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Abstract

In many application fields, huge binary datasets mod-
eling real life-phenomena are daily produced. The
dataset records are usually associated with observa-
tions of some events, and people are often interested
in mining these datasets in order to recognize recur-
rent patterns. However, the discovery of the most
important patterns is very challenging. For exam-
ple, these patterns may overlap, or be related only to
a particular subset of the observations. Finally, the
mining can be hindered by the presence of noise.

In this paper, we introduce a generative pattern
model, and an associated cost model for evaluating
the goodness of the set of patterns extracted from a
binary dataset. We propose an efficient algorithm,
named GPM, for the discovery of the patterns be-
ing most important according to the model. We
show that the proposed model generalizes other ap-
proaches and supports the discovery of higher quality
patterns.

1 Introduction

Huge binary datasets are generated daily by many
popular applications for example in the electronic
commerce, or mobile communications domains.
These datasets are composed of transactions (or ob-
servations), each made up of a possibly large set of
items (or 0-1 attributes). The attributes present in
these transactions are in many cases not independent
as they model real-life phenomena and events. Pat-
terns, i.e., collections of items whose occurrences are
somehow related to each other, can thus be mined
from data in order to understand common behav-
ior and derive interesting knowledge. Finding such
patterns can be very challenging, in particular it is
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Figure 1: A synthetic binary dataset: row correspond
to transactions, columns correspond to items.

particularly complex to detect the most “important”
ones (often known as Top-k patterns). In fact, two
or more patterns can overlap, or a particular pattern
could be related only to a particular subset of the ob-
servations, or it may be hidden by presence of noise.

In Figure 1 we show a simple synthetic dataset
made of 50 items (columns) and 1000 transactions
(rows). It is apparent that three overlapping pat-
terns (i.e., three overlapping black rectangles) were
embedded, consisting of three sets of items occur-
ring together in three sets of transactions. Moreover,
a number of bits where randomly flipped across the
whole dataset. This simple intuition is not easy to
formalize or to translate into an actual algorithm. In-
deed, while binary matrices are omnipresent, no one
of the algorithms proposed in the literature is able to
discover that the dataset in Figure 1 simply contains
three patterns plus noise.

Frequent itemset mining algorithms are not able
to find those patterns, since due to the presence of
noise, not all the items of a pattern may always oc-
curs simultaneously in the set of supporting transac-

1



tions/observations. A way to solve this issue is to
relax the definition of support, as for Error Tolerant
Itemsets (ETIs). But also ETIs have a number of
drawbacks: they are too many, and they contain a
lot of spurious itemsets containing only noisy occur-
rences.

Other approaches have been developed in the In-
formation Retrieval field. Indeed, a corpus of docu-
ment can be seen as a dataset whose transactions are
documents, and items are words. This is different
from binary datasets since a word may have multiple
occurrences in a given document. Collection of doc-
uments are analyzed via a generative topic model,
where a topic is a set of words co-occurring in a set
of documents, i.e. a pattern. Matrix decomposition
methods can be applied to find those hidden topics.
The goal of generative topic models is to best approx-
imate the input data. Therefore, also the noisy oc-
currences need to be explained by the model in terms
of topics.

An interesting algorithm tailored to the discov-
ery of patterns in binary databases is Hyper+ [15],
which is based on the notion of hyper-rectangle, i.e.,
the Cartesian product between a set of items I and
a set of transactions T . A set of hyper-rectangles is
a cover of the database D if any item i occurring in
a transaction t forms a couple (i, t) included in the
Cartesian product of one of hyper-rectangles. Finally,
each hyper-rectangles is associated with a cost. The
Hyper+ algorithm aims at discovering the cover of
the database of size K that minimizes the sum of
the costs of its hyper-rectangles. Hyper+ produces
a cover of D starting from a collection of frequent
itemsets in the database.

In this paper we extend the framework introduced
in [15], and propose a novel algorithm, named GPM,
for the discovery of patterns in a noisy binary dataset,
like the one shown in Figure 1.

