

0.2

0.4

0.6

0.8

1

n
o

rm
a

liz
e

d
 n

. 
o

f 
in

d
iv

id
u

a
ls

true susceptible

true infected

true removed

observed susceptible

observed infected

observed removed

Figure 1: True states (circles) obtained from equation (4) and observations (asterisks) obtained from

true states applying formula (7), where Ut,1 and Ut,2 have a beta distribution with parameters a = 10

and b = 40, meaning u0.5 = 19.6.

4 Model assessment with synthetic data

To check the convergence of the method and describe how to apply the estimation method we fix a

parameter value and simulate the observations (or data).

We start from an initial condition of 1% infected and 0.1% removed. We simulate data for the

parameters β0 = 0.3 and γ0 = 0.1. The parameters σ and η in (2) are 0.03 and 0.01, respectively.

To represent the initial phase of the epidemic, we run model (4) to generate 67 daily step states

(circles in Figure 1). Then, we use equation (7) with a = 10 and b = 40, meaning u0.5 = 19.6%, for

the beta distribution of the observation error obtaining the observations (asterisks in Figure 1). The

first 60 data will be used for the estimation procedure and the other 7 to check the goodness of the

forecast.

We apply the RBPF algorithm described in Appendix A with 200,000 particles and with a time

step of 1/24 day. The choice of considering hourly observations while having daily ones is motivated

by the need to improve the precision of the algorithm. For this purpose we imputed new hourly

observations by linear interpolation between two consecutive daily observations (asterisks in Figure

1). The imputed observations are no longer independently distributed conditionally on the states;

however this approximate procedure keeps the effective sample size of the RBPF algorithm at large

values with no appreciable difference in results.

The initial guess for the parameter θ0 = (β0, γ0)
T is µ0 = (0.5, 0.5)T and the prior covariance
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Figure 2: Application of the RBPF algorithm. Left panel: trajectories of infected (red line) and

removed (green line) compared with the true state (circles). The dynamics up to day 60 are the filtered

states, while the dynamics from day 61 to day 67 are forecasts. Right panel: true states (circles),

filtered state and forecast (thick lines) and adjusted observations (thin line) with 95% prediction

intervals (13). The thick lines up to day 60 are the filtered states, while those from day 61 to day 67

are forecasts. The thin lines are the observations divided by u0.5, the median of the observation error

distribution.

matrix Σ0 = diag(0.05, 0.02). The mean trajectories of infected and removed people over all the

particles obtained by running the RBPF algorithm are represented with solid lines in the left panel

of Figure 2 where the circles represent simulated states before the introduction of the observation

error. The susceptible individuals are obtained as St = 1 − It − Rt and then the goodness of fit is a

consequence of the fit for the other two compartments.

We denote the filtered or forecasted states as Ît and R̂t, where the value of t determines whether

we are filtering or forecasting, that is, if our observation period ends at time s, then Ît and R̂t are

forecasts when t > s; otherwise they are filtered states. From the RBPF we get the filtered states

and, using (15), we get a forecast of the dynamics. Ît and R̂t are compared to the true states in the

left panel of Figure 2, where we see that both the fit up to day 60 and the forecast on days 61-67 are

satisfactory. In particular, the forecast well represents the state trend.

In real cases the true states (circles in Figure 1) are unobserved, and we can only compare the

filtered states to the observations, taking into account underdetection. Therefore, starting from the

observations (asterisks in Figure 1), we compute the daily prediction intervals for infected It and

removed Rt, as in (13) with q = 0.025. In the right panel of Figure 2 the prediction intervals are

represented by vertical lines, while the thin solid lines represent the ratio between the observations and

the median of the distribution of the observation error (which we may call the adjusted observations).
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Figure 3: Top panel: behaviour of β̂t (blue) and γ̂t (red) obtained from (A-5). Bottom panel: behaviour

of R̂0(t) obtained from (A-6) (blue line) and value of true R0 = β0/γ0 = 0.3/0.1 (red line).

The width of the prediction intervals reflects the dispersion of the observation error distribution for

which q0.025 = 0.10 and q0.975 = 0.32. The true states (circles in Figure 2) are inside the intervals and

cross the adjusted observations (thin lines), then, if the adjusted observations and the filtered state

(thick lines) agree with each other, this is a necessary condition for the filtered state to follow the

unknown true state.

We denote the estimates of β0 and γ0 with information up to time t by β̂t and γ̂t, see (A-5). Their

time behaviour is shown in the top panel of Figure 3. The behaviour of R̂0(t), the estimated basic

reproduction number (A-6), is displayed in the bottom panel of Figure 3 and it can be seen that it

well approaches the true R0.

