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Abstract— The identification of optically thin cirrus is crucial
for their accurate parameterization in climate and Earth’s
system models. This study exploits the characteristics of the
infrared atmospheric sounding interferometer—new generation
(IASI-NG) to develop an algorithm for the detection of optically
thin cirrus. IASI-NG has been designed for the European
Organization for the Exploitation of Meteorological Satellites
(EUMETSAT) polar system second-generation program to con-
tinue the service of its predecessor IASI from 2024 onward.
A thin-cirrus detection algorithm (TCDA) is presented here,
as developed for IASI-NG, but also in parallel for IASI to evaluate
its performance on currently available real observations. TCDA
uses a feedforward neural network (NN) approach to detect
thin cirrus eventually misidentified as clear sky by a previously
applied cloud detection algorithm. TCDA also estimates the
uncertainty of “clear-sky” or “thin-cirrus” detection. NN is
trained and tested on a dataset of IASI-NG (or IASI) simulations
obtained by processing ECMWF 5-generation reanalysis (ERA5)
data with the σ -IASI radiative transfer model. TCDA validation
against an independent simulated dataset provides a quantitative
statistical assessment of the improvements brought by IASI-NG
with respect to IASI. In fact, IASI-NG TCDA outperforms
IASI TCDA by 3% in probability of detection (POD), 1% in
bias, and 2% in accuracy, and the false alarm ratio (FAR)
passes from 0.02 to 0.01. Moreover, IASI TCDA validation
against state-of-the-art cloud products from Cloudsat/CPR and
CALIPSO/Cloud-Aerosol Lidar with Orthogonal Polarization
(CALIOP) real observations reveals a tendency for IASI TCDA
to underestimate the presence of thin cirrus (POD = 0.47) but
with a low FAR (0.07), which drops to 0.0 for very thin cirrus.
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NOMENCLATURE
2C-ICE Cloudsat and CALIPSO Ice Cloud Prop-

erty Product.
AVHRR Advanced Very-High-Resolution

Radiometer.
C3S Copernicus Climate Change Service.
CALIOP Cloud-Aerosol Lidar with Orthogonal

Polarization.
CBH Cloud base height.
CCF Cloud cover fraction.
CCL Cloud cover layer.
CER Cloud effective radius.
CF Cloud fraction.
CI Cloud information.
CIWC Cloud ice water content.
CL Cloud layer.
CNES Centre National d’Études Spatiales.
ComboCloud Combined MWS and IASI-NG soundings

for cloud properties.
COPs Cloud optical properties.
COT Cloud optical thickness.
CPR Cloud profiling radar.
CPRinIASI CPR FOV included in IASI IFOV.
CT Cloud type.
CTP Cloud top pressure.
ECMWF European Center for Medium-Range

Weather Forecasts.
EDR Environmental data record.
EFOV Elementary fields of view.
EOS NASA Earth Observing System.
ERA5 ECMWF 5 generation reanalysis.
EUMETSAT European Organization for the Exploita-

tion of Meteorological Satellites.
FAR False alarm ratio.
FOR Field of regard.
FOV Field of view.
GMT Greenwich Mean Time.
GOES Geostationary Operational Environmental

Satellite.
HCC High cloud cover.
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IASI Infrared atmospheric sounder
interferometer.

IASI-NG Infrared atmospheric sounder
interferometer—new generation.

IFOV Instantaneous field of view.
IFS Integrated forecast system.
IR Infrared.
LB Layer base.
LCC Low cloud cover.
M∗D35 Both MOD35 and MYD35 products.
MCC Medium cloud cover.
MetOp Meteorological Operational Satellite.
MetOp-SG Meteorological Operational Satellite—

Second Generation.
MOD35 Cloud Mask Level 2 MODIS on Terra

satellite.
MODIS Moderate Resolution Imaging Spectrora-

diometer.
MODinIASI MODIS FOV included in IASI IFOV.
MSG Meteosat Second Generation.
MWS Microwave sounder.
MYD35 Cloud Mask Level 2 MODIS on Aqua

satellite.
NN Neural network.
NOAA National Oceanic and Atmospheric

Administration.
OCA Optimal cloud analysis.
PC Principal component.
PCA Principal component analysis.
PL Pressure levels.
POD Probability of detection.
PPC Perform parallax correction.
PWV Precipitable water vapor.
RGB Red green blue.
RMSE Root-mean-square error.
SCIW Specific cloud ice water content.
SCLW Specific cloud liquid water content.
SEVIRI Spinning Enhanced Visible and Infrared

Imager.
SEVIRIinIASI SEVIRI FOV included in IASI IFOV.
SSP Sub satellite point.
NPP National Polar-Orbiting Partnership.
TCC Total cloud cover.
TCDA Thin-cirrus detection algorithm
TCIW Total column ice water content.
TCLW Total column liquid water content.
TP Total precipitation.
VIIRS Visible Infrared Imaging Radiometer

Suite.
VIIRSinIASI VIIRS FOV included in IASI IFOV.

I. INTRODUCTION

THE accurate identification of thin cirrus is crucial for
climatological studies and for the study of Earth radiation

budget [1]. In the upper troposphere, they cause both atmo-
spheric cooling, by reflecting back the incoming shortwave
solar radiation, and atmospheric heating, by partially trapping

outgoing longwave terrestrial radiation [2]. The dominant pro-
cess depends on the cloud properties. Despite their importance
for the radiation budget, their detection is challenging due
to relatively low contrast with the underlying surface, and
the misidentification of thin cirrus as clear sky introduces
errors in the retrieval of atmospheric and surface parame-
ters [3]. Several studies focus on the detection of thin cirrus
alone or as a distinct class in a cloud classification scheme
using physical methods based on threshold tests applied to
IR and/or Visible (VIS) observations [4], [5]. A classical
physical method, very effective for the characterization of
optically thin cirrus, is the CO2 slicing method [6]. It is based
on IR observations from 13 to 15 µm to estimate CTP at
high altitudes and to distinguish semitransparent from opaque
clouds. McHardy et al. [7] also exploited PWV information in
detecting thin cirrus by using physical-based algorithms.

Among the studies based on statistical methods, Bankert [8]
applied a probabilistic NN to the AVHRR data to assign
a defined sample area to one of the ten considered cloud
classes. The method identified about 75% of the examined
samples correctly, with a high rate of misclassification occur-
ring between high thin cirrus and cirrostratus. In a later study,
Bankert et al. [9] applied a one-nearest-neighbor classification
to the GOES observations using a training dataset of expertly
labeled image samples. In this way, they improved the choice
of samples to be included in the various classes training dataset
with particular attention to thin cirrus. Strandgren et al. [10]
used an NN approach trained with data from SEVIRI and
CALIOP. Maestri et al. [11] proposed a machine learning
algorithm for cloud detection and classification, using sim-
ulated high spectral resolution radiances. They demonstrated
that very thin cirrus are better detected exploiting the full IR
spectrum rather than the mid-IR part alone [12], as it could be
expected from previous works [13], [14], showing numerical
simulations in the thermal IR to be sensitive to variations in
cirrus optical depth and ice crystal size as well as in ice crystal
shape. It is evident that, compared to other passive remote
sensing instruments, high spectral resolution IR sounders carry
more information on cirrus properties. However, detecting
thin-cirrus clouds remains an unsolved challenge due to their
spectral signatures being very similar to those of clear sky.
Consequently, cloud classification algorithms often misclas-
sify thin-cirrus clouds as clear sky [15], [16], [17], with
nonnegligible consequences on the estimation of atmospheric
parameter whose correct knowledge is fundamental for the
Earth’s radiation budget. To overcome the frequent misiden-
tification of thin cirrus in clear sky, it is possible to exploit
the improvements in the spatial and spectral resolutions of
future satellite-borne sensors that are promising for detecting
clouds and estimating their properties with greater precision.
In this study, based on previous considerations, the whole IR
spectrum [645, 2760] cm−1 of the IASI-NG was considered
for thin and very thin-cirrus detection using a feedforward NN:
the TCDA. In detail, TCDA focuses only on the area classified
as clear sky by a previous-applied cloud detection algorithm
and it aims to detect the thin cirrus previously misidentified as
clear sky providing an estimate of the detection error. It was
developed primarily for IASI-NG, but also in parallel for its
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predecessor, IASI, so to quantify the improvement brought
by IASI-NG with respect to IASI and to evaluate the TCDA
performance on real observations, currently available for IASI
only. The core of the TCDA is the NN, preferred over simpler
approaches, like threshold algorithms or linear regressions,
due to its higher versatility, power, and widespread use in the
scientific field to solve complex problems. The TCDA NN was
trained and tested with IASI-NG (or IASI) simulated obser-
vations, calculated processing the global numerical weather
reanalysis of the ECMWF—5 generation reanalysis (ERA5)
archive [18] with the σ -IASI radiative transfer model [19].
TCDA was developed in the framework of the ComboCloud
project, funded by EUMETSAT [20].

