Consiglio Nazionale delle Ricerche

| Posiz BRUL LU LD

ISTITUTO DI ELABORAZIONE

DELLA INFORMAZIONE |
PISA

Gedblog Reference Manual

Revised Version

P. Asirelli, P. Inverardi,
D. Aquilino, D. Apuzzo,
G. Bottone, M.C. Rossi
Nota Interna B4-18
- Aprile 1995

i

Gedblog

Reference Manual

- P. Asirelli, P. Inverardi, D. Aquilino,
D. Apuzzo, G. Bottone, M.C. Rossi.

Indice

Cap.1 Introduction

Cap. 2 Logic and Databases

Cap. 3 The basic idea of the system
Cap. 4 The Logic Database

Management System
(LDBMS) of GEDBLOG

Cap. 5 The graphic model

App. 1 The Architetture

Biliography

Chapter 1

Introduction

In the paper we describe GEDBLOG, a database system for the design, val-
idation and execution of graphical applications.

The main feature of the system is its declarativity which allows users to de-
velop their own applications in a compositional and consistent (with respect
to the assessed requirements) fashion.

This permits the graphical representation of concepts and their declarative
semantics to be combined within a uniform, logic framework.

Another important feature of the system is the provision of an integrity
constraints checking mechanism which permits properties of the application
under development to be proved.

A graphic application is designed through a step by step refinement of the
knowledge base, i.e. the application is developed consistently with respect
to the assessed integrity constraints that can be cousidered as those require-
ments that the application must satisfy.

The knowledge concerning the application can be defined by means of:

e facts and rules to express the general knowledge;

e Integrity constraints formulas to express exceptions to the general knowl-
edge, or as general properties or requirements of the application being
developed;

The capability that permits a graphic representation to be associated with
a concept means that the overall semantics can be affected by constraints
imposed only on the graphic representation and, vice versa, the graphic rep-
resentation can be affected by semantics.

The relationship between the semantics and the graphic denotation of con-
cepts within the same context make the tool particularly suitable for devel-
oping and prototyping applications in the areas of visual language, graphic
interfaces and some aspects of CAD.

At the end of this section, we give a brief example to allow the reader to
better grasp the ideas behind GEDBLOG and the approach to prototyping
that it encourages and supports.

GEDBLOG is the result of the integration of a deductive (logic) database
with graphics.

Our aim is to use a logic database approach to the problem of prototyping
applications.

To justify this strategy, our basic assumption is that requirements can easily
be expressed as integrity constraints and the development of the application
can be seen as an incremental knowledge base updating process.

Although the use of a logic language for expressing databases, queries and in-
tegrity constraints is quite natural since logic provides a formal specification
for the resulting application, deductive capabilities that allow a straightfor-
ward definition of a knowledge base and a formal base for the definition
and checking of integrity constraints, the representiation of graphic objects
presents some problems and caunot simply be handled by interfacing the
logic database system with a graphic package.

Graphic objects, their relations, and the set of operations that the user can
perform, represent the model of the real world implemented by the applica-
tion.

Our strategy is to use a logic language for the definition of graphic objects
and their operations [3, 4, 13, 17, 21, 22]. Since the representation is rigor-
ously declarative, the graphic shape of an object is fully determined by the
values of its attributes (such as colour and position); there is no notion of
global attributes.

This is fundamental in our approach as we want to amalgamate graphic and
non graphic components n the same declarative context.

GEDBLOG permits the definition of objects where the inclusion of other
objects is controlled by a condition (an atomic formula).

This is called Conditional inclusion and the effect is the definition of graphic
objects that can have different structures at visnalization time depending on
the value of the condition, i.e.depending on the state of the database.

A concept of "frame” and of "frame state” Lave also heen introduced in order
to be able to define the visualization operation and to be able to perform
integrity constraint checking on graphic objects at visualization time.

In the following, we introduce a (data) model, and the corresponding linguis-
tic constructs to manage graphic objects.

The model has been defined in terms of the Logic Data Base Management

System EDBLOG in order to obtain GEDBLOG .

o]

Chapter 2

Logic and Databases

2.1 Logic DataBases

There is quite a lot bibliography on the subject of deductive databases.
Some of the basic definitions we refer to can he found in [13,14,15,37,46].

In [12] definitions on Deductive Databases and Logic Databases can be found.
There can also be found details on the assumptions that are necessary to rep-
resent a Relational Database, by means of logic.

In [Giannini & al. 86] it has been shown that, not only the Relational Model,
but the EntityRelationship Model too, can be represented by logic.

In particular, an example is presented to show Low an E/R model can be
mapped onto a logic program.

Deductive Databases (DDB's), are extention of Relational Databases (RDB’s)
where deduction capabilities are introduced.

While RDB’s can be seen as a set of facts true in a world that has been
defined, DDB’s are defined by a set of facts (Extensional Components) and
a set of rules (Intensional Components).

Rules permit you to deduce new facts from existing explicit ones.

When rules are not recursive, they can be expanded to obtain just a set of
facts.

Thus an RDB can be strai ghtforwardly represented by a deductive database,
with no recursive rules.

A DDB can be seen as a first order theory, in particular, as a Horn clause
theory. '

Thus, given the procedural interpretation of Horn clanses [21], a DDB can
be regarded as a logic program where the only lacts in the database are just
those that can be dednuced from the logic program hy evaluating goals.

This also means that, a logic prograniming language not only provides for
the database definition langnage but also for the database query language.
Thus, a RDB can be represented (and implemented) by a logic programn

where rules are not recursive, i.e. by a hierarchic logic program.

That is by using a logic programming language, the Conceptual Schema: and
the Physical Schema coincide.

Representing a database by a full logic program (with uncontrolled recursion)
introduces problems of non-termination of the query evaluation process.

On the other hand full logic programming capabilities extends Database ca-
pabilities from the point of view of the Data Model, and from the point of
view of the Schemas (Conceptual and Physical).

A compromise has to be found hetween the problem of termination and ex-
tention of capabilities.

When a LDB has to work as a deductive "question-answering” system for a
relational database, three main problems have to be faced:

o knowledge representation;
e knowledge acquisition;
e use of knowledge.

A Logic DataBase Management System is thus seen as system for ”knowl-
edge management” system.

While knowledge in such a system is represented by means of Horn Clauses,
knowledge acquisistion has to be faced by defining updating operations which
guarantee the database integrity consistency and/or redundancy.

The use of knowledge is instead related to the query language interface and
the query evaluation process.

2.1.1 Querying the LDB

The most common use of Logic in the database field has heen, until recently,
confined to the query language and to integrity constraints formulas,

In both cases an interpreter is then necessary to transform the formulas into
the internal language, say QBE, SQL or the relational algebra language.

In the last few years there has been a growing interest in deductive databases,
1.e. databases where "deduction” is the hasic mechanisms to get information
from the database.

The deductive engine and language are used to define and run the query to
the underneath database, thus the query is considered as a logic program
and the engine to interprete it can be "top-down” (based on Resolution),
"bottom-up” (such LDL- based on the Tp operator)[60] or ”mixed” [59].
On the other hand, logic programs are used via resolution of goals, where
the initial goal is considered as the main program.

It immediately follows that, when the database is represented by a logic pro-
gram, a query 1s nothing else than a goal to be resolved against the program.
The query evaluation process is resolution.

Integrity constraints are formulas which are properties of the logic program
denoting the database and, in some cases resolution can still he used to verify
them.

2.1.2 Basic updating operations

Updating operations in a LDB framework are related to knowledge acquisi-
tion.

Operations are necessary to introduce new lacts and rules and, also, integrity
constraints formulas.

Furthermore, updating operations must provide for integrity checking.

This means that, when a fact or a rule is introduced, the obtained database
must be consistent with respect to integrity formulas.

The updating request must be denied when it would lead the database into
an inconsistent state. A

The introduction of new integrity formulas should also cause verification of
the actual database against the new formulas.

Updating operations also have to deal with redundancy problems.

Such kinds of problems are related to implementation and installation issues.
They do not affect the correctness of the system or its logical consistency.

2.1.3 Integrity Constraints handling

As we consider a logic database to be a logic program, integrity constraints
(properties which the database must posses), can be considered as proper-
ties of logic programs, thus assimilating the problems of integrity constraint
checking to that of logic program property proving.

In addition, a deductive database system should offer mucl more than a
logic programming systen, since its objects are evolving first-order theories
(databases), rather than a single fixed one.

In particular, the problems of consistency and redundancy must be faced.
Although logic programming offers a straightforward way of implementing
deductive databases, some restrictions are needed to guarantee the termina-
tion of the query evalnation process and the evaluation of negative queries.
Thus the class of logic programs has to be restricted to hierarchical program
definitions which do not allow recursive definitions .

These restrictions can be partially relaxed, at least with respect to negation
and to certain kinds of queries [3].

