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Abstract

We present a novel method to perform numerical integration over curved polyhedra enclosed by high-order parametric
urfaces. Such a polyhedron is first decomposed into a set of triangular and/or rectangular pyramids, whose certain faces
orrespond to the given parametric surfaces. Each pyramid serves as an integration cell with a geometric mapping from a
tandard parent domain (e.g., a unit cube), where the tensor-product Gauss quadrature is adopted. As no constraint is imposed
n the decomposition, certain resulting pyramids may intersect with themselves, and thus their geometric mappings may
resent negative Jacobian values. We call such cells folded cells and refer to the corresponding decomposition as a folded
ecomposition. We show that folded cells do not cause any issues in practice as they are only used to numerically compute
ertain integrals of interest. The same idea can be applied to planar curved polygons as well. We demonstrate both theoretically
nd numerically that folded cells can retain the same accuracy as the cells with strictly positive Jacobians. On the other hand,
olded cells allow for a much easier and much more flexible decomposition for general curved polyhedra, on which one can
obustly compute integrals. In the end, we show that folded cells can flexibly and robustly accommodate real-world complex
eometries by presenting several examples in the context of immersed isogeometric analysis, where involved sharp features
an be well respected in generating integration cells.
2022 Elsevier B.V. All rights reserved.

eywords: Numerical integration; Curved polyhedra; Negative-Jacobian cells; Isogeometric analysis; Trimmed volumes; Complex geometric
eatures

1. Introduction

Accurate, efficient, and robust numerical integration methods over curved polygons/polyhedra are required in
arious applications across computer-aided engineering (CAE), computer-aided design (CAD) [1], and computer
raphics and animation [2]. Particularly in CAE, novel integration schemes are often needed when the mesh
or approximating solutions does not conform to the geometric representation, such as extended finite element
ethods [3], cut finite element methods (cutFEM) [4], virtual element methods [5], finite cell methods (FCM) [6],

iscontinuous-Galerkin-based immersed boundary methods [7], and immersed isogeometric analysis (IGA) [8]. The
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key idea of such non-conformal methods is to decouple geometric representation from the discretization for solution
approximation to significantly simplify mesh generation. For instances, in FCM and immersed IGA, it involves
embedding the geometric representation into a simple background grid (e.g., a Cartesian grid), leading to cut (or
trimmed) elements of complex shapes. Properly dealing with such cut elements poses several challenges such as
numerical integration, stabilization regardless of cutting [9–12], imposition of the Dirichlet boundary conditions [13],
and so forth. We focus on the numerical integration in this paper.

There exist several major groups of methods to perform numerical integration over curved polygons/polyhedra,
uch as (1) application of the divergence theorem to reduce the dimension of integrals, (2) moment fitting, and
3) domain decomposition into simplices. First, the divergence theorem can be applied to convert an integral to its
ow-dimension counterpart [14–18]. For instance, a volume integral can be reduced to a surface integral, and even to
point evaluation [16,18]. To be able to apply the divergence theorem, it is critical to find a suitable antiderivative

or the integrand. Accordingly, one needs to either assume integrands to be in a certain form (e.g., homogeneous
unctions) to have analytic antiderivatives [16] or employ certain numerical methods to obtain approximations [17].

Second, moment fitting generally solves a local system of equations to find a quadrature rule (i.e., the locations
nd/or weights of quadrature points) that can exactly integrate certain polynomial basis functions [19–24]. When
oint locations are taken as a priori, the system becomes linear and the unknowns are only weights. Recently,
oment fitting was further explored in nonlinear problems [25–27]. The advantage of moment fitting is to retain

he minimum number of integration points via solving a linear system for each cut element. In fact, it needs to
e used together with other groups of methods to accurately compute the right-hand-side vectors. In other words,
oment fitting moves the computation of integrals over complex domains to the preprocessing step such that later

t can be used in a fast way.
Third, decomposition-based methods represent a popular way of computing integrals over complex domains.

he basic idea is to partition a given domain into manageable “cells” where standard quadrature can be applied.
uch methods can be divided into low-order and high-order ones. A typical example of low-order decomposition

s adaptive quad/octree subdivision widely adopted in FCM [28], where a cut element is adaptively subdivided into
ub-cells to capture the domain boundary for integration. Essentially, it is merely a piecewise constant approximation
o the given geometry. Such a low-order approximation leads to a large number of quadrature points aggregated
round the boundary and thus renders it computationally expensive especially in nonlinear problems or in 3D
29–31]. Alternatively, the low-order approximation can be used together with a Taylor series correction to achieve
igh-order accuracy [32,33]. On the other hand, high-order decomposition features a high-order approximation to
he geometry of interest, and thus it yields much fewer quadrature cells than the adaptive subdivision; see [34–38]
or several methods that work in 3D. Due to its high accuracy per quadrature point, it is particularly suitable for
igh-order methods such as immersed IGA. However, a high-order decomposition generally involves a high-order
riangulation [37] or other sophisticated partitions [34]. The procedure can be complicated and time-consuming
specially when the resulting integration cells are required to have positive Jacobian. However, we will show that
he positive-Jacobian constraint is in fact not necessary for the integration purpose.

In this paper, we propose a novel decomposition-based method that allows also for integration cells that present
egative Jacobian values. We call such cells folded cells and refer to the corresponding decomposition as a folded

decomposition. In other words, no constraint is imposed to the Jacobians of the integration cells when we create a
decomposition for a given domain. Allowing for folded cells greatly increases the flexibility and guarantees that the
decomposition is always successful. The method works for both low-order and high-order decompositions. We show
that the performance of folded decompositions is comparable to that of strictly positive-Jacobian cells in terms of
integration accuracy and convergence. Moreover, when applied to solving linear elliptic partial differential equations,
our strategy yields expected error convergence rates, and due to its intrinsic flexibility, it can robustly accommodate
real-world complex geometries. While we focus applications and present examples in immersed IGA in this paper,
the proposed integration scheme can be applied to other methods such as virtual element methods [5], finite cell
methods [6], discontinuous-Galerkin-based immersed boundary/interface methods [7,39], and the NURBS-Enhanced
finite element methods [40]. We note that an independent work [41] recently reported a related idea but it is limited
to 2D domains and only involves negative-Jacobian cells (non-positive Jacobian everywhere), a special case of
folded cells. Its numerical tests also validate the accuracy and efficiency of this particular type of cells on 2D
convex and non-convex domains with affine and curved boundaries.

The remainder of the paper is organized as follows. Section 2 presents the problem setting. Next in Sections 3 and
4, we discuss the folded decomposition for both curved polygons and curved polyhedra. Section 5 discusses how to
2
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apply the proposed method to immersed IGA. Numerical examples are then presented in Sections 6 and 7, where
Section 6 is devoted to demonstrating the efficacy and robustness of folded decomposition, whereas Section 7 shows
that folded decomposition can robustly accommodate real-world complex geometries in engineering simulations.
We conclude our work in Section 8.

2. Problem setting: Integration over general domains

We aim to find an accurate and robust quadrature rule to approximate the integral of a certain function f (x) over
compact domain Ω ⊂ Rd (d = 2, 3, the spatial dimension),∫

Ω

f (x) dx. (1)

n finite element analysis (FEA), f (x) usually represents quantities contributing to mass or stiffness matrices. The
hallenge of computing (1) originates from the complexity of the domain Ω .

