
A Deep Learning Multi-omics Framework
to Combine Microbiome and Metabolome

Profiles for Disease Classification

Andrea Licciardi(B) , Antonino Fiannaca , Massimo La Rosa ,
Maurizio Alfonso Urso , and Laura La Paglia

ICAR-CNR, National Research Council of Italy, Via Ugo La Malfa 153,
90146 Palermo, Italy

andrea.licciardi@icar.cnr.it

Abstract. Microbiome and metabolome contain information about host
disease. Therefore, a multi-omics analysis of these data types can provide
key constraints for disease classification. However, due to multi-omics
data’s complex and high-dimensional nature, classical statistical meth-
ods struggle to capture the shared information between microbiome and
metabolome. Deep learning represents a power framework to address
this issue. We design a deep learning model for the integrated analy-
sis of microbiome and metabolome that leverages the complementary
information between the two datasets to perform a medical diagnosis
of a given disease as a supervised classification task. We test our app-
roach on six different matched microbiome/metabolome datasets, related
to diverse pathologies. A comparative performance analysis shows that
our proposed model called microBiome-metaBolome Network (BiBoNet)
performs better than classical machine learning methods. In addition,
we show that BiBoNet achieves better results than deep learning mod-
els based on individual or combined data. We highlight the importance
of multi-omics integration through deep learning for improved medical
diagnosis using microbiome and metabolome.

Keywords: Deep learning · Multi-omics · Microbiome · Metabolome ·
Data integration

1 Introduction

Bioinformatics significantly contributes to translational research, which allows
the integration of different layers of biological information in a data-driven app-
roach [1]. Moreover, the development of sequencing technology has recently led
to the production of “multi-omics” data, opening new possibilities for integrated
system-level methods. This innovative multi-omics approach, combined with
bioinformatics and machine learning analysis methods, has the advantage of
yielding a better understanding and a clearer picture of the system under study.
Moreover, it allows us to holistically emphasize the links between the different
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types of molecules and their roles in complex biological processes [2–4]. Indeed,
each omic data type provides a different knowledge of the biological system under
investigation. For instance, genomics can lead to evaluate gene-environment
interactions or functions of genomics variants; it can be employed in biomarker
discovery and in the comprehension of diagnosing diseases such as cancer and
other chronic diseases, monitoring their progression, predicting recurrence, and
supporting the identification of therapeutic treatment [5]. Metabolomics is the
study of the chemical processes involving the small molecule substrates, interme-
diates, and products of cell metabolism, called metabolites. This omics science
aims at identifying and quantifying all metabolites in a given organism or bio-
logical sample [6]. Metabolomics can lead to the characterization of different
response patterns in humans. It is used for pharmacokinetics, pharmacodynam-
ics, and precision medicine applications [7]. However, single omic can give a par-
tial view of molecular events governing the disease state [8]. Integrating diverse
omics data helps clarify the disease’s underlying pathogenic alterations, which
can be confirmed by further molecular study.

Recently, metabolomics has been increasingly integrated with metagenomics
data, aiming to investigate co-variation patterns between metabolites and micro-
biota [9]. The human gut microbiome is a sophisticated biological system that
helps the host produce vitamins, break down macromolecules, and strengthen
the host immune system, among other essential tasks. High-throughput sequenc-
ing methods are becoming more and more accessible, and this has allowed for
critical new understandings of the composition and possible use of the micro-
biome [10–12]. For example, metagenomics research on the gut microbiome has
revealed that the metabolic potentials of lean and obese mice differ and that
community structures alter in response to dietary modifications [13,14].

In this context, machine learning models, especially neural networks (NN),
provide efficient solutions to integrate different kinds of omics data and, this
way, capture and take advantage of different information content [15]. In this
work, we present a composite neural network model that is able to process two
types of omic data, i.e. metabolome and microbiome, in order to exploit both
information sources and provide better performance in a supervised classifica-
tion task. In particular, we benchmark our model with six different matched
metabolome/microbiome datasets, related to several pathologies. The classifica-
tion is between disease patients and healthy control. Our approach is compared
with classical machine learning (ML) algorithms, such as random forest and sup-
port vector machine. Experimental results demonstrate that, in most cases, our
approach reaches the best results in terms of several classification scores.

