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Abstract. Route planners generally return routes that minimize either
the distance covered or the time traveled. However, these routes are
rarely considered by people who move in a certain area systematically.
Indeed, due to their expertise, they very often prefer different solutions.
In this paper we provide an analytic model to study the deviations of
the systematic movements from the paths proposed by a route planner.
As proxy of human mobility we use real GPS traces and we analyze a set
of users which act in Pisa and Florence province. By using appropriate
mobility data mining techniques, we extract the GPS systematic move-
ments and we transform them into sequences of road segments. Finally,
we calculate the shortest and fastest path from the origin to the destina-
tion of each systematic movement and we compare them with the routes
mapped on the road network. Our results show that about 30-35% of the
systematic movements follow the shortest paths, while the others follow
routes which are on average 7 km longer. In addition, we divided the
area object of study in cells and we analyzed the deviations in the flows
of systematic movements. We found that, these deviations are not only
driven by individual mobility behaviors but are a signal of an existing
common sense that could be exploited by a route planner.

1 Introduction

Route planners are systems which help users selecting a route between two lo-
cations. When providing directions, web and mobile mapping services generally
suggest the shortest route. Popular route planning system such as Google Maps,
Open Street Maps etc. generate diverging directions using powerful libraries of
roads and road attributes [16]. However, they often ignore both the time at which
a route is to be traveled and, more important, the preferences of the users they
serve. Since cities are becoming crowded and jammed, smart route planning are
gathering an increasing interest. In such a context, a route planner which takes
into account users’ preferences [8], and which exploits the crowd expertise w.r.t
urban mobility in order to identify the best route, can be more desirable and
helpful than an ordinary route planner [6].

A route planner which exploits individual mobility models to improve the
planning will have a real advantage from these models only if the users do not



follow the shortest path in their systematic movements but deviate from them.
Consequently, the target of this work is twofold. The first one is to understand
and estimate how much the systematic movements of a user are different from
the shortest paths between the origin and destination locations. The intuition is
that a user which lives and acts in a certain territory do not automatically select
the shortest path. This can happen for many reasons: e.g. traffic conditions,
road quality, for passing close to the cheapest petrol station, for avoiding roads
with control of speed etc. However, independently from the reasons, if there is
a divergence between the systematic route with origin point o and destination
point d, and the shortest route from o to d suggested by a route planner, then
also other users could benefit from this kind of knowledge which comes from
individual expertise on a certain area. This lead to the second and main target:
a boosted route planner that, when is possible, proposes as alternative to the
shortest path a route which is frequently followed by someone. This planner
would be a route planner coming from the wisdom of the crowd in mobility.

By exploiting individual mobility profile models [15] and trajectory map-
matching [5] for a set of users in Pisa and Florence province, we retrieved the
systematical movements of the users, named routines, and we mapped these rou-
tines along a road network. By calculating the shortest path from the origin o to
the destination d of each routine with an ordinary route planner we obtained the
movements a user would have followed when there is not expertise of the area.
Then we compared the routines with the corresponding shortest path. Thanks to
this analysis we are able to (i) quantify how much human mobility differs from
the shortest path and, on the other hand how good can be an approximation of
human mobility made with the shortest paths, (#) at which level appears the
divergence between the routine and the shortest path w.r.t. origin/destination,
and (%ii) which are the road intersections, areas and flows of movements in which
users mobility detaches more in comparison with the shortest paths.

Our experiments show that about 30-35% of the routines follow the short-
est paths, while the others follow routes which are on average 7 km longer. In
addition, 20% of the routines deviate at the very beginning from the suggested
paths. Despite these differences, 60% of the route returned by the planner would
belong to the individual mobility profiles. Consequently, even if the analyzed
drivers follow routines quite similar to the routes suggested by a route planner,
they deviate from them not to minimize the travel distance but for some other
unknown reasons. Finally, we discovered a sort of collective “common sense”:
when moving from a certain origin to a certain destination nearly all the drivers
deviate in the same area. This indicates that different users which systematically
drive along the same roads develop similar individual mobility behaviors.

