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ABSTRACT
We show that optimal control of the electron dynamics is able to prepare molecular ground states, within chemical accuracy, with evolution
times approaching the bounds imposed by quantum mechanics. We propose a specific parameterization of the molecular evolution only in
terms of interaction already present in the molecular Hamiltonian. Thus, the proposed method solely utilizes quantum simulation routines,
retaining their favorable scalings. Due to the intimate relationships between variational quantum algorithms and optimal control, we compare,
when possible, our results with state-of-the-art methods in the literature. We found that the number of parameters needed to reach chemical
accuracy and algorithmic scaling is in line with compact adaptive strategies to build variational Ansätze. The algorithm, which is also suitable
for quantum simulators, is implemented by emulating a digital quantum processor (up to 16 qubits) and tested on different molecules and
geometries spanning different degrees of electron correlation.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0204618

I. INTRODUCTION

At the heart of the second quantum revolution are two main
characters: those working to counteract the harmful effects of quan-
tum noise and those seeking the most efficient strategies to gain
practical advantage from new quantum devices as soon as possible.
Both face this challenge because properly harnessing physics at the
nanoscale would enable the leap forward envisaged by the use of
quantum computers.1–3 First evidence of a quantum advantage,4–6

albeit with some caveat,7 is now coming to light.
Within this framework, the precise manipulation of quantum

matter is central to the emergence of new ideas leveraging non-
classical properties. Coherent control, before being the basis of
quantum information processing techniques,8,9 has been proven a
pivotal tool for the exploration of exotic states of matter enabling the
preparation of ultracold atoms10,11 or the investigation of ultrafast
electron dynamics.12,13 Accomplishing these tasks means pushing
the boundaries of engineering into the realm of quantum physics,

which has led to rapid development, both in terms of techniques14,15

and applications,16 of Quantum Optimal Control Theory (QOCT).17

In this context, the physical knowledge of the system and the ability
of simulating its evolution in the presence of an external control are
exploited to enhance a desired response by specifically tailoring a
tunable perturbation.

Here, we propose an optimal control approach to find the
ground state of a molecular Hamiltonian: the real-time evolution in
the presence of an external perturbation is handled by a quantum
device, while the optimization of the perturbation is carried out on
a classical hardware to minimize the energy of the system. In this
manner, the computational burden of the simulation is addressed
by the quantum device for which the solution of this task is expected
to be one of the first applications with a significant advantage over
classical hardware.18,19 The implementation of this routine does not
require the universality of the quantum platform and is applicable
to both an analog simulator and digital quantum computers. Our
work will be focused on the problem of determining the ground
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state energy of a molecular system and the implementation that we
will show directly relates to digital quantum simulators whose tech-
nology, to date, is more mature than the one of analog quantum
simulators for chemistry.20,21 Nevertheless, given the potential of
this latter alternative methodology, we will comment on the possible
development of our algorithm on an analog platform.

Similar optimal protocols have already been applied to the case
of laser cooling in a fully classical implementation.22 Differently
from the standard laser cooling procedure (which is mostly related
to the vibrational and rotational degrees of freedom23,24), here, we do
not drive the evolution toward states that are prone to relax toward
the target state but, instead, point directly to the target state mini-
mizing the energy of a closed quantum system. For this reason, we
will refer to the proposed method as quantum simulated cooling
since the ultimate goal of the algorithm is to find the optimal pertur-
bation that realizes a trajectory (among those that can be realized by
the adopted time-dependent Hamiltonian) driving the system from
an initial guess state (higher in energy) to its ground state.

The algorithm we are proposing is based on the idea of solving
an optimal control problem using a quantum system as a co-
processor and is, therefore, inscribed in a research line where other
problems have been addressed similarly. In particular, Li et al. have
considered a state preparation problem on a nuclear magnetic res-
onance (NMR) quantum processor;25 Judson and Rabitz26 focused
on the issue of optimal population transfer in ultrafast spectroscopy
exploiting a closed-loop feedback control strategy. They proposed
to shape the impinging light pulse on the basis of the molecular
response until the evolution reaches optimally the desired state.
Recently, this idea has been extended, using a quantum computer, to
those cases for which it is not possible to build such an experimental
apparatus.27

In addition to these works, the relation between optimal control
and variational hybrid algorithms is deep and has been discussed in
Ref. 28. Among the plethora of Ansätze proposed in the literature
to solve quantum chemistry problems, the works of Wecker et al.29

and Choquette et al.30 are closely related to this work. The former
has proposed, as Ansatz for the Variational Quantum Eigensolver
(VQE), a parametrized quantum circuit of the same structure of the
system Hamiltonian allowing to restrict the variational search within
a symmetry-preserving subspace. This eases the optimization that
is challenging when occurring in the entire qubits register Hilbert
space. The work in Ref. 30 moves from this point to include an addi-
tional term in the variational circuit accounting for temporary drifts
in subspaces where the symmetries of the system are not conserved.
Even though the variational circuit is not meant to realize a real-
time evolution of the system, the additional term that is included is
thought of as an external control highlighting, once again, the close
link between optimal control and variational hybrid algorithms.

Finally, we also mention the work of Meitei et al.31 that, very
recently, has explored the possibility of rephrasing a VQE approach
to optimize not a unitary generated by a parametrized quantum
circuit (i.e., the typical approach) but rather to shape the state prepa-
ration unitary applying an optimal control protocol directly on the
hardware Hamiltonian. Following up on this work, many efforts32

have been done to reduce the duration of the pulses during the con-
trol solution either including the pulse length into the variational
optimization33 or allowing leakages of the computer wavefunction
outside the standard computational space.34 This work aims to con-

tribute to these research lines by considering an analog quantum
simulator specifically devised for the molecular Hamiltonian.