Before considering the application to a real case, we would like to remark two aspects regarding

the parameter estimation in stochastic systems: sample variability and identifiability. When consid-

ering a stochastic SIR model, the filtered states and the estimated parameters are affected by the

variability in the data generated from system (4). As a consequence, for some datasets, the estimated

parameters, although giving a good fit of the dynamics, can be far from the values used for generating

the observations, keeping however the ratio β̂t/γ̂t close to the true value of R0. The second aspects is

the identifiability. The stochastic SIR models considered here are structurally identifiable ([3], [46]),

but the parameters can be practically non identifiable, that is there might be two different pairs of

parameters giving a satisfactory fit of the dynamics. It is then fundamental to suitably choose the

beta distribution of the observation error in the collection of infected and removed people to avoid

practical nonidentifiability. Assessment of sample variability and identifiability is carefully discussed
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Figure 4: Infected (red asterisks) and removed (green asterisks) in Italy from 24th February (time 0)

to 26th November 2020. Data from Protezione Civile.

in Appendix B.

5 The Italian data

In this section we apply the proposed approach to analyse the data of the first wave of COVID-19 in

Italy, and we show how our analysis can capture the start of the second wave of the epidemic. Data

were collected by Protezione Civile (Civil Protection Department) from 24th February 2020 ([41]).

We consider the data for the entire Italy up to 26th November 2020. Available data are the number

of infected, dead, and recovered individuals. Removed people can be obtained by adding up dead

and recovered people. In Italy, all deaths of people infected with SARS-CoV-2 have been classified as

due to COVID-19 ([48]). The infected and removed individuals in Italy from 24th February to 26th

November are represented in Figure 4. The total resident population as of 31st December 2019 is

60,244,639 people, as certified by Istat.

To deal with underdetection we consider observations as generated by (7), where we recall that

Ut,1 and Ut,2 are independently beta distributed with common shape parameters a and b.

As we can see from Figure 4, the first wave officially began on 24th February and lasted un-

til mid-summer, when the number of infected people started to rise again, as in the rest of Eu-

rope ([7]). The second wave is distinguished from the first also by the increased test capacity

(https://www.covid19healthsystem.org/countries/italy/livinghit.aspx?Section=1.5%20Te
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sting&Type=Section, last access 17th July 2021). Hence we consider the two waves as different mod-

els, with respect to both the SIR parameters and the observation error distribution parameters and

we conventionally set the start of the second wave on 1st August.

For Italy, we may use an indirect method to indicate a plausible value of the IFR taking advantage

of a seroprevalence survey targeting IgG antibodies conducted from May to July by Istat, the Italian

national statistical office, and the Italian Ministry of Health. Preliminary results obtained from 64,660

people were presented in early August ([29]). According to them, almost 1.5 million people in Italy

or 2.5% of the population had developed coronavirus antibodies, a figure six times larger than official

numbers reported. In short, the idea is to compare the 2.5% figure of people who developed antibodies

to the healed people (who have antibodies) estimated from the filtered state R̂t in an appropriate time

interval. The infected compartment may also contain seropositive individuals; however, the fraction

of people in this compartment had become small when Istat’s survey started, so we consider only the

removed compartment. The reasoning behind this comparison is that if the assumed IFR is correct,

then the observation error distribution derived from (10) is correct and the filtered states are realistic

and they should be in agreement with the Istat survey result.

To be more specific, let Rt = Ht +Dt, where Ht and Dt are the fractions (over the population) of

healed and dead people by time t, respectively. Healed people can be seronegative if IgG antibodies

are no longer in their system, but we can safely assume that a person enters the healed record soon

so s/he can be considered as seropositive when they do. Now, Ht includes all healed individuals since

the start of the epidemic, hence a fraction of Ht can be seronegative, depending on the duration d of

seropositivity. Hence we should compare 2.5% to Ht −Ht−d, where Ht−d = 0 if t − d < 1. The true

values of Ht are unknown. We may recover them from R̂t and the available data on the fraction of

deaths as Ĥt = R̂t −Dt/u0.5. Since Istat’s survey was carried out between 25th May and 15th July

2020, we compare 2.5% to

H̄ =
1

52

15 July∑
t=25 May

(Ĥt − Ĥt−d) . (16)

The duration of IgG antibodies is still today largely debated, ([49], [53]) and here we consider three

months as a plausible value of d ([20]). This procedure rests on several assumptions and we only

regard it as a way to check for gross deviations of our model from reality.