This article is structured as follows. Section II describes
the dataset used for the TCDA development and the criteria
adopted for selecting thin-cirrus profiles to be used for IASI-
NG/IASI simulation. It also describes the cloud products from
active and passive sensors used for IASI-TCDA validation
and comparison. Section III describes the TCDA methodol-
ogy, with an overview of NN, the method used to estimate
the total error to associated with TCDA output and, finally,
the validation results of both IASI and IASI-NG TCDA on
an independent simulated dataset. Section IV discusses the
comparison of IASI-TCDA with MODIS, VIIRS, and SEVIRI
cloud products and its validation against CPR/CALIOP cloud
products. To facilitate the reading of this article, the Nomen-
clature provides a comprehensive list of acronyms and abbre-
viations used throughout the text.

II. INSTRUMENT AND DATA DESCRIPTIO

This section describes the sensors involved in this study.
Section II-A describes IASI and IASI-NG and the criteria
adopted to select the dataset used for training and validation.
Section II-F describes the cloud products from active and
passive sensors collected to build the observational datasets
for IASI-TCDA validation.

A. IASI/ IASI-NG: Instrument Description

IASI is a high spectral resolution sounding instrument based
on a Fourier transform spectrometer. It measures 8461 spectral
samples in the range [645, 2760] cm−1, with a spectral
resolution of 0.5 cm−1 and a spectral sampling of 0.25 cm−1.
It has been flying on EUMETSAT polar system (EPS) Metop
A-B-C satellites series since 2006. IASI scans across-track
30 EFOV. Each EFOV contains four IFOVs disks with a
ground diameter of 12 km at the SSP. Moving away from the
SSP, the IFOV assumes an elliptic shape with axes increasing
to about 39 km (across-track direction) and 20 km (along-
track direction) at the swath edge. At the SSP, the four IFOVs
are 24 km apart within the EFOV, whose dimension is 48 ×

48 km.
IASI-NG is the evolution of IASI. It differs from IASI

for the improved radiometric and spectral characteristics as
well as for the scan geometry. IASI-NG will measure 16 921
samples in the spectral range [645, 2760] cm−1 with a spectral
resolution (0.25 cm−1), spectral sampling (0.125 cm−1), and
signal-to-noise ratio improved by a factor of 2 with respect to

IASI. The higher spectral resolution and signal-to-noise ratio
will directly result in higher vertical resolution and product
accuracy [21]. Regarding scan geometry, IASI-NG will scan
across-track 14 FORs; each FOR will contain 4 × 4 IFOVs
whose dimension at the SSP and the swath edge will be
the same as IASI IFOV. In detail, the distance between two
consecutive IFOV centers will be about 23.83 km and the
distance between FORs will be about 32 km, resulting in a
100 × 100 km FOR at the SSP [22].

B. IASI/ IASI-NG: Simulated Dataset and Criteria Adopted
for Thin-Cirrus Dataset Implementation

The TCDA implements an NN approach, which is trained,
validated, and tested using a dataset of IASI-NG and IASI
simulated observations. Two NNs were trained separately for
IASI and IASI-NG using a dedicated global dataset of 300 000
samples (over both land and sea surfaces), 50% characterized
by clear sky and 50% by thin-cirrus presence. IASI and
IASI-NG simulated observations are obtained by applying
the σ -IASI radiative transfer code to a set of surface and
atmospheric data selected from the ERA5 climate dataset [19].
The σ -IASI is a fast line-by-line radiative transfer scheme
that simulates both clear and cloudy spectral radiances for a
given set of geophysical parameters. The radiometric noise
provided by CNES is used for IASI [23], while radiometric
noise for IASI-NG was assumed to be half of that of IASI [24].
In σ -IASI, cloud ice particles were represented using spheres.
Realistic assumptions on CER and size distributions have been
made to produce IR radiative transfer calculations, ice cloud
de (diameter effective) from Wyser [25] in which the shape
distribution n(L) is determined by the use of a mixed distribu-
tion, 0 distribution [26] for small particles (L < 20 µm), and
power-law distribution [27] for the larger one (L > 20 µm).
Both these distributions have been parameterized with respect
to the B parameter

B = −2 + 10−3(273 − T )1.5log10

(
CIWC
CIWC0

)
(1)

where T is the atmospheric layer temperature (K), CIWC is
the corresponding ice water content (g·m−3), and CIWC0 =

50 g·m−3. Thus, de is obtained with B using a 3rd-order
polynomial approximation

de = 377.4 + 203.3B + 37.91B2
+ 2.3696B3. (2)

According to Wyser, the de range of values is limited in
[10, 100]µm. The set of ERA5 atmospheric state vectors,
needed for the radiative transfer calculations, includes the
thin-cirrus dataset used for IASI and IASI-NG TCDA imple-
mentation. Both ERA5 hourly data on PLs and single level
have been used for building the dataset of atmospheric profiles
on 37 PLs and surface parameters, respectively. Global data for
four representative days (1 January, April, July, and October
2019), each at four synoptic hours (00, 06, 12, and 18), equally
spaced on a regular latitude–longitude grid at 0.125◦

× 0.125◦

resolution, have been selected to capture both seasonal and
diurnal cycles. The initial ERA5 dataset consists in 2880 ×

1441 ×16 (longitude × latitude × time dimensions) samples
for each variable.
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Here, only the subset of profiles satisfying thin-cirrus
selection criteria is used for simulating IASI and IASI-NG
radiances. The ERA5-profiles thin-cirrus subset is hereafter
denominated TCDA-db. The ERA5 geophysical parameters
considered for the selection of isolated thin-cirrus samples are
given as follows:

1) HCC, MCC, and LCC, providing CF at three levels in
atmosphere;

2) TCC indicating CF throughout the atmosphere;
3) CCF giving the portion of grid box covered by cloud

for each of the 37 PLs;
4) TP;
5) TCIW;
6) SCIW;
7) TCLW;
8) SCLW;
9) CBH.

A sample is considered thin cirrus contaminated if it satisfies
the following tests.

1) Test 1 requires that only ERA5 profiles with TP =

0 mm, TCC > 0, LCC = MCC = 0 and HCC > 0, and
CCF = 0 for PLs higher than 450 mb can be considered
thin cirrus, so to exclude rainy samples and thin cirrus
overlapping low or/and medium clouds.