2 Related Works

One of the main advantages of deep learning (DL) is its ability to learn com-
plex and non-linear functions to map high-dimensional and heterogeneous data
(such as multi-omics data) into a desired output. Indeed, DL provides an attrac-
tive framework for analysing multi-omics data [15] and references therein. In
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the context of the present work (supervised classification task), NN has been
used to integrate multi-omics data for the prediction of drug response [16], drug
synergy scores [17,18] and classification of breast cancer subtypes [19]. Convolu-
tional neural networks (CNN) fed with multi-omics data have provided success-
ful examples of classifying molecular subtypes of breast cancer [20] or predicting
gene regulation mechanisms [21]. More recently, multi-omics graph convolutional
networks and graph attention models have been implemented for patient classi-
fication [22] and disease diagnosis [23].

All these studies have shown that successful integration of multi-omics data
through DL provides increased performance over classical ML methods or single-
dataset analysis. Despite these significant advances, DL-based multi-omics stud-
ies mostly focused on gene expression data combined with additional omics (e.g.
gene copy number, mutation, DNA methylation, mRNA or protein expression).
Recently, notable efforts have focused on studying the relationship between the
gut microbiome and metabolome with DL [24–26]. Less attention has been paid
to integrating metabolome and microbiome through DL-based strategies for the
classification of subjects based on a specific disease [27], which still relies on
conventional ML methods (e.g. random forest [28]). This work aims to fill this
gap.

3 Materials and Method

3.1 Data

This work relies on metabolome and microbiome datasets collected by previous
studies and compiled by [29] (https://github.com/borenstein-lab/microbiome-
metabolome-curated-data/wiki). This repository includes all publicly available
datasets in which metabolites and microbes concentrations from human fecal
samples are aligned, that is they belong to the same patient. We selected only
those with more than 100 subjects from the fourteen studies in the repository.
The final collection of datasets comprises six studies which we will be referring to
as iHMP [30], KIM [31], PRISM [28], SINHA [32], WANG [33] and YACHIDA
[34] in the rest of this paper. Table 1 reports the main characteristics of each
dataset. We extracted patients’ information from the provided metadata, where
each subject is attributed to one group between healthy control and study-
specific pathology/condition. This information defines the target labels of our
classification task. We left the original labels unchanged in all studies except for
the YACHIDA dataset. For the latter, we only considered healthy and colorectal
cancer (CRC) subjects by grouping patients with different stages of CRC (from
stage 0 to stage 4) into a single class, as our main objective is to classify subjects
based on a specific pathology rather than sub-stages of the same disease.

Data Preprocessing. Both for microbes and metabolites, we only kept fea-
tures present in more than 10% of the subjects and discarded the rest. We also
discarded columns with missing values in the iHMP datasets. For microbiome

https://github.com/borenstein-lab/microbiome-metabolome-curated-data/wiki
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Table 1. Description of the datasets used in this study. Abbreviations - IBD: inflamma-
tory bowel disease, CD: Crohn’s disease, UC: ulcerative colitis, CRC: colorectal cancer,
ESRD: end-stage renal disease, BP: before preprocessing, AP: after preprocessing.

Dataset Ref. Disease # samples classes
(samples)

# metab. (BP) # micro. (BP) # metab. (AP) # micro. (AP)

iHMP [30] IBD 105 Control (26)
CD (49)
UC (30)

81867 42872 5820 8893

KIM [31] CRC 240 Control (102)
Adenoma (102)
CRC (36)

462 499 462 170

PRISM [28] IBD 155 Control (34)
CD (68)
UC (53)

8848 200 8847 163

SINHA [32] CRC 131 Control (89)
CRC (42)

530 86 530 86

WANG [33] ESRD 287 Control (67)
ESRD (220)

277 56962 277 22114

YACHIDA [34] CRC 277 Control (127)
CRC (150)

450 57702 298 17692

data we used species relative abundance (RA) where available, otherwise, we
used genera RA (SINHA and KIM datasets) and took the log of the concentra-
tions. For some datasets, metabolites abundance data were already normalized
(WANG dataset) and/or centred around zero (KIM and SINHA datasets), oth-
erwise we directly used counts data (PRISM, YACHIDA and iHMP datasets),
keeping all reported metabolomics features (identified and unidentified metabo-
lites). In those cases, following [24], we performed centre log-ratio transformation
for counts data, adding a pseudo-count of one for metabolites with reported zero
counts. The number of resulting features for metabolomics and microbiome data
before and after preprocessing is reported in Table 1.