In this paper, Ω is assumed to be a curved polygonal domain in 2D or a curved polyhedral domain in 3D with
n orientable boundary, and it is sufficient for Ω to only have a boundary representation (B-rep). More precisely, a
urved polygon or polyhedron is a domain Ω ⊂ Rd (d = 2 for a plane or d = 3 a volume) such that its boundary
Ω is represented by the union of a set of parameterized edges (for d = 2), {Ci (u) ∈ R2, u ∈ [0, 1], i = 1, . . . , Ne},
r a set of parameterized faces (for d = 3), {Si (u, v) ∈ R3, (u, v) ∈ Di ⊆ [0, 1]2, i = 1, . . . , N f }. Note that Di ,

the definition domain of Si (u, v), generally is a subset of the entire parametric domain [0, 1]2.
The aim of this paper is to design robust and cheap approaches to compute Eq. (1) for a known regular function

f : Rd
→ R. For the sake of clarity, let us introduce a few terms we use in this paper.

Definition 1 (Cell). We call a compact set T ⊂ Rd a cell if it is defined by a mapping T : [0, 1]d
→ T ,

i.e., x = T(u), such that its Jacobian, JacT (x) ≡ det (∇T(u)), is well defined everywhere. The interior and the
boundary of T are denoted as T̊ and ∂T , respectively, and clearly T = T̊ ∪ ∂T .

Definition 2 (J+ Cell). A cell T is called a J+ cell if it has JacT ≥ 0 everywhere and max(JacT ) > 0.

Definition 3 (J+ Decomposition). A set of non-overlapping cells, {Tℓ}
L
ℓ=1 where T̊ℓ ∩ T̊ℓ′ = ∅ for any ℓ ̸= ℓ′, is

called a J+ decomposition of Ω if Ω = ∪
L
ℓ=1Tℓ and every Tℓ is a J+ cell.

With a J+ decomposition, Eq. (1) can be computed as∫
Ω

f (x)dx =

L∑
ℓ=1

∫
Tℓ

f (x)dx =

L∑
ℓ=1

∫
[0,1]d

f (Tℓ(u)) det (∇Tℓ(u)) du ≈

L∑
ℓ=1

Ng∑
q=1

f (Tℓ(ug
q )) det

(
∇Tℓ(ug

q )
)

wg
q ,

(2)

here Ng is the number of quadrature points, ug
q and w

g
q are tensor-product Gauss quadrature points and weights,

espectively, defined in [0, 1]d . Letting

xℓ
q := Tℓ(ug

q ) and wℓ
q := det

(
∇Tℓ(ug

q )
)
wg

q , (3)

e obtain the typical quadrature formula for a decomposition-based method,∫
Ω

f (x)dx ≈

L∑
ℓ=1

Ng∑
q=1

f (xℓ
q ) wℓ

q , (4)

here we notice that all the weights wℓ
q are strictly positive. While it is possible to use different numbers of

uadrature points in different cells, for the sake of notation simplicity, we adopt the same Ng for all cells throughout
he paper.

In this paper, we aim at generalizing this formula to accommodate more general decompositions by allowing
or “folded” cells, i.e., cells that may present negative Jacobian values. Equivalently speaking, the weights wℓ

q in

q. (4) may be negative. More specifically, we introduce the following definitions to facilitate our discussion.

3
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Fig. 1. Split of folded cells into subsets, inside which the Jacobian does not change sign. The blue and orange regions represent J+ and
J− cells, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
rticle.)

efinition 4 (J− Cell). A cell T is called a J− cell if it has JacT ≤ 0 everywhere and min(JacT ) < 0.

Definition 5 (Folded Cell). We say that a cell T is a folded cell if it has min(JacT ) < 0 in T̊ , but T can be split
into a finite number of subdomains, T = ∪

N
i=1Qi , such that every Qi is either a J+ cell or a J− cell.

According to Definitions 4 and 5, we note that J− cells are a special case of folded cells. A few examples of
folded cells are shown in Fig. 1.

Definition 6 (Folded Decomposition). A set of overlapping cells {Tℓ}
L
ℓ=1 (where there exists ℓ ̸= ℓ′ such that

T̊ℓ ∩ T̊ℓ′ ̸= ∅) is called a folded decomposition of Ω if Ω = ⊔
L
ℓ=1T̊ℓ and there exists at least one cell that is a folded

cell, where the upper bar denotes the closure of a domain,

⊔
L
ℓ=1T̊ℓ := {x ∈ ∪

L
ℓ=1T̊ℓ :

L∑
ℓ=1

CountTℓ
(x) = 1}, (5)

and

CountTℓ
(x) :=

⎧⎪⎨⎪⎩
1 if x ∈ T̊ℓ and JacTℓ

(x) > 0,

−1 if x ∈ T̊ℓ and JacTℓ
(x) < 0,

0 otherwise.
(6)

Eqs. (5) and (6) in Definition 6 essentially collect the points that only constitute the regions of “net” positive
acobians. For example, if a point x only belongs to a J+ cell, then

∑L
ℓ=1 CountTℓ

(x) = 1 holds and thus x ∈ ⊔
L
ℓ=1T̊ℓ.

′
n the other hand, if a point x belongs to two cells, Tℓ and Tℓ , and moreover JacTℓ
(x) > 0 and JacTℓ′

(x) < 0, then

4
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Fig. 2. Boundary curves and corners of Coons patches, where C3(u) in (b) is degenerated.

L
ℓ=1 CountTℓ

(x) = 0 and thus x ̸∈ ⊔
L
ℓ=1T̊ℓ. In other words, the contributions from the positive- and negative-

acobian regions are canceled out at this same point x. We will discuss this mechanism in detail in the next
ection.

In what follows, we provide an efficient algorithm to compute possibly folded decomposition that never fails.
e start our discussion for d = 2 in Section 3 and then we move to d = 3 in Section 4.

. Folded decompositions for d = 2

In this section, we introduce two approaches to split 2D domains to generate folded decompositions.

.1. Quadrilateral-dominant decomposition

The quadrilateral-dominant decomposition recursively splits a given polygon into quadrilaterals and/or triangles,
hich provides a means to minimize the number of resulting cells. Clearly, no decomposition is needed when a
olygon is a quadrilateral or a triangle. When a polygon is a quadrilateral, a Coons patch T(u, v) [42] is created to
nterpolate its 4 edges,

T(u, v) =(1 − v)C1(u) + vC3(u) + (1 − u)C4(v) + uC2(v)
− (1 − u)(1 − v)P1 − u(1 − v)P2 − uvP3 − (1 − u)vP4,

(7)

here (u, v) ∈ [0, 1]2, and Ci : [0, 1] → R2 and Pi ∈ R2 (i = 1, . . . , 4) are the corresponding curves and
orners, respectively; see Fig. 2(a). When a polygon is a triangle, a Coons patch can still be constructed with a
egenerated curve (i.e., a zero-length curve); see Fig. 2(b). Such (degenerate) Coons patches serve as cells for
ntegration.