Our work contains several original contributions.
First, we introduce a new cost model for evaluat-
ing the goodness of the set of patterns extracted.
Second, we propose GPM, a new algorithm that,
unlike Hyper+, does not need to extract all the
frequent patterns from the database in advance.
GPM can also better deal with noise in the data,
since it can deal with both false positives, i.e.
pairs of item/transaction present in the cover but
not in the data, and false negatives, i.e. pairs of
item/transaction present in the data but not in the
cover. Finally, we show that GPM outperforms Hy-
per+ both in terms of running time and quality of

the extracted patterns.

2 Problem Statement

Our input data is a transactional dataset, which is
represented as an N ×M binary matrix denoted as
D.

Definition 1 (Transactional dataset D) Let
D ∈ {0, 1}N×M be the binary representation of a
transactional dataset, composed of N transactions
{t1, . . . , tN}, ti ⊆ I, where I = {a1, . . . , aM} is a set
of M items. We have that D(i, j) = 1 iff aj ∈ ti,
D(i, j) = 0 otherwise.

We adopt a generative model to describe the ob-
served dataset. In particular, we assume that each
transaction of D records the occurrence of one or
more latent patterns, with the addition of some noise.

Let Ω be the latent pattern set of unknown size.
Every pattern P ∈ Ω corresponds to two sets: the
former set specifies which items were generated by
the pattern, and the latter which transactions were
affected by the pattern. Each pattern P ∈ Ω is for-
mally defined as P = 〈PI , PT 〉, where PI ∈ {0, 1}M

and PT ∈ {0, 1}N . Therefore, PI(j) = 1 iff item aj
belongs to the pattern, and PT (i) = 1 iff the pattern
P participates in the generation of ti.

We can exemplify the generative process of a given
transaction ti as follows:

• ∀ P ∈ Ω, such that PT (i) = 1, item aj is gener-
ated in ti iff PI(j) = 1;

• eventually, some items in I are randomly added
to (removed from) ti due to noise.

The resulting observed ti corresponds to the ith

row of matrix D.
This model has many similarities with other meth-

ods such as probabilistic latent semantics analysis,
factor analysis, and topic models, where the keyword
pattern is replaced by aspect, unobserved class vari-
able, latent topic or factor. But, differently from those
models, we focus on noisy binary data.

The binary representation of datasets and patterns
helps us in explaining algebraically this generative
process of the observed dataset D, which is indeed
obtained as the result of the “OR sum” of the occur-
rences of the patterns Ω and some noise.
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Definition 2 (Generative Pattern Model)
Let D be the binary representation of the observed

input data. It is generated by a set of patterns Ω as
follows:

D =
∨
P∈Ω

(PT · PT
I ) ⊕ N

where
∨

is the OR operation, PT · PT
I is the outer

product of the two binary vectors, and thus (PT ·PT
I ) ∈

{0, 1}N×M , ⊕ is the element-wise XOR operation,
and N ∈ {0, 1}N×M models the noise, and acts by
randomly flipping bits after the “OR sum” of the pat-
terns’ occurrences.

We call ground truth how the dataset would look
like if noise was not present, i.e. if D was generated
by the pattern set only. The gound truth deriving
from the pattern set Ω is:

4
Ω =

∨
P∈Ω

(PT · PT
I )

Therefore noise can be computed as N = D ⊕
4
Ω.

Since we can only observe D, there may exist sev-
eral pattern sets and noise matrices that can “ex-
plain” the input data, according to Definition 2.
However, we argue that we can approximate Ω by
choosing the “best” pattern set Π on the basis of the
Minimum Description Length (MDL) principle [11].
When choosing among different candidate models,
which are somehow encoded, the MDL principle sug-
gests to adopt the model with the minimum code
length. To this end, we define two encoding cost
functions γP : {0, 1}N × {0, 1}M → R and γN :
{0, 1}N×M → R, and require the selected pattern set
Π and the resulting noise matrix to have the mini-
mum costs. Finally, we can introduce our generative
pattern model discovery problem.

Problem 1 (Generative Pattern Model Dis-
covery Problem)

Given a binary dataset D ∈ {0, 1}N×M , find the pat-
tern set Π that minimizes the following cost:

γ(Π,D) =
∑
P∈Π

γP (PT , PI) + γN (N )

where N = D ⊕
4
Π, being

4
Π the estimated ground

truth, γP (X,Y ) = ‖X‖1 + ‖Y ‖1 and γN (Z) =∑
i,j Z(i, j).

