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Abstract (300 words) 23 

Radon, a radioactive gas, is the largest source of ionizing radiation exposure for humans. As a 24 

result, its accumulation in confined environment can pose serious threats to health. In order to 25 

address the issue of radon exposure in dwellings, the European BSS directive 2013/59/EURATOM 26 



established national reference level and guidelines to define Radon Priority Areas (RPAs). The 27 

Geogenic Radon Potential (GRP) is considered an effective hazard indicator for assessing the 28 

potential accumulation of this gas in buildings from geological sources. Several approaches, 29 

including multivariate geospatial analysis and artificial intelligence algorithms, have been applied to 30 

generate spatial continuous maps of the GRP based on soil gas point measurements and other 31 

related geo-environmental proxies.   32 

The goal of this study is to map GRP of the central sector of the Pusteria Valley by a supervised 33 

machine learning algorithm (Random Forest), and use this map as a basis for identifying RPAs. The 34 

Pusteria Valley (North-eastern Italy) has been chosen as a pilot site due to its well-known 35 

geological, structural, and geochemical features. We then incorporate land use and population as 36 

vulnerability and exposure factors, respectively, to provide a final risk map. Results indicate that 37 

high Rn risk areas are associated with GRP values higher than 50 kBqm-3. The use of the GRP map 38 

as a hazard component of radon risk leads to a new geological definition of RPAs. GRP is an 39 

important tool for mapping Collective Risk Areas (CRAs) since the BSS directive only addresses 40 

the identification of Individual Risk Areas (IRAs). 41 

 42 

6 43 

Highlights  44 

 Mapping the Geogenic Radon Potential (GRP) using a robust supervised machine learning 45 

(i.e., random forest) as the most important spatial predictor for Indoor Radon Concentration 46 

(IRC).  47 

 Apply the risk definition (i.e., product of hazard, vulnerability and exposure) in order to 48 

define the CRAs by intersecting the GRP map (hazard) with the type of location 49 

(vulnerability) and total population (exposure)  50 

 Construct geological-based Collective Risk Areas (CRAs) map starting from GRP, coupled 51 

with land use (location type) and population density of the census tracts to define those areas 52 

subject to territorial planning by local authorities 53 
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 57 

Abbreviations: GRP = Geogenic Radon Potential; RPA = Radon Priority Area; IRC = Indoor 58 

Radon Concentration; BRS = Background Radon Source; TER = Tectonically Enhanced Radon; 59 

SRE = Surface Radon Exhalation; CRA = Collective Risk Area; IRA = Individual Risk Area; 60 



SGRC = soil gas radon concentration; GRHI = Geogenic radon hazard index; BSS = Basic Safety 61 

Standards, TGDR = Terrestrial gamma dose rate  62 

 63 

Introduction 64 

Radon (222Rn, hereafter Rn) is a radioactive gas considered the major source of ionizing radiation 65 

exposure for the population. Its potentially harmful effects on human health have been extensively 66 

documented (WHO, 2009). In particular, radon gas represents a serious hazard when it accumulates 67 

in indoor environments (Indoor Radon) such as in residential houses and workplaces.  68 

Exposure to indoor radon is a serious problem that has prompted Europe to introduce legislation 69 

(Basic Safety Standards Directive 2013/59/EURATOM) which, on the one hand, establishes 70 

maximal national reference level aimed to reduce the exposure to Indoor Radon Concentration 71 

(IRC); on the other hand, promotes the public administrations to define Radon Priority Areas 72 

(RPAs). For this reason, it is fundamental to identified areas characterised by the highest Rn hazard 73 

for the population. 74 

The concentration of radon gas in the environment can vary depending on the geological 75 

characteristics of an area. Radon produced within the Earth can migrate through permeable 76 

pathways (faults and fractures) in rocks and soil, or dissolved in groundwater, up to the shallow 77 

environment. Then, radon can diffuse into the atmosphere, or enter buildings. Geogenic Radon 78 

Potential (GRP) can be considered an optimal Rn hazard indicator. It is conceptualised as “what 79 

Earth delivers in terms of radon” from the geogenic sources (e.g., radionuclides content, faults and 80 

fractures) towards the atmosphere (Bossew, 2015; Bossew et al., 2020).  81 

In particular, GRP is characterised by the interaction of three natural processes: 82 

• the Background Radon Source (BRS), the process that produces Rn isotopes (222Rn and 220Rn) 83 

through the natural decay of uranium (U) and thorium (Th), which are found in varying 84 

concentrations in rocks and soil;  85 

• the Tectonically Enhanced Radon (TER, Benà et al., 2022), the additional process allowing radon 86 

to migrate more easily to the surface through permeable pathways (e.g., faults and fractures in the 87 

crust) from deeper sources, caused by the stress increase and pressure conditions associated with 88 

tectonic activity; 89 

• the Surface Radon Exhalation (SRE), the process by which radon gas is released from the ground 90 

into the surrounding environment. SRE includes the variables that affect radon movement in the 91 

shallow soil up to the soil/atmosphere interface (e.g., land morphology, soil permeability, humidity 92 

and temperature). This quantity of radon, which has not yet been extensively measured, represents 93 

the amount of radon that could potentially enter buildings.  94 



However, BRS and TER represent the dominant geological radon sources. 95 

Over the years, several approaches have been applied to estimate the GRP over an area (e.g., Neznal 96 

et al., 2004; Bossew et al., 2015; Pasztor et al., 2016; Ciotoli et al., 2017; Giustini et al., 2019; 97 

Petermann et al., 2021; Coletti et al., 2021).  98 

Neznal et al. (2004) proposed an early method to define the GRP that has been widely used due to 99 

its simplicity up until this day. The method was based on the measure of two quantities: the Rn 100 

concentration in the soil and the soil permeability. Equation 1 reports the Neznal formula to 101 

calculate the GRP (dimensionless):  102 

(1) 103 
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 105 

where SGRC is the soil gas radon concentration (kBqm-3) measured at a depth of about 0.8 m, and k 106 

is the soil gas permeability in m2.  107 

More recently, Pasztor et al. (2016) and Ciotoli et al. (2017) applied multivariate geospatial analysis 108 