On the other hand, when a polygon has more than 4 edges (e.g., Fig. 3(a)), we split the polygon into two
ub-polygons, one with 4 edges and the other with n − 2 edges, where n is the number of edges of the given
olygon. Two new edges are added due to splitting; see P4P1 and P′

1P′

4 in Fig. 3(b). Any splitting is valid as long
s a quadrilateral is obtained. We repeat this procedure for each resulting sub-polygon with more than 4 edges;
ee Fig. 3(c). As a result, all resulting sub-polygons are either quadrilaterals or triangles, and a Coons patch is
onstructed accordingly for each of them as a cell. This way, the polygonal domain is decomposed into the cells
ℓ (ℓ = 1, . . . , L) whose associated mapping Tℓ : [0, 1]2

→ Tℓ is a (degenerate) Coons patch.
Edges of a curved polygonal domain generally correspond to high-order curves, and thus, an arbitrary decom-

osition may lead to folded cells. For example, the decomposition in Fig. 4 is deemed valid, where, however,
he splitting edge (dashed) intersects a polygonal edge and thus one of the resulting cells is a folded cell that
as negative Jacobian in the orange region. We will show that such cells are valid cells for the integration

urpose.

5
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Fig. 3. Recursively splitting a polygon into quadrilaterals and triangles.

Fig. 4. Example of a folded decomposition such that Ω is split into {T1,T2}, where T1 is a J+ cell and T2 is a folded cell. T2 can be
further split into {Q2,Q3}, where Q2 is a J+ cell and Q3 is a J− cell. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

3.2. Triangulation

We create 2D triangulations to randomly generate folded decompositions to test the robustness of our proposed
method. In this paper, every triangle is treated as a Coons patch for simplicity. In principle, any triangulation is
allowed for a given polygon whose edges are counterclockwise oriented. More specifically, a seed vertex V is first
arbitrarily chosen in the bounding box of the polygon. A triangle is then created with every polygonal edge and V.

V can be inside or outside the polygon; see the red vertices in Fig. 5(a, b). When V is inside, the generated
decomposition may or may not have negative Jacobian, depending on whether or not a splitting edge intersects
with any of the polygonal edges. However, when V is outside, some of the resulting cells must have negative
Jacobian; see Fig. 5(b).

Among all the choices of V, a straightforward and sometimes efficient way is to pick a vertex of the polygon; see
Fig. 5(c). When an edge that shares this vertex is simply a straight segment, the resulting triangle has a zero area
and thus will have no contribution to integration. In other words, fewer cells are generated in this case; compare

Fig. 5(c) with Fig. 5(a, b).

6
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Fig. 5. Triangulations of curved polygons with different seed vertices V. (a) V inside the polygon, (b) V outside the polygon, (c) V being
vertex of the polygon, and (d–f) exploded views of (a–c). In (e), the regions of the same color overlap with one another. The boundary

urves of the polygons are oriented counterclockwise. (For interpretation of the references to color in this figure legend, the reader is referred
o the web version of this article.)

emark 1. While up to now we have assumed that the domain of interest is a planar domain, i.e., Ω ⊂ R2, the
proposed method also works for 2-manifold as long as it has a parametric representation. More specifically, Ω can

e a parameterized surface of the form, S : D ⊆ [0, 1]2
→ R3. When this is the case, the proposed decomposition

is applied to D rather than to Ω . As a result, D is decomposed into (possibly folded) cells Tℓ (ℓ = 1, . . . , L), whose
ssociated mappings Tℓ : [0, 1]2

→ Tℓ are (degenerate) Coons patches.

.3. Theoretical study on folded decompositions

In this section, we start with an intuitive explanation to motivate how folded decompositions work for integration,
nd then we provide a formal argument.

We first consider to compute the area of a curved polygon by integrating the Jacobian over all the cells that are
btained through either quadrilateral-dominant decomposition or triangulation. We take decompositions in Figs. 3,
as examples. In the case of Fig. 3(c) or Fig. 5(a) where all the cells are J+ cells, it is clear that integrating the

acobian over such cells leads to the area of the polygon. On the other hand, when folded cells are involved, for
xample in Fig. 4 or Fig. 5(b), negative-Jacobian regions there overlap with certain positive-Jacobian regions in
ther cells, and thus their contributions are canceled out, leading to the desired area of the polygon; see the regions
f matching colors in Fig. 5(e). This implies that when the integrand is a constant, we can use folded decompositions

o appropriately integrate it over a complex domain Ω .

7
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In fact, folded decompositions can be applied to much more general functions, which we will show in Section 6
hrough numerical examples. It is well known that canceling of positive and negative contributions may cause large
eviations due to the round-off error. On the other hand, we never spot such an issue in any of our examples.

emark 2. We note that for the cancellation to work, the boundary curves need to be oriented in a consistent
anner (e.g., counterclockwise). Moreover, we notice that due to the presence of negative Jacobian, generally a

olded decomposition leads to a set of cells where Ω ⊆ ∪
L
ℓ=1Tℓ. In other words, the resulting cells may cover a

arger region than the domain of interest, which, therefore, requires the integrand f (x) to be well defined on the
ntire ∪

L
ℓ=1Tℓ. We will discuss more on the definition of f (x) in Section 5.

Next, we theoretically study folded decompositions for integration under the assumption that first, the integrand
n Eq. (1) is suitably defined over all the involved integration cells, and second, the antiderivative of the integrand
xists. The key idea is to apply the divergence theorem to transform an integral to its boundary counterpart. We
ill show that the resulting boundary integral stays the same regardless of how the decomposition is achieved. We
ork with the 2D case for illustration and explanation, but the argument holds for both 2D and 3D. The following
erivation is constructive rather than being comprehensive to provide insights on how folded decompositions work.

In particular, we consider the domain Ω shown in Fig. 4, where the decomposition leads to a J+ cell T1 and a
olded cell T2. Initially, the integral of interest is computed using T1 and T2,∫

Ω

f (x)dx =

∫
T1

f (x)dx +

∫
T2

f (x)dx. (8)

e further split T2 into T2 = Q2 ∪Q3 such that Q2 is a J+ cell and Q3 is a J− cell; see Fig. 6. Specifically, letting
k : [0, 1]2

→ Qk (k = 2, 3), we have∫
T2

f (x)dx =

3∑
k=2

∫
Qk

f (x)dx =

3∑
k=2

∫
[0,1]2

f (Qk(u)) det (∇Qk(u)) du, (9)

here det (∇Q3(u)) ≤ 0. To attain cells of consistent Jacobian, we reparameterize Q3 as Q̃3 such that∫
Q̃3

f (x)dx =

∫
[0,1]2

f (Q̃3(s)) det
(
∇Q̃3(s)

)
ds = −

∫
[0,1]2

f (Q3(u)) det (∇Q3(u)) du = −

∫
Q3

f (x)dx, (10)

here Q̃3 = Q3, Q̃3 is the mapping of Q̃3, and det
(
∇Q̃3

)
≥ 0. Eq. (8) becomes∫

Ω

f (x)dx =

∫
T1

f (x)dx +

∫
Q2

f (x)dx −

∫
Q̃3

f (x)dx. (11)

Now we assume the antiderivative of f (x) to be F(x) such that f (x) = ∇·F(x). Applying the divergence theorem,
e have∫

Ω

f (x)dx =

∫
∂T1

F(x) · n1dx +

∫
∂Q2

F(x) · n2dx −

∫
∂Q̃3

F(x) · ñ3dx,

=

4∑
j=1

∫
C1, j

F(x) · n1dx +

3∑
j=1

∫
C2, j

F(x) · n2dx −

2∑
j=1

∫
C̃3, j

F(x) · ñ3dx,

(12)

here n1, n2, and ñ3 are the outwards normals to corresponding domains, and Ci, j are the boundary curves; see
ig. 6. Note that we have n2 = −n1 when x ∈ C2,1, and ñ3 = n1 when x ∈ C̃3,1. Therefore, contributions from
ommon curves (i.e., C2,1 and C̃3,1 with C1,1) are canceled out, leading to∫