Π is a generative pattern model of the observed
dataset D.

The rationale of the two cost functions γP and γN
is to penalize items that are not clustered together.
Suppose that a large “rectangle” of 1s is present in D.
The mining algorithm has to decide whether to con-
sider this rectangle being noise or a pattern. In the
first case, the algorithm incurs in a cost equal to the
number of bits, i.e. the area of the rectangle. In the
second case, the rectangle is described just using its
items and transactions, and the cost is thus equal to
its half-perimeter (plus 1). Being the second option
more cost effective, i.e. with a smaller encoding cost,
the rectangle is promoted to a pattern. From an in-
formation theoretical point of view, patterns in data
are useful in generating a compressed description, the
remainder is supposingly noise.

Regarding noise, the model allows both false posi-
tives and false negatives in the pattern set extracted
Π. A false positive occurs when an item which is not
present in D is covered by a pattern in Π, while a
false negative occurs when an item present in D is
not covered by Π. More formally:

False Positive if D(i, j) = 0 and
4
Π (i, j) = 1

False Negative if D(i, j) = 1 and
4
Π (i, j) = 0

Most approaches require every item occurring in D
to be covered, and therefore the do not allow false
negatives. This is crucial in presence of noise, since
every noisy occurrence needs to be matched, clearly
facing overfitting issues.

The Pattern Model Discovery Problem, extends
the mining problem described by the authors of Hy-
per+ [15]. They propose a model similar to the one
described in Definition 2, but they assume that no
noise is present in the dataset. Therefore, while γP
is the same, γN is always 0. Therefore, in their ap-
proach the problem of finding Π is mapped to the
problem of finding an optimal set covering of the in-
put dataset. First frequent itemsets Fα are extracted
from D, with some minimum support threshold α.
Each frequent itemset F ∈ Fα identifies a candidate
pattern C = 〈CT , CI〉 such that CI(j) = 1⇔ aj ∈ F
and CT (i) = 1⇔ F ⊆ ti.

Hyper+ is a greedy algorithm that first selects
the a number of candidates that cover the whole D
with minimum cost, and then recursively merges the
two candidates that introduce the smallest error, un-
til only K patterns are left.

Unlike our approach, Hyper+ only allows false
positives to occur. False negatives are not allowed,
since the input data must be entirely covered. Also,
since only the extracted patterns contribute to the
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cost function, this is not affected by the number of
false positives. For this reason Hyper+ tends to cre-
ate a large number of false positives, and therefore
patterns that poorly describe the input data.

Our model generalizes the framework introduced
in [15], by borrowing from related approaches for ma-
trix decomposition problems. These usually try to
find a set of patterns that may approximate as well
as possible the original data D. They thus take into
consideration the cost γN , and discard γP . For ex-
ample, consider [10] where the authors adopt our γN
function, but use a cost function γP (·) = 0 for the
extracted patterns.

We show that, by taking into account both cost
components, it is possible to dramatically improve
the quality of the patterns found by Hyper+.

Section 4 proposes GPM, a new algorithm for the
Pattern Model Discovery Problem that, unlike Hy-
per+, does not need to extract all the frequent pat-
terns from the database in advance. Also, GPM can
produce a better pattern set, since it is able to face
noise in the data by dealing with both false positives
and negatives.

3 Related Work

We classify related works in three large categories:
matrix decomposition based, database tiling, fre-
quent itemsets based. All of them have many sim-
ilarities with the Generative Pattern Model discov-
ery problem. However, there are four features that
are considered altogether only by our framework: (a)
our model is specifically tailored for binary datasets,
(b) our model allows for overlapping patterns, (c) our
model minimizes the error with respect to the origi-
nal dataset and the encoding cost of the pattern set
discovered, (d) frequent itemsets need not to be ex-
tracted from the original dataset. In the following,
we illustrate in more detail the algorithms falling in
the aforementioned categories.