In [3] an approach to integrity constraints handling for hierarchic databases
is proposed, in which a database is considered as cousisting of a logic pro-
gram plus a set of formulas, which must be proved to be true in the minimal
model of the given program.

Since a database will be updated, two approaches are proposed for integrity
constraints checking.

One approach (The Modified Program Method) considers a subset of
the given logic formulas, called IC' - Integrity Contraints, and uses them to
modity the logic program automatically so that the given formulas are true
in its minimal model (with respect to the model theoretic semantics).

This means that all facts which do not satisfy IC are not provable/derivable
from the modified logic program/DB (i.e. illegal queries cannot succed).
The other approach (The Consistency Proof Method) considers a wider
class of logic formulas (called Controls), and proves that they are true or
false using a metalevel proof, on request from the user.

The description of the algorithms is sketched in the next section, while a
detailed description of them can be found in [3] and in [12].

The integrity constraint formulas and the integrity checking algorithms can
be extended to work on database which admit some recursion in the spirit
of Barbuti.

Stratified databases can be cousidered too.

2.1.4 Redundancy

Redundancy problems are related to excess of information.

That is to say that, for example, when a fact is added to the database and
the same fact is already derivable, then a choice has to be made depending
on time or space considerations.

Time considerations concern time of response in the query evaluation pro-
cess, while space considerations concern the amount of storage needed for
the database. Generally it is faster to derive information whicli is explicitely
stated than to derive it by rules.

Thus, time considerations encourage the introduction of facts instead of rules.
On the other hand, rules denote a set of facts succiuctly.

That is, rules allow you to save on the storage space.

The above considerations must he taken into account when adding redun-
dant information.

If time has to be saved then redundant facts are accepted, while if space has
to be saved then they have to be rejected.

This all means that an LDBMS should provide for two modes of behaviour,
letting the user choose between them depending on the machine being used.

G

2.1.5 Transactions

When a DBMS becomes something more than a toy system, the user has
to be provided with facilities to express compound updating operations.
Compound updating operations, in the framework of databases are often
called transactions.

A transaction definition langnage is generally defined, often it is yet another
language with its own interpreter that is added to & DBMS.

Transactions allow the user to define lis own operations at a more abstract
level, in terns of other transactions or a repetition of basic updating opera-
tions.

Execution of transactions involves problems of consistency and redundancy
as well as basic updating operations.

The database has to remain in a consistent state, or it has to be reset into a
consistent state after system crashes or errors occur, thus abortion facilities
have to be provided to undo the effects of a transaction.

Of course, in a logic framework, the transaction definition language can still
be based on logic.

This does not require the user to learn a new language and, from the imple-
mentation point of view, less effort is needed to build the interpreter using,
once more, the basic resolution procedure used throughout the system.

Chapter 3

The basic idea of the system

Here we want to give a grasp of the system, helore getting into details.
Thus we first introduce the formal language of definite clasues on which the
system is based, then we show a brief example problem.

3.1 The syntax used

Let us define the syntax of the logic language we will use so that the exam-
ples can be more easily nuderstood.

Let us stress that the language we use is exactly the one introduced first by
Kowalski and van Enden in [21] and that it is compatible with all Prolog
languages commercially available.

A logic program consists of a set of clauses (Horn Clauses).

Each clause looks like:

o A facts
o Ae— B&.. . &B, rules

where A,By, ..., B, are literals.
A is the consequent, By, ..., B, are the premises and they look like p(ty, ..., t,)

where:

p is a predicate symbol and t;, ..., 1, are terms.

The informal interpretation of a clanse A — B & .&B,, is that:
1 1 L

“ A holds if By, ..., B, lold”.

A term is either

° a constant symbol an identifier heginning with a lower case letter;

o a variable symbol: an identifier heginning with an upper case letter;

e aterm such asf(#q,...,7;) where f is a data constructor symbol (functor)
and ty, ..., 15 are terms.

For more details on the semantics of the above language and its interpreter
(SLD-resolution procedure) we suggest the reading of the following paper
and books:

[21]and[26].

3.2 A little example problem

In the following we present a simple example to illustrate the use of GED-

BLOG.
Let us define the knowledge about Jan being the father of Ann and Charles,
of Ann being a gitl and Charles being a boy whicl is expressed as follows:

e father (jan, aun).

e father (jan, charles).
e girl (ann).

e boy (charles).

We then want to express a general law concerning a daughter being a girl
and a son being a hoy:

o daughter(X)e— girl(X), tather(Y,X).
e son(X)e— boy(X), father(Y,X).

The next step is to express a knowledge of requirements such as :

if X is a daughter she cannot be a son;

if X is a boy he cannot be a girl; nohody can have two different fathers:

if Xis father of Y and il Z is lather of Y then it must he the case that X and

Z must be the same.

o daughter (X), son (X) — false.
e boy (X), girl (X) — false.
o father(X,Y), father (Z,Y) —» X==

9

The next step is to add a graphic denotation for all elements and relations
in the knowledge base.
Thus we define (this is just a sketched definition, not an exact one):

e prototype (gitl, “graphic definition of a givl”).
e prototype (boy,”graphic definition of a hoy”).
e object (ann, girl).

e object(charles,boy).

We can now represent the link for the father relatjon:

e prototype(father_link (X,Y), “a line that connects X and Y™).
o object(jan_ann_link, father_link(jan, ann)).
o object(jan_charles link, father link(jan, charles)).

Then we can put constraints that bind the graplic representation to the
semantics, i.e. constrain the graphic representation of boys, girls and fa-
ther link to the existence in the hase of the corrisponding knowledge:

o object(X,girl) — girl(X).
e object(X,boy) —boy(X).
o object(X,father link(Z,Y)) — father(Z,Y).

GEDBLOG allows us to build this knowledge base, proving the con-
straints when it is updated and also visualizing ohjects on the screen when
such a visualization is possible, i.e. no violation is detected.

Chapter 4

The Logic Database
Management System

(LDBMS) of GEDBLOG

The logic database management system GEDBLOG [11] is a system which
has the capability to manage databases which contain graphical GEDBLOG
and non graphical information.

has been defined as an extension of EDBLOG [27] by introducing the ca-
pability of manage graphical information.

EDBLOG, in its turn, has been defined as an extention of DBLOG [12] by
introducing transaction definitions and handling facilities.

DBLOG is the kernel of the LDBMS.

GEDBLOG considers the data base system as consisting of four parts:

e a logic program in which:

L the set of fuets, unit”™ Horn clauses, are considered to be the
Extensional compouent of the DB (EDB);

o

the set of deductive rules, ”deflinite” Horn clauses, are considered
to be the Intensional component of the DB (IDB);

e a set of integrity constraint formulas with:

L a set of Integrity Constraints (1C), which are formulas of the form:
/lk - Bl&’....&Bs
which can be interpreted informally as:
“ whenever Ay is true then Byand...andB, must also be true”;

a set of Coutrols formulas which are either formulas as in 1 or else

o

11

(a) A1k LA, — B B,
(b) s Bl&',...&IB,L
(c) A&, LA, —

The informal interpretation for (a) is that:
whenever A,&...&A,, are true then Bi&.. & B, must also be
true”.
The informal interpretation for (1) is that:
“Bi&.. & B, must be true”
The informal interpretation for (c) is that:
“ A& LA, must be false”.

Note that for formulas (a_c), as well as for the formula 1, all the vari-
ables are intended to be universally quantified, apart from the local

variables (i.e. variables occurring only on the right hand side) which

are intended to he quantified existentially .

a set of clauses which define compomnd updating operations (transac-
tions), which are formulas of the form:

1.

trans; « precltrans, ..., trans,|post;

The language used to express this kind of transaction syntactically
resembles Concurrent Prolog with no anuotated variables [33].
The informal interpretation is that to execute the operation trans,
the precondition (prec) must be first verified, and then the clause
containing this precoudition must be committed, the body exe-
cuted and the correspouding postcondition verified.

As in Conenrrent Prolog, the commit operation is a way of ex-
pressing the hehaviour of the Prolog cut operator, a failure in the
body of a transation causes the failure of the transation.

trans; « precgflransy, . lrans, # post;

The informal interpretation of this kind of transaction is that to
execute the operationfrans, the precondition (prec) must be first
verified, aud then the clause containing this precondition must be
utilized, the hody executed and the corresponding postcondition

verified.,
A failure in the body or in the postcondition not causes the failure
of the transaction but the search of anather definition for trans

with the precondition verified.

12

The transaction fails it all its definitions fail.

Preconditions and postconditions iu the definitions of transactions will
operate as particular forms of Conlrols which must be checked be-
fore/after the execution of the set of operations (body of the transac-
tion).