2) Test 2 considers the presence of cloud ice content,
i.e., the TCIW > 0 and SCIW > 0 as indicators
of cirrus presence in conjunction with the absence of
cloud liquid water (TCLW = 0 and SCLW = 0). The
TCIW and SCIW upper limits for thin cirrus given by
Mace et al. [28] are adopted in this study because they
were determined for a thin-cirrus subset representative
of different atmospheric conditions related to cold and
warm seasons in large-scale ascent and large-scale sub-
sidence (TCIW < 18 g·m−2 and SCIW < 0.012 g·m−3).

3) Test 3 considers CBH. Taking as a reference the
latitudinal distribution of cirrus height determined
by Sassen et al. [29] on one year of CloudSat and
CALIPSO combined observations, only the ERA5 sam-
ples with CBH ≥ 5 km were included in TCDA-db.
The CBH is determined for the highest PLs where
0 < SCIW ≤ 0.012 g·m−3. Test 3 is used as a further
control with respect to Test 1, in order to exclude ERA5
profiles with HCC > 0 and MCC = LLC = 0 but with
SCIW > 0 at CBH < 5 km.

The TCDA-db obtained from the initial ERA5 dataset after
verifying the thin-cirrus tests includes ∼260 000 samples. This
was further reduced to 50 000 samples because of the high
computational cost required for simulating hyperspectral radi-
ances and, successively, for the NN training. TCDA-db subset
is denominated TCDA-db-50k. Fig. 1 shows the distribution
of thin-cirrus occurrences for the variables used in the three
tests, to assess their agreement with other studies reported
in the literature and the representativeness of the database.
Fig. 1 (top left) shows the latitudinal distribution of CBH
for the TCDA-db-50k profiles. The CBH range agrees with
the values reported in [28] and [30]. The spatial distribution,
with maximum values for thin-cirrus CBH occurring in the

tropical belt, is similar to the latitudinal distribution of cirrus
CBH derived by Sassen et al. [29] analyzing one-year data
detected by CloudSat and Calypso. The combined detection
characteristics of both Cloudsat radar and Calypso lidar were
also used by Haladay and Stephens [2] to build a two-year
tropical thin-cirrus dataset between 20◦ N and 20◦ S latitude.
They found that thin-cirrus CBH ranges from 11 to 16 km in
the tropical belt, while Fig. 1 (top left) shows CBH values
lower (∼ 9 km ≤ CBH ≤∼ 13 km) in the same area.
Moreover, the ranges determined by Haladay and Stephens [2]
for SCIW (0.002 g·m−3

≤ SCIW ≤ 5 × 10−3 g·m−3) and
TCIW (1g·m−2

≤ TCIW ≤ 6g·m−2)are similar to the
SCIW and TCIW ranges spanned by TCDA-db-50k: 0.002 ×

10−3g·m−3
≤ SCIW ≤ 3.6 × 10−3g·m−3 [see Fig. 1 (bottom

left)] and 0.03g·m−2
≤ TCIW ≤ 7.3g·m−2 [see Fig. 1 (bottom

right)].
Overall, Fig. 1 shows that the TCDA-db-50k covers all the

ranges of thin-cirrus base height, SCIW, and TCIW for all
the latitudes in agreement with the abovementioned studies.
So long as the TCDA aims to detect isolated thin cirrus
not included in multilayer clouds, limiting the need of a
very large data set including different clouds combinations,
TCDA-db-50k can be deemed representative for the different
types of thin cirrus and therefore suitable for training NNs.
To this end, TCDA-db-50k was processed with σ -IASI to
simulate 50 000 × 16 921 IASI-NG and 50 000 × 8421 IASI
radiances at three vertical zenith angle (VZA) (0◦, 20◦, and
44◦) both for clear-sky and cirrus conditions.

C. Validation Observational Dataset: CPR and CALIOP

The CPR and CALIOP are the instrument onboard CloudSat
and CALIPSO, respectively. The joined CloudSat/CPR and
CALIPSO/CALIOP 2B-Geoprof-Lidar [31], [32] and 2C-ICE
[33] cloud products were considered for TCDA validation
purposes. 2B-Geoprof-Lidar combines the CPR and CALIOP
observations to determine cloud properties such as the CF,
the CL, and the LB for each CL. 2C-ICE is the CloudSat
and CALIPSO Ice Cloudy Property Product that takes as
input a combination of the CPR reflectivity and CALIOP
attenuated backscattering coefficients at 532 nm to retrieve
cloud properties information more accurately than the radar-
only product. In particular, the 2C-ICE cloud properties used
in this study to define thin-cirrus-contaminated IASI IFOV
are the COT and the ice water path (IWP). The 2B-Geoprof-
Lidar and 2C-ICE cloud properties were used simultaneously
to define the collocated IASI clear or thin-cirrus-contaminated
IFOVs. Since an IASI IFOV is never completely covered by
the CPR pixels, a homogeneous criterion involving AVHRR
measurements collocated within IASI on the METOP platform
has been used. In detail, the 10.8-µm radiance and the CI
included in AVHRR Level 1B product have been used for the
selection of IASI homogeneous IFOVs [34].

D. Comparison Observational Dataset: MODIS

The MODIS [35] Cloud Mask Level 2 product, available
at 1-km and 250-m spatial resolutions at the SSP, has been
exploited for comparison with TCDA results. This product is
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Fig. 1. (Top left) Latitudinal distribution of CBH for the TCDA-db-50k profiles. (Top right) Histogram of latitude for the TCDA-db-50k profiles. (Bottom
left) Histogram of max SCIW for TCDA-db-50k profiles. (Bottom right) Histogram of TCIW for TCDA-db-50k profiles.

named MOD35 for MODIS on the Terra satellite and MYD35
for MODIS on the Aqua satellite (hereinafter M∗D35 for
both MOD35 and MYD35). The M∗D35 algorithm [35], [36]
employs a series of visible and IR threshold and consistency
tests to define confidence that a MODIS FOV is cloudy.
In detail, the M∗D35 algorithm includes two thin-cirrus
tests: the IR-thin-cirrus and the 1.38-µm-thin-cirrus tests. The
IR-thin-cirrus test is based on more ice absorption at larger
wavelengths; it applies the split window technique [37], using
the BT difference between the MODIS bands centered at
11 and 12 µm to indicate the presence of thin cirrus during
daytime and nighttime. The 1.38-µm-thin-cirrus test compares
the reflectance in 1.38 µm with a threshold [4] to reveal the
presence of transmissive cirrus clouds in the upper troposphere
under daytime viewing conditions.

E. Comparison Observational Dataset: VIIRS

A further comparison dataset for the TCDA was imple-
mented based on the VIIRS cloud products. VIIRS is aboard
two satellites: Suomi NPP (Suomi NPP) since 2011 and
NOAA-20 since 2017 [38]. The VIIRS cloud products used

for comparison with TCDA are the VIIRS EDR CCL and
COT [39]. The EDR-CCL and EDR-COT are cloud products
gridded at 6-km resolution and derived from several other
intermediate products, e.g., COPs, CTP, PPC, and CBH at
the original 750-m spatial resolution. In particular, EDR-CCL
gives information about the CT (Stratus, Altocumulus,
Cumulus, Cirrus, and Cirrocumulus) and CF on four layers
from the top of the atmosphere (layer 1) to layer near surface
(layer 4). EDR-COT values are retrieved by using observations
at 0.672, 1.24, and 1.61 µm during daytime (solar approach
based on two-channel correlation technique of Nakajima and
King [40]) and observations at 3.70, 8.55, 10.76, and 12.01 µm
during nighttime (IR approach that follows the two-channel
cirrus technique of Ou et al. [41]).