5.1 State and parameter estimation

We run the RBPF algorithm with 20,000 particles, time discretisation step of 1/24 day as done for the

synthetic data, starting from the first day with at least 100 removed (1st March). The initial values

are (β0, γ0)
T = µ0 = (0.3, 0.1)T and Σ0 = diag(0.002, 0.001). Moreover σ = 0.03 and η = 0.01.

The Centre for Evidence-Based Medicine (CEBM) at the University of Oxford bases its timely
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updates of IFR point estimate on a continuously evolving meta-analysis based on CFR data. The

IFR point estimate is then obtained by halving the lower bound of the 95% prediction interval of the

CFR and the current estimate sets the IFR at 0.51% ([43]). In [9] low and high income countries

were discussed separately; in a typical high income country, with a higher concentration of elderly

individuals, an overall IFR of 1.15% (0.78-1.79 95% prediction interval) is estimated. An estimate of

1.3% has been obtained using data from the closed population of passengers in the Diamond Princess

cruise ship ([51]). The meta-analysis carried out by [40] of published research data on COVID-19

infection fatality rates, with last search on 16/06/2020, has indicated a point estimate of IFR of 0.68%

(0.53%–0.82%) with high heterogeneity, and suggested that in many populations the IFR would be

> 1% if excess mortality was taken into account.

For the first wave, we then computed a and b from (10) for a range of IFR values from 0.1%–

6%, where the minimum value is the lowest we found in the relevant literature, besides having been

suggested as lower bound of IFR in Europe by CEBM. The maximum value is still inspired by CEBM

and the considerations in [40]. Indeed, in Italy an estimated initial CFR of about 11-19% has been

reported ([16], [55], [48]). This suggested to consider IFR=6% as a possible maximum initial value,

accounting for the lack of knowledge at the beginning of the first wave. Moving too far from the

highest value gives a large discrepancy between Istat’s 2.5% estimated seropositivity in the population

and (16). Then we present here results for IFR = 4.5% (on 31st March 2020), for which H̄ = 2.4%.

The parameters of the corresponding beta density are a = 11.9 and b = 93.17, meaning a median

underdetection value u0.5 = 11.1% (95% range: 6-18%). This result is in line with [24], and is

more optimistic than the estimated 4% in [35] while noticeably lower than the estimated 40% in

[38]. These differences are also due to the time interval considered. The initial condition for It

(Rt), for each trajectory, is given by the normalised number of infected (removed) people collected by

Protezione Civile on 1st March divided by the median of this beta distribution to take into account

the underdetection on 1st March data.

To account for government actions, we split the first wave into subintervals considering the DPCMs1

with the greatest impact on social organisation allowing for ten days for the DPCM to have an effect on

the epidemic (that is, change points are the DPCM dates plus ten days). In particular, we considered

the following DPCM dates: 11th March, 22nd March, 26th April and 3rd June, so that the change

points are on 21st March, 1st April, 3rd May and 13th June.

For each time interval, except the first, we used the filtered state x̂t (A-4) at the end of the

previous interval as initial state and the values of β̂t and γ̂t at the end of the previous interval

as starting parameters. Then the discontinuity in the update was determined only by the initial

1DPCM: Italian acronym for government decrees. For a summary of the DPCMs related to the COVID-19 emergency

see http://www.governo.it/it/coronavirus-misure-del-governo
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Figure 5: Filtered states for infected (thick red line) and removed (thick green line) from five different

SIRs in the intervals [0, 20], [20, 31], [31, 66], [66, 104], [104, 160]. Parameters of the beta observation

error distribution are a = 11.9 and b = 93.17. The prediction intervals are computed from (13) with

q = 0.025. The thin lines are the observed infected (red) and removed (green) divided by u0.5 = 11.1%.

Time 0 is 1st March 2020.

covariance matrix. From a preliminary study on a single interval we found small values for the matrix

Σ. Then we took Σ0 = diag(0.002, 0.001) for all the time intervals. This choice also allowed us to

avoid big jumps in the trajectories of the parameters at the change points. The dynamics of the five

different SIR models are represented as a whole dynamics in Figure 5. The filtered states of infected

and removed individuals are represented with thick lines in Figure 5 where also the prediction intervals

for both infected and removed are reported. The prediction intervals are computed from (13) and the

thin lines in Figure 5 represent the adjusted observations obtained considering the ratio between the

observations and the median u0.5 = 11.1% of the observation error distribution.