Since checking for consistency in a DB can be very heavy and time con-
suming, preconditions and postconditions are introduced to separate
global DB controls Controls) from those related to particular transac-
tions, thus reducing the number of necessary global Controls formulas.
The operational interpretation of these transaction definitions is the
standard Prolog resolution of clauses where clauses are tried in the or-
der they appear in the program. '

The successtul evaluation of a transaction causes the Controls formulas
to be checked.

The required transaction operation is aborted if this Controls checking
fails.

The abortion of a transaction is automatically handled (by backtrack-
ing), by ensuring that elementary updating operations are backtrack-
able upon failure.

Abortion is also started upon the failure of postconditions or upon
the failure of some operations of the bhody, thus obtaining an and-
nondeterministic hehaviour of the clauses.

The system can be seen as an amalgamated theory [9], [10] consisting
of the meta-theory (the theory which handles the evolution of the data
base), and the object theory (the logic data hase).

A set of elementary updating operations is provided by the system as
a meta-theory with respect to the DB,

Such operations also allow IC, Controls formulas and transactions to
be added and deleted.

4.1 More about integrity constraints and
transactions

The two forms of integrity constraints correspond to two different in-
tegrity checking algorithms.

The fivst (The Modificd Program Mcthod) considers a subset of the
given logic formulas, called /¢ - [nleqrity Constraints, and uses them

13

to modify the logic program antomatically so that all facts which do
not satisty IC are not provable/derivable from the modified logic pro-
gram/DB (i.e. illegal queries cannot succeed).

The second (The Counsistency Proof M ethod) considers a wider class of
logic formulas (called Controls), and proves that they are true or false
using a metalevel proof, on request from the user.

The description of the algorithms is sketched in [2].

Preconditions / postconditions in the definitions of transactions denote
particular forms of Controls which must be checked before/after the ex-
ecution of a set of operations (body ol the fransaction).

They are introduced to separate glohal DB controls (Controls and/or
IC) from those related to particular operations, thus reducing the num-
ber of necessary global Control formulas.

Transaction definitions are searched according to the standard Prolog
strategy, where clauses are tried in the order they appear in the pro-
gram.

Thus, the commitment will he to the first clause whose precondition
part succeeds.

The successtul evaluation of a transaction-query causes the Control for-
mulas to be checked.

The required transaction operation is aborted if the Control checking
fails.

Abortion also occurs upon failure of postconditions or of certain oper-
ations of the body.

The abortion of a transaction is handled by maintaining a transition
log whicl is also useful when the system crashes to restore the previous
state.

The structure of EDBLOG can he depicted as in Figure 1, i.e. a logic
theory TIKB, the kuowledge hase, and a meta-theory TKIBMS, its man-
agement system,

T

T KBMS

KB

op. primitive di
updating

T

’ constraint

DBLOG

fig. 1

In order to obtain the GEDBLOG system, the above structure has

14

been modified as in Figure 2:

TKBMS

op. updating

primitive

DBLOG

(™
Primitive constraint
Graliche
123RAPH
— J
— J

fig.2

That is, all information that is set up by the user, such as the rep-
resentation of user defined prototypes and of graphic objects, will be
contained in the theory of the knowledge base, whereas rules needed to
interpret the representations and the meta-interpreter to visualize the
graphic objects, will be resident on the theory Trgars.

4.1.1 The Logic Database Kernel

The elements described in the first two points form the basic compo-
nents of the kernel (DBLOG), and can be depicted as in fig. 3.

CD

Metodo del programma

- — -

fig. 3

According to The Modified Program Method, IC are used to mod-
ity the given set of Facts and Rules, to obtain a new set of facts and
rules denoted by Factsl and M-rules in fig.4, where:

Factsl is a subset of Facts and M-rules consists of both facts which
become rules and rules which are modified by the modified program
approach’ algorithm.

For example:

—
(Facts
age(david,20). IC
age(mary,22) employee (Y) ==>age(Y,X)&X>20.
employeezdfiv‘id) poss_dept_chief (X) ==p age(X<Y)&Y<65.
employee(mary).
Rules
poss_dept_chief (X) <--older_employee (X).
older_employee (X) <--age(X,Y)& Y>40. J
-

figd4.
Then the resulting database to he considered, after running the algo-
rithm for the modified program method, is described in Fig. 5:

16

Facts
age(david,20).
age(mary,22).

M_Rules

employee (david) <--age(david,X)&X>20.
employee (mary) <--age(mary,X)&X>20.

poss_dept_chief (X) <--alder_employee (X)&age(X,Y)&Y<6J’ w

older_emplayee (X) <--age(X,Y)&Y>40.
.

liggh.
The other component of the kernel system, 1. e. Controls are used
by The Consistency Proof Method algorithm which verifies them
against the current database.
This method considers one control formula at a time. Let us consider
a formula such as:
Ak &AL, — Bi&. 4B,
then the formula A;&...&A,, is cousidered a goal and it is resolved in
the database, for all values of the variables.
Let .Jy, Jy, ..., Ju(e all the answer substitutions for that goal.
For each .J;, Bi&...& B, is rewritten by substituting each variable with
its corresponding assignment in.7;, the obtained formula [Bi&...&B,)T;
is then resolved in the database.
If [Bl&...&f,Bn]Ji succeeds for all i=1,....n then we say that the database
Is consistent with respect to that control formula.
As an example, let us consider the formula:
a(X,Y,Z) = b (X), by(X, Y),045(X, Y, Z) we resolve «— a(X,Y, Z) for
all solutions.
Let (X=¢, Y=d, Z=f) and (X=a, Y=r, Z=s) be the ouly solutions,
then we look for the suceess ol the two goals:
— bi(c),by(e,d), by(c,d, f) and by(a), by(a,r), by(a,r,s). Both the
modified program and the prool method algorithms liave to be im-
plemented at the metalevel, where the object theory is the database
and the set of formulas to be proved.

L7

Chapter 5

The graphic model

In this section we introduce the concepts our model is hased on.
The model consists of the lollowing elements:

= prototypes, Le. templates of graphic objects;
— mechanisms to compose prototypes;

= graphic objects, i.e. fustances of prototypes;
= mechanisms to operate on graphic objects;

= constraints to define the semantics of prototypes and graphic ob-
jects.

5.1 Prototypes

The prototype concept naturally emerges when different views of the
same object are considered nsefil and, furthermore, when it is desirable
to use a given graphic object as a sub-object iu several more complex
objects.

Thus, the notion of prototype is similar to the notion of (yeneric) type
found in high level programming langnages such as Ada; that is, its
definition does not define a new object, but is a template that will e
used to create graphic objects upon instantiation.

The information with respect to which all prototype descriptions are
parametric is represented by means of the notion of attribute.
Therefore, attributes represent features of a graphic object.

In our model two classes of attributes are provided:

18

= contextual attributes:

L. geometric attributes (origin, scale, rotation);
;

2. state attributes (raster function, fill patterns etc.)

— absolute attributes: user definable attributes.

Contextual attributes represent the usnal topological information which
is connected with a graphic ohject.

The absolute attributes, instead, permit the definition of partial de-
scription of graphic objects where some components, apart from the
contextual ones, are left unspecified.

For example

it 1s possible to define prototypes such as the arch(Length, Height), that
describe an arch parametrically, with respect to its length and height.
A prototype is the description of a graphic object which is parametric
with respect to contextual attributes.

A parametric prototype is a prototype which is also parametric with
respect to some absolute attributes, i.e. it acts as a template.

The set of attributes of a prototype definition constitutes its interface.
Prototypes are divided infto two [urther classes:

= basic primitive prololypes, that represent the usual graphic output
primitives (e.g. point, polygon,..).
They are system defined and their description cannot be manipu-
lated by the user;

= user defined prototypes, which can be:

compound user defined prototypes, defined as the composition
of user defined prototypes and basic primitive prototypes.

* primitive user defined prototypes.

As we have previously pointed out, the description of a prototype de-
fines the graphic structure of the object to be represented parametri-
cally, with respect to some attributes.

The range over which these attributes can assume values can be Lim-
ited by introducing the concept of property which serves to type the
attributes.

A property is a pair < name, value >, where name denotes an attribute
and value denotes its valie, . k

Each property is associated to the definition of a prototype.

Given a prototype P, parametric with respect to an attribute name,

19

the set of values associated to it by all properties (tuples) determines

the range for name wrtP,

For example, if we assume that, in the database, the description of pro-
totype P has the following properties for its attribute origin:< origin, [10,10] >
< origin, [20,20] >, then all instances of P must Lave their origin at
coordinates [10,10] or [20,20].