Ω

f (x)dx =

4∑
j=2

∫
C1, j

F(x) · n1dx +

3∑
j=2

∫
C2, j

F(x) · n2dx −

∫
C̃3,2

F(x) · ñ3dx. (13)

egarding the last term in Eq. (13), after reversing the direction of C̃3,2, we have∫
F(x) · ñ3dx = −

∫
F(x) · n3dx, (14)
C̃3,2 C3,2

8
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Fig. 6. The decomposed cells shown in Fig. 4 and notations of their boundary curves. (a) The J+ cell, (b) the folded cell that consists of a
J+ subcell and a J− subcell, and (c) reparameterization of Q3 to obtain a J+ counterpart. The black arrows indicate the normal directions.
For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

here n3 = −ñ3. C3,2 has the same orientation as ∂Ω and n3 is the outwards normal to ∂Ω when x ∈ C3,2. Therefore,
xamining Eqs. (13), (14) reveals that the integral over Ω reduces to the boundary integral,∫

Ω

f (x)dx =

∫
∂Ω

F(x) · ndx, (15)

here we note that ∂Ω = C1,2 ∪ C1,3 ∪ C1,4 ∪ C2,2 ∪ C2,3 ∪ C3,2.
Therefore, Eqs. (8), (15) are equivalent. As the involved decomposition represents a generic case and the same

rgument can be straightforwardly applied to other decompositions, we conclude that the integral of interest leads
o the same boundary integral regardless of how a decomposition is created, given that the above-mentioned two
ssumptions hold. In other words, if a J+ decomposition exists for the domain shown in Fig. 4, then theoretically
t leads to the same integration result as that using the folded decomposition. Indeed, we will show different kinds
f numerical evidence later.

. Folded decompositions for d = 3

Now we discuss the 3D case, that is, to use folded decompositions for integration over curved polyhedra. The
dea is analogous to Section 3.2, but here our goal is to decompose a given polyhedron into a set of (triangular and/or
ectangular) pyramids, which, in particular, can naturally deal with gaps/overlaps as well as sharp features in the
nput B-rep. Pyramids are treated as degenerated hexahedra. The decomposition needs two steps: (1) decomposition
f the input B-rep following the previous section, and (2) search for a seed vertex to build pyramids.

As the input B-rep is essentially a 2-manifold, Step (1) immediately follows Section 3. We assume that the
-rep has the form ∂Ω = {Si (u, v) ∈ R3, (u, v) ∈ Di ⊆ [0, 1]2, i = 1, . . . , N f }. It is worth mentioning

hat the mesh is not required to be conformal on the common edge of any two faces. Such edges sometimes
epresent sharp features of ∂Ω . Moreover, gaps/overlaps are allowed in the input B-rep as long as the topological
nformation is correct. Such settings are supported because folded decompositions are generated independently for
ach Si (u, v), or more precisely, for Di in the parametric domain, leading to Ri, j : [0, 1]2

→ R2, j = 1, . . . , Ni ,
where Ri, j is a (degenerate) Coons patch that may have negative Jacobian. As a result, each face Si is decomposed
as Si ◦ Ri, j ([0, 1]2), j = 1, . . . , Ni . Each Si ◦ Ri, j ([0, 1]2) is further approximated by a Bézier surface to obtain a
polynomial representation.

Next in Step (2), we choose a seed vertex V to create target pyramids with all the resulting patches Si◦Ri, j ([0, 1]2)
from Step (1), where V and Si ◦ Ri, j serve as the top vertex and the base surface, respectively. While V can be
chosen in a rather arbitrary manner, we usually choose it to be one of the vertices of the polyhedron as it can yield
fewer cells (similar to 2D).

Once V and Ri, j (u, v) are in place, a pyramidal cell Ti, j (u, v, w) is created as a ruled volume between V and
each Ri, j (u, v),

Ti, j (u, v, w) = (1 − w)Si ◦ Ri, j (u, v) + wV, (u, v, w) ∈ [0, 1]3. (16)
Therefore, the given curved polyhedron is decomposed into a set of such cells {Ti, j (u, v, w)} for integration.

9
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Fig. 7. Split of a curved polyhedron using an arbitrary vertex V. (a) The input B-rep (a cube cut with a cylinder); (b) six of the resulting
cells present positive Jacobian; and (c) one of the cells has negative Jacobian. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

As an example, in Fig. 7 the decomposition of a 3D B-rep is shown. The polyhedra to decompose is a cube [0, 1]3

cut with a cylinder of radius 0.65 and axis along the z direction (see Fig. 7(a)). A seed vertex V is (arbitrarily)
chosen to be at (0, 0, 0.3). The bottom and top faces of the B-rep (5-sided polygons) are decomposed into two
quadrilaterals each, whereas all the other faces require a single quadrilateral. By generating pyramids between the
generated surface patches and the vertex V a total of 7 cells are created. Six of them (Fig. 7(b)) present positive
Jacobian everywhere except at the vertex V, where the Jacobian vanishes, so they are J+ cells. On the other hand,
the cell shown in Fig. 7(c) has negative Jacobian everywhere except at V, where the Jacobian vanishes, so it is a
J− cell.

Remark 3. The tensor-product Gauss quadrature is set up for every cell, even though it is not optimal on
triangular or pyramidal cells. We adopt it mainly for a simple and unified implementation. Otherwise, much
more effort has to be devoted to carefully distinguishing and tracking different types of cells in order to set up
a corresponding sophisticated quadrature, which may complicate much the implementation, be error-prone, and
thus hinder robustness.

Remark 4. The work [38] strives to find a so-called kernel point as the seed vertex such that all the resulting cells
can have positive Jacobian. A kernel point is a point that is visible to all the points on the boundary. This is known
as the three-dimensional art gallery problem. Generally, it involves recursively subdividing the given domain to find
an appropriate kernel point for each subdomain, which complicates implementation and generates a large number of
cells. Due to the great flexibility folded decompositions provide, we do not need a kernel point for decomposition
in this work.

5. Application: immersed methods

One natural application of the integration method described above is isogeometric analysis (IGA) [43] with
trimmed volumetric geometries. The proposed method can be also used in other applications such as virtual element
methods [44]. One typical way of using such representations in IGA is through immersed methods [45], which
embed a B-rep into a background Cartesian grid and thus leads to a non-conformal description of the computational
domain; see Fig. 8(a) for example.

Numerical integration in IGA is performed at the element level, so we first classify different types of elements.
Let G be a Cartesian grid, and K ∈ G be an element. The computational domain is Ω and Γ = ∂Ω . Depending
on how K relates to Γ and Ω , elements can be divided into trimmed elements (K ∩ Γ ̸= ∅), non-trimmed active
elements (K ∩Ω = K ), and non-trimmed inactive elements (K ∩Ω = ∅) that are not assembled in general. While
it is straightforward to use standard Gauss quadrature for non-trimmed elements, trimmed elements need special

treatment.