This paper is organized as follows: in Sec. II, we present the
general structure of the method, in particular, the main steps that
must be followed when applying this procedure to any system are
identified. In this regard, in Sec. II A, we describe our choice for
the energy optimization task on the classical hardware. Section III
presents applications to molecular systems describing in detail the
control problem and the parameterization of the control operators
(Sec. III A). Results and technical details about the implementation
are provided in Sec. IV. We first show how the optimal control pro-
cedure is able to find the ground state while maintaining chemical
accuracy. Then, we focus on the effects that the length of the dynam-
ics can have on optimization. We find that the dynamics has an
optimal length in terms of convergence and result found, we com-
pare these times of the dynamics to quantum speed limit estimates
(i.e., minimum times to accomplish evolution according to quantum
mechanics) for processes driven by time-dependent Hamiltonians,
and, as reported in Ref. 35, we find that theoretical bounds for
time-dependent processes provide quite loose estimates compared
to numerical results. Moreover, we study the convergence of the
problem by keeping the evolution duration fixed and increasing the
number of control parameters. Finally, Sec. IV D is devoted to a
semi-empirical estimate of the computational cost of this method
obtained by applying this method to hydrogen chains of different
lengths. To conclude, we summarize the results obtained and discuss
potential future extensions of this work.

II. QUANTUM SIMULATED COOLING
In this work, we assume that a reference wavefunction ∣Ψ0⟩,

approximating the target ground state ∣ΨGS⟩ of the problem Hamil-
tonian Ĥ, can be computed efficiently with a preliminary classical
computation (e.g., such as the solution of a mean field effective
Hamiltonian). We propose the use of a quantum processor to sim-
ulate the dynamics of the system Hamiltonian in the presence of a
time-dependent external control V̂(t). If the unitarity of the dynam-
ics is preserved, V̂(t) can be adapted differently depending on the
problem at hand, with the purpose of finding the ground state of the
system. The perturbation can either represent a real physical process
(such as the presence of an external field coupled to some system’s
degree of freedom) or a process without an experimental coun-
terpart, not affecting the viability of the proposed computational
method. Once the evolution is computed, the quantum processor
is used to evaluate the Hamiltonian expectation value for the sys-
tem at the final time t = T, and then, the perturbation is iteratively
shaped by a classical optimizer that aims to minimize the energy of
the system (see Fig. 1).

More formally, the quantum computer provides the evolution
of the system due to a parametrized Hamiltonian Ĥa(t),

Ĥa(t) = Ĥ + V̂a(t), (1)

where a is the set of control parameters shaping the external
perturbation.
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FIG. 1. Schematic diagram for the hybrid algorithm. The evolution of the system
wavefunction is performed on a quantum simulator, and the Hamiltonian expecta-
tion value ⟨H⟩ is measured, feeding a classical optimization routine that outputs
a new set of control parameters a. The control parameters shape the evolution
specified by the time evolution operator ÛQC

a (0, T) that starts from a higher energy
initial guess state, ∣guess⟩, and drives the evolution toward the exact ground state
of the system, ∣GS⟩. The loop ends when the energy is below a user-specified
threshold.

In order to compute the evolution, the simulated Hamiltonian
is mapped onto a N-qubits quantum register,

ĤQC
a (t) =∑

j
γa

j(t)P̂j , (2)

where j is an index running on different Pauli strings P̂ j

∈ {σx, σy, σz , I}⊗N that are operators acting non trivially on k differ-
ent qubits (in order to ensure the simulation routine efficiency18).
The coefficients γa

j(t) include both the system Hamiltonian and
time-dependent perturbation matrix elements, whose explicit form
(as for the Pauli strings) depends on the adopted mapping.

Notably, we have not made any observation regarding the
quantum simulation paradigm to adopt, as the application of this
methodology is not limited to universal quantum computers but can
be applied with any suitable quantum simulator. In the following,
we will make explicit reference to the implementation on a digital
quantum computer, bearing in mind that other routes are available,
which may be more or less convenient depending on the system
under consideration.

Several methods have been developed to implement the evo-
lution of a time-dependent Hamiltonian;36–38 here, we compute the
approximate time evolution operator Û(0, T), discretizing the time
axis with K slots of width Δt = T

K . Within each time slot, we con-
sider the Hamiltonian as time-independent. The accuracy of this
procedure depends on the precision with which the Hamiltonian
is simulated within each time slot, the time step used, and the
complexity of the perturbation.39

So far, we have presented the general framework of the method
and discussed the role played by the quantum device. In Sec. II A,
we discuss the complementary step of the procedure: the classical
update of the control parameters.

A. Classical optimization of the energy functional
In the framework of variational hybrid algorithms, the choice

of the classical optimization routine is a crucial step40 not only on
its own but also with respect to the quantum resource requirements.
Indeed, as a first approximation, we can estimate the cost of running
the optimal control problem to find the ground state as C = 𝒪(KMG

ε2 ),
where K is the number of iterations needed to achieve convergence
of the result, M is the number of circuits one needs to execute to do
one step of the optimization, and G is the gate count of each circuit.
The term ε−2 comes from the finite-shot sampling noise, with ε being
the measurement target error. We will discuss the computational
scaling of the control protocol proposed in this work in Sec. IV D;
here, we want to discuss only the possible choices of the optimizer
that impact primarily the quantity K.

For our purposes, the cost function that we want to minimize is
given by

J[a] = ⟨Ψa(T)∣Ĥ∣Ψa(T)⟩, (3)

where ∣Ψa(T)⟩ is the wavefunction of our system of interest at time
T after the application of the parameterized evolution Ûa(0, T).