F. Comparison Observational Dataset: SEVIRI

The MSG/ SEVIRI [42] OCA product, developed and
distributed by EUMETSAT [43], has been considered for
comparison with IASI-TCDA results. The OCA algorithm
provides key cloud parameters through an optimal estima-
tion method ingesting all the SEVIRI spectral measurements
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simultaneously. For each cloudy SEVIRI FOV, the OCA
algorithm classifies as multilayered, single-layer water,
or single-layer ice clouds. Moreover, it gives information about
COT, CTP, and CER for up to two atmospheric layers.

III. TCDA METHODOLOGY

This section describes the TCDA. Section III-A details the
NNs configurations and training. Section III-B details the error
estimation procedure. Section III-C validates the algorithm
using a simulated dataset.

A. Definition of NNs

The core of the TCDA consists of two feedforwards fully
connected NNs with two hidden layers, whose general princi-
ples are summarized in “Appendix A.” One NN was developed
for IASI-NG and the other was developed for IASI, by using
the configuration described in “Appendix B.” Both the NNs
use the same procedure for training, architecture definition,
and input selection, and similar training datasets with 300 000
samples (see Section II-B). Each dataset is randomly split
into three sub-datasets, namely, the training dataset (60%,
180 000 samples), validation dataset (20%, 60 000 samples),
and test dataset (20%, 60 000 samples), used to calculate
weights and biases, to tune some hyperparameters and to
assess the performance, respectively. Each sample of the
datasets consists of the following 104 variables:

1) the first 100 PCA outputs of the IASI-NG/IASI
radiances [44], [45];

2) the cosine of the scan angle;
3) the cosine of the latitude;
4) the land fraction;
5) the flag 0/1 for clear sky/thin-cirrus presence.

The preliminary selected 103 variables were examined as
possible inputs for the NNs, through a systematic procedure
of analysis and removal of the unnecessary inputs as detailed
in “Appendix C.” The output values 0/1 have been chosen
so that their application to real data returns values ranging
continuously in [0,1]. Although 100 PCs may seem too many,
the adopted procedure for input analysis and removal of the
unnecessary ones requires a preliminary overestimation of the
number of inputs. Table I summarizes the selected inputs and
the main NN configurations.

The output values can be considered as the probability of
thin-cirrus presence; the final output of the TCDA is then
“clear-sky condition” if the NN output is in the range [0,
0.5] or “thin-cirrus presence” if the NN output is in the range
[0.5,1]. It was chosen as a continuous output in the range
[0,1], instead of a discrete output 0/1, in order to evaluate
it in a metric for the estimation of the associated error,
as explained in Section III-B. In this way, however, values
slightly lower or higher than 0.5, for instance, 0.49 or 0.51,
would be classified as “clear-sky condition” and “thin-cirrus
presence,” respectively, despite being very close to each other.
To overcome this issue, an estimation error will be provided
together with the TCDA output, as explained in Section III-B,
developed so that its value is maximum when the NN outputs
are around the value 0.5, while it decreases toward zero as the
outputs reach 0 or 1.

TABLE I
MAIN FEATURES OF THE OPTIMIZED NN ARCHITECTURES

FOR TCDA RETRIEVALS

B. Total Error Estimation

A method was developed to associate the NNs output with
an estimate of the thin-cirrus detection error, exploiting the
dichotomous statistic on the validation dataset. To this aim, hits
are the thin-cirrus-in-reference observations correctly detected
by TCDA, misses are the thin-cirrus-in-reference observations
not-correctly detected by TCDA, false alarms are the clear-
sky-in-reference observations not-correctly detected by TCDA,
and correct negatives are the clear-sky-in-reference observa-
tions correctly detected by TCDA. Using these quantities,
we define the total error, which is the ratio of the sum of
misses and false alarms to the total observations

total error = 1 − accuracy =
misses + false alarms

total
(3)

where accuracy indicates the fraction of thin-cirrus and clear-
sky observation correctly detected. To obtain an estimated total
error, the output of the validation dataset has been divided
into 20 equally spaced intervals with a minimum amplitude
of 0.05. The amplitude is gradually increased with steps of
10−4 to ensure at least 100 samples in each interval, as shown
in Fig. 2 by means of the horizontal bars, for both IASI-NG
and IASI algorithms. For each interval, a contingency table
and the related total error are determined, and finally, two
weighted quadratic fits are calculated. By using the coefficients
of these fits, it is possible to estimate, for each NN output,
the corresponding estimated total error that represents the
estimated uncertainty of clear-sky or thin-cirrus detection. For
example, considering the IASI-NG fit [see Fig. 2 (left)], the
value 0.05 of the NN output leads to a clear-sky scenario
because it is less than 0.5, with an estimated total error of 5.7%

y = −0.36 · 0.052
+ 1.11 · 0.05 + 0.0023 = 0.057(5.7%).

(4)

Otherwise, the value 0.75 of the NN output leads to a
thin-cirrus presence because it is greater than 0.5, with an
estimated total error of 29%

y = −0.63 · 0.752
− 0.06 · 0.75 + 0.69 = 0.29(29%). (5)

C. TCDA Validation With Simulated Dataset

The statistical assessment of TCDA is evaluated on the
test dataset, which consists of 20% of the initial database
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Fig. 2. Result of the weighted quadratic fit for (left) IASI-NG and (right) IASI.

Fig. 3. Validation of TCDA for IASI-NG. (Left) Scatter plot of NN versus reference truth (ERA5). (Right) Histograms of NN output and reference truth
(the onset is on a logarithmic scale).

not used in the previously described processes (training and
validation). Figs. 3 and 4 show the scatterplots between the NN
output and the reference target, both for IASI-NG and IASI,
together with the histograms, showing that the distributions
of NN outputs and reference targets are rather similar. The
correlation between the NN output and the reference target
is about 0.99 for IASI-NG and 0.96 for IASI, and the bias
error is about 10−3 for IASI-NG and 10−2 for IASI, while
the RMSE is about 16% and 30% of the target standard
deviation for IASI-NG and IASI, respectively. The differences
between retrievals over land and sea surfaces are negligible.
As expected, the statistical results obtained for IASI-NG are
better than those obtained for its predecessor, which will be
also confirmed by the dichotomous statistical assessment in
the next section.

The POD, the FAR, the bias, and the accuracy are defined
as follows.

1) POD = hits/(hits + misses) (range: 0–1; perfect
score: 1).

2) Bias = (hits + false alarms)/(hits+ misses) (range:
0–∞; perfect score: 1).

3) FAR = false alarms /(hits + false alarms) (range: 0–1;
perfect score: 0).

4) Accuracy = (hits + correct negatives)/total (range: 0–1;
perfect score: 1).

These statistical parameters are fully described in [46].
Finally, from Table II, the dichotomous scores are summa-

rized and compared in Table III.
Overall, the POD, FAR, bias, and accuracy are very close

to their perfect values, thus indicating a good ability of the
TCDA to correctly detect the presence of thin cirrus on the
independent test dataset. The statistical scores separately for
land and sea surface are not shown because they are identical
to those of Table III. This result implicitly confirms the
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Fig. 4. Statistical results from validation of TCDA for IASI. (Left) Scatter plot of NN versus reference truth (ERA5). (Right) Histograms of NN output and
reference truth (the onset is on a logarithmic scale).