Matrix decomposition based. The methods
in this class aim at finding a product of matrices
that describes the input data with a smallest pos-
sible amount of error. Probabilistic latent semantic
indexing (PLSI) [7] is a well known technique that
solves the above decomposition problem. PLSI was
initially devised to model co-occurrence of terms in a
corpus of documents D. The core of PLSI is a gener-
ative model called aspect model, according to which
occurrence of a words can be associated with an un-
observed class variable Z ∈ Z called aspect, topic, or

latent variable. The model generates each transac-
tion ti as follows. First, a topic Z ∈ Z is picked with
probability ZT (i), and then an item j is picked with
probability ZI(j). The whole database results from
the contribution of every class variable, and thus we
can write:

D =
∑
Z∈Z

ZT · ZT
I +N = ZTZI +N

where the matrices ZT and ZI result from the juxta-
position of the vectors ZT and ZI , for every Z ∈ Z.
An Expectation-Maximization algorithm can be de-
signed to find ZT and ZI such that N is minimized.

This formulation is very similar to Def. 2. However,
PLSI was not formulated for binary inputs: D, ZT ,
ZI and N are assumed to be real valued. Recall that
the model was first designed to model occurrence of
terms in a document, and thus multiple occurrences
of the same term are allowed. This is not true for
a binary, dataset, where an item can either occur or
not. In other words, in one model pattern occurrences
are SUM-med, in the other they are OR-ed.

Other similar approaches for non binary inputs
have been studied, such as Latent Dirichlet alloca-
tion (LDA) [1], Independent Component Analysis
(ICA) [8], Non-negative Matrix Factorization, etc.
However, evaluations studies suggest that these mod-
els cannot be trivially adapted to binary datasets [6].

An improvement over this models has been pro-
posed in [12] and [10]. In [12] a different generative
model is proposed: an item occurs if it is generated
by at least one class variable. This makes the model
close to an OR-ing of class variables. The proposed
algorithm, called LIFT, is able to discover patterns
when dominant items are present, i.e. items that are
generated with high probability by one class variable
only.

In [10], the authors formalize the Discrete Basis
Problem, which aims at finding a binary valued ma-
trix decomposition of a binary dataset. The formula-
tion is equivalent to Def. 2. The authors proposed a
greedy algorithm where candidate patterns are cre-
ated in advance on the basis of items’ correlation
statistics. This happens to be a limitation in many
cases, since global statistics may be too general to
catch local correlations.

Both [12] and [10] aim at minimizing the noise ma-
trix N only.

Database tiling. Database tiling algorithm are
tailored for the discovery of large patterns in bi-
nary datasets. They differ on the notion of pattern
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adopted.
The maximum K-tiling problem introduced in [3]

requires to find the set of K tiles, possibly over-
lapping, having the largest coverage of the given
database D. In this work, a tile is meant to be an
pattern 〈PI , PT 〉 such that if PT (i) = 1 ∧ PI(j) = 1
then D(i, j) = 1. Therefore, this approach is not able
to handle the noise present in the database.

Co-clustering [9] is a borderline approach between
tiling and matrix decomposition. It is formulated as
a matrix decomposition problem, and therefore its
objective is to approximate the input data by mini-
mizing N . However, it does not allow for overlapping
patterns. In this regards, its output is similar to a
matrix block diagonalization.

According to [4], tiles can be hierarchical. A ba-
sic tile is indeed a hyper-rectangle with density p. A
tile might contain several non overlapping sub-tiles,
i.e., exceptional regions with larger or smaller density.
Differently from our approach, low-density regions
are considered as important as high density ones, and
inclusion of tiles is preferred instead of overlapping.

Frequent itemsets based. The frequent item-
set mining problem requires to discover those item-
sets supported by at least σ times in the database
D. Formally a pattern P = {PI , PT } is frequent if
‖PT ‖1 ≥ σ and:

PT (i) = 1 ∧ PI(j) = 1⇒ D(i, j) = 1. (1)

This notion of support does not allow missing
items. Generalization of frequent itemsets for dealing
with noisy databases, is typically achieved by relax-
ing the notion of support.

Weak error tolerant itemset (ETI) [16] are the first
example of such a generalization. The pattern P =
〈PI , PT 〉 is said to be weak ETI iff ‖PT ‖1 > σ and the
implication in Eq. 1 is violated at most ε·‖PI‖1·‖PT ‖1
times, where ε is an error tolerance threshold.