The trajectories β̂t, γ̂t and R̂0(t) show jumps at the change points (Figure 6), which are not very

pronounced due to the choice of a small Σ0. After a few steps from each jump, the trajectories stabilise

following a regular trend. The dynamics of infected individuals fits very well the observed infected

divided by u0.5 = 11.1%. At the beginning of the epidemic, R̂0(t) is higher than 3. This reflects both

the uncertainty in the Italian data and the recognised high value of R0 describing the early temporal

spread of SARS-CoV-2 at global and local levels, [32], [37], [60]. Values around 3 at the end of March

(around day 30) reflect the current estimates for that period, before the effects of the general stay-at-

home recommendation (22nd March), reinforcing the national lockdown (11th March), are felt [24],

[15], [1]. After day 66 (corresponding to 26th April), β̂t is smaller than γ̂t, so R̂0(t) < 1. This result is
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Figure 6: Top panel: plots of β̂t and γ̂t from (A-5). Bottom panel: plot of R̂0(t) from (A-6). Time 0

is 1st March 2020.

in agreement with the effective reproduction number published for the first time by Istituto Superiore

di Sanità (Italian National Institute of Health, ISS) on 30th April ([31]): the effective reproduction

numbers were reported for every Italian region (except for two because of bad quality data) and they

were all smaller than one. It is worth pointing out that our simulation study showed that the method

is capable of estimating the basic reproduction number with greater accuracy and precision than the

infection and removal rate parameters (see Appendix B.1), which is relevant to public health decisions.

We then analysed the forecast of the infected and removed dynamics for the first wave, computed

as in (15). We considered observations up to twenty days after the second or third change points, and

we tried to forecast the dynamics for the seven following days (Figure 7).

It can be observed from Figure 7 that the forecast is satisfactory twenty days after the third change

point, that is when the estimate of βt has approximately reached a constant value, and it is less precise

when βt has a decreasing trend (see Figure 6).

We then focused on the second wave, starting on 1st August and we considered three change points

ten days after the following measures: on 1st September (partial opening of museums and stadiums,

and increased occupancy in public transportation); on 21st October (curfew in Lombardy, the most

affected region); on 3rd November (DPCM establishing red, orange and yellow scenarios to classify

regions from highest to lowest risk and introducing tiered restrictions). We run the RBPF algorithm,

with µ0 = (0.05, 0.03)T as initial value for (β0, γ0)
T and Σ0 = diag(0.002, 0.001). Moreover, σ = 0.03

and η = 0.01. The state is formed by infected individuals and newly removed individuals since 1st

August, that is, the difference between the removed at each time and the removed on 31st July.
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Figure 7: Dynamics of infected and removed individuals with forecasts during an increasing phase

(left panel) or a decreasing phase (right panel). The forecasts start 20 days after the second change

point (left panel) and 20 days after the third change point (right panel). Forecasts of infected and

removed individuals are highlighted with different colours.

For the second wave the underdetection error of infected and removed people is smaller, because

of an increase in resources for taking swab tests. For this reason it is appropriate to recalculate the

parameters of the beta observation error distribution from (10) only with data since 1st August. Un-

fortunately, we lacked a benchmark such as the serological survey during the first wave, and therefore

we present the results obtained by considering four different IFR values: 1.15%, 1.3%, 1.5%, 1.75%

according to the most recent studies. The beta densities obtained for these values (on 31st August

2020) are represented in Figure 8 and compared with the beta density used for the first wave. We

excluded smaller values of IFR because the corresponding observation error beta distributions were

located on small values, like for the first wave.

It can be seen from Figure 8 that both mean and variance of the beta distribution increase as

the IFR increases. The corresponding dynamics are shown in Figure 9. The normalised numbers

of individuals decrease as the IFR increases, because the observations are divided by the median of

the beta distribution which is increasing with the IFR. The width of the prediction intervals also

decreases as the IFR increases. The filtered dynamics well reconstruct the behaviour of the adjusted

data in all the cases. The estimated parameters β̂t and γ̂t are very similar for the different cases and

only the parameters obtained using IFR = 1.3% are reported in Figure 10 with the corresponding

R̂0(t).

We observed a large jump in R̂0(t) on the date of the second change point, ten days after the

curfew in Lombardy, followed by a slow decrease, indicating that this measure did not produce the

desired effect. Then it was followed by the measure of 3rd November that allowed R̂0(t) to accelerate
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Figure 8: Beta distributions of the observation error for different values of IFR: 1.15% (light blue

dashed line), 1.3% (red dotted line), 1.5% (green continuous line), 1.75% (magenta dashed-dotted

line). For comparison also the beta density used for the first wave is reported (blue continuous line).
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Figure 9: Filtered states for infected (thick red line) and removed (thick green line) in the second

wave for different IFR: 1.15% (top left), 1.3% (top right), 1.5% (bottom left), 1.75% (bottom right).