10
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Every trimmed element (Ka = K ∩ Ω ̸= ∅) is a curved polygon (d = 2) or a curved polyhedron (d = 3),
to which we apply our decomposition strategy. In other words, Ka is now the domain of interest in Eq. (1). The
boundary of Ka , e.g., K ∩ Γ in particular, generally does not have a polynomial representation, and instead it has

piecewise polynomial structure. Depending on the CAD packages that are used to create the trimming curve Γ ,
K ∩Γ may be a piece of NURBS curve or a set of piecewise linear segments. To build integration cells, polynomial
fitting is performed (in both 2D and 3D) to find a compact Bézier representation to approximate K ∩Γ . The degree
of the Bézier representation is left as a parameter to be chosen to guarantee the desired level of accuracy; see,
.g., [37].

emark 5. Recall that the tensor-product Gauss quadrature is defined on the parent domain Λ = [0, 1]d (d = 2, 3)
of each cell. The positions of quadrature points in a trimmed element Ka (whose parent element is K ) are obtained
by the geometric mapping TKa : [0, 1]d

→ T of the cell; see Eqs. (7), (16). Their quadrature weights in the domain
f Ka are the product of the Jacobian of T with the corresponding weights of Gauss quadrature in Λ; see also Eq.
4). This implies that the weights can be negative or zero, which, however, is not an issue because they are only
sed in multiplication and never in division.

However, due to the nature of negative Jacobian, we may have T(Λ) ̸⊂ Ω , and thus some quadrature points may
ie outside of Ω . When certain quantities of interest are not well defined outside Ω , one solution to this potential
ssue is through polynomial extension [11], which enables a stable way to evaluate/extrapolate quantities outside of
he domain. More specifically, let a generic function f be the quantity of interest, which may be certain given data
ut not defined outside Ω . We now perform polynomial extension elementwise. Considering a trimmed element

Ka that has folded cells, we first find a so-called good neighbor (Kg) to Ka such that Kg ⊂ Ω is (preferably)
non-trimmed active element. Next, we perform L2 projection for f onto the space spanned by the Bernstein

olynomials defined on Kg . As a result, f is expressed as a linear combination of these Bernstein polynomials.
inally, we extend such expression to the outside of Ω and evaluate f with the aid of the (extended) Bernstein
olynomials.

emark 6. Recall that when creating integration cells, we do not require their parameterization to be conformal
o their common interfaces. This not only provides great flexibility on how we can decompose a given domain, but
lso supports B-reps that have artificial defects such as gaps and overlaps, thus opening the door to deal with dirty
AD geometries in a robust way.

emark 7. While folded decompositions provide a significant flexibility in accommodating real-world applications,
here are limitations due to their nature of exhibiting negative Jacobian. For instance, visualizing simulation results
ith folded cells poses an issue. The sign of Jacobian can be seen as the orientation of a local region. Change of sign
eans change of orientation, and thus visualization detects a reverse reflection on negative-Jacobian regions. As a

esult, negative-Jacobian regions are invisible to users. The remedy we adopt in this work is to create J+ surface
ells for visualization on the boundary of a volume, which is much easier to generate than volumetric J+ cells.
he boundary is decomposed according to quadrangulation [46] to ensure that all the surface cells have positive
acobians, where quantities of interest are computed and visualized. This is done independently from creating
olumetric cells, and it is only meant for visualization purposes.

. Integration of regular functions

In this section, we demonstrate the efficacy and robustness of folded decompositions by integrating several
egular functions. We first compare the performance of folded and J+ decompositions in computing integrals of
olynomials. Next, we study the convergence behaviors in integrating general functions that are not polynomials.

.1. Integration of polynomials

The domain of interest is denoted as Ω . The boundary Γ of Ω is embedded into a Cartesian grid G, where we
re only interested in trimmed elements as polynomials can be easily integrated exactly in non-trimmed elements.
or each trimmed element Ka = K ∩ Ω ̸= ∅ (K ∈ G and K ∩ Γ ̸= ∅), we aim to compute

IK ,i =

∫
B p

i (x)dx,

Ka

11
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Fig. 8. Integration of polynomials on a 2D B-rep that involves a quadratic B-spline curve (red). (a) The input B-rep composed of 5
connected curves, and (b) relative integration error with respect to the number of quadrature points per direction, where different colors
represent different degrees, and solid and dashed curves are the results using folded and J+ decompositions, respectively. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

where B p
i (x) is i th degree-p tensor-product Bernstein polynomial defined in K . Note that span{B p

i (x)}i = Qp,p(K )
n 2D and span{B p

i (x)}i = Qp,p,p(K ) in 3D. Generally, Ka is approximated with a set of integration cells {TK , j (Λ)} j
Λ = [0, 1]d ), and thus IK ,i is computed as

IK ,i =

∫
Ka

B p
i (x)dx ≈

∑
j

∫
Λ

B p
i ◦ TK , j det

(
∇TK , j

)
dx. (17)

e use the tensor-product Gauss quadrature rule with n points per direction in Λ. An overkill result with 64
uadrature points per direction is taken as the reference (I ref

K ,i ) to evaluate error,

Err = max
K∈G,K∩Γ ̸=∅

max
i

|I h
K ,i − I ref

K ,i |, (18)

here I h
K ,i is the approximate to IK ,i obtained by (17) with Gauss quadrature.

.1.1. B-rep in 2D with a B-spline curve
The geometry of the first 2D example is shown in Fig. 8(a). Its B-rep consists of 5 connected curves: 4 straight

egments and a quadratic B-spline curve (red), whose knot vector is {0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1} and its control
points are (0, 0.25), (0.25, 0), (0.5, 0.5), (0.9, 0.25), (0.8, 0.125), and (0.75, 0). The B-rep is embedded into a

× 8 Cartesian grid. We consider two ways of decomposition for trimmed elements: the J+ decomposition by
uadrangulation [46], and the folded decomposition through triangulation in Section 3.2. In either case, the degree
f all the Bézier patches (i.e., TK , j in (17)) is set to be 2, the same as that of the B-spline curve.

In the case of folded decomposition, we choose different seed vertices to create a family of triangulations for each
rimmed element Ka (whose parent element is K ). Specifically, 11 × 11 points are sampled according to a uniform
artesian distribution in K , and each of them serves as a seed vertex to create a corresponding triangulation. This is
imed to test whether folded decompositions can work robustly in a rather arbitrary setting. Different triangulations
ay yield different integration errors, among which the largest is taken as the error of folded decomposition.
We use different degrees of Bernstein polynomials (ranging from 1 to 10) to test the integration accuracy with

espect to the number of quadrature points per direction. The results are summarized in Fig. 8(b). We observe
hat the results are almost indistinguishable between folded and J+ cells. Moreover, according to [47] and (A.3)
n Appendix, where we study the number of quadrature points required to exactly integrate a polynomial, we need
t least 2(p+1) quadrature points (per direction) to exactly integrate B p

i (x). In particular, we observe this agreement
n Fig. 8(b) for degrees from 1 to 4, where the number of quadrature points needed to achieve machine precision
12
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Fig. 9. Integration of polynomials on a 2D B-rep that involves a quadratic rational Bézier curve (red). (a) The input B-rep composed of
connected curves, and (b) relative integration error with respect to the number of quadrature points per direction, where different colors

epresent different degrees, and solid and dashed curves are the results using folded and J+ decompositions, respectively. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

(∼ 10−16) is 4, 6, 8, and 10, respectively. However, for even higher degrees, machine precision is reached before
2(p + 1) quadrature points are used, and further increasing the number of quadrature points will no longer improve
the accuracy.