In extreme cases, a transaction may not contain
any item of the pattern, and still be included in the
supporting set. To avoid the possibility of spurious
transactions, strong ETI are introduced such that and
error tolerance threshold εr is enforced on any trans-
actions/row of the database: ti may support P if it
contains at least εr · ‖PI‖1 items of P .

Unfortunately, the enumeration of all weak/strong
ETI requires to explore the full itemsets space with-
out any pruning. To overcome this limitation of ETI
mining algorithms, in [13] the notion of dense itemset
is introduced. An itemset is said dense if it is a weak
ETI and all of its non empty subsets are weak ETI.

This sort of downward closure allows for an Apriori-
like algorithm which can find all the dense itemsets
in a database.

Approximate Frequent Itemsets (AFI) [14] are an
extension of strong ETI, where a row-wise and a
column-wise tolerance thresholds are enforced. The
pattern P = 〈PI , PT 〉 is valid if it is a strong ETI and
every item i of P is supported by at least εc · ‖PT ‖1
transactions. In this case, a relaxed anti-monotone
property can be exploited, and thus the solution set
can be extracted without exploring the full itemset
space.

In [2] the notion of closed approximate frequent
itemsets (AC-AFI) is introduced. A pattern is said
to be AC-AFI if (a) it is an AFI, (b) there is not su-
perset supported by the same transactions, and (c)
it encloses a core pattern. Given a pattern P =
〈PI , PT 〉, a core pattern C = 〈CI , CT 〉 is such that
CT (i) = 1 ⇒ PT (i) = 1, CI(j) = 1 ⇒ PI(j) = 1
and CT (i) = 1 ∧ CI(j) = 1 ⇒ D(i, j) = 1. In fact
core patterns are also frequent pattern, they can be
quickly extracted and extended by adding items and
transactions as long as the resulting pattern is still
an AC-AFI. We adopt the notion of core pattern in
the formulation of the GPM algorithm in Sec. 4.

All the above algorithms require a demanding data
processing, and, more importantly, they tend to gen-
erate a large and very redundant collection of pat-
terns. The cost model embedded in our framework
implicitly limits the pattern explosion, since a large
number of patterns does not minimizes the represen-
tation cost. The cost model may also allow to rank
patterns according to the contributed cost reduction.

In [5] all of the above frequent itemsets based al-
gorithms, plus some of their extensions are evaluated
over a collection of synthetic datasets. This consti-
tutes the first benchmark for approximate frequent
itemsets mining algorithm. In Section 5 we illustrate
these datasets and the evaluation measure adopted.
We used the same datasets and the same measures
to test the goodness of the patterns extracted by our
algorithm.

4 Algorithm GPM

The solution space of Problem 1 is extremely large.
There are 2M times 2N candidate patterns – where
M is the number of items I, and N is the number
of transactions – out of which only a few must be
selected.
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Algorithm 1 GPM algorithm.
1: Π← ∅ . the current collection of patterns
2: DR ← D . the residual data yet to be explained
3: for iter ← 1, . . . ,K do
4: C,E ← Find-Core(DR, Π, D)
5: C+ ← Extend-Core(C, E, Π, D)
6: if γ(Π,D) < γ(Π ∪ C+,D) then
7: break . cost cannot be improved any

more
8: end if
9: Π← Π ∪ C+

10: DR(i, j)← 0 ∀i, j s.t. C+
T (i) = 1∧C+

I (j) = 1

11: end for

To tackle such a large search space, we propose a
greedy algorithm named GPM. It adopts two heuris-
tics. First the problem of discovering a pattern is
decomposed into two simpler problems: discovering
a core pattern and extending it to form a good ap-
proximate pattern. Seconds, rather than considering
all the 2M possible combination of items, these are
sorted and processed one by one without backtrack-
ing.