(regression kriging and geographical weighted regression, respectively) for GRP modelling by 109 

using SGRC and selected environmental proxies for the first time.  110 

In the past three years, researchers have developed more advanced multivariate techniques, such as 111 

regression kriging (Coletti et al., 2021) and machine learning (ML) algorithms (e.g., random forest, 112 

etc.), which include several predictors associated with the geogenic Rn component (Petermann et 113 

al., 2021). However, it is important to emphasise that all these regression techniques require a 114 

response variable (i.e., SGRC or IRC). 115 

However, many European countries lack sufficient SGRC measurements and permeability data to 116 

support the mapping of GRP. As a consequence, the calculation of a Geogenic Radon Hazard Index 117 

was proposed by Bossew et al. (2020). The concept of the GRHI arose from the need to determine a 118 

specific indicator using regionally accessible geological variables. However, it is difficult to 119 

maintain consistency between GRHI scores in neighbouring regions when using multiple predictors. 120 

In other words, GRHI values for areas with comparable geological factors but different data sources 121 

should be nearly equivalent. 122 

In order to produce consistent maps, Cinelli et al. (2015) proposed a first method to assign weights 123 

to continuous or categorical input variables (covariates) based on their contribution to the index. 124 

The weighted "mean class" is then used to calculate the Geogenic Radon Hazard Index (GRHI), a 125 

dimensionless quantity. The weights allocated to each covariate are determined by the observed 126 

correlations with the GRP in regions where GRP data are effectively accessible. Another way to 127 



avoid the issue is the application of other more subjective techniques which does not require a 128 

response variable (i.e., Spatial Multi Criteria Decision Analysis, SMCDA, Ciotoli et al., 2020).  129 

Since the GRP represents the amount of radon that could potentially enter buildings, it is considered 130 

as the most significant spatial predictor of the IRC; therefore, it is crucial to map the GRP as 131 

accurately as possible using a robust methodology. In this regard, the BSS European Directive 132 

59/2013, transposed into Italian law by Legislative Decree n.101/2020, emphasizes further the 133 

identification of RPAs, originally defined as those areas where the annual average IRC in a 134 

significant number of dwellings is expected to exceed the reference level of 300 Bqm-3. However, 135 

the concept and interpretation of "significant number of buildings" in the European Directive 136 

remained unclear.  137 

In a recent study, Petermann et al. (2022) emphasized that rather than the collective concept of 138 

geogenic risk, the interpretation of "significant number" of buildings is factually based on the 139 

concept of geogenic hazard, in that it is assumed to mean something like a relevant percentage of 140 

buildings within an area notwithstanding the number of houses or of people affected. 141 

The latter accounts for the number of people affected, based on the notion that the possible 142 

detriment caused by Rn exposure in an area - the number of lung cancer fatalities - depends on 143 

hazard and presence of people who can be harmed. After all, according to the BSS, it is the 144 

detriment that should be reduced by Rn policy.   145 

On the other hand, staying with the hazard- or individual risk-type notion of RPA, there is no 146 

uniform decision at the regional scale regarding the selection of the reference level (RL) and the 147 

threshold of probability percentage (p0) of buildings exceeding the RL. In general, the majority of 148 

European nations (including Finland, Germany, Greece, Montenegro, and Spain) adhere to the 149 

European Directive adopting the recommended reference level of 300 Bqm-3 and a common 150 

probability threshold of 10% (Bossew, 2018). Particularly, Germany only considers IRC 151 

measurements in rooms on the ground floor of buildings with basements, whereas Spain only 152 

considers measurements in rooms on the ground or first level. Ireland has an RL of 200 Bqm-3 and a 153 

p0 of 10%. Other countries, including Austria and Switzerland, define distinct priority levels based 154 

on RL and measurer IRC (Bossew, 2018). Italy has an RL of 300 Bqm-3and a p0 of 15% (D. Lgs. n. 155 

101/2020). A map of the confusing diversity of RPA definitions across Europe has been shown in 156 

Bossew and Suhr (2023, see Fig. 2 in the cited paper). 157 

As reported in Bossew et al., 2021, the goals of radiation protection from Rn indoor are twofold: 158 

 to protect people from high Rn exposure in order to reduce individual risk (even if few 159 

people are involved); 160 



 to avoid high exposure to the community, because the harm to society is proportional to the 161 

collective risk.  162 

But how the European Community protects people from Rn risk?  163 

In order to limit radon exposure and thereby lower the population's likelihood of contracting lung 164 

cancer, the regulatory program aims to identify RPAs and implement ad-hoc mitigation plans. 165 

European legislation aims to reduce the detriment from Rn exposure (i.e., the number of lung cancer 166 

deaths) and as a consequence, reduce the collective exposure. Collective exposure can be assessed 167 

by introducing the concept of collective risk, a complement of the individual risk concept (as 168 

interpreted by the BSS directive, "classical" RPA). Collective risk can be figured as consisting of 169 

many little individual risk zones. Accordingly, the demand to identify RPAs focused only on 170 

building remediation rather than land use planning is a controversial subject affecting both 171 

European and regional legislation. 172 

In the light of these considerations, and in the absence of any specific approach for defining RPAs 173 

at the European level, we propose to map collective risk areas (or detriment, CRAs) as the 174 

combination of the GRP, vulnerability and exposed factors, as a complement to mapping individual 175 

risk areas (IRAs) associated with IRC (i.e., "traditional" RPA). Rn abatement policy must take care 176 

of these areas in order to minimize the damage, while also preserving areas of high individual risk. 177 

The goal of this study is to show the effectiveness of a CRAs map to define Rn risk areas in a test 178 

site, the Pusteria Valley (Bolzano, northern Italy), based on the GRP map (i.e., hazard factor) 179 

generated by using multivariate machine learning (MML) technique (e.g., Random Forest, RF). 180 

The Pusteria Valley was chosen because it is well-known from a geological, structural, and 181 

geochemical point of view with a lot of available data (Benà et al., 2022), and also because it was 182 

already the target of IRC measurements (Minach et al., 1999).  The obtained GRP map (hazard) was 183 

merged with the land use type (vulnerability) and population (exposure) of census tracts available 184 

from the ISTAT (i.e., Istituto Nazionale di Statistica) website in order to identify risk areas that may 185 

be subject to territorial planning by local authorities. The CRAs map can be merged with the RPAs 186 

map (sensu stricto). 187 

The construction of GRP maps is a fundamental tool for both Rn hazard and risk analysis and, 188 

according to a new more geological view, as a base map for the identification of Radon Priority 189 