6.1.2. B-rep in 2D with a rational curve
Next, we study another 2D B-rep that involves a rational curve. The input is shown in Fig. 9(a), where the red

curve is a quadratic rational Bézier curve exactly representing a quarter of a circle. Other than the difference in the
B-rep, everything else follows the same as that in Section 6.1.1. The degrees of Bernstein polynomials for integration
are chosen to be p ∈ {2, 4, 6}. The circle is approximated with polynomial Bézier curves of degree p, which are
then used to create in either folded or J+ decompositions. The results are summarized in Fig. 9(b). We observe the
following. First, overall, J+ decompositions yield more accurate results than folded decompositions, where fewer
quadrature points are used to achieve the same accuracy. However, recall that we create 11 × 11 triangulations
for each cut element, and we take the worst integration results to be the results using folded decompositions in
Fig. 9(b). Second, with a fixed number of quadrature points, the relative accuracy difference between folded and
J+ decompositions is really not significant; compare solid and dashed curves when the relative error is 10−16.
Third, folded decompositions can also achieve machine precision by using slightly more quadrature points than J+

decompositions. Fourth, J+ and folded decompositions show the same convergence rates, while the latter may have
a longer pre-asymptotic regime.

6.1.3. B-rep in 3D with a polynomial surface
Now we integrate Bernstein polynomials over a 3D domain. The corresponding B-rep is shown in Fig. 10(a),

which consists of 4 axis-aligned planar surfaces and a bi-quadratic Bézier surface. The control points of the
Bézier surface are given as (1, 0.2, 0), (1, 0.8, 0.5), (1, 0.4, 1), (0.5, 0.5, 0), (0.5, 0.5, 0.5), (0.25, 0.25, 1), (0.2, 1, 0),
0, 1, 0.5), and (0.3, 1, 1). The B-rep is embedded into a 1 × 1 × 1 Cartesian grid, i.e., a single element. Similarly,

11 × 11 × 11 points are sampled as seed vertices to create a family of pyramidal decompositions, where the ones
that yield the worst and best integration errors are chosen. The worst decomposition is guaranteed to have folded
cells. A J+ decomposition is created using the seed vertex as (1, 1, 0.5). The degrees of Bernstein polynomials are
set to be p ∈ {3, 6, 9}. The results are summarized in Fig. 10(b), and we observe the following. First, machine
precision can be again achieved using both folded and J+ decompositions with a sufficient number of quadrature

oints per direction. Second, machine precision is achieved with fewer quadrature points than the ones theoretically
13
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o
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Fig. 10. Integration of polynomials on a 3D B-rep that involves a bi-quadratic Bézier surface. (a) The input B-rep composed of 4 axis-
aligned planar surfaces and a bi-quadratic Bézier surface, and (b) relative integration error with respect to the number of quadrature points per
direction, where different colors represent different degrees, and solid and dashed curves are the results using folded and J+ decompositions,
respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

predicted for exact integration. In 3D, according to Eq. (A.5) in Appendix, we need n ≥ 3(p + 1) to exactly
integrate polynomials. For instance, when p = 6, 21 quadrature points are needed in theory, but as shown in
Fig. 10(b), 14 points already suffice to reach machine precision when the J+ decomposition is used. Third, given
the same number of quadrature points, the results using the J+ decomposition fall between those of the best and
the worst decompositions. Even in the worst scenario, the difference in accuracy can be within two orders provided
that a sufficient number of quadrature points are used. In other words, the performance of a folded decomposition
can be always comparable to that of J+ decompositions.

6.2. Integration of general functions

In this section, we study to integrate several regular functions that are not polynomials. We use again the B-reps
shown in Figs. 8(a) and 10(a) for 2D and 3D tests, respectively. The integrands of interest are the smooth functions:

f1(x, y, z) = exp(y) sin(x) cos(y) cos(z) (19a)

f2(x, y, z) =

(
x2

+ y2
+ z2

)
(x + y + z) + xyz

x4 + y4 + z4 + 1
(19b)

where f2 is a rational polynomial similar to the ones present in the case of rational B-spline basis functions. For
the 2D case, we just set z = 0.

In 2D, the B-rep is embedded into a series of globally refined Cartesian grids, from 2 × 2 up to 128 × 128.
Likewise in 3D, the Cartesian grids range from 1 × 1 × 1 to 16 × 16 × 16. Integration is performed elementwise.
The B-reps are approximated in each involved integration cell with quadratic Bézier curves in 2D, or bi-quadratic
Bézier surfaces in 3D. In each integration cell, we change the number of quadrature points per direction (denoted
by n) and study the convergence with respect to mesh refinement. In either 2D or 3D, an overkill solution, which
is obtained using a dense Cartesian grid and a large number of quadrature points, serves as the reference solution
to evaluate the error.

In Fig. 11, we report the convergence of the integration error, computed as the absolute difference between the
btained values and the reference ones for the integrals computed over the whole domain. We compare folded
nd J+ decompositions in 2D, whereas we only use folded decompositions in 3D. As in the previous section, for

the folded decompositions we create all the possible decompositions by selecting the seed vertex in a 11 × 11 or
14
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Fig. 11. Convergence tests of the absolute integration error over the whole domain for the integration of functions f1 and f2 defined in
(19) with respect to the mesh size h. In (a,c) we report the 2D tests for the domain shown in Fig. 8(a) using the functions f1 and f2,
respectively. Analogously, in (b,d), the 3D tests for the domain in Fig. 10(a) and the functions f1 and f2, respectively, are plotted. In (a,c),
we compare the performance of (worst) folded and J+ decompositions, whereas in (b,d), we only use (worst) folded decompositions. Solid
and dashed curves in (a,c) are the results using (worst) folded and J+ decompositions, respectively. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

11 × 11 × 11 Cartesian grid, respectively. Among all the created decompositions, the worst error is reported in
Fig. 11.

In 2D, we observe that the performance of the worst folded decompositions and J+ decompositions is
comparable, especially when n ≥ 2. We also observe a convergence rate of 2n when 1 ≤ n ≤ 3, which is expected
using standard Gauss quadrature. When n ≥ 4, the integration error quickly goes under machine precision, so we
cannot observe the asymptotic convergence of the expected rate.