Similarly to AC-Close [2], we assume that, even
in presence of noise, a true pattern P ∈ Ω occurs in D
with a smaller core pattern. That is, given a pattern
P = 〈PI , PT 〉, there exists C = {CI , CT } such that
CT (i) = 1 ⇒ PT (i) = 1, CI(j) = 1 ⇒ PI(j) = 1 and
CT (i) = 1 ∧ CI(j) = 1 ⇒ D(i, j) = 1. Then, given
C, GPM adds items and transactions to C, until the
largest extension of C that minimizes the overall cost
γ is found.

While Hyper+ needs the collection of frequent
itemsets in the dataset as a starting point for the
discovery of Ω, GPM is able to avoid this expensive
step, by directly mining the input data.

Algorithm 1 gives an overview of the GPM algo-
rithm. It iterates two main steps at most K times,
where K, provided by the user, is the maximum num-
ber of patterns to be extracted. During each itera-
tion, first a core pattern C is discovered (line 4) and
then it is extended to form a new pattern C+ (line 5)
that is added to the current pattern set Π. These two
steps are described in detail in the following sections.

A user-provided parameter K has been introduced
to make GPM comparable to Hyper+. However,
we have also included in GPM a check that stops the
generation of new patterns if they do not improve the
cost of the model (line 6).

The algorithm uses a particular view DR of the
dataset D for the discovery a new core pattern
(line 10). This view is called residual dataset and
it is computed by setting D(i, j) = 0 for any i,j such
that XT (i) = 1 and XI(j) = 1 for some previously
discovered pattern X. The rationale is that we want
to discover new patterns that explain a portion of the
database that was not already covered by any previ-
ous pattern.

4.1 Extraction of dense cores

The procedure Find-Core extracts a core pattern C
from the residual dataset DR, and returns an ordered
list E of items that are later used to extend C.

We restrict the search space, which has size 2M , by
sorting the items in D and considering them one by
one in the descending frequency order.

The procedure is described in Algorithm 2. The
extension list E is initialized to the empty set, while
core pattern C is initialized with the most frequent
item j1 and its supporting transactions in DR. Then
items in DR are processed one by one in decreasing
support order (line 3). The current item jh is used to
create a new candidate pattern C∗ (lines 7-9). Note
that when we add an item to a pattern (line 8), as a
consequence we can have a reduction in the number
of supporting transactions (line 9). If C∗ reduces the
cost of the pattern set with respect to C, then C∗ is
promoted to be the new candidate (line 11) and it
is used in the subsequent iteration. Otherwise, ih is
appended to the extension list E (line 13), and it can
be used later to extent the extracted dense core.

Eventually, every item occurring in DR has been
processed only once, and either it was added to the
dense core C, or it was appended to the extension
list E. The procedure returns C and E for further
processing.

Being a greedy approach, the procedure may not
find the best core pattern, i.e. the one minimizing
the cost. However, since the procedure is invoked
K times, this risk is amortized and the probability
of getting a good set of core patterns out of K runs
will be sufficiently large. This makes it possible to
successfully exploit a greedy and simple strategy as
the one we just described.

A prefix-tree based data structure is used to store
DR. A prefix-tree allow to easily test the goodness of
a new candidate, i.e. when a new item is added, by
processing only a subset of its branches.
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Algorithm 2 Core Pattern discovery.
1: function Find-Core(DR, Π, D)
2: E ← ∅ . Extension list
3: {j1, . . . , jM} ← sort-items-by-supp(DR)
4: C ← 〈CT , CI〉 , where CI and CT are zero-

vectors.
5: CI(j1)← 1, and CT (i)← 1 ∀i s.t. DR(i, j1) =

1
6: for all h← 2, . . . ,M do
7: C∗ ← C . create a new candidate
8: C∗I (jh)← 1
9: C∗T (i)← 0 ∀i s.t. DR(i, jh) = 0

10: if γ(Π ∪ C∗,D) ≤ γ(Π ∪ C,D) then
11: C ← C∗

12: else
13: E.append(jh)
14: end if
15: end for
16: return C,E
17: end function

Algorithm 3 Extension of a Core Pattern.
1: function Extend-Core(C, E, Π, D)
2: while E 6= ∅ do

. add a new item
3: e← E.pop()
4: C∗ ← C
5: C∗I (e)← 1
6: if γ(Π ∪ C∗,D) ≤ γ(Π ∪ C,D) then
7: C ← C∗

8: end if
. add new transactions

9: for i ∈ {1, . . . , N} s.t. C∗T (i) = 0 do
10: C∗ ← C
11: C∗T (i) = 1
12: if γ(Π ∪ C∗,D) ≤ γ(Π ∪ C,D) then
13: C ← C∗

14: end if
15: end for
16: end while
17: return C
18: end function

4.2 Extension of dense cores

Given a dense core C = 〈CI , CT 〉, the procedure
Extend-Core tries to add items to CI and transac-
tions to CT , possibly introducing some noise, as long
as the overall representation cost is reduced. The
procedure is described in Algorithm 3.