Areas (RPAs). This is important for collective risk assessment (land-use planning and prevention), 190 

and for individual risk assessment (i.e., more strategic planning of indoor surveys, and specific 191 

remediation actions). 192 

 193 

2. Methods 194 



A dataset including different variables (e.g., response and predictors) was used to elaborate the GRP 195 

map of the study area by applying a ML technique (i.e., Random Forest, Breiman, 2001) and predict 196 

the radon values at the center points of a 50x50 m fishnet. The resulting GRP map will be then used 197 

as the hazard factor in the risk equation (Eq. 2, see section 2.4) and multiplied by census tract 198 

indicator of land use and population density representing the vulnerability and the exposure factors, 199 

respectively.  200 

Figure 1 shows the flowchart of the applied procedures. Data were processed using ArcGIS Pro 201 

3.1.2 (copyright 2023@ESRI Inc.) and Scikit learn library in Python PyCharm 2023.1.2 (Copyright 202 

© 2010–2023 JetBrains s.r.o.). 203 

  204 

  205 

Figure 1. Flowchart of the mapping process and procedures. SGRC = soil gas radon concentration; 206 

perm = soil permeability; TGDR = terrestrial gamma dose radiation; 220Rn = thoron; CO2 = carbon 207 

dioxide concentration in soil gas; H2O = concentration of radon dissolved in water; FD = fault 208 

density; dtm = digital terrain model; slope = slope; aspect = aspect ratio; solar = solar radiation; loc 209 

type = location type: P dens = population density; GRP map = geogenic radon potential map; RPAs 210 

= radon priority areas. SGRC, permeability, TGDR, thoron, carbon dioxide, radon dissolved in 211 

water, faults, DTM were pre-processed in order to apply the forest-based classification and 212 

regression (first step) to construct the GRP map (hazard factor). The GRP map was then multiplied 213 

by the location type (vulnerability factor) and population density (exposure factor) to construct the 214 

collective risk map.  215 

 216 

2.1 Dataset 217 



The dataset used consists of one response variable (SGRC) and ten independent variables that were 218 

either measured on-site or derived from primary base-maps, available online from the Bolzano 219 

province's Geo-catalogue (http://geokatalog.buergernetz.bz.it/geokatalog/#!). These ten variables 220 

were selected as potential predictors for machine learning regression models. 221 

Soil gas surveys (222Rn, 220Rn, CO2) (Benà et al., 2022), TGDR, and permeability measurements 222 

were collected on-site during two separate field campaigns in summer 2021 and 2022 under similar 223 

and stable climatic conditions. The Digital Terrain Model (DTM 2.5 m resolution) and fault 224 

distribution were obtained directly from the base maps of the Bolzano Province Geo-catalogue.  225 

The examined predictors were pre-processed using geospatial analysis to generate 50x50m raster 226 

maps (see Fig. S1 in supplementary materials). The "Extract multi-value to point" tool of ArcGIS 227 

Pro was used to assign the values of the predictor grids to each observation of the collected soil gas 228 

samples. The obtained dataset, containing the predictors and the response variable (SGRC), was 229 

used to train the Random Forest (RF) model. Once the best model was found, it was applied to a 230 

regular point 50x50m fishnet corresponding to the centroids of the predictors' raster grid pixels. The 231 

final dataset consists of 27,758 points that includes complete information for all predictors. The 232 

following sections provide a detailed description of the response variable and the predictors. 233 

 234 

2.1.1 Response variable 235 

SGRC (kBqm-3) was used as a response (dependent) variable in the Forest Regression algorithm to 236 

describe the GRP map. The Rn dataset consists of 278 measurements obtained in the field using the 237 

methodology and sampling pattern described by Benà et al. (2022). 238 

 239 

2.1.2 On-site predictor variables  240 

Five predictors were measured in the field: thoron (220Rn), carbon dioxide (CO2), TGDR, 241 

permeability and 222Rn dissolved in water. The same sampling technique and pattern adopted for the 242 

measurement of Rn concentrations in soil gas was also adopted for the measuring of thoron and 243 

carbon dioxide (CO2) (Benà et al., 2022). 244 

 245 

TGDR measurements  246 

TGDR measurement have been performed at 76 sampling points using the NaI γ-ray portable 247 

scintillometer (Scintrex GRS-500) pre-set on the total count rate window corresponding to an 248 

energy interval range between 80-3000 keV. The device was held 1 m above the ground for a 249 

measuring time equal to the time needed to reach a 3% accuracy. The sensitivity factor of the 250 



Scintrex GRS-500 is 3.40 cps/nGyh-1 and allows the counting rates to be converted into the IS unit 251 

of the gamma dose rate (μSv/h, Giustini et al., 2019, 2022).   252 

Geostatistical analysis (experimental variogram calculation, modelling, kriging) was used to obtain 253 

a prediction map of the TGDR (see Fig. S2 a and b in supplementary materials). This variable is 254 

used as a proxy of the BRS contribution (i.e. radionuclides content in rocks) of the geogenic radon 255 

component.  256 

 257 

Permeability 258 

Soil gas permeability directly affects radon gas migration from the deep source (mainly by 259 

advection along faults), and in the shallow soil (by diffusion prevalent mechanism) (Nuhu et al., 260 

2021; Neznal et al., 2005).  High permeability allows the upward migration of radon, enabling its 261 

exhalation to the atmosphere, while the presence of a shallow soil layer with low permeability could 262 

increase the accumulation of radon in the soil with a consequent decrease of exhalation rate at the 263 

soil-atmosphere boundary (Castelluccio et al., 2015; Johner et al., 2001). The radon concentration in 264 

soil gas is directly dependent on the geological characteristics of the area (i.e., radionuclide content, 265 

presence of fractures and faults) and can be strongly influenced by soil permeability in terms of soil 266 

pore dimensions and soil water content (i.e., soil moisture) (Benavente et al., 2019; Lara et al., 267 

2015). Additionally, some other physical characteristics of soils, such as soil texture and grain size, 268 

have a significant impact on the mechanisms of radon emanation and exhalation in the soil 269 

environment (Huynh Nguyen et al., 2018; Yang et al., 2019).  270 

In the study area, the soil permeability was measured at 76 sampling points with a permeameter 271 

developed by the University of Roma Tre and directly connected to the soil gas sampling probe 272 