On the other hand, in 3D, when 1 ≤ n ≤ 3 we observe convergence rates 2n − ϵ, with ϵ = 1 for f1 (Fig. 11(b)),
and ϵ = 1/2 for f2 (Fig. 11(d)): one and half order less than expected, respectively. Recall that a certain surface of
an integration cell, which has a Bézier representation, approximates the given trimming surface. As stated before in
Section 5, and illustrated below in Section 7, this approximation, if performed with the same degree as the one used
for the discretization of an elliptic PDE, guarantees the optimal approximation properties of the presented immersed
approach. The suboptimal convergence may be due to the fact that the geometric error in creating integration cells
is more prominent in 3D than that in 2D. Moreover, the convergence reaches a plateau when the accuracy is in
the order of 10−8. This is because surface–surface intersections (element boundaries with the trimming surface) are
involved in defining cut elements, for which we employ OpenCASCADE [48] and the accuracy of related operations

−8
is limited to an untunable tolerance of 10 . Similar geometric artifacts were reported before in [18,37].
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f

Fig. 12. The convergence plot in solving Poisson’s problem on the domain shown in Fig. 8(a), where we compare the performance between
olded and J+ decompositions for different values of r . (a–c) Relative L2-norm error, and (d–f) relative H1-norm error, where h stands

for the element size. Solid and dashed curves are the results using folded and J+ decompositions, respectively. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

7. Poisson’s problem with immersed IGA

In this section, we solve Poisson’s problem using IGA, where folded decompositions are used for numerical
integration. We first perform convergence studies on trimmed planar geometries, where the results are compared
with those of J+ decompositions. Moreover, to show the flexibility and potential of folded decompositions, we solve
the problem on several trimmed volumes, including an arbitrarily cut cube and a complex engine model. Note that
the number of quadrature points per direction suffices as long as the integration error does not dominate simulation
error. Therefore, we adopt the (p +r )-Gauss quadrature rule for a given spline discretization of degree p, where we
vary r ≥ 1 to check how it influences convergence. Moreover, recall that to create integration cells, approximation is
often needed with Bézier curves (2D) or Bézier surfaces (3D). We choose the degree of each Bézier representation
to be p, which suffices to deliver optimal convergence rates [37].

We take Poisson’s problem as the model problem in all the following tests. The goal is to find u ∈ Ω such that

∆u = f in Ω , (20a)

∇u · n = g on ∂ΩN , (20b)

u = 0 on ∂ΩD , (20c)

where ∂Ω = ∂ΩD ∪ ∂ΩN and ∂ΩD ∩ ∂ΩN = ∅, n is the outer unit normal on ∂Ω , and g is the Neumann
boundary condition. We adopt u(x, y) = sin(πx) sin(πy) in 2D and u(x, y, z) = sin(πx) sin(πy) sin(π z) in 3D
as manufactured solutions (except for the complex engine model). The choice of such regular functions as target
solutions was motivated by the aim of focusing our study on the consistency error, mainly controlled by the
numerical integration and geometric representation errors. The effect of the approximation error in the solution
of elliptic PDEs using trimmed spline spaces has been previously addressed in [37].
16
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Fig. 13. The convergence plot in solving Poisson’s problem on the domain shown in Fig. 9(a), where we compare the performance between
olded and J+ decompositions for different values of r . (a–c) relative L2-norm error, and (d–f) relative H1-norm error, where h stands

for the element size. Solid and dashed curves are the results using folded and J+ decompositions, respectively. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

7.1. Trimmed planar geometries

We start with two planar geometries, whose B-reps are already shown in Figs. 8(a) and 9(a). The problem
settings for these two domains are identical. The homogeneous Dirichlet boundary condition is imposed on the
right boundary (x = 1), whereas the non-homogeneous Neumann boundary condition is imposed elsewhere. In
each problem, the B-rep is embedded into a series of consecutively refined Cartesian grids, from 2 × 2 up to
128 × 128. Different degrees p of B-spline discretizations are defined on each Cartesian grid, with p ∈ {1, 2, 3, 4}.
In each integration cell, p + r quadrature points are used along each direction, where we use r ∈ {1, 3, 5}.

For these two geometries, the folded decomposition for each trimmed element is created using the element’s
rigin as seed vertex for triangulation. This is meant to create highly distorted cells and it guarantees the presence
f folded cells for this particular geometry. J+ decompositions are generated using the quadrangulation method
roposed in [46].

The convergence plots are shown in Figs. 12 and 13. We observe that with a sufficient number of quadrature
oints, both integration methods (folded and J+ decompositions) yield identical optimal results for any degree.
hile, for p ≤ 2 and p + 1 points the results of both methods are indistinguishable; p + 3 are needed for p = 3,

nd p +5 for p = 4, in order to match the results of both methods even for the finest discretization considered. We
emark here that, as discussed in [47] and in Appendix, the integration of reparameterized elements requires more
han the classical p + 1 quadrature points per direction, being specially evident for p ≥ 3 in Figs. 12 and 13.

We also observe in this case that the convergence curve hits a plateau when H 1-norm error reaches 10−8

10−10 for the L2-norm). This is caused by the geometric tolerances involved in the computation of surface–
urface intersections required to locate trimmed elements, as also discussed in [18,37]. Once the simulation result
eaches this level of accuracy, the geometric approximation error starts to dominate and thus leads to a plateau in
onvergence. These tests provide the numerical evidence that as long as a sufficient number of quadrature points

+
re used, folded decompositions can yield the same convergence as J decompositions.
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Fig. 14. Solving Poisson’s problem on a domain obtained by cutting a cube with a cylinder. (a) The input B-rep, (b–d) relative L2-norm
rror, and (e–g) relative H1-norm error, for different numbers of quadrature points. Two different ways of decompositions are studied: one
eading to the minimum number of cells (dashed lines) and the other choosing the element origin as the seed vertex (solid lines). (For
nterpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

.2. Trimmed volumes

Now we present several 3D examples where we do not constrain the type of decompositions to be generated. In
ther words, the decomposition algorithm terminates as long as a decomposition is achieved for a trimmed element,
hich can be either a J+ decomposition or a folded decomposition. Nonetheless, folded decompositions are often
enerated in practice.

We start with a simple geometry as shown in Fig. 14(a), where a cube [0, L]3 (L = 1000) is cut by a cylinder
of radius 0.65L , and the axis of the cylinder is along the z direction. A quarter of the cylinder is involved in the

-rep, which is exactly represented by a rational bi-quadratic Bézier surface. To perform a convergence study, the
-rep is embedded into a series of consecutively refined Cartesian grids, with the resolution from 2 × 2 × 2 up
to 32 × 32 × 32. The homogeneous Dirichlet boundary is imposed on the (bottom) plane x = L , whereas the
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Fig. 15. Construction of a complex geometry through trimming. (a) A cube to be cut by two cylinders (green), a cone (violet), and a sphere
(pink), and (b) the resulting B-rep. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

non-homogeneous Neumann boundary condition is imposed elsewhere. On each Cartesian grid, we define B-spline
discretizations of degrees p ∈ {1, 2, 3}. When creating integration cells for each trimmed element, we consider two
options for the seed vertex: (1) one of the polyhedral vertices (recall that a trimmed element is a curved polyhedron),
and (2) the origin of each element. Among all the possible decompositions in Option (1), we choose the one that
leads to the minimum number of cells. Option (2) is meant to create highly distorted cells and it guarantees the
presence of folded cells for this particular geometry. In each cell, p + r (r = 1, 3, 5) Gauss quadrature points are

sed per direction. The convergence results are summarized in Fig. 14(b–g), where we compare the two options of
ecompositions. We observe that for p ≤ 2, stable results are achieved with r = 3 and that both decompositions
ield almost indistinguishable convergence results, while r = 5 is required for p = 3. Optimal convergence rates
re achieved with all the B-spline discretizations. This implies that the accuracy and convergence are independent
f how we create decompositions.

Next, we consider a complex geometry shown in Fig. 15, where a cube [0, L]3 (L = 10) is cut by a sphere, a cone,
nd two cylinders. The corresponding B-rep is shown in Fig. 15(b), which contains several sharp curves/corners.
uch features can be respected with integration cells for accurate integration. When creating a decomposition
or each trimmed element, the seed vertex is chosen to be one of the element vertices. Among all the possible
ecompositions, we choose the one that leads to the minimum number of cells. The homogeneous Dirichlet boundary
s imposed on the plane z = 0, whereas the non-homogeneous Neumann boundary condition is imposed elsewhere.
ll the other problem settings, including Cartesian grids, corresponding spline discretizations, and the number of
uadrature points per direction, follow the same as those in the previous example.