5.2 Compound prototypes

When dealing with compound objects, i.e. a graphic object O, is a
structural element of a more complex object O, , the description of the
prototype Pyof0,, must declare the use of the prototype ProfO;.
This is achieved by means of the notion of use declaration:

” A use declaration of a prototype £, within a prototype P specifies
the information that is needed to obtain the values of the attributes of
Py from the actual values of the attributes of B

The information carried on by a use declaration is used to obtain in-
stances of P, from instances of ;. '
In particular, the values of the geometric attributes are considered in
relation to the values of the correspouding attributes of the defining
prototype, while the values of the other kinds of attributes, when men-
tioned, are considered to he absolute.

The information carried on by a use declaration is described below,
when discussing the representation of protolypes.

The description of a.user defined protolype thins consists of a set of use
declarations ol other prototypes.

This permits a prototype to he modelled as the composition of several
sub-prototypes.

A prototype Py depends on a prototype Py if the description of P, con-
tains a use declaration of P,.

The relation depends is trausitive.

For any given prototype P its dependencies can be represented as a
graph, the dependency graph, where the root denotes P and the other
nodes denote all prototypes P depends o,

An oriented arc, from a node N; to a node Ny, shows that, in the de-
scription of the prototype denoted by N, there is a use declaration of
the prototype denoted by N,.

Therefore, a prototype is definable if its dependency graph is acyclic.
With this definition, we waut to make it clear that the only prototypes
that can be described in our model are hierarchical ones.

2

5.2.1 Conditional use declaration

The model we are describing is hased on the assumption that descrip-
tions of graphic objects will be stored in a database together with
non-graphic information.

In such situation, cases will arise in which the use of a prototype Py,
within a prototype Py, is subordinate to the existence of a certain item
of information in the database.

In a high level programming langnage framework, this corresponds to
the concept of record with variant. In practice, we want to be able to
model cases in which some piece of nformation abont our data might
not be available at definition time, whereas it will he available at query
time (retrieval and/or visualization time).

Hence, the structure of a graphic object is no longer static and fixed at
definition time,

For this reason we introduce the concept of conditional inclusion.
A guard is either a query to the database or a boolean expression.

A prototype P, conditionally includes a prototype Py, if the use decla-
ration of Py contaius a guard.

Conditional inclusion makes it possible to define graphic objects that
can have a different structure at visualization time, depending on the
value of the guard, i.e depending on the state of the database.

5.2.2 Representing prototypes as trees

A prototype P that consists of (nses) N sub-prototypes, can be struc-
turally represented hy a tree where the root denotes the prototype itself
and the nodes directly connected to the root (depth level 1) denote the
N sub-prototypes used by P,

Every arc in the tree represents a use declaration (in the prototype as-
sociated to the leading node) of the prototype associated to the ending
node.

The leaf nodes of the tree denote primitive prototypes (basic or user
defined).

Every arc in the tree carries a set of information:

= aguard: a condition that has to be evaluated to true (when the arc
is traversed), for the use declaration to be effective; if no condition

21

is required, the gnard is set to trne:

= the relations that hind the actual attributes of the using prototype
to the attributes of the used prototypes;
= a priority factor that determines the ordering in which the sub-tree

has to be visited.

Figure 6 gives an example of a tree representation for a prototype.,
I Y1

Guurdi:ll Guardia

u

] ® ® Relazione

fig.6 / \
® @

5.3 Graphic objects

A graphic object is obtained by fully instantiating a prototype by means
of a create operation which provides the information needed by the
prototype description, thus generating a ground (no variables are left
uninstantiated) instaunce of the prototype definition.

The only operation that can he performed on graphic objects is the
visualize operation which depicts the object on the (virtual) screen.
We model the screen by means of the frame concept, in terms of which
the semantics of the visualize operation is defined.

The frame represents the abstract plane on which graphic objects will
be drawn.

The state of the frame cousists of the name of the objects and their
descriptions (i.e. the name of the prototype and its parameters) cur-
rently on the frame.

Then the semantics of the visualize operation consists of changing the
current state of the frame by adding the name and the description of
the graplic object to he visualized.

The concepts of frame and of its state have heen introduced in order
to be able to define the visnalize operation and to be able to perform
integrity constraints checking on graphic objects at visualization time.

S
N

Like prototypes, graphic objects can be represented by trees.

In this case, the root denotes the graphic object and there is only one
leaving arc which reaches the node denoting the prototype of which the
object is an instance. This arc carries the values that must be given to
the attributes of the prototype to instantiate it.

As an example, if we consider the prototype A _Prototype, represented
in Figure 6 above, its instance, the graphic object Example, is repre-
sented by the tree of Figure 7.

Ex_oggetto

Valori

A_prototype

Guardia Guardia
i [@ [] [0

Relazione
I

fig.7 /6 ‘x

Note that when creating an ohject. O, instance of a prototype P, no
check that the actual values for an attribute A are in the correct range
is performed.

An object O, instance of a (correct wrt attributes) prototype P, is cor-
rect if, for all its current attributes, the corresponding properties are
satisfied.

An object caunot be visualized if its structure is not correct, i.e. if it
is not correct the use it makes of sub-objects.

5.4 Integrity Constraints

In this section we introduce constraints as a means to define invariant
properties of the objects under definition.

An integrity constraint formula is a closed first order formula in prenex
conjunctive normal form, where the predicate symbols occurring in the
tormula denote the basic elements of our model, i.e. prototypes, graphic
objects, frame, state of the frame, ete; and the elements of the graphic
application under development.

Note that, thanks to the notion of frame, we are able to define con-
straints which will became active at visualization time,

Integrity constraints represent invariant properties of the application,
thus changes to the application can only be made if the stated con-
straints are satisfied,

5.5 Syntax for prototype

-~ p'rutoty/p(:'(P'l'()fo_'/l,(l.'m,f:(P(M'F(N"/m s ooy Par Porm,,), Proto).

— Proto = Base_proto(Resources, Operations, Links).

= Resowrces:= [(resourcename, Val), ...].

= Operations ::= [Goal & ... & Goal].

= Links u= [(Link(link name, Protoname(Par_Acty, ..., Par_Act,)),
[lenk(link name, Proto)), ...].

Base_Proto is a hasic type graphic; Proto_name is the name of user’s
prototype defined.
Val defined the value of a resource of a basic type.

Val::= filc:(Fil(-'_ml.mct)[[)i:zrmu.p(f’i:lrv1L(/.1uL(l.Wf.:)l.s:i-/'i'n.g(.S't‘/'ing_v(d'u,e:)
IC(I.”{)(I,Ck(T'I'(I.'Il.._‘-'(/.('fi()ll._‘ll(l‘llL(") [Nwmerie_value.

5.6 Syntax for object

obje.ct(Object_ua.me,Base_proto).
Define a graphical object Object _name from basic prototype Base_proto.

object(Object name, Proto,ame(Par_Acty, ..., Par_Act,)).
Define a graphical ohject from nser’s prototype Proto_name.

lilll\'(CIlil(’lJlﬂ!llG‘,O])j(,‘.(,‘.f;,BELS(%_I)I'(')CO).
Make subobject (child) of name Child_namne and type base Buse_proto.

24

Link(Chaddaanme, Object, Protoawame(Par_Acty, ..., Par_Act,,)).
Make subobject (child) of name Child_name and type Proto_naine definito
dall’utente.

Example:
prototype(labelled_window, formDialog([],[], (link(button,pushButton([],[],[))])).
object(demowin,labelled window).

5.7 Resources Value

L’aspetto di un oggetto grafico e’ caratterizzato, nell’ambito del tipo
grafico scelto per rappresentarlo, dall’insieme di valori delle sue risorse.
Come meccanismo di accesso a questi valori | Gedblog mette a dispo-
sizione un predicato predefinito:

get_par(Object name, [resnanmey, Vary, ... resoaine,, Var,]), che is-
tanzia le variabili Vary, ..., Var, ai valori chie le risorse

resaanmey, ., resanaime, hanno nell’oggetto grafico di nome Object _name.
E’ fornita anche una transazione predefinita :

set_par(Object name, [resnamey, Valy, ..., resname,, Val,]) che setta
lerisorseres namen, ..., resname, nelloggetto grafico di nome Object name
al valoriValy,...,Val,.

La semantica di questa transazione ¢’ equivalente a quella di una op-
erazione di cancellazione dell’oggetto ed una successiva operazione di
inserzione con i valori delle risorse stabiliti.

5.8 Accessing Sub-Components

Dato che un oggetto grafico puo’ essere strutturato internamente in
componenti (figli) sia tramite i links nella definizione del suo prototipo
che tramite link s esterni, e’ necessario prevedere meccanismi per ac-
cedere alle sue parti (necessari ad esempio se si viole variare o testare
1 valori delle risorse di un sotto-oggetto).

L’accesso alle sottoparti i un oggetio avviene tramite Poperatore 1,
che permette di costruire cammini i accesso alle parti di un oggetto
strutturato.

Example:
prototype(labelled window, formDialog([],[],[link(button,pushButton([],[,[)),

20

link(counter,label([(labelstring,string(0))],[,0))])).

object(demowin,labelled window).