(Castelluccio et al., 2015). The soil is assumed to be homogeneous and isotropic, and standard state 273 

is considered; the air is assumed to be incompressible. The calculation of the final soil permeability 274 

(k) is based on Darcy’s equation and expressed in m2. Geostatistical analysis (i.e., experimental 275 

variogram calculation, modelling, kriging) was used to obtain a prediction map of the soil 276 

permeability (see Fig. S3 a and b in supplementary materials).  277 

 278 

Radon dissolved in groundwater 279 

Dissolved 222Rn was measured at 22 captured water springs in the study area. Water samples from 280 

selected springs were already studied for their chemical-physical conditions by the Agenzia 281 

provinciale per l'ambiente e la tutela del clima - Laboratorio analisi acque e cromatografia 282 

(Bolzano province) in 2022.  283 



The water was sampled directly from the captured springs using glass bottles. Rn concentrations 284 

were measured using RAD7 in the sniff mode connected to Big Bottle RAD H2O and drystick 285 

(drierite desiccant) accessories. Prior to the measurements, the system was purged to guarantee that 286 

the moisture (water content) inside the system was reduced to less than 10% humidity. The sampled 287 

bottle was then connected in a closed air-loop mode to the RAD7 (Durridge Company Inc.). During 288 

system operation, continuous circulation gradually enriches the air contained in the closed loop with 289 

the Rn dissolved in the water sample. Each measurement was performed with a 5-minute 290 

integration period and was repeated until the difference between the last two readings is less than 5-291 

10%. The final result was calculated by averaging the previous two integrations. Thiessen polygons 292 

was constructed to create a map of areas of influence around the water springs. Water springs 293 

represents the centroid of the Thiessen polygons in which the measured dissolved radon value (i.e., 294 

the centroid) is assumed to be representative of the area underlying the entire polygon. The resultant 295 

map was transformed in a 50x50m raster grid and used as predictor in the RF model.  296 

 297 

2.1.3 Derived predictor variables  298 

Fault density  299 

Faults and fractures represent the main pathway for radon, and other gases (CO2 and CH4) 300 

migration in the subsoil from deep sources (see Ciotoli et al., 2007, 2014, 2017, 2020; Giustini et 301 

al., 2019). Therefore, the network of the fractured zone characterising the study area has been used 302 

as a proxy of the secondary permeability. The distribution of the main faults in the study area (Keim 303 

et al., 2013) was converted into a fault density (FD) map using the quadratic kernel density function 304 

(Silverman, 1986), as described in Benà et al. (2022).  305 

 306 

Digital terrain model 307 

The Digital Terrain Model (DTM) of the study area (i.e., elevation) was used as a proxy of the 308 

meteorological conditions which may strongly affect radon migration and exhalation mechanisms. 309 

The mobility of radon can be impacted by the presence of slopes, hills, and depressions, which can 310 

alter air flow and soil pressure (Gundersen et al., 1992). Radon may not build up as much in areas 311 

with rough terrain because air circulation and groundwater drainage may be improved. On the other 312 

hand, low-lying areas and depressions may act as radon traps, resulting in higher levels of the gas 313 

(Sukanya et al., 2021). Furthermore, Griffiths et al. (2014) highlighted how crucial it is to take 314 

topographic interactions into account when estimating radon concentrations across different 315 

geographical areas. The DTM (2.5 m/pixel) of the Bolzano province is available on the Geo-316 



catalogue of the Bolzano province (Rete Civica dell’Alto Adige, 317 

https://geoportale.retecivica.bz.it/default.asp). 318 

The "Surface Parameters” tool of Spatial Analyst" in ArcGIS Pro was applied to the DTM to create 319 

maps of further potential proxies: slope, solar radiation (e.g., Areal Solar Radiation) and aspect 320 

ratio. The slope can be used as a proxy of soil moisture and shallow soil meteorological conditions; 321 

the solar radiation is used as a proxy of the microclimate/temperature. Aspect (i.e., slope exposure) 322 

refers to the compass direction of the downhill slope faces in relation to the sun. Into details, slope 323 

conditions such as the angle, aspect, and elevation of a land surface can strongly influence local 324 

weather patterns and microclimates acting as a proxy of meteorological conditions in different ways 325 

(e.g., sun exposure, rainfall distribution, wind patterns, temperature gradients), all of which may 326 

impact radon generation and movement (Zalloni et al., 2018). 327 

 328 

2.2 Predictor selection 329 

Predictor selection was conducted using Least Absolute Shrinkage and Selection Operator (Lasso) 330 

regression. Least Absolute Shrinkage and Selection Operator (Lasso) regression is an extension of 331 

ordinary least squares (OLS) regression used in statistical modelling and machine learning (ML) to 332 

estimate the relationships between variables and make predictions (Tibshirani, 1996, 2011; Durrant 333 

et al., 2021). This technique aims to find an equilibrium between model simplicity and accuracy by 334 

introducing a penalty term into the traditional linear regression model, which enables sparse 335 

solutions in which some coefficients are forced to be exactly zero. LASSO is especially useful for 336 

variable selection because it can automatically identify only the most significant and discard 337 

irrelevant or redundant variables, especially if we assume that many of the features do not 338 

contribute significantly to the target variable (Durrant et al., 2021; Handorf et al., 2020). It also 339 

helps to prevent overfitting by removing variables with low predictive value, potentially making the 340 

model more robust across datasets. Furthermore, because it can choose between correlated 341 

explanatory variables, it can aid in the optimization of models with high multicollinearity. In simple 342 

words, the Lasso regression adds a penalty term to the MSE used in linear regressions. This penalty 343 

term is proportional to the sum of the absolute values of the variable coefficients. The Lasso 344 

regression seeks the coefficient values that minimize the sum of the MSE and the penalty. 345 

The Lasso regression cost function is defined as follows (Eq. 3): 346 

(3) 347 

���� = �1
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 349 

where 350 



 J() is the cost function 351 

 n is the number of data or physical samples (statistically, the sample size) 352 

 yi is the actual output for the i-th sample 353 

 ŷi is the predicted output for the i-th sample 354 

 j represents the coefficients (weights) associated with each feature 355 

  l is the regularization parameter that controls the amount of regularization applied to the 356 

model. Higher values of  led to more regularization, resulting in a more pronounced feature 357 

shrinkage and potentially some coefficients becoming exactly zero. 358 

In this work, Lasso regression was applied in Python code using the scikit-learn module 359 