The prediction intervals are computed from (13) with q = 0.025. The thin lines are the observed

infected (red) and removed (green) divided by u0.5. Forecast of infected and removed individuals are

highlighted with different colors. Time 160 is 1st August.
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Figure 10: Top panel: plots of β̂t and γ̂t from (A-5). Bottom panel: plot of R̂0(t) from (A-6). The

IFR is 1.3%. Time 0 is 1st August.

its decrease, approaching one, in agreement with what the ISS reported in its 25th November bulletin

[30].

6 Concluding remarks

In this work we have proposed to explicitly model the underdetection of SARS-CoV-2 infected and

removed subjects by introducing a beta distribution for the observation error in a SIR model. In

particular, a piecewise stochastic SIR model with change points has been fitted to the COVID-19

data in Italy from 1st March to 26th November 2020, using the dates of the measures taken by the

government to control the epidemic to define the change points. This strategy allowed us to estimate

the actual dynamics of the epidemic by correcting the observed data. The stochastic SIR model,

coupled with the RBPF algorithm to estimate the parameters, has improved the description of the

dynamics that can be obtained using a piecewise deterministic SIR model with maximum likelihood

estimation of parameters, as shown in Appendix C. By particle filtering and parameter learning

algorithm, the model can produce short-term predictions of the population in each compartment and

continuously updated estimates of key quantities such as the basic reproduction number, on which

decision makers can act. We have obtained a rather large basic reproduction number in the initial

phase of the first wave, progressively decreasing in the following phases, in line with the current

literature.

The adaptation of a simple SIR model to the Italian data at the beginning of the epidemic has

18



been here supported by the lack of clinical information. However, even as more specific information

emerged, the appropriateness of using simple models has not been entirely questioned. From about

9,000 laboratory-confirmed cases reported outside Hubei in mainland China from mid-January to mid-

February 2020, a mean incubation period of 5.2 days (1.8–12.4) and an almost coinciding mean serial

interval at 5.1 days (1.3–11.6) were estimated ([61]). This means that the infection can occur in the

presymptomatic phase. Moreover, an analysis of the first 6,000 laboratory confirmed cases in Italy

showed that the viral load does not significantly differ with the type of symptoms ([14]), so isolation

of infected persons should be performed regardless of symptoms ([36]). All these results together

suggest that the specification of many compartments among the infected may also not help clarify the

dynamics.

The stochastic SIR model might be used to evaluate the effect of mitigation measures by extending

the predictions to a horizon of several weeks beyond the date of the next government decree, as an

answer to the question: “what would have been the mid-term evolution of the epidemic if this specific

measure had not been taken?”. But, given the complexity of the phenomenon, which is only partially

captured by the model, great caution is required in doing so. One possible way out is to enrich the

model by adding compartments, but, as our model identifiability study has shown (Appendix B.2),

solid prior information or data relevant to the required additional parameters are needed to obtain

meaningful results. Indeed, in our simulation study we have obtained that the model describes reliable

dynamics provided the parameters of the observational error, assumed as known, are correctly assigned

(Appendix B.1).

With respect to prior information, our approach to the selection of the observation error distribu-

tion depends on an estimate of the IFR. For the first wave we have chosen larger values than for the

second wave (up to 6% against a maximum of 1.75%), which is in agreement with an ISS report [21],

published after we finished our analysis, where the monthly standardised CFR has been calculated.

When standardised with respect to the age and sex structure of the Italian population, the CFR is

close to 9% in February-March 2020 and close to 4.5% in April. Then it falls to around 1% in June

and July and increases to above 2% in October.
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A RBPF algorithm

To estimate the parameter θ0 = (β0, γ0)
T and the state Xt we propose to apply a Rao-Blackwellised

particle filter (RBPF) algorithm. We consider the Euler discretisation of the stochastic system (5)

reported in equation (11). Since the system is linear in θ0, we can apply the Kalman filter. Suppose

that θ0 = (β0, γ0)
T has a Gaussian prior distribution with mean µ0 and covariance matrix Σ0, then the

distribution of θ0, given x0:t+1 = (x0, x1, ..., xt+1) after t+ 1 time steps, as t = 0, 1, 2, . . ., is Gaussian

with mean µt+1 and covariance matrix Σt+1 given by
µt+1 = µt + ST

t+1 [xt+1 − xt − h (xt)µt∆t]

Σt+1 = Σt − ST
t+1h (xt) Σt∆t

ST
t+1 = Σth

T (xt) ∆t
[
h (xt) Σth

T (xt) (∆t)2 + g(xt)g
T (xt)∆t

]−1

(A-1)

The distribution of Xt+1 given x0:t is Gaussian with mean Bt+1 and covariance matrix Gt+1 given by
Bt+1 = xt + h (xt)µt∆t

Gt+1 = h (xt) Σth
T (xt) (∆t)2 + g(xt)g

T (xt)∆t.