If we consider current quantum processors, it is reasonable to
prefer gradient-free optimizers as the calculation of functional gra-
dients numerically or exactly41–43 would imply adding further noise
sources. On the other hand, trying to ensure the scalability of the
algorithm requires that the optimization task be accomplished in a
reasonable number of iterations to avoid the circuit number execu-
tions to grow too rapidly. To this extent, the most natural option
would be using a gradient-based optimization. Indeed, it is known
that the convergence rate for many optimization problems is higher
for these latter kinds of algorithms than for gradient-free optimiz-
ers.44 As described in Sec. IV A, here, we adopted the L-BFGS45

optimizer.
Before concluding this section, it is important to remark that

the close relationship between optimal control, variational algo-
rithms, and supervised learning may lead to improvements in our
implementation that, in turn, can reduce the overall scaling. Par-
ticularly, very recently natural gradient-based methods46,47 have
been developed in the context of Variational Quantum Algorithms
(VQAs) showing promising results in terms of convergence rate
and avoidance of barren plateaus. Furthermore, other strategies
implementing reinforcement learning techniques have shown great
improvements w.r.t. gradient-based methods that could possibly
lead to further speedups to the proposed algorithm.48–50 We will seek
to explore these aspects in future contributions.

III. MOLECULAR GROUND STATE ENERGIES
In this section, we provide a detailed description of the algo-

rithm sketched above applied to the case of molecular systems.
Therefore, analog to Sec. II A, we identify with the problem
Hamiltonian H the molecular Hamiltonian Hmol,

Ĥmol =∑
p,q

hpqa†
paq +

1
2 ∑p,q,r,s

gpqrsa†
pa†

r asaq, (4)

where hpq are the one-electron integrals containing the kinetic
energy and the electron–nuclei repulsion terms and gpqrs are the
two-electron repulsion integrals.
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To compose the parametrized Hamiltonian Ĥa(t), we have
to specify a form for the perturbation operator and a proper
parametrization to implement the optimization routine. As already
mentioned in Sec. II, different options are viable; here, we consid-
ered a time-dependent modification of the Hamiltonian expressed
in terms of five ingredients: (i) an effective electron mass me(t),
(ii) effective nuclear charges Z̃i(t), (iii) screened electron–electron
interactions ε̃(t), (iv) a time-dependent effective scalar mean field
term b0(t), and, finally, (v) an overall scalar prefactor a0(t). These
lead to the following expression for V̂a(t):

V̂a(t) = a0(t)
⎡⎢⎢⎢⎢⎣
∑
p,q

h̃a
pq(t)a†

paq +
1
2 ∑p,q,r,s

g̃a
pqrs(t)a†

pa†
r asaq

⎤⎥⎥⎥⎥⎦
, (5)

where h̃a
pq(t) and g̃a

pqrs(t) are given by

h̃a
pq(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2me(t) ∫

ϕ∗p (x)∇2ϕq(x)dx p ≠ q

− ∫ ϕ∗p (x)∑i
Z̃i(t)

ri
ϕq(x)dx

(b0(t) +
1

2me(t)
)∫ ϕ∗p (x)∇2ϕq(x)dx p = q

− b0(t)∑i (Zi +
Z̃i(t)
b0(t)

)∫ ϕ∗p (x)
1
ri
ϕq(x)dx

(6)
and

g̃a
pqrs(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( 1
ε̃(t) + b0(t))gpqrs p = r, q = s

( 1
ε̃(t) − b0(t))gpqrs p = s, q = r

1
ε̃(t) gpqrs else

. (7)

The choice of this parameterization is guided by three factors:
(i) linking the perturbation explicitly to physical quantities that are
accessible in the presence of an analog simulator; (ii) minimizing the
number of parameters to be optimized to reduce the computational
cost of optimization; and (iii) ensuring the necessary expressivity for
the perturbation to effectively generate dynamics that lead to the tar-
get state: a control operator able both to represent a solution space
that (i) contains the FCI state and (ii) not too large that its explo-
ration becomes unfeasible due to trainability issues. Particularly,
the last principle motivated the choice of a differential treatment
for each atom in the molecule: in fact, it may allow a more subtle
discrimination between spatial orbitals (that already experience dif-
ferent nuclear charges due to a0 and b0 factors) enhancing effects
due to the distinct atom’s electronegativity. The extent to which this
feature impacts the optimization of the wavefunction is an intrigu-
ing question in itself, as it may provide additional physical insight
into the solution of the control problem. We aim to delve deeper
into investigating this particular feature in a follow-up study.

Concerning the trainability of the proposed parameterization,
it is important to mention the problem of barren plateaus, which
is of specific relevance to hybrid variational algorithms.51,52 It has
been shown that the landscape parameters’ shape is strongly affected
by the exponentially big dimension of the quantum processor’s
Hilbert space. More precisely, as we consider larger systems (i.e., a

greater number of qubits), the average value of the gradient objec-
tive function tends to zero and more and more states embody this
typical value. Thus, if we do not leverage the physical intuition
coming from the model Hamiltonian of interest (e.g., exploit sym-
metry constraint), the control parameters landscape becomes flat
over a larger portion of the Hilbert space that we explore during our
optimization procedure. We will discuss this aspect in more detail
in Sec. IV C.

Before concluding this section, we want to comment on the set
of reachable states that our parameterization allows to obtain. Par-
ticularly, in order to ensure that a given control operator satisfies the
fulfillment of complete controllability (i.e., there exists a set of para-
meters able to prepare a given state starting from an arbitrary initial
state), one has to check if the operators that express the overall Va(t)
span a Lie algebra.53 As shown in Refs. 54 and 55, this argument
allows to demonstrate that the UGCCSD operator is not necessar-
ily able to reproduce the FCI solution. One could argue that similar
arguments may hold for our control operator since they share a sim-
ilar structure. As discussed in Ref. 56, very similar controllers may
have different degrees of controllability and, in order to answer rig-
orously, one should address this issue for different instances of our
parameterization (i.e., varying the evolution length and number of
controllable steps). We will explore this aspect in a future study.