(sklearn.linear_model.Lasso).  360 

 361 

2.3 Machine learning and GRP mapping 362 

Machine learning (ML) algorithms allow to solve very complex problems. First, generating a model 363 

based on processing the dataset and then, predicting the values of a new input data point by 364 

executing the created model (supervised machine learning) (Rebala et al., 2019).  365 

In the literature, recent works have applied ML techniques for spatial prediction in a number of 366 

studies that deal with environmental science (e.g., landslide applications, Micheletti et al., 2014, 367 

Tehrani et al., 2022; soil mapping, Hengl et al., 2017, GRP mapping, Petermann et al., 2021; time 368 

series analysis, Janik et al., 2018). ML can handle complex multi-dimensional non-linear 369 

relationships and mostly makes no or weak assumptions of the underlying distribution of the data 370 

(Fouedijo and Klump, 2019). Furthermore, ML based approaches have been proven to outperform 371 

classical geostatistical models for several prediction tasks dealing with highly complex systems 372 

(e.g. Nussbaum et al., 2018; Hengl and MacMillan., 2019; Li et al., 2019). ML models display a 373 

high performance due to their ability to reflect the influence and interplay of a multitude of factors.  374 

Random Forest (RF) is an ensemble classifier algorithm developed by Breiman (2001) typically 375 

used in classification and regression problems providing an output based on a Decision Trees 376 

structures. Decision Tree is a regression model built using a series of decisions based on variable 377 

values. Splitting values are determined to best separate subsets of data to take one path or the other.  378 

Random Forest is a method of averaging many Decision Trees created from a bootstrap sample of 379 

the full training set using a subset of predictors (=mtry) at each split in order to reduce overfitting 380 

by a single Decision Tree. It uses bagging (i.e., bootstrap aggregation) to create numerous Decision 381 

Trees by sampling a subset of training data with replacement and constructing the model based on 382 

the sampled training set (Rebala et al., 2019). 383 



In this study, we have used Scikit learn code in python to apply a supervised machine learning 384 

method (i.e., Random Forest) to model the relationships between the SGRC (response variable) and 385 

the nine predictors described in the section 2.1.2 (220Rn, CO2, TGDR, permeability, fault density, 386 

digital terrain model DTM, slope, aspect ratio and solar radiation). 387 

 388 

 389 

2.4 Radon risk mapping  390 

2.4.1 Risk concept  391 

The development of GRP maps is a valuable tool for hazard analysis; this map, coupled with 392 

vulnerability and exposure factors, it is critical to assess the collective risk, i.e., the risk to which the 393 

general public is exposed by geological causes.  394 

Furthermore, the map of the collective risk can be combined with the indoor measurements (thus 395 

including the knowledge of the geological base processes) to better delineate Radon Priority Areas, 396 

and manage the individual risk in terms of remediation activities.  397 

As above mentioned, we can define the risk as the product of hazard, vulnerability and exposure 398 

(Eq. 2). 399 

(2) 400 

�()� = *+,+-. ∗ /0%�1-+2(%(3 ∗ 4567)0-1 401 

The application of the risk definition in order to mapping the CRA represents a first and easy 402 

method to assess the collective Rn exposure in the study area.  403 

 404 

2.4.2 Construction of CRA map 405 

According to the risk equation, in order to construct the CRA map we identified the GRP as the 406 

hazard term, the location types and the total population of the census tracts of the study area 407 

(available on the ISTAT web site, www.istat.it/it/archivio/104317#accordions) as vulnerability and 408 

exposure factors, respectively.  409 

The location type in the ISTAT dataset is marked by a number identifying the specific type of 410 

building areas from 1 (residential areas) to 4 (sparse houses). These numbers were reclassified in 411 

order to assigned the highest weight (4) to the area with the highest expected mean population 412 

density, as follow: (i) location type 4 = residential areas; (ii) location type 3 = housing unit; (iii) 413 

location type 2 = industrial areas; (iv) location type 1 = sparse houses.  414 

Then, the total population and the location type have been used to calculate the population density 415 

as the ratio between the total population living in a specific location type and the total area (in km2) 416 

of the census tract. The maps of the location type and the population density were converted in 50m 417 



x 50m raster grid and normalised to the maximum value before constructing the final Rn risk map; 418 

the GRP map was also normalized to the maximum value.  419 

Furthermore, these three factors (GRP, Location Type and Population Density) were multiplied 420 

using the Raster Calculator tool in ArcGIS Pro according to Eq. 2. The resulting risk map has been 421 

further standardized and the Zonal Statistic tool of Spatial Analyst in ArcGIS Pro was applied to 422 

assign a risk value to each polygon of the census tract. We considered the maximum risk value 423 

assigned to the polygon in order to visualize the risk map and to create the risk classes. The final 424 

risk map is divided into three risk classes expressed in percentage of risk (i.e., low, medium and 425 

high). 426 

 427 

3. Results 428 

3.1 Selected predictors, RF modelling and predictors importance 429 

Results of LASSO regression identified 7 predictors out of the 10 candidates: TGDR, CO2, FD, 430 

220Rn, slope, aspect and soil permeability (see table S1 in supplementary materials). DTM, solar 431 

radiation, and Rn in groundwater all show coefficients of 0, so they are excluded from the model 432 

because they are considered as being misrepresentative. Furthermore, though slope and aspect show 433 

not significant coefficients, they were however included in the RF model. The Variance Inflation 434 

Factor (VIF) was also calculated for the 7 selected predictors to evaluate multicollinearity, in order 435 

to be sure that among the 7 predictors there is no redundancy. All the selected predictors show VIF 436 

< 7 (see table S2 in supplementary materials). The selected predictors include: one geophysical 437 

parameter (TGDR), geochemical parameters (220Rn and CO2), geological parameters (Fault and 438 