In questo caso e’ stato definito un prototipo labelled window di tipo
formDialog e con due sottoprototipi, button e counter, tutti di tipo
primitivo (rispettivamente pushButton e label).

L'oggetto di nome demowin di tipo labelled_window avra’ quindi due
sottoparti (figh) accessibili come demowin'button e demowin!counter
rispettivamente. Ad esempio, per istanziare la variabile Count al val-
ore delle risorsa labelstring della label counter ¢’ sufficiente scrivere un
goal del tipo:

get_par(demowinlcounter, [labelstring,string(Count)))

5.9 Calling Transactions as Objects Call-
back

Un oggetto grafico visualizzato ¢’ sensibile ad eventi dj iput (da mouse,
tastiera od altre periferiche).

Il meccanismo utilizzato in Gedblog per catturare gli eventi di input e’
quello dei widgets, e si basa sull’attivazione antomatica di una proce-
dura (callback) destinata a gestive il tipo di evento che si e” verificato
sull’oggetto che lo ha riceviito.

Settando le risorse callback degli oggetti grafici a nomi di transazioni,
si ottiene la chiamata antomatica di wna transazione in risposta ad un
evento di input.

Per gestire Pevento di pressione del hottone nell’esempio precedente
definiamo una mova versione del prototipo labelled window:

Example

prototype(labelled window,formDialog([],[],[

link(button, pushButton([(activateCallback,callback(setlabel))],),
link(counter,label([(labelstring,string(0))],[,] ND)-

object(demowin,labelled window).

In questo modo la transazione setlabel gestira’ Pevento di attivazione
| g

del bottone demowin! huttou. La transazione setlabel puo’ essere ad

esempio la seguente:

setlabel := get_par(demowin ! connter J[labelstring,string(L)])# Newl,
is L+1, set_pa.r(demowm!cvouuter,[lz\,bel.sm1115,.%11113(1\7@\\’ L)))# true.

Ill questo modo ad Of ’111 dttl\’leOIle evento (11 ress-and- 1eledse del

1 ?

bottoue il V(llOl(“‘ d Hi Icl vel IGIIIO\VlIl!(,OUDtel sara’ mcrementato di
)

una unita’.

5.10 Getting what’s happened after an
event

Notiamo che un evento porta esclusivamente Pinformazione che una
qualche azione e’ avvenuta sull'oggetto che lo ha catturato.

Per rilevare eventuali modifiche che Pevento ha prodotto, GEDBLOG
mette a disposizione dei predicati che permettono di gestire la vari-
azione di certi valori di risorse de gli oggetti a segnito di eventi partico-
lari .

Questi sono:

moved(Objname, (X,Y)).

Ha successo se 'oggetto Obj_name e’ stato spostato ed istanzia le vari-
abili X ed Y alle coordinate della nuova posizione dell’oggetto .

resized(Objmame, (L,H)). Ha successo se Poggetto Objname e’ stato
ridimensionato ed istanzia le variabili L ed H alle nuove dimensioni
dell’oggetto.

selected(Objmame, (X,Y)). Ha successo se I’ oggetto Objname e’ stato
selezionato ed istanzia le variabili X ed Y alle coordinate in cuj &’
avvenuto evento di selezione dell’oggetto.

8]
~1

LW ¥

L%}

LT

o

-,

i3
28 BU—

| B3O

X W% . ¥ LY

I state(s2),

B transition{sl,s2.b) .

RYZE I et e e DY S

11

vjowodcwmmwovsmdo formDialog{L{r
r..HHJrﬁmvmmH‘nxmav

10, ;

wwwowowmnmﬁm

prototupelarco movibile(Ad, drawinglb(

v stwﬁywsmm Husmﬁﬁﬁ\vuovmmcmwov~m~ T =Pat
i L : madyam 11,01,01

ow;moa;mﬁaﬁaymojsadov \

state(z0),
state(sl),

trans deozﬁnoawu;mVM

sz*ﬁovnﬁo_ajmnp~x\tawwa aocpqumﬁw\vAleﬂnwmhxv
link{grafolareal,L,arco_ _ocHUHHm\rva:xﬁju:mHnHozﬁ 1,582, rv

zcocHAw\,:socaa«mv folareallP, A #set (grafolareal IP, [(x, VV AL~<%uv#d1cm¢ .
muoy i ajooﬁp\’nsoqqa\mvnwo_uvnap_D x {v¢9mwfnvmﬁo_m3map_3 ﬁﬁxsrv (Y, 1 #true,

PR PR RE M RO
BNy
2,

0%
Ay
o

.

X
N
20

‘2
"
>,

ol
o
500
\J\
iy ¥

o>
0

o

G385

LAY

)
\,\%

00D
’,

AR
305
CRSA%
o
050G
050
o, "'

X%

o
Ay
Sy

Ly

-,

[ty e e e T

o
Qe
QLY
o,
o
450

oY
0
0

0P%

X0

X
05

.
Vo

05 ﬁ
0
50650
o’
.
0y
QAN
Ky

XD
SN,

Y \'ﬁ
0ndsy
%
P

’,

X
SRR
L 'Q‘
Qg
oo
Q545000
0
DD
QA
eI,
S5
oY
A,
C/

05
0905
Q0%
o
XY
A
7D
AN

L
~

2
oD

',

s

o
.

7,
.
&,

.
.

0
s:s"
oY

O

.

",
-

L5000
0RRRY
" ’,

oY
o
N

0
LY
N
0

M

”

o,
.

A
LA
P
00y
)
X
\,,‘

X

.
o5
05000
2000
Y,
LAY
"
"'
‘, LY

A
oo
ol
XA
o
oo

Q050N

QR0

Aoy

XX
XA

2

CY
NN
X0

o)

oY
o

2
5
7
.
o
D
003
X
)
o,
N

Y,
5%

00N

LAARY
v,
%

D
AN
\'5
Ky

o’
s
Q%%

D
05
PP LLE,
S, ':'\
LX)
’
Q)
2,
’,
’,
.,
P

P,
2
.
0%
S,
*f"
A
o
S,
Y
A
ool

O
O
adadnh

(o050
4,
00000

X

0%
S

09
":

o

o

NIV,
QAT

%
-~
&,
KA
000G
o~

(R
’,

-~
o>
N
2
ch
£y

.
LA
o
%
LR
o,
Q0000
XN
A

050

L,

)
o,
oY
%X,
<,
AN

%,

GR0%Y
LR
O
o

A

0%

"
AL
O
LR

~

00

Y

Ly ,\

2,
”,
v,

XA
X
(5000

N

NN
AR

‘f

o

‘R
A
%
",
.
o,
O

RY
"
",

0
.
.

o,

OO

& i
e
KOKOIAR
Y

o>
Y
o,

A

A
”,

2
AR
i

e,
oSO
,.J ""’ (2
XXX
oo
"2,

0
oY
03
»

%

XD
050508
%0505

%
Y
A
oY
%

)
A
>,

o
%
5
&
Y
o,
X
Y,

",
o,
o

Yy
)
(%Y
Oy
e

&)
2,

2

(XX

o0
&

A
A
o,

5
S
o
o0
Y,
%

AP
e
ey
2P,
N
QR
o,

0300
22
o
00
*,
&

oy
-~

A

(P

7,

)
LA

00

\‘\ \'

o

5‘:
(A AN

)

A
i,
”,

o’
XXX
X
D
030

7

2\

0%

’
Ko oA I ey
I~I$J~J‘I.‘I~I~I*I‘l P

o
SR

R e W]

e et sete e s oA vy

LB g

R Y T T S Y ey

R ST e

llllllr"‘l":l

f'h.,?:J . Sl e 8 SHNT G, BE L VLN T . Y NENT 0 VR R N A WA S T G W G S N S U

1

5.11 Use of Theories

The database editor provide a graphicalinterface to edit GEDBLOG
databases as a collection of multiple, heterogeneous theories.

Each theory is visnalized in a View_Window, divided into four section-
swhich respectively contains the four differents classes of formulas:
facts,rules,constraint, transactions.

Follow we present an example use of Theories:

The OIKOS Process Editor

A very interesting and practical experiment in using GEDBLOG has been carried out by
realising a graphical editor for OIKOS. OIKOS [Mo84] is an environment that provides a
set of functionalities to easily construct process-centred software development environ-
ment. In the following a brief description of OIKOS is provided. This description will
highlight the characteristics that have a direct impact with the realisation of the OIKOS
editor.

Specification

In OIKOS a software process model is a set of hierarchical entities. Each entity is an
instance of one of the OIKOS classes and represent a modelling concept. An entity can be
either structured (i.e. formed by other entities) or simple (i.e. a leaf in the model struc-
ture).