A. Parametrization of the control Hamiltonian
Now, we turn our attention to the parametrization of the exter-

nal control. Within the context of quantum optimal control, various
shapes for the control fields have been proposed ranging from
superposition of Gaussian pulses44 and Fourier-based parametriza-
tions (such as the CRAB and DCRAB methods57,58) to a point-wise
definition of the temporal profile as in the case of the GRAPE
algorithm.59 In this work, we have opted to represent the control
functions using the latter option. Previous studies that applied simi-
lar parameterizations to optimal gate synthesis have demonstrated
that this approach is not always preferable compared to the ana-
lytic parameterization.60 Indeed, analytic controls may allow a faster
computation of the gradients and have been shown to be less prone
to introducing unwanted high-frequency components leading to
leakage errors. However, when transitioning to experimental setups
where discretization of control pulses becomes inevitable, these dis-
advantages fall short.49 Since we wanted to focus on the development
of an algorithm as more oriented to analog simulators as possible, we
focused on this approach.

With these choices of the parameterizations, we get an explicit
scaling of the number of parameters w.r.t. the time steps of the evo-
lution and system size, which is 𝒪(MT), where M is the number
of nuclei and T is the number of controlled steps of the discretized
evolution. In Sec. IV D, we will provide semi-empirical estimates
of the scaling w.r.t. the number of spin-orbitals showing results on
hydrogen chains of different lengths.

It is worth noticing that the energy expectation value measured
at the end of the perturbation, as mentioned in Sec. II, is related
to the system Hamiltonian Ĥmol. Hence, no boundary conditions
on the perturbation that impose the driving Hamiltonian to coin-
cide with the system Hamiltonian at the end of the evolution are
needed. Finally, in contrast with usual optimal control protocols
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applied to laboratory experiments, unless it is useful for the opti-
mization, the control parameters are allowed to take arbitrary values
without maximum (or minimum) thresholds or penalty.

IV. RESULTS
A. Computational details

In this section, we provide the computational details for
the implementation of all our numerical results shown in
Secs. IV B–IV D. All the calculations were performed with a Python
code using a locally modified version of the PennyLane library61

to construct a representation of all the operators on the computa-
tional basis. The evolution and the optimization of the wavefunction
were carried out using JAX62 and the JaxOpt63 library in order to
exploit automatic differentiation and fast evaluation of the quan-
tum dynamics with just-in-time compilation of the code. To ease the
computational burden of exactly simulating the quantum dynamics
into the qubit space, we adopted symmetry reduction of the oper-
ator representation to taper-off redundant qubits as shown in Ref.
64 and implemented in Ref. 61. The code is available open-source
in Ref. 65. Regarding the specifics of the optimization, we used the
L-BFGS algorithm as implemented in JaxOpt with default settings.
All the calculations were performed either with a maximum num-
ber of iterations (Niter) or an energy error of 1 mHa as a termination
condition.

The initial state for all our simulations is the Hartree–Fock
wavefunction using the STO-3G basis set in all cases. The initial
guess parameters were drawn from a uniform distribution between
0 and 1. The parameters a0 and b0 were initialized according to a
linear schedule (see Appendix A) as is done by adiabatic state prepa-
ration protocols of varying lengths (depending on the time step of
the simulation), ranging from 0.2 to 7.5 atomic units (a.u.).

In Fig. 2, we report the general structure of the quantum cir-
cuits adopted in all the calculations. The qubits are initialized in the
∣0⟩ state, and the mapping between the qubits and the molecular spin
orbitals is accomplished according to the Jordan–Wigner method66

(e.g., each occupied spin-orbital is represented by a qubit in the state
∣1⟩). As previously mentioned in Sec. II, the digital quantum simu-
lation is performed numerically exponentiating the time-dependent
Hamiltonian at each time step in the computational basis spanned
by the qubit register. The time step used varies between Δt = 0.001
25 a.u. andΔt = 0.05 a.u. for all the simulations reported in this work.
The stability of the numerical integration is assessed on the basis of
previous works.27

B. Molecular ground state energies
In this section, we report numerical examples of the con-

trol protocol applied to three different molecular systems: the H4
molecule with atoms arranged in a square lattice, H6 in a linear
configuration, and lithium hydride (LiH).

The selection of these systems was made to specifically assess
the algorithm’s performance on systems that, despite their small size,
are well-established benchmarks for quantum chemistry methods.
Notably, hydrogen chains, although experimentally unstable,67 have
been extensively characterized being the simplest systems revealing
strong electronic correlation phenomena. We opted for two dis-

FIG. 2. Example circuit needed for the implementation on a digital quantum proces-
sor. Quantum computer’s initial state is given by all the qubits being in the state ∣0⟩;
as an example, we reported the initialization circuit for the H2 molecule in the min-
imal basis. The second step provides the evolution of the molecular wavefunction
due to the time-dependent external control the exponentiation of the Hamiltonian
is repeated for K different steps of the propagation. Here, we maintained the circuit
as more general as possible (i) to resemble the numerical exponentiation that we
used in the computational protocol and (ii) to highlight that one can choose the
more suitable simulation routine at hand. Finally, the circuit is repeated several
times to evaluate the Hamiltonian expectation value.

tances, r = 1 Å and r = 2 Å, since the former is both in the proximity
of the observed metal-to-insulator phase transition point expressed
in longer analogs of the same series,68 and results from other quan-
tum variational methods are available for comparison. The geometry
associated with r = 2 Å, which is farther from the equilibrium
bond distance, allows us to put our method to the test in a regime
approaching dissociation. On the other hand, the H4 molecule in
squared configuration is another prototypical system used to study
multireference effects. At this geometry, HOMO and LUMO orbitals
become degenerate giving a diradical character to the electronic sys-
tem.69 Farther from equilibrium, we have considered the second
geometry; on top of these effects, we add a fourfold-bond disso-
ciation process that requires multiple excited configurations to be
described. Finally, we have also considered lithium hydride as to test
our parameterization (explicitly involving nuclear charges) with an
heteroatomic system.