3.2 Model Description

In this work, we present BiBoNet (microBiome-metaBolome Network), a multi-
layer perceptron (MLP) that performs a supervised classification task (binary or
three-class) to distinguish between healthy (i.e., control) subjects and subjects
affected by a given disease using multi-omics data, which are metabolome and
microbiome data. A key aspect of any multi-omics workflow is how to perform
the data integration (fusion). We follow the definitions used in [15] and differen-
tiate between early and late fusion. In the former, omics data are concatenated
first and then fed to a DL model (e.g. [17,21]). In the latter, the integration
is performed by concatenating intermediate features from separate subnetworks
(e.g., [16,18–20]). The resulting vector is fed to a subsequent model that performs
the assigned task (in our case, classification). BiBoNet is sketched in Fig. 1. Its
architecture is designed to perform late fusion by combining the hidden feature
representation of two independently pre-trained neural networks, each one fed
with a different omic (metabolic profiles and microbes abundance data, Fig. 1a
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Fig. 1. Sketch of BiBoNet’s late fusion architecture. See the text for details about
design and training strategy. Dimensions are reported for clarity. n is the total number
of samples. NMe is the number of metabolite input features, NMi is the number of
microbes input features. NC is the dimension of the concatenated hidden features
vector. The superscript L refers to the dimensions of the last layer of each MLP.

and b). The two subnetworks are integrated by combining (concatenating) the
output of their last corresponding hidden layer. A downstream MLP is then
attached to the concatenated feature vector to effectively learn how to com-
bine the information from both types of omics data. This type of architecture
is expected to perform better than the individual networks in isolation, when
trained on the same classification task (e.g., [19]).

In this work, we consider MLP as the architecture of each network. It consists
of a fixed input dropout layer (with a dropout rate of 10%) and a variable
number of fully connected layers with the same number of neurons, followed
by a batch normalization layer, ReLU activation function and a dropout layer
(Fig. 1). The output layer maps the current number of hidden features into one
or three output neurons (one for each class) with a sigmoid or softmax activation
function, respectively, according to the dataset-specific classification task.

To build BiBoNet, we first trained the two separated MLPs independently
(Fig. 1a and b). Each model’s architecture is optimized through a grid search
procedure (see next section) to get a set of best hyperparameters and weights. We
then removed the output layers of the MLPs and included them in our late fusion
model, each as a different subnetwork. After concatenating the output of the
last hidden layer from the two subnetworks, another grid search is performed to
determine the optimal architecture of the downstream MLP. BiBoNet’s training
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is performed with the only caveat that the two subnetworks’ weights are kept
frozen during training. In this way, the resulting model is effectively trained to
learn the best parameters’ weights for maximizing the combined information
from the two datasets.

4 Results

4.1 Experimental Setup

The performance of BiBoNet is compared to different baselines. For each dataset,
we deployed three different model types under two settings: first, we fit each omic
data (microbiome and metabolome) independently, and second, we concatenated
the input features and fit the same model type. We tested Random Forest (RF),
Support Vector Machine (SVM) and MLP. The results of our benchmarks are
obtained through a grid search procedure on a five-fold stratified cross-validation
scheme. We precompute each fold for metabolome and microbiome data sepa-
rately for each dataset. The iHMP dataset is a longitudinal study, with multiple
samples for the same subject. We use the samples collected at the first visit for
each subject as the main data over which the training/validation split for each
fold is performed. We then augment the training set of each fold with the remain-
ing samples, ensuring that subjects present in the validation set are not used to
augment the training set. Within each fold, the training data are subsequently
standardized, and the validation data are rescaled using the mean and standard
deviation calculated for the training set. We finally perform class rebalancing
of the training data by oversampling the minority class(es) using the SMOTE
algorithm [35].

A grid search is performed for each test according to the hyperparameter
space reported in Table 2. MLPs are trained with a fixed number of epochs
(300) and early stopping with a patience of 50 epochs on the validation loss. We
use cross-entropy and binary cross-entropy losses for multiclass and binary tasks,
respectively, and the Adam optimizer with default parameters except for learn-
ing rate. For each grid search iteration, we compute accuracy (ACC), Matthews
correlation coefficient (MCC), F1 score (F1, F1 macro for multiclass tasks) and
Area Under the Receiver Operating Characteristic Curve (ROC AUC, ‘one vs
rest’ for multiclass tasks) for each fold validation set. We select the best hyper-
parameters set for each dataset and model type as the one that maximizes the
average accuracy over all folds. Ties are broken in favour of the result with the
lowest standard deviation (SD) in accuracy over the folds.

All codes are written in Python (v3.10.9). We used scikit-learn (v1.4.1)
for data and input preparation and for building RF and SVM models. MLPs are
custom-implemented using PyTorch (v2.2.1).