TABLE II
CONTINGENCY TABLE FOR TCDA FROM IASI/IASI-NG. (ACORRECT

POSITIVES—BFALSE ALARMS—CMISS—DCORRECT NEGATIVES)

TABLE III
SUMMARY OF DICHOTOMOUS SCORES FOR TCDA

FROM IASI AND IASI-NG

goodness of the choice to use a unique NN for land and sea
surface, instead of two separate NN, as frequently happens in
the retrieval of atmospheric parameters by means of satellite
observations. Statistical scores for TCDA applied to IASI-NG
are better than those for TCDA applied to its predecessor
IASI. This is likely a result of the IASI-NG improvements in
spectral resolution and noise level. In detail, IASI-NG TCDA
outperforms IASI TCDA by 3% in POD, 50% in FAR, 1% in
bias, and 2% in accuracy.

IASI and IASI-NG test datasets were also used to validate
the error estimation, as derived in Section III-D. For both the
sensors, the NN output obtained from the test dataset was
divided into 12 equally spaced intervals whose width was
initially 0.08 and it was gradually increased, without exceeding
the maximum width of 0.5, to ensure at least 100 samples
in each interval. For each interval (vertical bars in Fig. 5),
the corresponding contingency table and the true total error
were computed. Fig. 5 shows the scatterplot of the true total
error determined for NN versus NN estimated error determined
by using the equations in Fig. 2. The excellent correlation
(∼0.97 for IASI-NG and 0.99 for IASI) and low RMSE
(∼24% and 13% of target standard deviation, respectively)
suggest good capability for this method to estimate the total
error.

IV. IASI TCDA VALIDATION AND COMPARISON
WITH REAL DATA

In addition to the validation against simulated data reported
in Section III-C, IASI TCDA was validated against real
observations obtained from CPR/CALIOP cloud products.
Active sensors, such as lidar, are able to recognize thin
cirrus with matchless accuracy [2]. In particular, the joint
use of CPR-radar and CALIOP-Lidar gives better results in
identifying thin cirrus than using them separately. In fact,
while CPR is able to penetrate thick layers that attenuate the
CALIOP signal, CALIOP is able to detect the scattering from
very tenuous clouds as well as to sense the top of optically
thin ice clouds that are transparent to CPR [30]. Moreover,
IASI TCDA was also compared with three different datasets of
cloud products from the passive sensors MODIS, VIIRS, and
SEVIRI described in Sections II-D, II-E, and II-F, respectively.

For spatial collocation, IASI was designated as the principal
instrument; each IASI IFOV is defined as clear or thin-cirrus
contaminated according to the cloud properties of the reference
data falling within it. Only the IASI IFOVs completely covered
by reference FOVs have been considered for validation and
comparisons.
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Fig. 5. True versus NN-estimated total error for (left) IASI and (right) IASI-NG.

The following sections show the results of validation
carried out against CPR-CALIOP/2B-Geoprof and 2C-ICE
cloud products and the results of comparison with the three
passive sensors/products MODIS/M∗D35, VIIRS/EDR, and
SEVIRI/OCA. A dichotomous statistical assessment for TCDA
was performed, including the accuracy, POD, FAR, and bias.

A. Results of TCDA Validation Against
CPR/CALIOP-2B-Geoprof-Lidar and 2C-ICE Products

2B-Geoprof-Lidar and 2C-ICE files collocated with
MetOp-A/B IASI overpass in 2016–2017 were jointly used
to define a dataset of clear and thin-cirrus-contaminated IASI
IFOVs. The 2C-ICE and 2B-Geoprof-Lidar are sampled at the
CPR spatial resolution (https://www.cloudsat.cira.colostate.
edu/cloudsat-static/info/dl/2b-geoprof-lidar/2B-GEOPROF-
LIDAR_PDICD.P2_R04.20070604. pdf). The CPR FOV is
considered thin-cirrus contaminated when only the highest
levels are cloudy (LC > 0 and LB ≤ 450 hPa) and the related
COT and IWP satisfy the conditions 0 < COT ≤ 1.72 and
0 < IWP ≤ 18 g·m−2 [28]. The IWP value is not always
available, so the thin-cirrus selection was principally based
on the COT test. In total, 314 IASI-CPR matchups have
been collected for TCDA validation, all located at high
latitudes (65◦N–74◦N). For simplicity, the CPR FOV included
in IASI IFOV is denominated CPRinIASI. The number of
CPRinIASI along the CloudSat depends on the satellite
view angle and ranges from 2 to 15. The IASI IFOV
collocated with CPR is considered for validation only when
all the CPRinIASIs are clear (in this case, the IASI IFOV
is considered “clear”) or a fraction of CPRinIASIs is thin
cirrus and the remaining CPRinIASIs are clear (in this case,
the IASI IFOV is considered “thin-cirrus contaminated”).
However, this information cannot be simply extended to the
entire IASI FOVs since IASI IFOVs (12 × 12 km at the SSP)
are always larger than the area covered by the CPR swath
(2.5 × 1.4 km). CPR overlaps IASI IFOV along a circle
arc, and thus, the IASI IFOV is never completely covered

by the CPR pixels. In order to get information on the entire
IASI IFOVs previously classified as thin-cirrus contaminated
or clear based on the 2B-Geoprof-Lidar/2C-ICE information
only, a further test for investigating the homogeneity of the
IASI IFOVs has been done by considering the AVHRR-CI
(https://www.eumetsat.int/media/38675) and the 11.5-µm
radiances collocated within the IASI IFOV. The homogeneity
test consisted in applying the criteria proposed in [47] that
established the homogeneity of an IASI IFOV based on the
overall AVHRR cluster statistics. Farouk et al. assumed that
an IASI IFOV, including several classes (i.e., clear class and
cloudy classes), characterized by small standard deviations
and similar mean radiances, can be more homogeneous than
an IASI IFOV with a single cloudy or clear class. In detail,
only the IASI IFOVs containing a cirrus class (ensemble of
AVHRR FOVs satisfying only the CI cirrus test) and/or a
clear class (ensemble of AVHRR FOVs not satisfying any
CI cloud test) have been considered for homogeneous test.
Finally, the IASI IFOV was declared thin-cirrus-contaminated
only after satisfying the homogeneity criteria [48]. Among
the 314 prescreened thin-cirrus-contaminated IASI IFOVs,
248 passed the homogeneity test. The same procedure was
applied to the IASI IFOVs previously classified as clear
according to 2B-Geoprof-Lidar/2C-ICE cloud products, so to
select 248 clear homogeneous IASI IFOVs. In applying
the homogeneity criterion, we assumed to consider the
CPR/CALIOP information as “truth” when it disagrees with
the AVHRR-CI in detecting thin-cirrus cloud. In fact, some
IASI IFOVs defined as thin-cirrus contaminated by the
2B-Geoprof-Lidar/2C-ICE cloud products were classified as
“clear” in terms of the AVHRR-CI, but this is due to the
better ability of active sensor to detect optically thin layer
if compared with passive sensors that often misidentify thin
cirrus as clear sky [16], [17].

TCDA detects 117 IASI-IFOVs as thin cirrus among the
248 thin-cirrus-contaminated IASI IFOVs and it correctly
detects as clear 237 IASI IFOVs among the 248 clear IASI
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Fig. 6. 25 August 2017 from 17:38 to 17:41 GMT. (Left) IASI-TCDA versus CPR-CALIOP thin-cirrus detection results. (Right) IASI-TCDA total error
map. The AVHRR natural-color RGB image consists in the composition of the 1.6-µm reflectance (visualized in red), the 0.87-µm reflectance (visualized in
green), and the 0.63-µm reflectance (visualized in blue).