OIKOS defines a top-down method to construct process models. This method uses two
descriptions of the entities: abstract and concrete. The abstractentities are introduced first
and then refined in the concrete ones. At the end of the modelling activity an enactable
model is obtained by adding to the defined entities the needed details. The method estab-
lishes some constraints about the entities (e.g. a coordinator entity has only the concrete
representation) and their use as sub-entities during the model refinement (i.e. constraints
in the mode] structure, for example a desk cannot have, among its sub-entity, a process).
The entity classes defined in OIKOS are the following: Process, Office, Environment,
Desk, Cluster, Session, Role and Coordinator.

The OIKOS Process editor should provide the modeller with an environment to easily
specify software process models following the OIKOS method. It should permit to edit
and store different models for different users. Different modelers must operate with the
editor with the same set of static constraints (i.e. the basic constraints of the method that
cannot be changed because they are an integral part of the method) but they can work with
different dynamic constraints (i.e. constraints on alternative ways to develop models). The
editor interface layout is required to provide: a menu for selecting operations, a top level
entity to store the edited process, windows to present the informations of different entitly

kinds and dialogs for user inputs.

QIKOS Process Editor Database

This section describes the database that implements the OIKOS Process Editor [Ap9%4].
An overview of the theories that compose the OIKOS Editor database is given, with some
explanations of the semantics they express.

Theories have different purposes: to map the OIKOS model into logic predicates, to hold
constraints on the modelling process, to define a graphical counterpart for OIKOS abstract
entities, and to represent the editor layout using the suitable GEDBLOG mechanisms.
From the user side, the theories are black-boxes. Users are just required to instantiate two
theories, in order to load their personal instance of the editor database (oikos.editor the-
ory) and to manage the data specific to the process they create during editor sessions (this
theory will be referred to as oikos.<process_to_create>).

The Database Theories

The OIKOS Editor Database consists of the following theories: oikos.editor, oikos.model,
oikos.menu, oikos.proto, oikos.<process_to_edit>

oikos.edito

This theory declares the imported theories and instantiates a window to display the root
process. The theory is also used to record facts regarding the layout of the graphical frame
(exposed objects, selected objects, etc.). These facts are inserted by transactions along the
gourse of execution sessions.

Figure 3 shows the content of this theory. The predicate theory is used to load all the theo-
ries that compose the OIKOS editor database, while the predicate obg’ect instantiates a
window that stores the top_level entity of the process model.

theory(’oikos.model’).
theory(’oikos.menu’).

theory(’oikos.proto’).

theory('oikos.mini_dctu').
object(process_row,formDialog({(dialogTitle,string(top_level))],{],[
link(the_row,rowColumn([(orientation,meORIZONTAL)],[],[]))])).

Figure 3: Oikos Editor Theory

oikos.model

This theory introduces the predicates which define an abstract representation of OIKOS

entities, and the constraints to be satisfyed by OIKOS process structures.
(;;ndc(process).kindc(office).kindc(env).kindc(desk).kindc(cluster).

kinda(ang_process).kinda(ang_office).kinda(ang_env).kinda(ang_desk).

kinda(ang_cluster).kinda(ang_role).kinda(ang_ses).
may(process,ang_desk).

conc {Name, Kind, Limbo) ==»> kindc (Kind) .

conc (Name, Kind, Angel,Res) ==> kinda(Kind).
partaof(Namel,Kindl,NameZ,Kind2) ==> conc(Namel,Kindl, Limbo) .
part_of(Namel,Kindl,NameZ,Kind2) ==> may(Kindl,Kind2).
\SSES(Name,Kind,Limbo) ==> part_of (Name, Kind, Coord, coord) . 4/)

Figure 4: Oikos Model Theory

The facts with predicates kindc and kinda distinguish angelic entity kinds from concrete
ones respectively. A set of instances of predicate may is used to define the allowed inclu-
sion relations among different kinds of entities. Then a set of static constraints is given to
model OIKOS process models. The first and second constraints state that conerete and
abstract entities must have respectively concrete and abstract kind. Notice the use of the
may predicate in the fourth constraint formula. It states that an entity can be used as a part
of another one only if the two entity kinds are in the may relation.

Notice also that the theory defines only static constraints. However, dynamic constraints
on the process construction methodology can be added by adding a separate theory.

oikos.menu

The menu theory builds the graphical object corresponding to the OIKOS Editor main
menu and attaches transactions to the menu items in order to perform the corresponding
actions.The menu-bar is realized by a fact in the theory that instantiate a menu-bar proto-
type, a set of facts that defines the prototypes for the pull-down items of the menu and the
transactions to be performed in response to selection events.

//;pject(main_dialog,formDialdg({(dialogTitle,string(menu))],(],[‘\\
link (oikos_menu,menuBar ([}, [], [
~ link(gen,cascadeButton([(labelString, string(general))], (], [
link{gen_pull,gen_pull)l)),
link(edit, cascadeButton(((labelString,string(edit))]., (], [
link{edit_pull,edit_pull)])),
link(obj, cascadeButton([(labelString, string(objects))], (], [
link(obj_pull,obj_pull)l}),
link (manag_obj, cascadeButton(((labelString, string(managers))], [}, [
link{manag_obj_pull,manag_obj_pull)])),
link(serv,cascadeButton([(labelString,string(services))], (1, (
link(serv_pull,serv_pull)])), ’
link(util,cascadeButton([(labelstring,string(utilities))],[],[
link(util_pull,util_pull)]))1))1)).

prototype(obj_pull,pulldownMenu{ (], [];{
link(coord, pushButton([(labelString, string(coord)),
(activateCallback,callback(sel(coord)))], (1,1(1)),
link(role,pushButton([{labelString, string(role)),
(activateCallback, callback(sel (ang_role)))], (].(1)),

NN

sel {Entity):= selected(0ld) #out(selected(01ld)) &in{selected(Entity))
#true.
sel (Entity) := true#in(selected(Entity))#true.

N /

Figure 5: Oikos Menu Theory

[

The sel transaction is activated when an entity kind from the objects menu is selected. Its
effect is to insert a new fact in the logic database (selected(Entity)) that records the entity
kind that will be created next time an object create action is performed. The following pic-
ture shows the menu as it is visualized on the OIKOS Editor layout.

— IErL

Figure 6: The Menu-bar

Notice that, due to the use of prototjpes, the menu theory can be easely imported into a
different databases and customized for.a different application.

oikos.proto

Oikos.proto deals with the graphic
types, the rules upon which the en
activated in response to events occ
According to the specification section
description are: roles, coordinators, des
All but coordinators have an angelic count
tion to OIKOS Entities, consider they ha
closed, only the icon representing the enti
entities and their angelic counterparts are

ks,

given by the following Table:

presentation of entities. It declares the graphical proto-
tities visualization depends and the transactions to be
ourring on them.
» the entities that make up an OIKOS process
clusters, environments, offices and processes.
erpart. In order to attach a graphic representa-
ve a closed and opened status. When they are
ty and the entity name are visible. The icons for

Process | Office Environ Desk | Cluster | Role | C°ordin
ment ator
'<'.] g ;
Concrete ax ..T | — | %) @
Angelic o | el D g{
) Uk IE

Table 1: OIKQOS Entities Icons

Closed entities are graphically represented by the following prototype definitions.

prototype(microf(Path,Kind,Name),form([(marginHeight,l)],[],[
link(pbl,pushButton([(labelType,meIXMAP),labelPixmap,pix-
map (Kind)),
(activateCallback,callback(open(Name)))],[],[])),

link(lbl,pushButton([(labelString,string(Name)),
(activateCallback,callback(set_obj(Path,Name)))],[],[]))])).

This is a compund prototype that contains two buttons. One buttom shows the entity icon
while the other one reports the entity name. Transactions are attached to button’s activate
events. The activate event on the icon button is linked to the open transaction by means of
the callback mechanism.

-

As regards open entities, the graphical representation is different, depending on the fol-
lowing classification:

Compound Concrete Entities: Processes, Offices, Environments, Clusters and Desks are
concrete compound entities. They are represented by a specification file written in the
Limbo language and by the set of parts (sub-entities) that define their structure

//Erototype(generalconc(Name,Kind,Limbofile), ‘\\
formDialog ([(dialogTitle,string(Name))], (], [
link(fig,pushButton([(labelType, xmPIXMAP),
(labelPixmap,pixmap (Kind)),
(activateCallback,callback(close(Name)))],[],{])),
link(descr,pushButton([(labelstring,st;ing(Name)),
(activateCallback,callback(set_active(Name,Kind)))],4],[])),
link(parts,partgrid(Name,Kind)),
link(limbolab,pushButton([(labelString,s;ring(limbonupdate)),
{activateCallback, callback(save_file(Name!limbodef!limbodeftxt,
‘oikos.mini_dctu’,Limbofile)))], (), (1)),
link (limbodef, limbodefp (Name, Limbofile)) ///

\\\ 1)

Figure 7: Compound Entity Prototype

Entity Kind
and Name

Parts

Services Instances . Limbo Specification

Figure 8: Compound Entity Instance

Angels: Angels represent the abstract specification of the entity. In Figure 9 an instance of
an angelic entity is depicted.