4.2 Experimental Test

The performance of each model is reported in Fig. 2. The box-and-whisker plots
(one for each tested model) depict the distribution of each scoring metric over
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Table 2. Hyperparameters space for each model type used in the grid search procedure.
For RF and SVM, the hyperparameter names and values correspond to the arguments
of the RandomForestClassifier and SVC objects in scikit-learn.

Model Hyperparameter Values

Random Forest (RF) n estimators [10, 50, 100, 200, 400, 800, 1000]

max depth [5, 10, 20, 30, 40, 50, 60, 70, 80, 90, None]

min samples leaf [0.001, 0.005, 0.01, 0.05, 0.1]

Support Vector Machine (SVM) C [0.0001, 0.001, 0.01, 0.1, 1, 10, 100]

gamma [0.001, 0.01, 0.1, 1, 10, 100, scale]

kernel type [linear, poly, rbf, sigmoid]

Multi-layer Perceptron (MLP) n layers [1, 2, 3]

n neurons [16, 32, 64, 128, 256]

dropout rate [0.25, 0.5, 0.75]

learning rate [0.001, 0.0001, 0.0005]

batch size [4, 8, 16, 32]

all benchmarked datasets. Thirty samples are used in each box and whisker plot,
each corresponding to the performance on the validation set of a particular fold.
Results are grouped by model type and differentiated between metabolites and
microbes alone, a combination of the two (through early fusion, EF) or late
fusion (BiBoNet).

First, we note that BiBoNet (red box plots in Fig. 2) performed better than
every other tested model, scoring the highest in every considered metric (first,
second, and third quartiles are always higher than the rest). In particular, it
is the only model that resulted in median scores above 0.8 (ACC), 0.6 (MCC),
and 0.8 (ROC AUC). Although F1 score and ROC AUC medians are higher for
BiBoNet, the difference with MLP-based models is not substantial. On the con-
trary, ACC and MCC indicate a sharp increase in performance for BiBoNet. We
note that these results are aggregated over strongly imbalanced (both positively
and negative) datasets (Table 1). In those cases, MCC is thought to provide a
more reliable metric compared to F1 score and ROC AUC, at least for binary
classification [36,37].

When looking at the performance of models based on a single data type, we
observe that metabolites-based models (blue box plots in Fig. 2) always perform
better than their microbes counterparts (orange box plots in Fig. 2). This is true
regardless of the type of model used. In addition, MLP-based models tend to
perform better than RF and SVM in any setting. Concatenating the input fea-
tures (i.e. early fusion, green box plots in Fig. 2) generally provides little or no
increase in performance compared to the results obtained on metabolites data
alone for RF and SVM models. On the contrary, although the gain in perfor-
mance is still small, MLP models generally show an increased level of the third
quartile compared to the best-performing single-dataset model of the same type.
Nevertheless, in all the three baseline model types considered, the combination of
input features seems to cause an increase in the overall spread of the results (i.e.
variance, Fig. 2a). In some cases, concatenating the input features even degrades
the performance (RF and SVM in Fig. 2d). These observations suggest that this



10 A. Licciardi et al.

Fig. 2. Aggregated results for each fold over all datasets for four scoring metrics.
Results are grouped by model type. Colours indicate results for metabolites alone
(Me, blue), microbes alone (Mi, orange), early fusion (EF, green) and late fusion (LF,
red). Numerical values in each box-and-whisker plot correspond to the distribution’s
median (second quartile). (Color figure online)

strategy does not allow for an effective mix of information between the two
datasets, with RF and SVM performing worse than MLP models. On the other
hand, our late fusion approach reconciles differences between the two datasets
more effectively, resulting in higher scoring values than any other tested model
and reduced variance compared to early fusion models.

We look more closely at MLP-based models because they have proved to
perform better than RF and SVM baselines and constitute the backbone for
BiBoNet. Table 3 compiles the aggregated scores (mean and standard deviation)
on the five folds, per dataset, for MLP and BiBoNet. Our model performs bet-
ter than single-omic and early fusion MLP models in four out of six datasets
(PRISM, YACHIDA, iHMP, and KIM) with a corresponding increase in accu-
racy of 5.6%, 3.9%, 15.2% and 6.2% respectively, compared to the best single-
MLP model. For the WANG dataset, BiBoNet achieved the same results as the
single-data model based on metabolites. SINHA is the only dataset for which
we register a decrease in accuracy (−1.8%) when using BiBoNet. Overall, these
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Table 3. Five-fold stratified cross-validation performance on each dataset. Each
reported value is the mean of that score calculated over the validation sets of the
cross-validation procedure. The standard deviation is reported in brackets. Subscript
Me refers to metabolites, Mi to microbes and EF (early fusion) to input feature con-
catenation.