Preliminary techniques are illustrated in Section 2. In Section 3 we propose
our analytic model. We show in Section 4 the results of our analysis. In Section
5 we summarize some related works on route planning. Finally, Section 6 reports
a summary of the contributions of the paper and possible future works.



2 Preliminaries

Movements are usually performed by people in specific areas and time instants.
These people are called users or drivers and each movement is composed by a
sequence of spatio-temporal points (z,y,t) where x and y are the coordinates,
while ¢ is the time stamp. We call trajectory the movements of a user described
by a sequence of spatio-temporal points:

Definition 1 (Trajectory). A trajectory m is a sequence of spatio-temporal
points m = [(X1,Y1,t1), -, (Tn,Yn, tn)] where the spatial points (x;,y;) are
sorted by increasing time t;, i.e., V1 < i < k we have t; < t;11

The set of all the trajectories traveled by a user u makes her individual history:

Definition 2 (Individual History). Given a user u, we define the individual
history of u as the set of traveled trajectories denoted by H, = {my,...,my}.

2.1 Individual Mobility Profiles

It is possible to extract the systematic movements of a user u by following the
profiling procedure proposed in [15]. This approach groups the trajectories using
a clustering algorithm equipped with a distance function defining the concept of
trajectory similarity:

Definition 3 (Trajectory Similarity). Given two trajectories m’ and m”, a
trajectory distance function dist and a distance threshold e, we say that m' is
similar to m” (m' ~ m/ ) iff dist(m’,m") < e.

The result is a partitioning of the original dataset from which the clusters with
few trajectories and those containing noise are filtered out. Finally, the represen-
tative trajectory are extracted from the remaining clusters. These representative
trajectories are called routines and the set of routines is called mobility profile:

Definition 4 (Routine and Mobility Profile). Let H, the individual history
of a user u, ms a minimum size threshold, dist a distance function and € a
distance threshold. Given a grouping function M = group(H,,,ms,e,dist), such
that M = {Mj ... My} where M; C H,, we define a routine r; as the medoid
trajectory of a group M;. The set of routines extracted from M is called mobility
profile and is denoted by P, = {ry...71}.

A mobility profile describes an abstraction in space and time of the systematic
movements: the user’s real movements are represented by a set of trajectories
delineating the generic paths followed. Moreover, the exceptional movements are
ignored due to the fact they will not be part of the profile. Figure 1 depicts an
example of mobility profile extraction. We name getmedoids(M) the function
that takes in input the output of group() and returns the routines, i.e. the medoid
trajectories {ry ... 7} of the groups in M describing the mobility profile P,.



Fig. 1. The user individual history (H,), the clusters identified by the grouping func-
tion (My, Ma, M3) and the extracted individual routines (P, = {ri,r2}) forming the
individual mobility profile.

2.2 Trajectory Map Matching

A trajectory m coming from GPS or GSM dataset generally does not contain the
relative raversed road network segments. Such enrichment might not be straight-
forward, especially when raw trajectory data have a high sampling rate. This
lack of information can be restored by means of some map matching techniques.
We adopted the gravity model [5] as method to match each single trajectory
point to the road segment it belongs to:

Definition 5 (Gravity Force Attraction). Given a point p; and a set of road
segments describing the road network S = {s1,...,8,} where s; = {Pstart; Dend},
we define the gravity force attraction of a segment s; for a point p; as:
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clidean distance between a point and a segment, and ang is the absolute difference
between the direction of the point and the direction of the segment.

This model can be applied over the whole road network segments. However,
in real applications the set of segments S to be considered can be very large. For
this reason, it is possible to use a nearest neighbor approach and consider only
a subset Sx C S containing the k segments closest to a given point.