In Fig. 3, we show the result of the control problem solution
for the systems described above. These calculations demonstrate
that the control problem can be effectively resolved, achieving error
energies below 1 mHa (<0.67 kcal/mol), even in regimes charac-
terized by strong correlation. From a dynamical perspective, this
implies our capability to identify a pathway leading from the HF
state to the exact ground state, even when these states are signif-
icantly separated within the Hilbert space. However, it is worth
noting that commencing the optimization process from a state fur-
ther away in the Hilbert space tends to prolong the optimization,
despite the protocol’s capacity to reach a chemically accurate state.
In this regard, in Sec. IV D, we have examined the convergence rate’s
scaling with respect to the system size to assess the computational
scalability of this approach.

Before discussing these aspects, we focus on the effect of varying
the duration of the controlled dynamics.
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FIG. 3. Optimal control for molecular ground state preparation. (a)–(c) Energy (blue solid line) vs iterations for squared H4 at r = 1.2 Å; linear H6 chain at r = 1 Å and LiH at r
= 1.6 Å. (d)–(f) Energy (brown solid line) vs iterations for squared H4 at r = 2.4 Å; linear H6 chain at r = 2 Å and LiH at r = 3.2 Å. (g)–(i) Error (dashed–dotted line) w.r.t. FCI
Energy vs iterations. Same color code as in panels above; green dashed lines represent either the FCI energy value or a threshold for chemical accuracy posed at 1 mHa.

C. Ground state preparation at the quantum speed
limit

Quantum speed limits define the minimum time needed for a
quantum system to transition between states. In quantum technolo-
gies, they have been extensively studied70 as being able to engineer
transformations and achieving these boundaries directly impacts the
efficiency and capabilities of quantum devices.

Several theoretical bounds have been developed to quantify
these times for different kinds of processes;71–73 here, following

Ref. 35, we estimated the quantum speed limit TQSL (see Table I)
for the optimally controlled trajectory as

TQSL ≤
π
2

T

∫ T
0

√
⟨ψ(t)∣[Ĥ (t) − E(t)]2∣ψ(t)⟩dt

, (8)

where E(t) = ⟨ψ(t)∣H∣ψ(t)⟩.
This quantity estimates the quantum speed limit as the mean

energy spread along the computed trajectory and represents an
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TABLE I. Estimated time according to the Bhattacharyya bounds35,74 [Eq. (8)] on time-dependent quantum evolutions (TQSL), time required by the optimally controlled evolution
to reach the ground state (TOC), and number of parameters optimized in each trajectory (#θQSL) for the molecules considered in this study. Time is expressed in atomic units.

LiH @ 1.6 Å H4 @ 1.2 Å H6 @ 1 Å LiH @ 3.2 Å H4 @ 2.4 Å H6 @ 2 Å

TQSL 7.91 2.39 6.27 10.84 7.43 39.11
TOC 0.25 0.01 0.5 0.75 0.5 0.75
#θQSL 30 32 50 90 80 150

FIG. 4. Ground state preparation at the quantum speed limit for the H6 molecule. (a) and (c) Optimal control for various durations of the dynamics. Blues refer to H6 at
r = 1 Å and reds refer to H6 at r = 2 Å. (b) and (d) Mean driving Hamiltonian norm vs duration length for the same systems and color codes.

extension of the Battcharayya bound74 to time-dependent Hamilto-
nians. Note that TQSL depends on the control parameters a as ∣ψ(t)⟩
= Ua(0, t)∣ψ(0)⟩.

As reported in Ref. 35, a rigorous definition of a quantum
speed limit for time-dependent processes is elusive and discrepan-
cies with numerical experiments reflect this aspect. The authors find
for the problem of optimal population transfer along a spin chain

that Eq. (8) overestimates (on average) by a factor of 3 the numer-
ical results. These discrepancies have been shown with even tighter
bounds as reported in Ref. 75 for the case of a time-optimal SWAP
gate. Here, we found that the numerical estimate is sensibly lower
than the theoretical one in all cases with edge cases such as H4 (r
= 1.2 Å), where Eq. (8) overestimates the numerical result by two
orders of magnitudes.
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We can compare these findings with other similar works
in the literature. Particularly, the work of Matsuura et al.76

proposes the coupling of an optimal control of the anneal-
ing schedule and a VQE with a UCCSD Ansatz to improve
molecular ground state preparation that they dub VanQver.
We find similar times for the optimized evolution as they
report. Particularly, for the rectangular H4 molecule (note that
here we qualitatively compare the results as we have instead
a perfectly squared geometry), they find TVanQver = 0.088 a.u..,
for the LiH molecule TVanQver = 0.14 a.u.. For comparison,
their reported times for Annealing State Preparation
(ASP) are, respectively, TASP = 9.5 a.u.. and TASP = 11.5 a.u..
for LiH and rectangular H4 both close to the equilibrium bond
length (i.e., to compare with the first and third columns in Table I).