Permeability), and geomorphological parameters (slope and aspect). All of these parameters are 439 

representative of the overall process at the core of Rn production (source), migration, and behaviour 440 

in shallow soil, as well as at the soil-atmosphere interface. 441 

Before to execute the RF model, the number of trees was set at 1000. The analysis of the model 442 

performance shows R2 of 0.93 and 0.47 for training and test data, respectively, and a RMSE of 0.30 443 

and 0.83 for training and test data, respectively (see Fig. S4 in supplementary materials displaying 444 

the predicted vs observed values for training and test data).  445 

The importance of the individual predictors in the RF model is considered as the relative influence 446 

of an individual predictor on the model performance (Fig. 2). The variable percentage importance 447 

shows that TGDR, CO2, fault density, 220Rn, slope, aspect and permeability have the main influence 448 

in the model performance, respectively.  In particular, TGDR, a proxy of the Rn source in rocks and 449 

soil, and the CO2 (the main carrier gas in the study area, Benà et al., 2022) represent the most 450 

influencing predictors with an importance higher than 30%. The fault density (FD) (i.e., proxy of 451 



secondary permeability) highligths an important decrease in the percentage range of 10-15%. 220Rn 452 

and slope show an importance lower than 10% followed by the aspect ratio and soil permeability 453 

lower than 5%, respectively. 454 

 455 

 456 

Figure 2. Feature importance based on SHAP value percentage in the RF model.  The predictors are 457 

ordered by decreasing importance.; X-axis: SHAP percentage; Y-axis = selected predictors. TGDR 458 

= terrestrial gamma dose rate; CO2 = carbon dioxide; FD = fault density; 220Rn = Thoron; perm = 459 

soil permeability.  460 

 461 

Furthermore, we constructed the SHAP diagram by using the “shap” library in Python to highlight 462 

the impact of each selected predictors on the model prediction (Fig. 3). The Y-axis of the SHAP 463 

diagram reports the 7 selected predictors in descending order of importance in the RF model from 464 

TGDR (the most influent) to the soil permeability (the less influent). The X-axis of the SHAP 465 

diagram represents the SHAP values quantifying the impact of a single feature on the model’s 466 

output: positive SHAP values indicate that the feature positively contributes to the output, while 467 

negative values suggest a negative contribution. Red and blue dots represent the contribution of 468 

individual features to the prediction compared to a reference value. Red dots represent positive 469 

contributions and indicate that the feature is increasing the predicted output. Blue dots represent 470 

negative contributions and indicate that the feature is decreasing the predicted output. In particular, 471 

the SHAP diagram pointed out that positive values of TGDR, CO2, FD, 220Rn, slope and 472 

permeability exert the main influence in the model output; while, aspect is the only variable that has 473 

influence in the model output for negative values.  474 



 475 

 476 

 477 

Figure 3. SHAP diagram. Y-axis: reports the 7 selected predictors in descending order of 478 

importance in the RF model; X-axis: the SHAP values quantifying the impact of a single feature on 479 

the model’s output: positive SHAP values indicate that the feature positively contributes to the 480 

output, negative values suggest a negative contribution. Red and blue dots represent the contribution 481 

of individual features to the prediction compared to a reference value. Red dots represent positive 482 

contributions indicating that the feature is increasing the predicted output. Blue dots represent 483 

negative contributions indicating that the feature is decreasing the predicted output. TGDR = 484 

terrestrial gamma dose rate; CO2 = carbon dioxide; FD = fault density; 220Rn = Thoron; perm = soil 485 

permeability.  486 

 487 

The next step in model interpretation is understanding the effect of an individual predictor on the 488 

model output. Partial dependent plots (PDPs) were constructed by using “pdpbox” library in Python 489 

to analyse the relationship between a target feature and the model's predicted outcome while 490 

considering all other features as fixed (see Fig. 5S a-g and the related explanation in supplementary 491 

materials). It helps to visualize the relationship between a target feature and the model's predicted 492 

outcome. The PDP of each predictor is calculated by accounting for the average effect of the other 493 

predictors in the model (Petermann et al., 2021).  494 

 495 

3.2 GRP map  496 

Random forest algorithm has been applied to construct the GRP map of the study area by using 497 

SGRC as response variable and the 7 selected predictors (i.e., TGDR, CO2, fault density, 220Rn, 498 

slope, aspect, permeability). The final predicted GRP map ranges between a minimum value of 7.21 499 

kBq·m-3 and a maximum value of 182 kBq·m-3 (Fig. 4). According to the results reported in Benà et 500 



al. (2022), we consider high GRP values those exceeding 50 kBqm-3, i.e., the local background. 501 

Higher GRP values extend along the E-W direction from Falzes to Chienes (central part), to Terento 502 

municipalities, accordingly to the direction of the wide fracture zone belonging to the Pusteria fault 503 

system. High GRP values are linked to the Tectonically Enhanced Radon (TER) quantity (Benà et 504 

al., 2022).  505 

 506 

  507 

Figure 4. Geogenic Radon Potential (kBqm-3) map of the study area.  508 

 509 

3.3 The CRA map 510 

Figure 5 shows the CRA map of the study area, representing the density of collective risk and 511 

obtained by multiplying the GRP map, the location type (vulnerability) and the population density 512 

(exposure factor). The map was divided into three risk classes using the natural breaks method as 513 

follow: i) risk < 5%, low risk (in white); ii) 5%<risk<50%, medium risk (in orange); iii) risk >50% 514 

high risk (in red). The CRA map is linked to table 1 which summarizes some parameters 515 

characterizing the three defined risk classes: (i) the average GRP value in kBqm-3; (ii) the average 516 

population density expressed in number of people per km2; (iii) the location type (i.e., 4, 3, 2, 1); 517 

(iv) the total area covered by the considered risk class. 518 

 519 



 520 

Figure 5. Map of the Collective Risk Areas. 521 

 522 

Collective 

risk class 

Risk level 

(%) 

GRP mean 

(kBqm-3) 

Population density 

(people km-2) 

Population 

(people)  

Location 

type 

Area  

(km2) 