Algorithm MLPMe MLPMi MLPEF BiBoNet

Dataset Score

iHMP ACC 0.638 (0.057) 0.562 (0.047) 0.629 (0.122) 0.743 (0.065)

F1 0.609 (0.077) 0.495 (0.048) 0.608 (0.112) 0.715 (0.087)

IBD MCC 0.442 (0.092) 0.323 (0.079) 0.432 (0.186) 0.611 (0.097)

3 classes ROC AUC 0.792 (0.054) 0.684 (0.084) 0.767 (0.081) 0.795 (0.074)

KIM ACC 0.517 (0.060) 0.471 (0.049) 0.508 (0.047) 0.550 (0.043)

F1 0.433 (0.051) 0.406 (0.052) 0.442 (0.064) 0.447 (0.049)

CRC MCC 0.192 (0.098) 0.155 (0.088) 0.206 (0.084) 0.255 (0.091)

3 classes ROC AUC 0.622 (0.036) 0.553 (0.043) 0.581 (0.033) 0.619 (0.053)

PRISM ACC 0.774 (0.079) 0.755 (0.060) 0.774 (0.079) 0.819 (0.095)

F1 0.773 (0.086) 0.737 (0.065) 0.780 (0.079) 0.820 (0.086)

IBD MCC 0.661 (0.122) 0.625 (0.096) 0.658 (0.119) 0.725 (0.146)

3 classes ROC AUC 0.893 (0.045) 0.861 (0.052) 0.893 (0.037) 0.921 (0.039)

SINHA ACC 0.840 (0.016) 0.718 (0.087) 0.855 (0.038) 0.840 (0.029)

F1 0.708 (0.037) 0.496 (0.151) 0.707 (0.132) 0.693 (0.066)

CRC MCC 0.631 (0.033) 0.314 (0.207) 0.674 (0.108) 0.620 (0.085)

binary ROC AUC 0.780 (0.025) 0.645 (0.095) 0.792 (0.090) 0.768 (0.039)

WANG ACC 0.993 (0.014) 0.934 (0.033) 0.951 (0.029) 0.993 (0.014)

F1 0.995 (0.009) 0.958 (0.020) 0.969 (0.019) 0.995 (0.009)

ESRD MCC 0.981 (0.038) 0.810 (0.099) 0.862 (0.085) 0.981 (0.038)

binary ROC AUC 0.991 (0.019) 0.875 (0.070) 0.912 (0.054) 0.991 (0.019)

YACHIDAACC 0.733 (0.047) 0.679 (0.038) 0.707 (0.049) 0.762 (0.044)

F1 0.756 (0.045) 0.704 (0.046) 0.735 (0.024) 0.782 (0.046)

CRC MCC 0.469 (0.096) 0.356 (0.074) 0.419 (0.105) 0.520 (0.088)

binary ROC AUC 0.731 (0.048) 0.676 (0.036) 0.704 (0.060) 0.759 (0.043)

results justify the adoption of our framework and highlight the benefits of using
BiBoNet over conventional models.

5 Conclusion and Future Work

We presented BiBoNet, a DL multi-omics model that integrates gut microbiome
and metabolome data. We showed that the two data types can be effectively
combined using BiBoNet to classify patients under different diseases. Our pro-
posed model leverages the complementary information from both data types
and shows improved performances compared to single-data analysis and simple
input feature concatenation. Our results highlight the potential of BiBoNet for
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applications in precision medicine and system biology. Future work will focus
on gaining insights into the microbiome/metabolome biological interactions and
improving the current BiBoNet architecture. An explainable AI (XAI, [38]) anal-
ysis of BiBoNet will allow us to determine, for example, which particular com-
ponent of the multi-omics input data drives model decisions and, within that
component, which elements (metabolites/microbes) are more important for the
final model’s predictions. More sophisticated DL architectures (e.g., graph net-
works) combined with particular learning mechanisms (e.g., attention) can also
be implemented to facilitate the model’s explainability further and boost per-
formance [23,39]. This work provides a promising starting point for these future
developments.

Acknowledgements. This work is funded by CNR project FOE-2021 DBA.
AD005.225.
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