(A-2)

Recalling that the observations are obtained multiplying the state Xt for the beta-distributed

observation error term, as defined in equation (7), the RBPF algorithm can be summarised as follows:

STEP 1

� At time t = 0, we draw M initial values x
(i)
0 , i = 1, 2, ...,M of X0 from its prior distribution

π (x0) or, alternatively, we put x0 equal to the initial observation.

� We consider a Gaussian prior distribution N (µ0,Σ0) for the parameter θ0, where µ0 is a vector

of initial parameters, and Σ0 is a diagonal covariance matrix.

� To obtain candidate values of the state at importance sampling steps, we use the distribution

implied by the state-transition equation (11) after marginalising it with respect to θ0. At step

one, a value for X̃
(i)
1 , conditional on x

(i)
0 , is sampled from a Gaussian distribution with mean

B
(i)
1 and covariance matrix G

(i)
1 , for i = 1, . . . ,M , given by (A-2) with k = 0.

� Denoting by y1 = (y1,1, y1,2) the observation at time k = 1, we compute weights for each particle

from the likelihood at x̃
(i)
1 = (x̃

(i)
1,1, x̃

(i)
1,2)

ṽ
(i)
1 = L(x̃

(i)
1 ; y1) = p(y1,1|x̃(i)1,1)× p(y1,2|x̃

(i)
1,2)

where

p (y|x) =

( y
x

)a−1 (
1− y

x

)b−1

B (a, b)

1

x
I[0,x](y). (A-3)
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In order to resample the particles, we need to normalise the weights:

v
(i)
1 =

ṽ
(i)
1∑M

i=1 ṽ
(i)
1

.

� We update the posterior distribution of θ0 given
{
x̃
(i)
1 , x

(i)
0

}
by taking one step of the Kalman

filter of equation (A-1), obtaining the new mean vector µ̃
(i)
1 and covariance matrix Σ̃

(i)
1 .

� We resample M particles from a discrete distribution with support
{(
x̃
(i)
1 , µ̃

(i)
1 , Σ̃

(i)
1

)}
i=1,...,M

and corresponding probabilities
{
v
(i)
1

}
i=1,...,M

. We denote by
{(
x
(i)
1 , µ

(i)
1 ,Σ

(i)
1

)}
i=1,...,M

the

resampled particles.

At time t ≥ 1, we assume the sample
{(
x
(i)
t , µ

(i)
t ,Σ

(i)
t

)}
i=1,...,M

is available.

STEP t+ 1

� For i = 1, . . . ,M , sample candidate particles x̃
(i)
t+1 from a Gaussian distribution with mean B

(i)
t+1

and covariance matrix G
(i)
t+1, given by (A-2).

� Compute the weights ṽ
(i)
t+1 for each particle as the product of two distributions with density

(A-3). Normalise the weights:

v
(i)
t+1 =

ṽ
(i)
t+1∑M

i=1 ṽ
(i)
t+1

.

� Update the posterior distribution of θ0 given x
(i)
0:t+1, which is a Gaussian distribution with mean

µ̃
(i)
t+1 and covariance matrix Σ̃

(i)
t+1 given by equation (A-1).

� Resample M particles using the probabilities
{
v
(i)
t+1

}
i=1,...,M

and denote the resampled particles

by
{(
x
(i)
t+1, µ

(i)
t+1,Σ

(i)
t+1

)}
i=1,...,M

.

Particles
{(
x
(i)
t , µ

(i)
t ,Σ

(i)
t

)}
i=1,...,M

are a sample from the distribution of interest. In detail, the

x
(i)
t ’s are a sample from p(xt|y1:t) and, by keeping track of the resampling history, the entire sample

x
(i)
0:t, i = 1, . . . ,M is potentially available, hence a sample from p(x0:t|y1:t). The mean of x

(i)
t over the

particles approximates E(xt|y1:t) and we call it the filtered state:

x̂t =
1

M

M∑
i=1

x
(i)
t . (A-4)

The µ
(i)
t ’s and Σ

(i)
t ’s are a sample of conditional means and covariance matrices, that is, E(θ0|x(i)0:t)

and Cov(θ0|x(i)0:t). Therefore, an estimate of E(θ0|y1:t) is

(β̂t, γ̂t)
T = θ̂t =

1

M

M∑
i=1

µ
(i)
t (A-5)
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and, by sampling M values from M Gaussian distributions N(µ
(i)
t ,Σ

(i)
t ), i = 1, . . . ,M , we produce a

sample (θ
(1)
t , . . . , θ

(M)
t ) from p(θ0|y1:t).