Given a GPS trajectory m = {p1,...,pn} and a set of road segments S, it
is possible to assign each point p; to the segment with the most powerful force
55 = o(pi, S, k) = argmaz,,cs, (GFA(pi,s;)). The Gravity Model adopted has
also been used to estimate the traveltime of each matched road segment; once
every trajectory point have been matched, the typical travel time of a segment
s, given P the set of points matched to s, is defined as =2 e{;ﬁ’ Zgg }Eggﬁg(p 0:5)
Road network travel times have been estimated from a dataset composed by 9.8
millions car travel.

Definition 6 (Trajectory Map Matching). Given a trajectory m and a set
of road segments S, we refer to m* as the trajectory m on the road segment
network S, i.e. the points of m* belong to the segments in S:

m* = mapmatch(m, S, k)

where m* = [p},...,py] = [S1,...,80-1) and [p},piy 1] = §; = o(pi, S, k)



Thus, m can be transformed in the map matched version m* = [p},...,p%] con-
taining points which belong to the road segments S, where pi, ..., p} maximize
the attractions with pq, ..., p,, i.e. m* is the best representation of m on S. Note
that it is sufficient to set k greater than one to guarantee the denominators be
different to zero. A refinement is needed to obtain the map matched trajectory
m*, i.e. a path must be added for each couple of points which are not directly
connected. This is a common case when low sampled GPS data are involved:
in this scenario, a GPS point every ~90 seconds is recorded. To find such path
followed by the driver, we used a Time-Aware heuristic as described in [4]. This
map-matching method takes the GPS travel time between the two consecutive
GPS point as input and returns the path connecting the two points that bet-
ter fit the input travel time. It is worth to consider that the road network is a
directed graph, thus including and correctly recognizing one way segments.

3 Proposed Analytic Model

In the following we describe the analytic model adopted to discover how much
the shortest /fastest path can approximate the systematic movements of a user,
and how much a route planner could improve its performances by using the
wisdom of systematic drivers.

Given a set of users U and set of road segments S, for each user u € U, we
calculate the individual mobility profile

P, = getmedoids(group(H,,ms, ¢, dist))
Then for each routine r; € P,, we map match the routine on the road network
ri = mapmatch(r;, S, k)

We name map matched individual mobility profile Py = {rf,...,r;} the
profile of a user u containing the routines mapped on the road network.
We define a route planner

m = routeplanneriy,.(o,d, S)

as a function which returns the best path m = [0, Do, . .., Pn—1, d] w.r.t. the type
of search type € {s, f} (where s stands for shortest and f stands for fastest) on
the road segments S where o is the origin point and d is the destination point.

Finally, for each routine v = [0;,...,d;] € P} we calculate the path re-
turned by the route planner 7; = routeplanneriyye(0;,d;, S) on the origin and
destination. We indicate with Pfvr¢ = {7, ..., 7} the shortest/fastest individual

mobility profile of a user u containing the paths returned by the route planner.
Summing up, given a set of users U and their individual history H,V u € U,
and the road network segments set S we obtain:

1. P,V u € U with the Mobility Profiles step as result of the application of
group() and getmedoids() using H,, for each u € U;
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Fig. 2. Steps of the analytic mobility model. Input: individual history H,, road net-
work segments set S. Output: individual map matched mobility profile P, individual
shortest /fastest mobility profile PL¥P¢. P, is calculated by using the Mobility Profiling
functions. Then, the Map Matching module produces P,; by using the routines in P,.
Finally, P¥P¢ is obtained by using the Route Planner on the origin and destination
points (highlighted in the red dotted circles) of the routines in P;.

2. Py YV u € U through the Map Matching step as result of the application of
mapmatch() for each r; € P,V u € U,

3. Pre Yy € U by means of the Route Planner step as result of the application
of routeplanner() on the origin and destination points o0;,d; of for each
ri € Py, VueUl.

Figure 2 shows the steps of the analytic mobility model. In the next section we
will observe the differences between P} and P, Pf. We remark that the shortest
path is the path which minimizes the distance, while the fastest path is the path
which minimizes the travel time.