TABLE IV
CONTINGENCY TABLE FOR DICHOTOMOUS STATISTICAL ASSESSMENT OF

TCDA APPLIED TO REAL IASI OBSERVATIONS AGAINST COLOCATED
2B-GEOPROF AND 2C-ICE (1), M∗D35(2), VIIRS-EDR(3), AND

SEVIRI-OCA(4) CLOUD PRODUCTS

IFOVs. Table IV shows the contingency table for dichotomous
statistical assessment of TCDA applied to real IASI observa-
tions against colocated 2B-Geoprof and 2C-Ice cloud products
[the related samples are indexed with (1)] as well as against
the other cloud products considered for the comparison. This
results in POD = 0.47, bias = 0.52, FAR = 0.09, and
accuracy = 0.71. When considering only the 64 IASI IFOVs
characterized by COT ≤ 0.3 and comparing them with the
same number of clear ones, the statistical scores are quite
similar: POD = 0.47, bias = 0.47, FAR = 0.0, and accuracy =

0.73. The low FAR indicates the tendency of TCDA to not
misidentify clear sky as thin cirrus. Only one IASI IFOV with
COT < 0.03 (subvisual cirrus) is present in the dataset and
it is correctly classified by TCDA. These results should be
taken with care due to the uncertainty caused by the partial

coverage of the IASI IFOV by the CPRinIASIs so that the
information on the remaining IASI IFOV is derived by the
homogeneity tests involving AVHRR radiances that may not
reveal inhomogeneity due to presence of very thin cirrus
easily misidentified as clear sky at the AVHRR wavelengths.
An example of IASI-TCDA cloud detection map and the
related TCDA-total-error map are shown on the left and the
right of Fig. 6, respectively, for the Metop B-IASI granule
acquired on 25 August 2017 from 07:38 to 07:41 GMT. TCDA
was applied to the IASI IFOVs declared clear and thin-cirrus
contaminated based on the CPR/CALIOP-2B-Geoprof-Lidar
and 2C-ICE products. The TCDA-IASI results have been
collocated on the corresponding AVHRR RGB composition.
The color of the thin-cirrus clouds in the natural-color RGB
image depends on the underlying surface. In Fig. 6, the
thin-cirrus clouds are recognizable by their elongated shape
and cyan color shades. In detail, the IASI IFOVs in red are
correctly detected as thin cirrus by TCDA accordingly to the
CPR/CALIOP-2B-Geoprof-Lidar and 2C-ICE cloud products
and the RGB image. The IASI TCDA results in magenta are
related to IASI IFOVs detected as thin cirrus by TCDA at
odds with CPR/CALIOP-2B-Geoprof-Lidar and 2C-ICE cloud
products classifying them as clear sky. However, the area
corresponding to the IASI IFOVs magenta between about
68◦N and 70◦N of latitude seems to be contaminated by a
very thin cirrus, whose presence can be deduced from the
hazy effect on the underlying surface. The corresponding total
error values, shown on the right of Fig. 6, are lower than 1%
testifying the TCDA output precision for this example.

B. Results of IASI TCDA Comparison
With MODIS/M∗D35 Product

MODIS orbits acquired between the years 2016 and
2018 with a good temporal and spatial overlap with IASI orbits
have been considered for building a dataset of thin-cirrus and
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Fig. 7. 18 August 2018 from 18:17 to 18:20 GMT. (Left) IASI-TCDA versus MODIS-MOD35 thin-cirrus detection results. (Right) IASI-TCDA total error
map. The MODIS true-color RGB image consists in the composition of the 0.645-µm reflectance (visualized in red), the 0.555-µm reflectance (visualized in
green), and the 0.469-µm reflectance (visualized in blue).

clear IASI IFOVs based on the M∗D35 product; 68 orbits
were considered, all located at high latitudes. MODIS IFOVs
collocated within each IASI IFOV are denominated MODinI-
ASI. Each IASI IFOV is classified as clear when all the
MODinIASIs are classified as clear by M∗D35. An IASI
IFOV is considered thin-cirrus contaminated when a fraction
of the MODinIASIs satisfies at least one of the two M∗D35
thin-cirrus tests described above (see Section II-D), and the
remaining are clear. The samples related to the TCDA dichoto-
mous statistics are indexed with (2) in Table IV. In detail,
the TCDA dichotomous statistics was applied to 17 129 IASI
IFOVs (9879 clear IFOVs and 7250 thin-cirrus IFOVs). The
corresponding statistical scores are: POD = 0.81, FAR = 0.34,
and bias = 1.23, indicating good detecting skills with some
tendency to overestimate thin-cirrus presence.

An example of TCDA application to IASI IFOVs declared
clear/thin-cirrus contaminated based on the M∗D35 product
is shown in Fig. 7, where the IASI-TCDA cloud detection
map and the related TCDA-total-error map are shown on the
left panel and the right panel, respectively, for the Metop
A-IASI granule acquired on 18 August 2016 from 18:17 to
18:20 GMT. The IASI IFOVs classified as thin-cirrus (in
red/magenta) and clear (in cyan/yellow) have been collocated
on MODIS true-color RGB image, where the high thick clouds
are white, while the high thin ice clouds are characterized by a
transparent white color and are recognizable by their filament
shape. In particular, the red IASI IFOVs are classified as thin
cirrus by the TCDA in agreement with the MOD35 cloud
product. Most of the red samples correspond to high thick
cloud or multilayered cloud overlaid by thin cirrus. The IFOVs
in magenta are clear for MOD35 and thin cirrus for TCDA
that, based on the MODIS true-color RGB, mostly detects
them correctly (e.g., magenta IFOVs on Bathurst Island,
approximately around 75◦N latitude and 98◦W longitude,
as well as those near Stefansson Island, approximately around

72◦N latitude and 104◦W longitude). The associated total error
is mostly around 10%. The statistical scores related to this
example are POD = 0.95, FAR = 0.40, bias = 1.59, and
accuracy = 0.65.

C. Comparisons With VIIRS/EDR Product
The TCDA was further compared with cloud products

available from VIIRS. Unlike the MODIS/M∗D35 cloud mask
product, there is no explicit reference to the identification of
thin-cirrus clouds in VIIRS cloud products. Because of this,
thin-cirrus-contaminated IASI IFOVs were defined based on
CI provided by the VIIRS EDR-CCL and VIIRS EDR-COT
(described in Section II-E). VIIRS-IASI spatial/temporal coin-
cidences for the years 2016 and 2017 were investigated. For
simplicity, VIIRS FOVs collocated within an IASI IFOV are
denominated VIIRSinIASI. Only the IASI IFOVs completely
covered by the VIIRS FOVs classified as clear or thin cirrus
have been considered to implement the clear and thin-cirrus
datasets to be used for validation. A VIIRS FOV is considered
thin-cirrus contaminated if the following conditions hold.

1) CF greater than 0 only for the highest layer (i.e., EDR-
CCL-CF > 0 only for layer 1 and EDR-CCL-CF = 0 for
the remaining three layers).

2) CT identified as cirrus (i.e., EDR-CCL-CT equal to
“cirrus”).

3) COT smaller than 1.72 (i.e., 0 < EDR-COT ≤ 1.72 [49].
An IASI IFOV is considered clear when all the VIIRSinI-

ASIs are clear (EDR-CCL-CF = 0 for all the four layers),
while it is considered thin-cirrus contaminated when a frac-
tion of VIIRSinIASIs is classified as thin cirrus and all the
remainder VIIRSinIASIs are clear. A total of 9231 thin-cirrus-
contaminated and 9231 clear IASI IFOVs were so identified.
All the VIIRS FOVs used to validate TCDA are located at
high latitudes, as for M∗D35 product.
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Fig. 8. 16 August 2016 from 02:20 to 02:23 GMT. (Left) IASI-TCDA versus VIIRS-EDR thin-cirrus detection results. (Right) IASI-TCDA total error map.