The basic reproduction number is defined as R0 = β0/γ0, therefore an estimate based on y1:t is

E(β0/γ0|y1:t), which is computed as

R̂0(t) =
1

M

M∑
i=1

β
(i)
t

γ
(i)
t

(A-6)

where (β
(i)
t , γ

(i)
t )T = θ

(i)
t . If the variances on the diagonal of Σ

(i)
t are small, the additional sampling from

the N(µ
(i)
t ,Σ

(i)
t ) may be unnecessary and the following approximation might be used, corresponding

to degenerate conditional distributions:

R̂0(t) =
1

M

M∑
i=1

µ
(i)
1,t

µ
(i)
2,t

. (A-7)

R̂0(t) can be regarded as our best estimate of the basic reproduction number in the light of the

observed data.

B Numerical simulations

B.1 Assessment of sample variability

We have analysed the variability of the filtered states and the estimated parameters due to the vari-

ability of the data generated from the system (4), in order to get an impression of how far they can

get from the true values, even if the true random underreporting error distribution is used. We have

used the same parameters of Section 4, that is, (β0, γ0) = (0.3, 0.1), σ = 0.01, η = 0.03, initial values

µ0 = (0.5, 0.5)T and Σ0 = diag(0.05, 0.02) and initial state X0 = (1%, 0.1%).

We generated 500 dynamics from the system (4), from which we obtained 500 trajectories of

observed infected and removed people. Then, we run the RBPF algorithm on each simulated dataset,

with a time step of 1/24 day and for 200,000 particles. For every simulations we computed the

trajectories Ît/It and R̂t/Rt, where we recall that Ît and R̂t are the estimated infected and removed

individuals filtered by the RBPF algorithm, while It and Rt are the true states for the corresponding

simulation. For a clear representation, in Figure 11 we show one in every five trajectories of Ît/It (left

panel) and R̂t/Rt (right panel).

In both panels of Figure 11, after a transient phase with larger dispersion, Ît/It and R̂t/Rt end

up fluctuating around 1, with a stable dispersion in the left panel and a decreasing dispersion in the

right panel. Then we considered the sum of the root mean square error (RMSE) between Ît and It

and of the RMSE between R̂t and Rt for all the trajectories, as a measure of distance between the

estimate and the truth. Among all the trajectories we represented the one with the smallest and the
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Figure 11: Left panel: behaviour of Ît/It for 100 different simulations. Right panel: behaviour of

R̂t/Rt for 100 different simulations.

one with the largest distance in the left and in the right panels of Figure 12, respectively. The latter

picture shows that the fit may be very unsatisfactory.

Finally, we report the scatter plot of all the pairs (β̂t, γ̂t) obtained in the 500 simulations (Figure 13)

at t = 60. We observe that they are dispersed around the true value of the parameter (0.3, 0.1). The

pair corresponding to the trajectory of minimum distance (green dot) is closer to the true parameter

(red dot) than the pair estimated from the trajectory of maximum distance (yellow dot).

An interesting feature of Figure 13 is that the ratio β̂t/γ̂t shows a smaller variability than β̂t and

γ̂t, around a straight line with slope close to 3, the true value of R0.

B.2 Identifiability

A statistical model, belonging to a parametric family, is said to be identifiable if, for any two different

values of parameters, there exists at least a measurable set in the sample space that is not assigned

the same probability by the two members of the family, that is, given θ01 6= θ02, there exists at least

one set B such that

Pr(Y1:t ∈ B; θ01) 6= Pr(Y1:t ∈ B; θ02) , (B-1)

where Y1:t denotes a finite-length trajectory of observations from (7). For a deterministic model, this

property is called structural identifiability, which holds if there exists a map from the parameter to

the output θ0 7→ y1:t(θ0) which is injective, that is, given θ01 6= θ02, the two models y(θ01) and y(θ02)

describe different output trajectories. By a differential algebra approach, [46] have shown that the
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Figure 12: Left panel: dynamics of filtered states Ît and R̂t (continuous lines) in the case of minimum

sum of root mean square error between filtered states and true states (circles). Right panel: dynamics

of filtered states Ît and R̂t (continuous lines) in the case of maximum sum of root mean square error

between filtered states and true states (circles).
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Figure 13: Scatter plot of the parameters (γ̂60, β̂60) obtained for the different simulations. The red

dot represents the true pair (0.1, 0.3). The green dot represents the pair of parameters relative to

the filtered state trajectory with minimum distance from the true states (left panel of Figure 12).