An extension list E ⊂ I is given. The first item e
is removed from the list E, and it is added to CI thus
forming a new pattern C∗ (line 5). If this pattern
does not improve the cost of representing Π and N
(line 6), then item e is disregarded.

The set CT is extended analogously. A transaction
ti, which has not yet been considered in CT , is used
to create a new candidate pattern C∗ (line 11). If
the new pattern carries any improvement over the
previous representation (line 12), that C∗ is promoted
and considered for further extensions in place of the
old C.

The above two steps are repeated as long as there
is a new item in E.

There are some interesting subtleties in the evalu-
ating process of new pattern C∗. First C∗ may intro-
duce some noise. If the item e is added to C∗I , then e
may not occur in every transaction C∗T , and similarly
when extending CT . The noise cost thus increases
by the number of missing items, i.e. false positives.
At the same time, the extension may cover correctly
a number of items that were previously considered
as noise, thus reducing the amount of noise. If the
balance between items covered and noise introduced
justifies the increased representation cost of C∗, then
the new pattern C∗ is accepted.

Second, the convenience of C∗ depends on the
amount of data it covers, that was not already covered
by other patterns in Π. For instance, suppose that C∗

does not introduce any noise, and that all the item
covered thanks to the extension were already covered
by another pattern in Π. Then, the only variation in
the cost function occurs because of the cost of repre-
senting Π, which increases thus making the extended
pattern C∗ non convenient.

The algorithm stores a vertical representation of
the dataset, where tid-lists are stored for each item,
i.e. the list of the transactions containing a given
item. This allows to quickly check the cost incurred
when adding a new item or a new to C∗. This data
structure is updated after a new pattern is discov-
ered, in order to distinguish items that are already
covered by the current pattern set Π.

5 Experiments

5.1 Evaluation

Evaluating the goodness of the patterns discovered
by a mining process is a very difficult task. The pat-
terns present in a given dataset are unknown, and
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Figure 2: Comparison between GPM and Hyper+.
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therefore there is no ground truth that we can use as
a benchmark. However, in [5], a collection of syn-
thetic datasets, and a set of evaluation measures is
proposed to evaluate the goodness of the itemsets ex-
tracted in presence of noise. The idea is to synthesize
a dataset by embedding a given set of patterns – i.e.,
our ground truth Ω – and then introduce noise by flip-
ping some bits in the corresponding binary represen-
tation. Since the patterns occurring in the dataset are
known, a number of evaluation measures can be used
to compare the patterns extracted with the embed-
ded true patterns. Due to space constraints, we use
only three out of the eight datasets proposed, namely
the datasets identified by numbers 5, 6, and 8. Re-
spectively, a number of two, three, and four patterns
are embedded in these datasets. Moreover, there are
some overlaps between the embedded patterns. All
the datasets have 50 items and 1000 transactions.

These synthetic datasets are pretty simple, and we
cannot use them to state the high-quality of an algo-
rithm. Nevertheless they carry important features.
First, they allow for repeatability of experiments.
Second, they can be used to detect and understand
the weaknesses of an algorithm.

The authors of [5] propose four evaluation mea-
sures: Recoverability, Spuriousness, Significance and
Redundancy. Recoverability and Spuriousness are
similar to the measures Recall and Precision used in
Information Retrieval. Significance is the harmonic
mean of the first two, analogously to F-Measure. Re-
dundancy measures the overlaps between patterns.
Redundancy is not very useful in our case, since pat-
terns have overlaps. In our experiments, we will con-
sider only Significance, since it is a summary of the
first two. For a detailed description of the datasets
and the evaluation measures, an interested reader can
refer to [5].