In Fig. 16, we show a series of Cartesian grids and the corresponding trimmed elements. Each color represents
single trimmed element, which is generally decomposed into a collection of reparameterized cells for integration.
e observe that such cells well align with the sharp features in the input B-rep. In addition, in Fig. 16(a–d) it can

e seen that face-wise decompositions are not conformal. The solution field using the 16 × 16 × 16 Cartesian grid
s shown in Fig. 16(e). Moreover, the convergence plots are shown in Fig. 17, where we again observe optimal
onvergence rates for linear, quadratic and cubic spline discretizations.

As the last example, we present an engine model obtained from the gallery of OpenCASCADE [48] to show
hat our proposed method can robustly accommodate real-world geometries. Its B-rep has many detailed features
hat are represented by 918 trimmed spline surfaces in total. The B-rep is embedded into a series of Cartesian grids
ith resolutions 8 × 8 × 8, 16 × 16 × 16, and 32 × 32 × 32, on which we solve Poisson’s problem using tricubic
-splines. The numerical solutions are shown in Fig. 18. This demonstrates that with folded decompositions, we
an flexibly reparameterize trimmed elements while retaining all the important geometric features.
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m
d
t

Fig. 16. The B-rep embedded into a series of consecutively refined Cartesian grids (a–d), and the solution field (e) obtained using the
esh in (d). In (a–d), only trimmed elements are shown and each color represents a trimmed element. The black curves represent face-wise

ecompositions for the boundaries of trimmed elements as well as the outlines of non-trimmed elements. (For interpretation of the references
o color in this figure legend, the reader is referred to the web version of this article.)

Fig. 17. Solving Poisson’s problem on a domain shown in Fig. 15. (a, b) Convergence plots of relative L2- and H1-norm errors, respectively,
with r = 5. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
20
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n

Fig. 18. Solving Poisson’s problem on an engine model with different resolutions of Cartesian grids. (a–b) show a top view of the solution
for different discretizations, whereas (d–f) show the solution seen from the bottom. The underlying embedding domain is represented with
black lines. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

8. Conclusions and future work

In this paper, we propose to use folded decompositions for numerical integration over complex domains,
which essentially eliminates constraints upon candidate decompositions and thus provides a significant flexibility
to accommodate real-world geometries in engineering simulation, while retaining a relatively small number of
integration cells. A domain of interest usually has a B-rep in 3D. A corresponding volumetric decomposition is
created following two steps. First, the B-rep is decomposed into smaller surface patches, which respect possible
sharp geometric features and do not need to be conformal. Such surface patches are generally approximated with
Bézier surfaces. Second, the domain is decomposed into a collection of pyramidal cells using the surface patches
and a seed vertex chosen in a rather arbitrary manner. The resulting pyramids serve as the integration cells where
standard Gauss quadrature can be applied. Generally, such cells present negative Jacobian because there is no
constraint on the choice of the seed vertex.

The validity of these unconstrained decompositions is theoretically guaranteed. We have performed two groups of

umerical tests to numerically assess the validity and robustness of folded decompositions: integration of functions
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and solving partial differential equations (PDEs) using isogeometric analysis (IGA). In both cases, we compare the
performance of folded decompositions with that of J+ decompositions. In the case of integrating polynomials, we
have shown that with a sufficient number of quadrature points, machine precision can always be reached using
folded decompositions. On the other hand, in the case of solving PDEs, we observe that the performance of folded
and J+ decompositions is almost indistinguishable in terms of accuracy and convergence, as long as a sufficient
number of quadrature points are used. However, due to its great flexibility, folded decompositions can accommodate
very complex geometries that involve various kinds of geometric features.

In summary, the proposed methodology allows the creation of high-order decompositions of B-reps for integration
purposes in a very simple way, while yielding results analogous in terms of accuracy to the ones obtained using
J+ decompositions. Nevertheless, while folded decompositions provide a significant flexibility and robustness to
accommodate real-world complex geometries, there are limitations, for instance, when we use them to visualize
simulation results. Therefore, in the future, we plan to further exploit possible decomposition schemes such that we
can minimize the number of folded integration cells while being able to deliver J+ cells at its best.
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Appendix. Number of quadrature points per direction

In this Appendix we study the number of quadrature points needed per direction to exactly integrate a given
polynomial f (x) over a certain domain Ω , i.e., to compute I =

∫
Ω f (x)dx (Eq. (1)). Let Qp,p(Ω ) and Qp,p,p(Ω )

enote bi-degree-p and tri-degree-p polynomial spaces defined on Ω , respectively, and we assume f (x) ∈ Qp,p(Ω )
n 2D or f (x) ∈ Qp,p,p(Ω ) in 3D. We note that a similar result was reported in 2D for NURBS-enhanced finite
lement methods [47].

We adopt the following three assumptions to facilitate the study of exact polynomial integration, which, however,
re not needed elsewhere in the paper. First, we assume that Ω can be exactly represented by a set of cells,
ℓ : Λ = [0, 1]d

→ Tℓ. Second, Tℓ is assumed to be a Bézier patch that has a polynomial representation. In other
ords, Ci (u) in (7) and Si ◦ Ri, j (u, v) in (16) are Bézier curves and surfaces, respectively. Third, for simplicity,
ℓ is further assumed to have an identical degree (q) in all directions, i.e., Tℓ ∈ Qq,q (Λ) × Qq,q (Λ) for d = 2 or
ℓ ∈ Qq,q,q (Λ) × Qq,q,q (Λ) × Qq,q,q (Λ) for d = 3.

Therefore, according to (2), we have

I =

∫
Ω

f (x)dx =

L∑
ℓ=1

∫
Λ

f ◦ Tℓ det (∇Tℓ) du. (A.1)

hen d = 2, f ◦ Tℓ ∈ Q2pq,2pq (Λ), det (∇Tℓ) ∈ Q2q−1,2q−1(Λ), and thus we have

f ◦ Tℓ det (∇Tℓ) ∈ Q2q(p+1)−1,2q(p+1)−1(Λ). (A.2)

o exactly compute (A.2) with the tensor-product Gauss quadrature defined in Λ, we need the number of quadrature
oints per direction n to be sufficiently large such that
2n − 1 ≥ 2q(p + 1) − 1 ⇐⇒ n ≥ q(p + 1). (A.3)
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Likewise when d = 3, f ◦ Tℓ ∈ Q3pq,3pq,3pq (Λ) and det (∇Tℓ) ∈ Q3q−1,3q−1,3q−1(Λ). We have

f ◦ Tℓ det (∇Tℓ) ∈ Q3q(p+1)−1,3q(p+1)−1,3q(p+1)−1(Λ), (A.4)

nd

2n − 1 ≥ 3q(p + 1) − 1 ⇐⇒ n ≥
3
2

q(p + 1). (A.5)

Eqs. (A.3), (A.5) imply that for an exact integration, n can easily become very large when either p or q increases,
ue to the composition f ◦ Tℓ. However, exact integration of a polynomial is often not needed as long as the
ntegration error does not dominate the application of interest. We have such examples in Section 7.
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