Entity Kind =
and Name . HOE

Concrete
Button

Angel
Definition

Figure 9: Angelic Entity Instance

Concrete Entities: Coordinators and Roles represent low-level entities in the OIKOS
process description. Their definition i‘s directly given into the entity of which they are
parts.

The Oikos.proto theory connects also entities abstract representation to thejr graphical
counterpart by the following rules:

object(Name,generalconc(Name, Kind, Limbofile)) <-- ﬁ‘\\
conc (Name, Kind, Limbofile) & exposed (Name) .
object(Name,generalabs(Name, Kind, AngSpec)) <--

abs (Name, Kind, AngSpec) & exposed (Name) .
object (Name, concrole (Name, Actor, Req, Behav)) <--

role(Name, Actor, Req, Behav) & exposed (Name) .
object (Name, conccoord(Name, Dests, Intheory)) <--

coord (Name, Dests, Intheory) & exposed (Name) .

link (Namel!parts! gridl, Name,microf (Namel !parts! gridl!Name, Kind, Name)) <--
part_of (Namel,Kind1l, Name, Kind) & kindc(Kind) & exposed (Namel).

link (Namel!parts! grid2,Name,microf (Namel!parts!grid2 !Name, Kind, Name)) <--

!)art_.o‘f(Namel,Kindl,Name,Kind) & kinda(Kind) & exposed (Namel) . j

Figure 10: Objects Instantiation Rules

part_of predicate.
The motivations for using two rules to put parts into the graphic grid of a compound entity
is that we want to keep angelic and concrete sub-parts into different columns,

oikos.<process_to_edit>

This theory records the abstract representations of process entities. In general, this theory
will be empty when the editor is started for the first time on a process. It will be ennched
along to the user interaction with the editor.

The following example of this theory defines only the top level entity of a process model
that is called mini_dctu.

top_level (mini_dctu).
conc {mini_dctu, process,mini_dctu) .
part_of (mini_dctu,process,manager_desk, desk) .

Figure 11: Oikos Mini_dctu Theory

3.3 Execution of the OIKOS Editor Database

In the following execution simulation, we start the editor on the mini_dctu process as it is
described by the theory of Figure 11. At the start-up, the execution engine calls the frame
manager to obtain the graphic objects to display. Recall, that the frame manager returns the
list of graphic objects that can be proved in the logic knowledge-base. The objects that
will be visualized in this case are the menu bar and the process root icon., as they are facts
of the database.

J— ment!

- Lgencral l edit l objects l managers] services | utilities

Figure 12: An editing session at start-up

Figure 12 shows the top-level representation of process mini_dctu. The process is repre-
sented by an icon, and is closed, in the sense that its internal definition is not visible. To
open mini_dctu, the user clicks upon the icon button (the smoking factory).

The activate event on the button calls the open transaction of the oikos.proto theory. This
transaction inserts a new fact in the knowledge base: exposed (mini_dctu). Now, look at
the first rule of Figure 10. It states that a compound concrete graphic object is deducible if
the corresponding entity is defined in the database and it is exposed. So, exposing the
mini_dctu entity causes this rule to fire, as the fact conc(mini_dctu, process,
mini_dctu) is true in the knowledge-base (refer to oikos.mini_dctu theory in Figure 11).

linbo_definition
I
;% process mini_dctu

nanager _desk input

from manager_desk
start(Req, Plan, Doc) -

Crwsm N i s

Figure 13: Opening the Top_level Process

The system pops-up the graphical representation of the mini_dctu entity as a compound
concrete entity. The window shows the internal structure of the mini_dctu process entity.
The only entity that appears in the mini_dctu structure s the manager desk. This is due to
the fact part_of (mini_dctu, process, manager_desk, desk) in theory
oikos.mini_dctu (Figure 11), and to rule 5 in theory oikos.proto (Figure 10).

Selection box

Figure 14: Selecting the active entity

Then chose the entity kind from menu-objects. In the following example, a coordinator
for the mini_dectu process is created by selecting the coord item from the object menu. A

dialog window POps up, because the menu transaction asserts the fact selected(coord)
and the rule
object(Kind,dialog(Entity,Etype,Kind))<~~
selected(Kind) & active(Entity,Etype).
is defined in the theory oikos.proto.

bervices | utilities]
Q

coordinator]
Eane
!create] LEanc;I] ’ Help l \\\\\\\\\\\\\\\\
[Eoncrete ._] [ingels] [coordin\
& Input field for the

| entity name

manager, desk

Figure 15: Creating a sub-entity

The dialog asks for the name of the new entity. After having filled up the name field with
the name new_coord, the user clicks the create button. This action starts a transaction
mk_conc_entity (Mother,Kind, Type) : =

selected(Etype) & get_par(Type!mess!rowl!nametxt,[(value,Name)]) &

kindc (Etype)

out (selected(Etype)) & in(conc(Name,Type,Name) &

in(part~of(Mother,Kind,Name,Type))

true.
that in this case instantiates the new facts conc (new_coord, coord, Name) and
part_of(mini_dctu, process, new_coord, coord). Furthermore, the transaction removes the
fact selected(coord), so the dialog is dismissed. Now, the new coordinator is shown
among the parts of the mini_dctu process by means of rules in oikos.proto theory of Fig-
ure 10. The correctness of the new schema is automaticaly granted by the constraints,
which participate to the deduction process.

Lgeneral ledlt l objects | menagers l services | utilities

.
|
el
[concrota] [anoels | [coordinators] Iirbo_definition
¥ I
% process wini_detuy
nanager_desk Irput
from manager_dosk
start{Req, Plan, Doc):-
.@ followi
wpdate_pleni- the profe
eborti~ the manager has
fev. d completed:~ the manager
success
S .

Figure 16: The Final Result

Appendice
Architetture of System

(Motif_X11 W

L Editing Execution
L cten |
TCP_IP

‘ server

<y —
Managers
\\ Graphics_language

N .

DBMS

N
w Logic Kemel

\
IC_Prolog

N J

- Bibliography

[1]

[2]

A. Agnello. Un Linguaggio di Interfaccia Grafico per il
Sistema di Gestione di Basi di Dati Logiche EDBLOG,
Tesl di Laurea, Dip. di Informatica, Universita’ di Pisa,
Aprile 1988.

R. Ahad & A. Basu . ESQL: A Query language for the
Relation Model Supporting Image Domains, Proc. of the
7th Int. Conf. on Data Eng., Japan, April 1991, pp. 550-
559.

P. Asirelli M. De Santis, M. Martelli . Integrity Con-
straints in Logic Data Bases, Journal of Logic Program-
ming, Vol. 2, No. 3, Ottobre 1985.

Asirelli, P. Castorina, G. Dettori . A Proposal for a
Graphic-Oriented Logic Database System, IEEE Proc. of
The 2nd Int. Conf. on Computers and Applic., Pekin,
June 1987.

Asirelli G. Mainetto. Integrating Logic DataBases and
Graphics for CAD/CAM applications, IEEE WorkShop
on Lang. for Automation,Vienna, August 1987, pp. 173 -
176.

Asirelli D. Di Grande, P. Inverardi . GRAPHEDBLOG
Reference Manual, IR IEI B4-08 February 1990.

Asirelli P. Inverardi and V.Raffaelli. - Using Con-
straints and Parallelism in Queries Evaluation: a top-
down/bottom-up computation model . Draft .

Barbuti M. Martelli . Completeness of the SLDNF Res-
olution for a Class of Logic Programs, Proc. of the 3rd
Int. Conf. on Logic Programming, London, 1986.

K. A. Bowen R. A. Kowalski. Amalgamating Language
and Metalanguage in Logic Programming, Logic Pro-
gramming, Academic Press, Londra 1982, pp. 159 - 172.

30

[10]

(11]

[12]

[13]

[14]

[17]

(18]

[19]

[20]

[21]

K. A. Bowen Meta - Level Programming and Knowledge
Representation, Technical Report, CIS - 85 - 1, School of
Computer & Information Science, Syracuse University,
Agosto 1985.

D. Di Grande D. Di Grande, Un modello per la rapp-
resentazione degli oggetti grafici basato su un DB logico,
Tesi di Laurea, Dip. di Informatica, Universit di Pisa,
Aprile 1989.

M. De Santis Logic Programming e Database: un am-
biente di sviluppo adatto al trattamento dej vincoli di
integrit, Tesi di Laurea, Dip. di Informatica, Universit di
Pisa, Gennaio 1985.