Note that all of the above evaluation measures only
take into account the items of a discovered pattern,
i.e. only PI for each pattern P . For the sake of com-
pleteness, we are interested in evaluating an addi-
tional quality measure, which takes into account both
the sets PI and PT . Let Ω be the set of true patterns
embedded in the dataset, and let Π the set of pat-
terns extracted by the mining algorithm, we measure
the goodness Π on the basis of how well Π matches
Ω. We say that an occurrence is correctly retrieved
iff: 4

Π (i, j) = 1 and
4
Ω (i, j) = 1

Note that the above does not imply D(i, j) = 1.
We adapt the usual precision and recall to this set-

ting, and compute the F-Measure F as follows:

Prec(Π) =

∑
i,j

4
Π (i, j)·

4
Ω (i, j)

∑
i,j

4
Π (i, j)

Rec(Π) =

∑
i,j

4
Π (i, j)·

4
Ω (i, j)

∑
i,j

4
Ω (i, j)

F (Π) =
2 · Prec(Π) ·Rec(Π)
Prec(Π) +Rec(Π)

5.2 Results

In Figures 2(a,b,c) we report the representation costs
obtained by varying the noise amount. The cost is
normalized by the amount of 1 bits in the binary
dataset, i.e.

∑
i,j D(i, j). Both the two algorithms

Hyper+ and GPM were asked to extract K pat-
terns, where K was the actual number of patterns
embedded in the dataset. Regarding Hyper+, we
set the minimum support threshold for the frequent
itemsets extraction to 5%.

It is apparent that the representation produced by
Hyper+ is definitely larger, and it is even larger
than

∑
i,j D(i, j) whenever some noise in added to

the dataset. Hyper+ only minimizes γP , without
considering γN . In presence of noise, the discovered
set of patterns produces a tremendous amount of false
positives, whose effect is the increase in the total cost.
In Figures 2(d,e,f) we report the number of false pos-
itives produced by the two algorithms, again normal-
ized by

∑
i,j D(i, j). Such weakness of the Hyper+

also comes from the fact that it requires to cover every
single bit in D, i.e. it does not allow false negatives.

Since the representation cost may not be a sound
indicator of the goodness of a pattern mining al-
gorithm, we also report their Significance and F-
Measure. Recall that significance only takes into ac-
count the items (PI) of each pattern, while the F-
Measure considers the supporting transactions (PT )
as well. In Figures 2(g-l) we show that GPM largely
outperforms GPM both in terms of significance and
F-Measure.

Finally, in Figure 5.2 we show the actual patterns
extracted by GPM from data6 after 6% random flips.
The dataset is the same as the one shown in Figure 1.
The GPM algorithm was able to discover the three
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Figure 3: Patterns extracted by GPM from data6

embedded patterns and their supporting transaction.
Only a few spurious transactions were added, because
they contain large portion of patterns’ items due to
noise.

Due to space constraints, we shortly report that the
runing time of GPM is within the tenths of a second
on every dataset, while Hyper+ may require tens
of second because of the frequent itemsets extraction
and their processing.

6 Conclusions

In this paper we showed that a binary dataset can
be described with a generative pattern model. Since
several pattern sets may support a generative pat-
tern model for the same dataset, we proposed to use
the MDL principle to choose the best among them.
We thus defined a novel cost model for evaluating
the goodness of the set of patterns extracted, and we
proposed a new algorithm, named GPM for the dis-
covery of patterns in binary datasets minimizing the
aforementioned cost model.

We compared GPM with Hyper+, an algorithm
specifically tailored for binary datasets, and inspired
to a similar framework. GPM, unlike Hyper+, does
not need to extract all the frequent patterns from the
database in advance. GPM can also better deal with
noise in the data since it can deal with both false
positives and false negatives. Finally, we show that
GPM outperforms Hyper+ both in terms of running
time and quality of the extracted patterns.

In conclusion, our results show that the proposed
cost model, which balances the amount of noise esti-
mated in a dataset with the length of the description

of the discovered patterns, is able to get close to the
set of true patterns actually embedded in several syn-
thetic datasets.
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