The samples of the contingency table for the IASI TCDA
algorithm comparison with VIIRS EDR product are indexed
with (3) in Table IV. The dichotomous statistical scores are
characterized by a high FAR (0.56) and a low POD (0.48) with
a bias (1.10) that shows a tendency of IASI TCDA algorithm to
overestimate thin-cirrus presence when compared with VIIRS
EDR product. When considering only the 779 IASI IFOVs
characterized by COT ≤ 0.3 and comparing them with the
same number of clear ones, the statistical results improve
slightly, in particular, VIIRS and IASI agree in detecting about
90% of clear IASI IFOVS (FAR = 0.17) and about the 50%
of the thin-cirrus-contaminated IASI IFOVs (POD = 0.51).
Statistical scores obtained against VIIRS-EDR are worse than
those obtained against MODIS-M∗D35. This may be a con-
sequence of the indirect detection of thin-cirrus-contaminated
VIIRS IFOVs. In fact, unlike thin-cirrus dataset built based
on M∗D35 thin-cirrus tests, the IASI IFOV is considered thin-
cirrus-contaminated or clear by considering the combination of
three different VIIRS-EDR products, which in turn derive from
several other intermediate products. Moreover, the high FAR is
also due to the low accuracy of VIIRS in detecting cloud area
over snow-covered land [49], as evidenced also in [15] where
the CRIS-cloud detection algorithm trained on VIIRS cloud
mask sometimes misidentifies thin clouds as clear sky. Fig. 8
shows an example of TCDA applied to IASI IFOVs classified
as clear or thin cirrus based on VIIRS-EDR cloud product
information. As for comparison examples in Figs. 6 and 7, the
red/cyan IASI IFOVs are detected as thin cirrus/clear both by
TCDA and reference cloud product, while the magenta IASI
IFOVs correspond to false alarms. The example is related to
the IASI granule acquired on 6 June 2017 from 18:50 to
18:53 GMT collocated on VIIRS true-color RGB image.
Comparing the TCDA results with VIIRS true-color RGB
image, it can be deduced that TCDA correctly detects clear
(in cyan) and thin-cirrus (in red) IASI IFOVs in agreement
with VIIRS-EDR cloud product. The FAR (0.87) for this
example is very high as it can be seen from the high number

of magenta IASI IFOVs in Fig. 8. However, some magenta
IFOVs are related to areas where the thin-cirrus presence
is correctly detected by TCDA (e.g., below 65◦N latitude).
Moreover, based on VIIRs-EDR information, IASI IFOVs
characterized by the same RGB colors are classified differently
(e.g., IASI IFOVs in the area between 64◦N–66◦N latitude
and 135◦E–140◦E longitude as well as in the area between
64◦N–70◦N latitude and 150◦E–155◦E). Due to the high
number of false alarms, for this example, the statistical scores
are not good (POD = 0.51, bias = 4.16, and accuracy = 0.68).
The total error values are about 10% for most IASI IFOVs.
Total error values higher than 10% are related to IASI IFOVs
detected as clear both by TCDA and VIIRS-EDR product.

D. Results of TCDA Validation Against SEVIRI/OCA Product
All the validation/comparison results obtained by comparing

IASI TCDA output with MODIS, VIIRS, and CPR products
are based on high-latitude data, because of the collocation
between different polar orbiting platforms. To extend the
TCDA comparisons to middle latitudes, we also considered the
MSG-SEVIRI OCA product (see Section II-E). For simplicity,
the SEVIRI FOV included in IASI IFOV is denominated
SEVIRIinIASI. Based on the OCA product, the IASI IFOV
colocated with MSG-SEVIRI is considered thin-cirrus con-
taminated when all the cloudy SEVIRIinIASIs are classified
as “single layer ice cloud” with 0 < COT ≤ 1.72 and CTP <

450 mb. Conversely, the IASI IFOV is considered clear when
all the SEVIRIinIASI FOVs are clear. A total of 4024 match-
ups were collected for years 2021 and 2022 using IASI on
MetOp-A/B. As for MODIS and VIIRS products, also for
MSG-SEVIRI, the IASI IFOVs are considered for validation
only when they are completely covered by MSG-SEVIRI
FOVs. The number of SEVIRI FOVs included in IASI IFOV
ranges from ∼4 to ∼65 depending on the dimensions of
the SEVIRI FOVs and IASI IFOV. The samples related to
the IASI-TCDA versus SEVIRI-OCA comparison are indexed
with (4) in Table V. The corresponding statistical scores reveal
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Fig. 9. 19 September 2021 from 10:23 to 10:26 GMT. (Left) IASI-TCDA versus SEVIRI-OCA thin-cirrus detection results. (Right) IASI-TCDA total error
map. The SEVIRI natural-color RGB image consists in the composition of the 0.8-µm reflectance (visualized in red), the 0.6-µm reflectance (visualized in
green), and the reflectance (visualized in blue).

TABLE V
STATISTICAL SCORES OF IASI TCDA AGAINST MODIS-M∗D35,

VIIRS-EDR, SEVIRI-OCA, AND CPR/CLOUDASAT-2B-TAU
CLOUD PRODUCT

a good POD (0.94) but also a considerable FAR (0.50). Similar
statistical results are obtained by analyzing the thin-cirrus-
contaminated IASI-IFOVs with COT ≤ 0.3. As for the VIIRS
and MODIS comparisons, the comparison with SEVIRI shows
that TCDA tends to overestimate the thin-cirrus presence
(bias = 1.87). This overestimation could also be a consequence
of the OCA’s high errors in estimating COT related to optically
thin cirrus [43].

Fig. 9 shows the results of TCDA applied to IASI IFOVs
classified as clear/thin cirrus based on the SEVIRI-OCA cloud
product. The TCDA results have been collocated on SEVIRI
Natural Color. The example is related to the IASI granule
acquired on 19 September 2021 from 10:23 to 10:26 GMT.
The thin-cirrus and clear-sky IASI IFOVs are correctly
detected according to the SEVIRI-OCA cloud product and
RGB image. Some false alarms (in magenta) are related to
areas that seem contaminated by very thin cirrus (e.g., the area
between 52.5◦N–54◦N latitude and 2.5◦W–0◦W longitude)
or to the area contaminated by low clouds (e.g., the area
between 52.5◦N–54◦N latitude and 10◦W–7.5◦W longitude).
The statistical scores related to this example are POD = 0.95,
FAR = 0.74, bias = 3.77, and accuracy = 0.34, and the total
error is lower than 10% for most IASI IFOVs samples.

V. CONCLUSION

The main novelties characterizing the TCDA proposed in
this study are given as follows.

1) TCDA is not a standalone algorithm, but it is applied
to the IASI/IASI-NG IFOVs classified as clear sky
by any cloud detection algorithm in order to refine
cloud screening by detecting the thin cirrus previously
misidentified as clear sky.

2) TCDA also provides an estimate of the classification
error, which indicates the probability that the algorithm
misclassified the scenario.

3) TCDA has been developed for both IASI-NG and IASI,
thus allowing the following:

a) continuous use of the algorithm in the transitional
phase between the two sensors;

b) the comparison of IASI/IASI-NG TCDA results
to highlight the differences between the two
instruments.