We can also compare the number of parameters needed by our
optimal control procedure with the number of parameters generated

by the UCCSD Ansatz and compact adaptive strategies.77,78 Partic-
ularly, as discussed in Ref. 79 for the LiH molecule, spin-adapted
UCCSD requires 64 parameters in comparison adaptive Ansätze
built with a fermionic operator pool requires around ten para-
meters to reach chemical accuracy. In the same work, the authors
report, concerning the H6 molecule, that the UCCSD circuit requires
almost 70 parameters without being able to reach chemically accu-
rate results as the bond distance increases (at about distances greater
than 1.3 Å) while the adaptive procedure requires at most the same
number of parameters reaching chemical accuracy even in the disso-
ciation limit. As we can see, the optimal control procedure requires
a similar set of parameters as the adaptive approach when consid-
ering bond lengths close to the equilibrium geometry. However, in
cases involving more stretched bonds, it becomes evident that the
adaptive procedure shows greater efficiency. A possible explanation
for this discrepancy may be in the factors that directly determine

FIG. 5. Effect of controllability on the time-energy uncertainty relationship. (a) Optimal control for the H4 molecule at r = 1.2 Å for different quantum dynamics’ lengths (darker
blue shorter length). (b) Mean driving Hamiltonian norm vs duration length. (c) and (d) Control problem at fixed duration length (T = 0.01 a.u.) with finer time stepping (more
controllable dynamics).
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the number of parameters in our optimal control procedure and in
the ADAPT-VQE, respectively. As a first approximation, we may
argue that the complexity of the control problem lies in the dis-
tance between the initial state and the target state. To this extent,
when considering geometries that approach the dissociation limit,
we can expect that a larger number of control parameters is needed
because we have to cover a greater distance while populating differ-
ent electronic configurations present in the FCI state. On the other
hand, the ADAPT-VQE results in a more compact parameterization
because we directly address the different excitations once we add a
new parameterized gate at each macroiteration. As a future perspec-
tive of this study, it could be beneficial to understand the underlying
mechanism of the optimization procedure and to compare jointly
the number of parameters, the number of electronic configurations,
and distances between the initial and final states of the optimization.

In addition to estimating the quantum speed limit through
Eq. (8), we analyzed the relationship between optimal control proce-
dures for the systems presented in Sec. IV B and the duration of the
dynamics (see Fig. 4). What is observed is a dual behavior: concern-
ing dynamics shorter than a certain length (which we identify as the
actual quantum speed limit), the optimal control procedure is unable
to achieve chemical accuracy within 500 iterations. Furthermore, the
optimizer amplifies the perturbation strength by increasing the aver-
age energy injected into the system, which we tried to estimate with
the quantity ⟨ ∥H(t)∥∥Hmol∥ ⟩ (see Figs. 4 and 5). As we can see, consistently
with the time-energy uncertainty relationship, the average energy
injected into the system decreases as the evolution length increases.

On the other hand, the optimized dynamics with a duration
exceeding the quantum speed limit converges more slowly to the
optimal result. This effect is consistent with other findings in the
literature, where has been shown that quantum dynamics in the
presence of an external perturbation tends to converge toward uni-
tary q-designs (i.e., unitaries that can uniformly cover the Hilbert
space) as time increases.80 This justifies a slower convergence since
these types of unitaries are highly expressive and, as previously

shown, are much more prone to encountering barren plateaus dur-
ing optimization.51,81 Interestingly, as reported in Fig. 4(c), an initial
plateaus in the optimization is present both for very short dynam-
ics and for the ones beyond our estimate TQSL. Even though they
look similar, the former may arise from a lack of controllability (i.e.,
too few control parameters available), while the latter is a direct
manifestation of the barren plateaus. Having identified this sweet
spot in terms of the length of the dynamics suggests that, to avoid
encountering optimization problems with larger systems, it might
be beneficial to progressively optimize the dynamics starting from
shorter evolutions and initializing the control parameters to achieve
idle evolution. We plan to assess the effect of the initialization and
adaptive optimization of the dynamics in a future work. We refer
the reader to Appendix B where similar results are shown for the
LiH molecule.

Finally, to get an additional insight into this multiple interplay
among controllability and time-energy uncertainty relationships, we
report in Fig. 5 for the H4 molecule the solution of the control prob-
lem varying (i) the length of the dynamics [Figs. 5(a) and 5(b)] and
(ii) the number of controllable steps keeping the duration fixed at
T = 0.01 a.u. [Figs. 5(c) and 5(d)]. Again, we can note that the
amount of energy that the perturbation inputs into the system
decreases as the evolution length increases as already shown in Fig. 4.
Nevertheless, we can note that moving from T = 0.01 to T = 0.05 a.u.,
there is an abrupt decrease as compared to all the values reported
both in Figs. 4 and 5. This motivated us to study the effect of increas-
ing the number of controllable steps at this shorter duration length
of the dynamics. As we can see in Fig. 5(c), increasing the number
of controllable steps immediately leads to the control problem to
find a state within chemical accuracy. Moreover, the mean energy
input into the system decreases by almost two orders of magni-
tudes reaching values more in line with the trends observed for
the other systems. From this calculation, a picture arises where the
quantity ⟨ ∥H(t)∥∥Hmol∥ ⟩ allows to diagnose possible controllability issues in
the definition of the optimization problem. Indeed, its unexpected

FIG. 6. Empirical scaling of the optimal control algorithm. (a) Number of iterations needed to reach chemical accuracy as a function of the number of spin-orbitals (N). (b)
Number of control parameters as a function of the number of spin-orbitals. (c) Number of circuits evaluated during the all control problem solution. Power-law fitting function:
y = aNb.
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increase indicates that the optimizer is striving to reach the optimal
solution, still attainable within the given time frame. In doing so, it
injects more energy into the system but lacks the flexibility to effec-
tively address the control problem. By relaxing this constraint and
adding more controllable steps, both the excess injected energy and
convergence issues vanish.