Low < 5 63.50 546 5927 4, 3, 2, 1 68.51 

Medium  5 – 50 65.11 6116 3072 4, 3, 2, 1 0.75 

High  > 50 75.88 17549 622 4 0.05 

Table 1. The table reports the risk class and the correspondent percentage of risk, the mean GRP 523 

value, the population density, the location type and the extension of the area covered by the 524 

considered risk class.  525 

 526 

Most of the study area (68.51 km2) falls within low risk areas; this agrees with the mountainous 527 

morphology of the territory where most of the population is concentrated in the residential areas of 528 

the main municipalities (Terento, Chienes and Falzes). In general, the mean GRP values (hazard) 529 

exceed the local background value of 50 kBqm-3 in all the three risk classes and slightly increases 530 

from low risk (63.50 kBqm-3) to high risk (75.88 kBqm-3). The progressively increase of the mean 531 

population density (e.g., exposure) from low to high risk areas are strictly related to the location 532 

type (e.g., vulnerability): (i) in the low risk areas most of the census tracts (33) are described as 533 

residential areas (location type = 4) and sparse houses (location type = 1, 43 census tracts); (ii) in 534 

the medium risk areas most of the census tracts are considered as residential areas (location type 4, 535 

22 census tracts); (iii) all census tracts falling in the high risk areas are described as residential areas 536 



(location type = 4) with the highest population density. In fact, the population density increases 537 

accordingly from low to high risk areas. 538 

 539 

4. Discussion 540 

4.1 Interpretation of predictors in the RF model 541 

The RF model demonstrates that all of the selected predictors influence Rn concentrations and 542 

movement in the subsoil. This result is consistent with the dependence of Rn from the geochemical 543 

and structural characteristics of the study area mainly linked to the generation and transport of Rn in 544 

the geological environment (i.e., from deep source toward the subsoil) (Benà et al., 2022). In fact, it 545 

is not surprising that the variable's importance shows clearly that GRP is primarily affected by TGDR 546 

(35%, Fig. 2) which represents the BRS contribution (e.g., the radionuclide content 238U and 232Th) 547 

of the main outcropping rocks (i.e., gneiss, granite, phyllite) (Tchorz-Trzeciakiewicz et al., 2021; 548 

Giustini et al., 2019, 2022). Because the survey of ambient gamma dose rate was conducted at the 549 

ground level, the correlation of TGDR with soil gas radon concentrations is likely to be stronger than 550 

with atmospheric concentrations. In the literature, Bossew et al., 2017; Cinelli et al., 2019; Melintescu 551 

et al., 2018; Sainz Fernández et al., 2017 reported a positive correlation between TGDR and GRP. 552 

The BRS contribution to the Rn amount in soil gas generates a relatively high spatial variability of 553 

Rn concentration in the soil gas, reflecting the homogeneous characteristics of the soil/rock 554 

environment at local scale (BRS). However, Rn spatial variability can increase (also at local scale) 555 

near fault zones (TER), especially in seismic areas characterised by active faults. In these areas, Rn 556 

migration from deeper sources can be increased by intense fracturing and the presence of carrier 557 

gases (mainly CO2) that may play a dominant role for advective transport and redistribution of trace 558 

gases at surface (Wilkening, 1980; Ciotoli et al., 2007, 2014; Prasetio et al., 2023, and reference 559 

therein). This is observable in the study area along the Pusteria fault system, where radon 560 

concentrations in soil gas have a positive correlation with CO2 concentrations (importance of about 561 

30%, Fig. 2), suggesting a possible advective up flow caused by pressure gradients. In this faulted 562 

area, radon anomalies at surface could also be associated with elevated concentrations of 563 

radionuclide concentrations (i.e., Ra and U) in small soil particles transported by CO2 gas molecules 564 

(Etiope & Lombardi, 1995). Furthermore, the presence of dissolved CO2 in groundwater may 565 

promote radium dissolution and thus transport in solution (Giraults et al., 2014). 566 

The high importance (about 15%, Fig. 2) of the fault density (interpreted as fault secondary 567 

permeability) confirms the effect of the Pusteria fault system on the Rn migration (as well as of 568 

other gases); this predictor is strictly related to the TER component (Benà et al., 2022). Indeed, 569 

damage zones related to high fracturing zones (fault areas) often exhibit a high permeability 570 



compared to the surrounding rocks and may facilitate the fluids advective transport for SGRC, thus 571 

potentially increasing radon release towards the surface and, as a consequence, Rn availability to 572 

enter buildings (IRC) (Ciotoli et al., 2007, 2014, 2016; Seminsky et al., 2014; Chen et al., 2018; 573 

Banrion et al., 2022; Zhou et al., 2023). 574 

Similar importance of the other predictors (i.e., Tn, Slope, Aspect and Permeability) ranging from 4 575 

to 8% can be explained by shallower processes affecting Rn movement in the soil layer, and at the 576 

soil-atmosphere interface (SRE) (Fig. 2). In the shallow environment the influence of 577 

meteorological conditions can be a complex issue, and the literature results are controversial. Air 578 

temperature and pressure on soil radon concentrations is small in comparing with total seasonal 579 

variability of this gas, and in any case the influence of these two variables is further lowered by 580 

conducting soil gas measurement campaigns during periods of stable and good weather conditions 581 

(Ciotoli et al., 2014; Beaubien et al., 2013, 2008).   582 

The principal drivers governing diurnal and seasonal changes of radon concentration in the soil are 583 

the water-saturation and moisture-retention in the soil pore (i.e., rainfall) (King and Minissale, 584 

1994). These two parameters directly decrease soil permeability thus preventing radon gas diffusion 585 

in the shallow soil layers (Nazaroff, 1992; Alonso et al., 2019; Beltran-Torres, 2023). High soil 586 

permeability allows 220Rn to be detected at surface despite its short decay time (56 seconds).  587 

In addition, the slope can be used as a proxy of soil moisture and meteorological conditions in 588 

absence of any other meteorological variables. High slopes also constitute zones characterized by 589 

increased soil permeability because they do not promote the retention of water and moisture in the 590 

soil pores. On the contrary, flat zones are characterized by low soil permeability because they 591 

favour the accumulation of water and moisture in the soil pore. At this regard, the SHAP diagram 592 

shows that high values of Tn, slope and permeability are positively correlated with high GRP (Fig. 593 

3). The soil permeability may be linked to the ability of radon to migrate and escape towards the 594 

Earth surface. In fact, where permeability is high radon escapes more easily. Permeability is also 595 

linked to the fault density representing the secondary permeability. 596 

All these predictors, except for the aspect, have an impact on the GRP values prediction for positive 597 

values and show an increasing trend up to the expected average radon value (see PDPs, in Fig. S5 in 598 

supplementary materials). On the contrary, low values of the GRP are correlated with high values of 599 

the aspect ratio (i.e., inverse correlation). The aspect identifies the compass direction that the 600 

downhill slope faces for each location; therefore, radon accumulation is easier in flat areas.  601 