4 Experiments

In the following we evaluate how much systematic users described by their map
matched individual mobility profile P} deviate from the shortest and fastest
routes contained in the shortest mobility profile P and fastest mobility profile
P/ for the provinces of Pisa and Florence. Moreover we analyze which are the
nodes on the road network S, the areas and the flows more affected by deviations.

4.1 Dataset

As a proxy of human mobility, we use real GPS traces collected for insurance
purposes by Octo Telematics S.p.A3. This dataset contains 9.8 million car travels

3 http://www.octotelematics.com /it



Fig. 3. (Left) A sample of the considered trajectories in Pisa province. (Right) Mobility
profiles extracted in Pisa province.
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Fig. 4. Distributions of number of trajectories (top - left), number of routines (top -
right), routine relative support (bottom - left), trajectories and routines starting time

(bottom - right).

performed by about 160,000 vehicles active in a geographical area focused on
Tuscany (Italy) in a period from 1st May to 31st May 2011. Figure 3-left depicts
a sample of the considered trajectories. In our analysis we split geographically
the dataset in provinces to consider the fact that each area has its type of
mobility with characteristics depending on the surface, on the topology and on
the number of inhabitants. In this paper we present the results obtained for the
provinces of Pisa and Florence. A user is analyzed in one province if at least one
of his/her trajectories passes through that province. In particular we analyzed a
subset of 3,000 representative users which have traveled along a total of about
500.000 trajectories. The individual history H, represents our input data.

4.2 Mobility Profiles Analysis

To perform the Mobility Profiling step, we used as profiling function profile()
the clustering algorithm Optics [1], and as distance function dist() a function
which compares the points distances along the trajectories (or an interpolation of
them) and returns the average of these comparisons. In order to obtain sound and



o
=
o
o
>

o
w
v}
o
b
s

Pisa Pisa
Firenze Firenze|

routines ratio
o o o o o
[ T A
S &L S & &
routines ratio
o o o o o
5 o°o o B B
E 38 & 5 ©

o
o
&
o
o
N}

o
o
o
o

5 10 15 20 25 10 20 30 40 50 60
difference space (km) difference time (min)

of

Fig. 5. (Left) Space difference distribution in km between the routines in P, and the
corresponding routines in P;. (Right) Time difference distribution in minutes between
the routines in P; and the corresponding routines in pl.

reliable routines we performed some preliminary tests to set the best parameters
to extract the mobility profiles P,. We choose ¢ = 500m and ms = 8 since a
routine is a movement that must be repeated a significant number of time during
a month. Figure 3-right depicts an example of profile extracted in Pisa province
modeling the users’ systematic movements.

In Figure 4 (top) we can observe the distributions of the number of trajecto-
ries and number of routines per user (left and right respectively). All the users
selected have more than 150 trajectories and most of them has 160 with an aver-
age of about 200 trajectories. Most of the individual mobility profiles P, contain
1 — 4 routines. The average length of a routine is about 8.87 km (4 8.96 km
of standard deviation), while the average duration is about 20 min (£ 12 min
standard deviation). In Figure 4 (bottom - left) we can observe that most of the
routines have a relative support of 0.2 of the trajectories. This means for exam-
ple that given a user with 160 trajectories and a routine with support equals
to 0.2, then that routine is supported by about 30 trajectories, i.e. a trajectory
per day on average in the observation period. Finally, the starting time distribu-
tions of trajectories and routines is depicted in Figure 4 (bottom - right). Note
how the starting time distribution of the routines, more than the starting time
distribution of the trajectories, follows a clear M-shape pattern. This highlight
how the routines capture the systematic movements from home to work in the
morning and from work to home in the afternoon.