D. Computational cost analysis
In this section, we provide an empirical estimate of the algorith-

mic scaling of the proposed method. Before presenting our results,
we remark that the ultimate bound of the proposed method is not
given by the minimal energy gap as in Adiabatic State Preparation
(ASP) protocols since the control procedure is not required to satisfy
the adiabatic theorem. On the other hand, as discussed in Sec. IV C,
optimal control procedures can prepare target states at the ultimate
bound of the quantum speed limit. We refer to Appendix A where
we compare our method with ASP for the simple case of H2 and
show that the optimal solution is a shortcut to adiabaticity.

As mentioned in Sec. II A, we can approximate the cost (or
runtime of the algorithm) as C = 𝒪(KMG

ε2 ). We recall that K is the
number of iterations needed to achieve 1 mHa of error, M is the
number of circuits per iteration, and G is the gate count of the circuit.

In Fig. 6, we provide an estimate of C as a function of the
spin-orbitals N studying the hydrogen chain series from H2 to H8 at
r = 1 Å. As we can see, Fig. 6(a) reports an almost linear scaling of the
number of iterations as a function of the spin-orbitals and Fig. 6(b)
is a linear scaling concerning the number of control parameters. In
order to estimate the overall number of circuits executed during the
optimization, we considered the following relation:

No.Circuits ≈ 𝒪(No.Iterations × No.params × m), (9)

where m is the number of independent measurements needed to
compute the 2-RDM of the molecular Hamiltonian according to the
shadow procedure developed in Ref. 82,

m = 𝒪(4η2

ε2 ), (10)

where η is the number of electrons in the system.
It is important to note that the estimate of m could be fur-

ther improved by adopting system-dependent methods to reduce
the overall number of measurements based on Pauli strings
partitioning83,84 in combination with matrix completion tech-
niques.85

Plugging Eq. (10) into Eq. (9), we obtained an overall scaling of
No.Circuits ≈ 𝒪(N4). Finally, the total runtime reads

C = 𝒪(GN4

ε2 ). (11)

In the last equation, we decided to keep the runtime of the quantum
simulation routine unexpressed as the designated platform for the
execution of this algorithm is an analog simulator for the molecular
Hamiltonian. Currently, only prototypes of this simulator have been
developed.20,21 Nevertheless, if we were to consider implementing
the algorithm on digital quantum computers, it would be reasonable
(actually conservative) to assume a linear increase in computational
overhead as the number of spin orbitals grows.86,87

To conclude this section, we would like to comment on our
findings. First of all, we are aware that the results in Fig. 6 give rise
to a crude estimate for at least two reasons: (i) the modest range of
the active space explored and (ii) an additional uncertainty due to
the random guess initialization. Moreover, in Sec. IV B, we showed
that depending on the degree of correlation, the number of iterations
needed may vary; to this extent, expanding this benchmark to other
systems will surely increase its reliability.

Nevertheless, these results already represent a good start-
ing point to understand if this method is worth further refine-
ments. Given that very promising methods, such as adaptive strate-
gies,79 have 𝒪(N8) scaling if implemented naively and can achieve
𝒪(N5) scaling only if clever strategies for evaluating gradients are
adopted,88 we think that the method proposed in this paper can be of
interest regardless of the future development of an analog simulator.
To this extent, incremental optimization strategies, i.e., optimizing
the evolution step-by-step, could provide significant speedups and
provide tighter bounds on the overall scaling. We plan to explore
these aspects in future work.

V. CONCLUSIONS
We have proposed an optimal control approach utilizing a

quantum device to steer the evolution of a quantum system toward
its ground state. Demonstrating its application, we have computed
ground state energies for molecular systems up to 16 spin-orbitals
(qubits). Our results indicate the potential to discover pathways
reaching states within the chemical accuracy energy threshold more
rapidly than the adiabatic path, edging closer to the quantum
speed limit. Moreover, this study underscores the intertwined nature
of controllability (defined as the minimum number of controls
needed to achieve desired precision), duration of the dynamics, and
convergence of the optimization protocol.

In addition, we have offered an empirical estimate of the
computational cost, conducting various calculations on hydrogen
chains of different lengths. Our findings reveal that the overall algo-
rithm runtime execution scales as 𝒪(N5), aligning with results from
adaptive Ansätze. Future avenues of this work aim to mitigate the
computational scaling by refining the procedure via a step-by-step
adaptive optimization of the quantum dynamics.

To conclude, we highlight how this method could serve to speed
up phase estimation-like algorithms. Particularly, the optimally con-
trolled dynamics could impact the quantum phase estimation pro-
cedure in two ways: (i) on the one hand, as initial state preparation
routine; on the other hand (ii), we can imagine replacing the evolu-
tion of the circuit within the QPE to directly sample a correlation
function (from a simple initial state such as HF) corresponding
to an initial state that includes contributions from multiple elec-
tronic configurations. We plan to explore this latter aspect in future
works to understand whether this option could bring fault-tolerant
algorithms’ implementation one step closer.
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APPENDIX A: A SIMPLER EXAMPLE ON H2

The aim of this section is to provide a simpler example of the
general protocol, for the case of the hydrogen molecule H2, focus-
ing on the comparison of the results with a quantum simulated
annealing protocol for different values of annealing time T. We show
that the optimal solution of our procedure represents a shortcut to
adiabaticity,89,90 i.e., an alternative fast route that allows to obtain the
same final state given by a slow, adiabatic evolution.

To test the optimal control framework in different settings,
we modified both the choice of the perturbation and the optimiza-
tion routine (here, we used differential evolution as implemented
in Scipy91). Particularly, concerning the control operators, here, we

FIG. 7. Comparison between quantum simulated cooling and quantum simulated annealing results for the H2 molecule at equilibrium geometry. (a) Expectation value of
the driving Hamiltonian [Eq. (A3)] as a function of the dimensionless instantaneous time, τ = t

T
. Results are reported for different values of annealing time T : T = 2.5 a.u.