The yellow dot represents the pair of parameters corresponding to the filtered state trajectory with

maximum distance from the true states (right panel of Figure 12). The line is the least squares fit of

β̂60 against γ̂60 (slope 2.78).
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following deterministic SIR model with its output

dIt
dt = β0It(N − It −Rt)− γ0It
dRt
dt = γ0It

y1,t = 1
K It

y2,t = 1
KRt

(B-2)

defined for a non-normalised population of size N , is structurally identifiable with respect to the

unknown parameters β0, γ0 and K. The parameter K > 1 accounts for underreporting of infected

and removed and has the same function as the U random variables in (7). Then, after adding noise to

the output, the authors in [46] went on to show that, despite structural identifiability, the parameters

may not be practically identifiable, that is, a good or acceptable agreement between observations and

fit is displayed for different values of the parameters when observations end before reaching the peak.

The way randomness has been included into this problem via model (11)-(7) is different from [46],

but we have also observed practical identifiability. The identifiability problem was also discussed in

[23] for stochastic SIR models. We generated state trajectories composed by 30 daily values using

model (4) with parameters β0 = 0.1 and γ0 = 0.03. Then, to obtain the actual observations, we

multiplied each value by a number drawn from a beta distribution with parameters a = 10 and b = 40

(blue line in Figure 14). After running the RBPF algorithm using the same beta distribution we

obtained results analogous to those in the previous sections, that is, a satisfactory fit of the observed

dynamics and a good estimate of the parameters β0 and γ0.

Then we run the RBPF algorithm assuming an observation error with beta distribution with a

mean larger than the truth, with parameters a = 10 and b = 30 (red line in Figure 14). We compared

the filtered states with both the true ones and the observed data. First, we considered 500 simulations

and looked at the ratio between the filtered state and the state. For a clear representation, in Figure 15

we show one in five trajectories for both infected and removed individuals. These ratios are, generally,

less than 1, denoting an underestimation of both infected and removed.

Then, we considered the ratio between the filtered states and the adjusted observations. The

results of one in five trajectories are reported in Figure 16 for both infected and removed individuals.

These ratios fluctuate around 1, denoting a satisfactory fit to the observed data. Figure 17 shows the

dynamics of two simulations: the dynamics with minimum distance of the filtered state from the true

state (intended as the minimum sum of the root mean square errors over the two components), in

the left panel, and the dynamics with maximum distance, in the right panel. Both trajectories fit the

(scaled) observed data reasonably well.

Even if the filtered states follow the adjusted observations, the values of the estimated parameters

are not correct, as shown in Figure 18. In fact, the pairs of estimated parameters in the 100 simulations
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Figure 14: Comparison between the two beta densities used to model the observation error.
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Figure 15: Left panel: behaviour of Ît/It for 100 different simulations. Right panel: behaviour of

R̂t/Rt for 100 different simulations.
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Figure 16: Left panel: behaviour of Ît/(yt,1/m) for 100 different simulations, where m is the true

median of the observation error distribution. Right panel: behaviour of Ît/(yt,2/m) for 100 different

simulations.
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Figure 17: Left panel: case of minimum sum of root mean square error between true and filtered state,

dynamics of Ît and R̂t (continuous lines) and adjusted observations (thin line with asterisks). Right

panel: case of maximum sum of root mean square error between true and filtered state, dynamics of

Ît and R̂t (continuous lines) and adjusted observations (thin line with asterisks).

are not equally dispersed around the true value (red point) but are placed mainly below the true value,

denoting a bad estimation for β0. The estimation of γ0 is better.

It follows that it is very important to suitably choose the beta distribution of the observation error

(as we have done in Section 5) in the collection of infected and removed people to avoid practical

nonidentifiability.

C A comparison with the SIR deterministic model

We considered for comparison the model (1) combined with the observation equations (7), that is,

when the state dynamics is completely deterministic. We repeated part of the analysis done with the

stochastic SIR model on the first wave data, using the same observation error distribution and the

same time partition based on DPCMs, and estimated (β, γ) via maximum likelihood. The piecewise

deterministic SIR model, see Figure 19, follows the scaled observations but it is rather less flexible

than its stochastic counterpart (see Figure 5).
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17). The yellow dot is the case corresponding to the maximum distance case (right panel of Figure
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