4.3 Deviation Analysis

As first experiment we analyzed the deviation in term of space difference from the
routines in P to those in shortest path P2, and the deviation in term of time
difference from the routines in P’ to those in fastest path PJ. In particular,
for each user v € U analyzed, for each routine in r} = {o;,...d;} € P, we
calculated the difference in length with the corresponding route in Pis’f }, ie.
the route 7; which starts in o; and ends in d;. Note that the following results
are biased by the route planner used: by applying different route planners the

shortest and fastest path obtained could be different.
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short - space diff| fast - time diff short - pbd fast - pbd
med avg std |[med avg std |[med avg std |med avg std
02.31 07.16 13.56‘07.42 26.92 58.13H07.07 25.14 35.52‘07.96 23.19 32.33

Pisa

Florence|03.64 10.22 18.45|07.31 19.06 29.90((02.97 07.58 13.54|01.05 01.58 21.58

Table 1. median, average and standard deviation of the space difference (km), time
difference (min) and relative percentage of road traveled before the deviation (pbd).

In Figure 5 we can observe the space and time differences distributions.
With respect to the shortest path (left in the figure), in both dataset there is a
consistent set of routines with space difference equals to zero. This indicates that
30%-35% of the routines (for Pisa and Florence respectively) follow the shortest
path suggested by the route planner. The remaining routines differentiate on
average of 7 km (see Table 1). On the other hand, in Figure 5 (right) none of the
routines follows exactly the fastest path. Just few routines, i.e. the 10%, follow
the fastest routes with less than a minute of difference. All the others differentiate
consistently (20 min on average Table 1). In addition, we observed that 15% of
the drivers in Pisa and 10% of the drivers in Florence have the individual mobility
profile exactly equal to the shortest mobility profile (P = P?). On the contrary,
none of the user has all the routines equal to the fastest path, i.e. P} = PJ

In Figure 6 left is reported the percentage of road traveled before the devi-
ation (pbd), both for Pisa and Florence. It is obtained by observing after how
much r} deviates from 7; after the start point o; (for #; € P? and 7; € PJ ).
We can notice how 20% of the systematic movements deviate from the short-
est/fastest paths at the very beginning. The distribution is a long tailed power
law with average percentage before deviation of 7% and 3% for Pisa and Flo-
rence respectively (see Table 1). Furthermore, how already observed, there is a
consistent subset of routines (12-15%) which do not deviate from the shortest
path. This does not occur for the fastest path.

Finally, we studied the percentage of shortest /fastest movements which would
have belonged to the clusters by varying the minsize (ms) parameter (Figure 6
right). We calculated for each user u € U the trajectory distance (using the same
distance function dist applied for the clustering) between the short/fast paths
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71...7% and the trajectories belonging to the corresponding cluster M ... M.
For minsize = 8 (the value used for the clustering), 60% of the movements re-
turned by the route planner would have belonged to the clusters in both short-
est and fastest path. This indicates that the movements returned by the route
planner are similar enough to the trajectories belonging to the cluster to be con-
sidered part of them. This fact is quite interesting if we consider that the space
and time difference between routines and suggested routes are in some cases not
negligible, and that the routines generally deviate not far from the origin point.
The conclusion is that systematic drivers generally deviate from the routes
suggested by a route planner at the very beginning of their movements, and that
in general they do not optimize their travel time but try to minimize the travel
distance. However, even the drivers deviate from the short/fast routes, these
routes are in many cases very similar to the routines systematically followed.

4.4 Towards a Boosted Route Planner

Before presenting the analysis of this section we remark that routines are move-
ments repeated many times (on average 15 times) during the observation period.
Thus, if drivers systematically deviate from what is supposed to be the shortest
(or the fastest) path there should be a valid reason. Given a user moving for the
first time in a certain area, it could be better for him/her to follow the routines
described by “expert driver” instead of the routes suggested by a route planner.