The model confirmed the correlations between geology and GRP and also provided insight into the 602 

utility and significance of other predictors that reflect the physical, chemical, and hydraulic 603 

properties of soil, as well as climatic predictors. On the basis of these results, further work should 604 



also consider meteorological parameters, such as soil temperature and humidity, rainfall, etc. This is 605 

especially fundamental to capture seasonal variability in models that uses IRC as response variable.   606 

 607 

4.2 Map of the Collective Risk Areas (CRAs)  608 

The GRP map obtained by RF regression represents radon hazard due to geological features of a 609 

specific region. It is strictly related to Rn gas directly measured in the soil and to all geological 610 

predictors (e.g., TGDR, CO2, fault density, etc.) that significantly influence its concentration in the 611 

shallow environment, and potentially affect its movement towards homes. GRP maps, representing 612 

the most significant spatial predictor of IRC, are useful tools to evaluate the Rn risk (Bossew, 2015; 613 

Bossew et al., 2020). 614 

As already mentioned, the European regulations aims to identify RPAs and implement mitigation 615 

plans in order to limiting radon exposure and thus reducing the risk of lung cancer to population. In 616 

an unbuilt and inhabited area, the presence of high Rn values represents only a high hazard (i.e., 617 

GRP), but not a risk. This concept is highly known and applied in the case of other natural 618 

phenomena such as in seismic microzonation studies. European legislation aims to reduce the 619 

detriment from Rn exposure (i.e., the number of lung cancer deaths) and as a consequence, reduce 620 

the collective exposure.  In Figure 6, we show how GRP is a key factor in recognising of collective 621 

risk areas (CRAs). 622 

In this paper, for the first time, we introduce the concept and define the Collective Risk Areas 623 

(CRAs) by applying the risk definition (section 2.4) consisting of three basic factors: i) the hazard, 624 

e.g., the Geogenic Radon Potential (GRP), ii) the vulnerability, e.g., the type of location, and iii) the 625 

exposure, e.g., the population.  626 

 627 

 628 

Figure 6. Summary sketch of the Collective Risk Areas concept.  629 

 630 



Mapping the GRP is clearly the first fundamental step in defining the Rn hazard, a characteristic 631 

which cannot be mitigated. For this reason, it is important to map it as accurately as possible (i.e., 632 

by consider multiple geological variables and applying robust mapping techniques).  633 

As reported in Benà et al., 2022, Rn values exceeding the lithological background (50 kBq m-3) are 634 

considered anomalous and linked to the wide fracturing zone of the Pusteria fault system that 635 

represents Rn enhanced by tectonics (TER). However, in Benà et al.,2022, this quantity is not 636 

discussed in terms of GRP and thus it does not include the other important geological factors, such 637 

as gas permeability and deep circulation indicators (e.g., Rn in groundwater), as well as the shallow 638 

effects governed by the morphological parameters (e.g., DTM).  639 

The identification of a threshold value of GRP is not significant to delineate CRAs, since the indoor 640 

radon risk exists even for "very low" concentrations of radon in the soil and, consequently, for very 641 

low GRP values. In fact, radon measured in the soil (GRP) is generally three order of magnitude 642 

higher than indoor radon. It is clear that every area can be affected by a potential indoor risk and all 643 

the dwellings are considered vulnerable.  644 

However, GRP plays a key role in defining the CRAs that mainly occur along the Pusteria fault 645 

system where Rn degassing is enhanced by the intense fracturing and the GRP values are high. This 646 

is consistent with the fact that all the GRP values contribute to the risk. Therefore, the CRAs map 647 

highlights those areas with low, medium and high collective risk and, as a consequence, here the 648 

IRC values may be high for the residential areas.  649 

 650 

5 Conclusions 651 

The mapping and analysis of GRP (e.g., Rn hazard), obtained by using ML approach, is a 652 

fundamental tool for the delineation of CRAs according to a new, more geological, interpretation of 653 

the RPAs with respect of that reported in the BSS directive (2013/59/EURATOM). 654 

We used the risk formula to combine the GRP map with the location type characteristic of the 655 

census tracts (e.g., the vulnerability factor) and the population density (e.g., the exposure factor).  656 

According to a geological-based interpretation of the RPAs, we can recognise hazard-based RPAs 657 

(CRAs) and detriment-based RPAs (IRAs) as complementary concepts of territorial planning and 658 

remediation actions, respectively, and not in alternative. 659 

In particular, the obtained results highlight the following conclusions: 660 

 Machine learning model by using the random forest technique demonstrates as a robust and 661 

high-performance method to obtain a GRP map of the study area. In particular, the obtained 662 

GRP map uses seven predictors reflecting geology (BRS and TER), soil characteristics 663 

(groundwater circulation, permeability), and meteorological conditions (DTM derivatives). 664 



The variable importance highlights the dominant impact of Rn source but still significant 665 

contributions of the other predictors.   666 

 As GRP is considered the most important spatial predictor of IRC, it is clear that mapping 667 

this hazard factor well represents the total amount of radon that can potentially enter 668 

buildings. 669 

 Since GRP (e.g., soil gas concentration) values are three order of magnitude higher than the 670 

IRC, there is no reason to define GRP threshold, as the indoor radon risk can exists even for 671 

"very low" concentrations of radon in the soil and, consequently, for very low GRP values. 672 

GRP qualitative classes can serve only as delineation of zones (in the same way used in the 673 

seismic micro zonation studies) in which different land use planning strategies and/or 674 

construction types, and remediation actions should be adopted 675 

 The absence of an unambiguous guidelines to define Radon Priority Areas (RPAs) led to the 676 

geological-based conceptualization of a complementary approach of mapping both the 677 

CRAs (in terms of prevention), as well as IRAs (in terms of building remediation actions). 678 

This study may help policy makers to implement constructive preventive measures in those areas 679 

where new buildings are planned, and to act in terms of remediation in the RPAs sensu stricto. 680 

Future studies may aim to define the effective individual risk by constructing statistical models that 681 

also consider IRC measurements and anthropogenic factors.  682 
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