TCDA consists in an approach based on feedforward NN for
the detection of optically thin cirrus from the new genera-
tion sensor IASI-NG and from its predecessor IASI. TCDA
exploits the whole IR spectrum in the range [645, 2760] cm−1

with a spatial resolution of 0.125 cm−1 for IASI-NG and
0.25 cm−1 for IASI to give in output the probability that the
IASI (IASI-NG) IFOV is thin-cirrus contaminated (TCDA NN
output > 0.5) and the corresponding estimated total error. The
estimated total error represents the estimated uncertainty of
clear-sky or thin-cirrus detection. TCDA uses two distinct NNs
for IASI and IASI-NG. Although the NNs were defined and
optimized through the same procedure for IASI and IASI-NG,
the resulting NN configurations differ in architecture and
input selection. This was to be expected, as the two sensors
have different characteristics, especially the improved spectral
resolution and radiometric signal-to-noise ratio of IASI-NG.
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These improvements result in the better statistical scores
obtained for IASI-NG with respect to IASI, as demonstrated
by validating TCDA with a simulated dataset. In fact, IASI-NG
TCDA outperforms IASI TCDA by 3% in POD, 50% in FAR,
1% in bias, and 2% in accuracy. In order to evaluate the
performance of TCDA on real observations, IASI TCDA was
validated against the combined CPR/CALIOP 2B-Geoprof-
Lidar and 2C-ICE cloud products and compared with three
observation datasets from passive sensors, i.e., the MODIS-
M∗D35, VIIRS-EDR, and SEVIRI-OCA cloud products.

The dichotomous statistical scores are summarized in
Table V. The statistics obtained by comparing IASI TCDA
with the cloud products from passive sensors seem to indicate
a tendency for IASI-TCDA to overestimate thin cirrus, but
this tendency is not confirmed by the IASI TCDA validation
against active sensor CPR and CALIOP cloud product where
the FAR is very low (0.09). The best results are given by
comparing IASI-TCDA with MODIS-M∗D35 product, the
only cloud product providing an explicit detection of thin-
cirrus presence. This is not the case for VIIRS-EDR and
SEVIRI-OCA products, which give information about COT
and cloud levels, from which the thin-cirrus presence has been
derived.

Note that, because of their low COT, thin cirrus is the hard-
est clouds to detect. This study only partially addresses cloud
detection, as TCDA was intended to work on IASI/IASI-NG
IFOVs classified as clear by a cloud mask previously applied.

A future study will be dedicated to the implementation of
a cloud classification mask, including TCDA, with the aim
to exploit IASI-NG hyperspectral data for the detection of
multilayer clouds and eventually overlapping thin cirrus.

APPENDIX A-NEURAL NETWORK OVERVIEW

Under specific conditions, the NNs are the universal
approximators of any continuous function with arbitrary accu-
racy [50]. An NN is a computing system based on perceptrons
(neurons o nodes) organized in layers connected in a chain,
whose overall length gives the depth of the NN. In the feed-
forward NN, the input information x⃗ moves always forward
through the first layer called input layer, then follows into the
intermediate levels or hidden layers, and finally into the output
layer to obtain the output results y⃗. In the fully connected
NN used in this study, each node of a layer is connected to
each node of the next layer by a weight wk

i, j , where i and j
indicate the indexes of the two nodes of the two contiguous
layers k and k +1. In the input layer, the output of each node
corresponds to a single input, while in the other layers, the
output of the node j of the layer k, yk

j , is

yk
j = trfun

[
M∑

i=1

(
wk

i, j yk−1
i

)
+ bk

j

]
(A1)

where bk
j is a bias, k is the considered layer with M nodes,

and trfun is a transfer function properly chosen to modulate
the summation result. The choices for the number of hidden
layers, their nodes, and the transfer functions for each layer
define the NN architecture. The procedure to calculate the
weights and biases is the so-called training phase, which in

this study was carried out by using the Levenberg–Marquardt
backpropagation algorithm [51], [52] that iteratively adjusts
weights and biases minimizing the mean square error (MSE).

To minimize the risk of overfitting and reducing the compu-
tational cost by limiting the number of training epochs (i.e., the
training cycles used by the backpropagation algorithm through
the full training dataset), two early stopping rules were used
in this study.

1) The MSE calculated on the validation dataset increases
for five consecutive epochs.

2) The MSE gradient with respect to the weights calculated
on the training dataset drops below 0.1‰of the variance
of the NN output.

When the training stops, the weights and biases corresponding
to the epoch with the minimum of MSE calculated on the
validation dataset are chosen.

APPENDIX B-DEFINITION OF THE NN ARCHITECTURE

In general, NNs with at least one hidden layer are universal
approximators of any continuous function, as long as the
transfer function of the nodes in the hidden layers is con-
tinuous, limited, and not-constant, with pure linear activation
function in the output layer and with enough hidden units
available [50]. However, although one hidden layer is enough
to approximate any continuous function, NNs with two hidden
layers generally produce better results [53]. Traditional NNs
with two hidden layers are chosen to keep the complexity
of the proposed architecture as low as feasible. To define
the number of nodes in the hidden layers, an iterative trial-
and-error approach was adopted. Starting with only one node
for both hidden layers, for each iteration, two NNs were
configured by adding one node separately both on the first and
on the second hidden layer. The two NNs were subsequently
trained and compared, finally choosing the one that produced
the least MSE. The iterative procedure continues with the
progressive addition of nodes and ends when the gradient of
the three-point moving averages of MSE calculated on the
validation dataset increases ten times consecutively. The final
configuration is chosen in correspondence to the minimum of
the MSE calculated on the validation dataset with a tolerance
of 1%, in the minimum input number direction. To evaluate the
contribution of the transfer functions to the NN architecture,
the three most common transfer functions were considered.

1) Hyperbolic tangent sigmoid function f (x) = (2)/(1 +

e−2n) − 1.
2) Logarithmic sigmoid function f (x) = (1)/(1 + e−n).
3) Linear function f (x) = x .

The above-described iterative procedure was performed for
each of the 12 combinations of the transfer functions, obtained
by using the first two functions for the two hidden layers
and all the three functions for the output layer. The combi-
nation of the transfer functions that produce the minimum
MSE calculated on the validation dataset was finally selected.
For IASI, the best architecture consists of 23 nodes on the
firsthidden layer and eight nodes in the second hidden layer,
with the transfer functions [logarithmic sigmoid—logarithmic
sigmoid—logarithmic sigmoid]. For IASI-NG, the best archi-
tecture consists of ten nodes on the first hidden layer and four
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nodes in the second hidden layer, with the transfer functions
[tangent sigmoid—logarithmic sigmoid—logarithmic sigmoid]
for [first hidden layer—second hidden layer—output layer].

APPENDIX C-SELECTION OF NN INPUTS

To reduce the risk of overfitting of the NNs, an iterative
input removal procedure was adopted, which starts from the
less important ones and ends until the desired degree of
tolerance is reached. In this procedure, at the first iteration,
all the inputs are removed, one at a time, and the relative
weight redistributed among the remaining inputs by mini-
mizing the MSE by using the approach described in [54].
The NN corresponding to the input whose removal returns
the minimum MSE calculated on the training dataset is
selected and its weights and bias are updated, by using the
Levenberg–Marquardt algorithm and the same two early stop-
ping rules introduced above. The procedure is then reiterated
starting from the number of inputs obtained in the previous
iteration until only one input remains. The final subset of
inputs was chosen by selecting those corresponding to the
minimum MSE calculated on the validation dataset, with a
1% tolerance, in the direction of the minimum input number.
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