A route planner could be boosted by exploiting the knowledge given by the
individual mobility models. Such a route planner should consider various infor-
mation: (i) the road intersections where the systematic drivers deviate more, (i)
the areas where those intersections are concentrated, and (i) the main flows of
movement containing deviations. In the following we analyze these three factors
to understand their impact and which are their possible uses. Due to lack of
space in the following we focus the analysis only on the deviation of the routines
against the shortest path.
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We refer to the road intersections as deviation nodes. They correspond to the
first nodes in the set of road segments S from which the routines in P deviate
from the route in P?. To count the number of deviations, instead of considering
only the number of routines, we weighted each routine r} € P} with the number
of trajectories that support it. In Figure 7 we can observe the deviation nodes
in which there are at least 100 trajectories which deviate. The darker and the
bigger is a marker, the higher is the number of deviations performed by the
routines on that node. As expected, for both cities, the highest numbers of
deviation nodes appear into the city center. This confirms the fact that in the
city is very difficult to follow the shortest paths. Moreover, in both cities we can
observe some particular areas not in the city center (those highlighted in the
green dotted squares) with an high number of deviations. They correspond in
both cases (i) to the main access points to/from the city center, and (%) to the
roads close to the airports. This is a signal that these areas are probably affected
by consistent traffic and the systematic users which have to pass through them
prefer longer but less stressful routes.

To analyze the deviations’ areas we divided the territory using a grid with
cells of 2.5 km of radius. The heatmap of the deviations is shown in Figure
8. The darker is a cell, the higher is the number of trajectories which support
the routines deviating there. For these images no filters are applied. The first
insight is that the users acting in province of Florence have an active role even in
the mobility of Pisa but the viceversa is not true. Indeed, most of the cells with
more deviation in Pisa occur also in the Florence heatmap. From the intersection
of the two images emerges that most of the systematic deviations take place
along the main road between Pisa and Florence (named SGC Fi-Pi-Li) with a
concentration in the area around Empoli. This probably happens because most
of the people living in Empoli, which is in province of Florence, go systematically
to Pisa for working. For example, instead of following SGC Fi-Pi-Li that is an
highway but has a lot of traffic, many drivers could prefer as alternative the road
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Fig. 9. Distributions of the number of cells with deviations (left), and of the number
of flows with deviation (right).

SS67 which runs along SGC Fi-Pi-Li but has much more turns and is not an
highway. In Figure 9 (left) we report the distribution of the number of cells per
routines’ deviations. It is a power low distribution indicating that there are few
cells where most of the systematic users decide to take alternative routes. Those
are the cells that more than the others the boosted root planner should consider
when suggesting the routes which exploit the wisdom of the crowd.

We defined a flow as a triple of cells (origin, deviation, destination) where
origin is the cell origin of the routine, deviation is the cell where r} deviates
from 7;, and destination is the ending cell of the routine. In Figure 10 we can
observe the flows containing the routines supported by at least 100 trajectories.
Through this approach we can observe the main flows along with most of the
drivers deviate from the shortest paths. We can observe how in Pisa province
there are various flows of entrance to and exit from the city center. The flow with
more deviations (the purple biggest arrows) are just under the city center starting
from the airport area up to the suburbs. They are surrounded by a large number
of in-coming and out-coming flows. We remark that in many cases the deviation
from the shortest path appears at the very beginning of the movement. Thus the
flows reported mainly highlight the part of the movement after the deviation.
Some deviation flows do not have a mutual reverse flow of the same importance.
For these cases the deviation is more evident only in one direction. On the other
hand, in province of Florence, the flows in the city center are on average shorter
than those outside. In addition, the biggest flows are present in the airport area
(big green arrow in the center) and close to the exit of the highways (big blue
arrow bottom right and big aqua green arrow in the center). Figure 9 (right)
shows the distribution of the number of flows per routines’ deviations. Similarly
to the cells, the distribution is long tailed indicating a small set of flows where
many routines deviates from the shortest/fastest path. A route planner having
this kind of knowledge should recommend paths which run along these flows and
are similar to the individual routines. Indeed, by applying appropriate weights
on the road network segments in S the route planner could provide solutions
boosted by the routes systematically followed by expert drivers.