H. Gallaire, J. Minker, J. M. Nicolas Logic and
Databases, Plenum Publishing Co., New York, N. Y.,
1978.

H. Gallaire Logic Databases vs. Deductive Databases,
Logic Programming Workshop, Albufeira, Portogallo
1983, pp. 608 - 622.

H. Gallaire, J. Minker, J. M. Nicolas Logic and
Databases: a Deductive Approach, Computing Surveys,
Vol.16, No.2, 1984, pp. 153 - 185.

F. Giannini E. Grifoni Programmazione Logica in Ambi-
ente di Sviluppo Software: Data Base Logici come Data
Base di Progetto, Tesi di Laurea, Dip. di Informatica,
Universita’ di Pisa, Ottobre 1986.

C. Green Theorem proving by resolution as a basis for
question-answering systems, Machine Intelligence 4, B.
Meltzer, D. Michie Edd., American Elsevier Pub. Co. ,
New York, n. Y., 1969.

R. Helm, K. Marriot Declarative Graphics, Lecture
Notes in Computer Science No. 225, Springer - Verlag,
Londra, Luglio 1986, pp. 513 - 527.

R. J. Hubbold, W. T. Hewitt GKS-3D and PHIGS The-
ory and Practice, EUROGRAPHICS’88, Tutorial Cours
No. 1, settembre 1988.

S. M. P. Julien Graphical in Micro-Prolog, Research re-
port DOC 8217, Imperial College, London, 1982.

R. A. Kowalsky Predicate Logic as Programming Lan-
guage, Proc. IFIP - 74 Congress, 1974, pp. 569 - 574.

31

[22]

[23]

[24]

[25]

[26]

(27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

R. A Kowalsky Logic and Data Bases, Logic Program-
ming Meeting, Imperial College, London, Maggio 1976.

R. A Kowalsky Logic for Problem Solving, Artificial In-
telligence Series, N. J. Nillson Ed., Int. Symp. on Logic
Programming, Atlantic City, 1984, pp. 118 - 125.

R. A Kowalsky Logic Programing, IFIP, 1983, pp. 133 -
145,

U. W. Lipeck Trasformation of Dynamic Integrity Con-
straints into Transaction Specifications, Lecture Notes in
Computer Science No. 326, Springer Verlag, Bruges, Set-
tembre 1988,

J. Lloyd Foundations of Logic Programming, Springer
Verlag, New York, 1984.

F. Mauro Basi di Dati Logiche: un Approccio al Trat-
tamento delle Transazioni, Tesi di Laurea, Dip. di Infor-
matica, Universita’ di Pisa, Novembre 1985.

J. M. Nicolas Logic for Improving Integrity Cheching in
Relational Data Base, Acta Informatica No. 18, 1982, pp.
227 - 253,

F. C. N. Pereira Can Drawing Be Liberated fom Von
Neumann Style ?, Logic Programming and Its Applica-
tions, M. van Caneghem e D. H. D. Warren Edd., A.P.C,,
Norwood, New Jersey, 1986, pp. 175 - 187.

V.Raffaelli

- La programmazione Logica ed it metodi di valutazione
di query logiche ricorsive: confronti e proposte.Thesis of
the University of Pisa, 1990.

J. A. Robinson A Machine-Oriented Logic Based on the
Resolution Principle, JACM, Vol.1, No.12, Gennaio 1965,
pp. 23 - 41.

R. W. Scheifler, J. Gettys The X window system, ACM
Iransaction on Graphics, Vol.5, No.2, Aprile 1986, pp.
79 - 109.

E. Y. Shapiro, A. Takeuchi An Object-Oriented Program-
ming in.Concurrent Prolog, New Generation Computing,
Vol.1, No.1, 1983, pp. 25 - 48,

L. Sterling Expert System = Knowledge -+ Meta-
Interpreter, Dept. of Applied Mathematics, The Weiz-
mann Institute of Science, Internal Report CS-84-17,
1985.

32

(35] P. Whiederhold Database Design, Computer Science Se-
ries, McGraw Hill Book Company, 1983.

[36] S-K Chang Visual Languages: a tutorial and survey,
IEEE Software 4, 1987, pp. 29-39 .

[37] C. Beeri Data Models and Languages for Databases,
Proc. ICDT’88, LNCS No. 326, Springer - Verlag, pp.
19-40.

[38] R.R. Berman, M. Stonebraker, GEO-QUEL: A System
for the Manipulation and Display of Geographic Data,
Computer Graphics 11 (1977), 186-191.

[39] N.S. Chang, K.S. Fu A Relational Database System for
Images, In: N.S. Chang and K.S. Fu (Ed.), Pictorial In-
formation Systems, Springer, 1980, 288-321.

[40] J. D. Foley, A. Van Dam Fundamentals of Interactjve
Computer Graphics, Addison - Wesley Publishing Com-
pany, 1982.

[41] R.H.Goting Geo-Relational Algebra: A Model and
Query Language for Geometric Database Systems, Proc.
EDBT’88, LNCS No. 303, Springer - Verlag, pp. 506-527.

[42] R. Helm, K. Marriot Declarative Specification of Visual
Languages, Proc. 1990 IEEE Workshop on Visual Lan-
guages, IEEE, pp. 98 - 103.

[43] C. Herold Spatial Management of Data, ACM Trans. on
Database Systems Vol. 5 No. 4, Dicembre 1980, pp. 493
- 514.

[44] R.J. Hubbold W. T. Hewitt GKS-3D and PHIGS Theory
and Practice, EUROGRAPHICS’88, Tutorial Cours No.
1, September 1988.

[45] W. Hubner, Z. I. Markov GKS Based Graphics Program-
ming in Prolog, Computer Graphics Forum, Vol.5, March
1986, pp. 41 - 50.

[46] Lloyd, J. Foundations of Logic Programming, 2d edition,
Springer-Verlag 1987.

[47] T. Lubinsky, I. Hutzel An Object Oriented Graphical
Kernel System, Computer Graphics World, July 1984,
pp. 69 - 74.

[48] J.A. Orenstein Spatial Query Processing in an Object-
Oriented Database System, Proc. ACM SIGMOD ’86,
pp. 326-336.

33

[49]

[50]

[51]

[52]
[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

M. J. Prospero F. C. N. Pereira On Programming
an Interactive Graphical Application in Logic, Com-
puter&Graphics Vol. 14, No. 1, pp. 7-16, 1990.

F.C. N. Pereira Can Drawing Be Liberated from Von
Neumann Style?, Logic Programming and Its Applica-
tions, M. van Caneghem e D. H. D. Warren Edd., A.P.C.,
Norwood, New Jersey, 1986, pp. 175 - 187.

D. T. Ross Structured Analysis (SA): A LAnguage for
Communicating Ideas, IEEE Trans. Software Engineer-
ing, Vol. SE - 3, No 1, January 1977, pp. 16 - 34.

D. T. Ross Applications and Extensions of SADT, IEEE
Computer, April 1985, pp 25 - 34,

S. Safra, E. Shapiro Meta Interpreters for real, Inf. Proc.
86. H-J Kugler (Ed.), 1986, pp. 271-278.

R. W. Scheifler, J. Gettys The X window system, ACM
Transaction on Graphics, Vol.5, No.2, April 1986, pp. 79
- 109.

D. L. Spooner Database Support for Interactive Com-
puter Graphics, Proc. SIGMOD, 1984, pp. 90 - 99.

pert System = Knowledge + Meta-Interpreter, Dept. of
Applied Mathematics, The Weizmann Institute of Sci-
ence, Internal Report CS-84-17, 1985,

C. N. Waggoner GKS - based graphic software adapts to
changing tecnologies, EDN, marzo 1984, pp. 127 - 133.

D. Weller, R, Williams Graphics and Database Sup-
port for Problem Solving, ACM SIGGRAPH Computer
Graphics, Vol.10, 1976, pp. 183 - 189.

P.Wisskirchen, Geo+-+ - a System for Both Modelling
and Display, EUROGRAPHICS’89, Hamburg, Septem-
ber, 1989, pp.403 - 414.

Vieille L. "Recursive Query Processing: the Power of
Logic”, in Theoretical Computer Science, vol. 69,pp. 1-
53, 1989.

C. Zaniolo Deductive Databases: Theory Meets Prac-
tice, (Invited Paper) Proc. EDBT’90, Lecture Notes in
Computer Science No. 416, Springer - Verlag, pp. 1-15.

P. Asirelli, P.Inverardi, D. Aquilino, D. Apuzzo GED-
BLOG Reference Manual (Edizione vecchia).

34

[62] P. Asirelli,D. Di Grande, P.Inverardi, F. Nicodemi
Graphics by a logic Data Base Management System

(63] D. Apuzzo, D. Aquilino, P. Asirelli ADeclarative Ap-
proach to the Design and Relation of Graphic Interfaces.
Ottobre 1994 Nota Interna B439.

35