(blue dots), T = 5 a.u. (orange crosses), T = 10 a.u. (green stars), and T = 25 a.u. (red downward triangles). (b) Electronic energies after quantum simulated annealing
(dashed–dotted blue line) and quantum simulated cooling (scatter plot) as a function of the evolution time. Scatter plot symbols refer to the same T values in (a); the orange
dashed line is the reference FCI energy. (c) Linear schedules for the quantum simulated annealing. (d) Absolute energy difference from FCI for the quantum simulated cooling
(scattered) and quantum simulated annealing (dashed–dotted blue line). The red solid line poses a threshold for chemical accuracy at 0.0016 Ha (i.e., 1 kcal/mol).
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FIG. 8. Ground state preparation at the quantum speed limit for the LiH molecule. (a) and (c) Optimal control for various durations of the dynamics. Blues refer to LiH at
r = 1.6 Å and reds refer to LiH at r = 3.2 Å. (b) and (d) Mean driving Hamiltonian norm vs duration length for the same systems and color codes.

only needed a time-dependent modulation of the electron-nuclei
interaction. Thus, the perturbation operator Va(t) reads

V̂a(t) =∑
p,q

h̃a
pq(t)a†

paq, (A1)

with h̃a
pq(t) given by

h̃a
pq(t) = fa(t)∫ ϕ∗p (x)∑

i

Zi

ri
ϕq(x)dx, (A2)

with fa defined locally in time such that each different value of the
function at different time steps of the propagation is a unique control
parameter.

The reason why such a simple parameterization is sufficient lies
in the fact that the complete dynamics (i.e., the state we are able to
prepare) is not determined solely by the control operators but by

the driving Hamiltonian Ĥa(t). Terms that act on two electrons at
a time always appear in the latter. In the specific case of H2, this
implies that the dynamics of the isolated system is able to generate
the doubly excited configuration that appears in the exact solution
and that the control operator acts to then determine the exact state
of the system.

The theoretical foundation of quantum simulated annealing is
the adiabatic theorem.92 It states that the evolution of a quantum
state, being in the ground state of an initial Hamiltonian Ĥ0, will
occur transitionless (i.e., adiabatically, without excitations) under a
time-dependent Hamiltonian Ĥ(t) if the variation rate of the Hamil-
tonian is small enough. As a consequence, a slow evolution under a
perturbation modifies the Hamiltonian until it becomes one of the
interests that allow us to compute its ground state. Here, we chose
the initial state to be the solution of a classical Hartree–Fock cal-
culation: the initial Hamiltonian is the Hartree–Fock Hamiltonian
ĤHF . The adiabatic evolution is meant to reach the exact ground
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state for the complete molecular Hamiltonian Ĥmol; therefore, the
overall evolution takes place under the Hamiltonian,

Ĥ(t) = A(t)ĤHF + B(t)Ĥmol. (A3)

The functions A(t) and B(t) define the annealing schedule, i.e.,
the switching factors between the two Hamiltonians. They must be
defined such that Ĥ(0) = ĤHF and Ĥ(T) = Ĥmol.

The choice of the annealing schedule influences the perfor-
mance of the quantum algorithm.93–95 In particular, different strate-
gies have been adopted, such as optimal control protocols devised
to shorten the annealing time or to shape the annealing schedule
profile enhancing the success probability.96–98 Bearing this in mind,
here, we have considered a linear schedule [Eq. (A4)] as it is still used
as a typical benchmark in the field,99

A(t) = 1 − t
T

,

B(t) = t
T

.
(A4)

In Fig. 7, we show the results of our comparison between
quantum-simulated cooling and quantum-simulated annealing; for
this analysis, we focused on the H2 molecule at the equilibrium dis-
tance. We considered four increasing evolution times ranging from
2.5 to 25 a.u. In Fig. 7(a), the driving Hamiltonian expectation value
is plotted as a function of the instantaneous time, τ = t

T . As expected,
increasing the annealing time the energy at the final instant decreases
as the evolution occurs without transitions to any excited electronic
configuration. Moving to Fig. 7(b), we compare the results of the
adiabatic evolution (dashed–dotted blue line) with the exact Full CI
energy (dashed orange line) and the energy outcome of the quan-
tum simulated cooling (scatter plot symbols differ according to the
evolution length). We observe that the non-adiabatic evolution pro-
vided by the quantum-simulate cooling is always performing better
than the quantum-simulated annealing protocol. The only exception
is for the last point at 25 a.u., which, as better highlighted in Fig. 7(d),
equals the result obtained with the Hamiltonian of Eq. (A3). To
explain this behavior, we point out that the differential evolution is
a non-deterministic algorithm, as such small fluctuations in the final
results are expected between different runs.

APPENDIX B: ADDITIONAL CALCULATIONS
ON THE LiH MOLECULE

Here, we report additional results on the LiH molecule (see
Fig. 8) concerning the analysis on the dynamics’ duration length
as discussed in Sec. IV C. These results confirm the considerations
drawn in the main text: short evolution lengths imply higher energy
injection from the perturbation, which results in higher values of
⟨ ∥H(t)∥∥Hmol∥ ⟩. Concerning the convergence behavior of the control prob-
lem w.r.t. the length of the evolution at the equilibrium geometry
[Fig. 8(a)], we can clearly see the same pattern previously discussed,
i.e., that very short (or very long) evolutions can hamper the opti-
mization to reach a chemically accurate result. On the other hand,
this trend is not so evident looking at Fig. 8(c) (r = 3.2 Å). The
dynamics’ length and convergence patterns appear less interdepen-
dent in this system. Further studies collecting statistics on various
randomly initialized optimizations could resolve this inconsistency.
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