Finally, we analyzed the difference between the flows described above and
the flows built using only origins and destinations. In other words given a
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origin-destination flow (origin, destination) how many flows (origin, deviation,
destination) pass through the same deviation? We name this indicator flow
similarity in deviation. This value give us a hint of how much a certain de-
viation is stable along a flow. A flow similarity in deviation of X% indicates
the percentage of (origin, deviation, destination) flow on the number of origin-
destination flows (origin, destination) which pass through the same deviation
cell. E.g. given the following origin-destination flows {A — B, X — Y} and the
flows {A -C >B,A—-C B A—-D—>BX—>Z->Y,X—>Z-=>Y}
then the percentage of flow difference is 80%. In our dataset of Pisa and Florence
we obtained the following results: Pisa: 83% (short), 78% (fast), Florence: 87%
(short), 85% (fast). These high percentages are a clear signal that the deviation
along the various flows are not a matter of individuals, but that are known and
subscribed from the majority of the drivers. It is a sort of “common sense” which
surprisingly emerges at collective level even though all the mobility models used
in the proposed analysis are individual.

5 Related Work

Route planners are designed to provide information about the possible journeys
in a certain area. Generally route planners refer to means of transportation which
are either private or public. However, the application prompts a user to input an
origin and a destination and it recommends some routes which are considered
to be the best for that query.

Route planners generally use some smart variations of well known short-
est path algorithms to search a graph of nodes (modeling access points to the
network) and edges (modeling links between nodes) [8]. Different cost weights
such as distance, cost etc. can be associated with edges and nodes. However,
it is generally quite difficult to plan high quality routes [11]: (i) the notion of
“route quality” is different from person to person, and (i) available route net-
works rarely contain all the information needed for proposing the best route



(e.g. traffic information, road quality etc.). Thus, even though the search can be
optimized w.r.t. different criteria, e.g. the shortest, the fastest, the cheapest [13]
and even the happiest ones [14], there is not guarantee that the route provided
will be considered “the best” by the majority of the users.

Various effort in different directions have been made to improve route plan-
ning applications. In particular, personalized route services able to deal with
individual users preferences have been investigated recently. For example in [12]
complex users preferences were modeled into a route planner by means of the
fuzzy set theory. In [9] the authors provided improved individual route plans
for Dublin inhabitants by exploiting both historical data and estimated traffic
flows. Still according to an estimation of future travels obtained by mining public
transport data, in [7] were recommended personalized tickets for London public
transport network. Another framework for personalized trip recommendations
considering user preferences and temporal properties was proposed in [10]. In [16]
were introduced real-time information coming from GPS-equipped taxi together
with historical data for an improved route planner which uses traffic conditions
and driver behavior for selecting the best path. Finally, a multi-modal journey
planner can consider at the same time various means of transport and minimize
the uncertainty of catching a certain means [3], or it can provide for the same
journey personalized public and private transportation solutions [2].

6 Conclusion

In this work we analyzed the deviation of the systematic movements from the
shortest and fastest paths suggested by a route planer on a set of drivers in
Pisa and Florence provinces. We found that systematic drivers deviate from the
routes suggested by a route planner at the very beginning of their movements,
and that they generally try to minimize the travel distance more than the travel
time. Moreover, we observed that the shortest paths are in many cases very
similar to the systematic movements from which they deviate. Through our
analytic model we were able to select the areas and the flows with the highest
number of systematic deviation. We discovered that given a flow from an origin
o0 to a destination d nearly all the users which systematically move from o to d
deviate in the same area. Our analysis shows that, for some unknown reasons,
the traveled systematic movements give to the drivers a feeling that their route is
better than the shortest or fastest paths suggested by a route planner. This kind
of knowledge can be exploited by a route planner which can weight the cost on
the edges with the number of supported trajectories instead of with the length
or with travel time. Following this approach, a user which travels for the first
time in a certain area could be helped in selecting the route by the wisdom of the
drivers which systematically pass there. Also a city manager could gain worth
information from our analysis. Indeed, he/she could favor the cars circulation
along the routes followed by systematic drivers and improve the others which
are in fact not exploited enough.
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