Consiglio Nazionale delle Ricerche

Remote Analysis of User Sessions for
Usability Evaluation of Web Sites

Laila Paganelli, Fabio Paternd

Rapporto
CNUCE-B4-2001-013

Remote Analysis of User Sessions for
Usability Evaluation of Web Sites

Laila Paganeili, Fabio Paterno

CNUCE - CN.R.
Pisa, Italy

Abstract

This paper describes how it is possible to automatically suppost usability evaluation of Web sites
using user session logs and task models describing how the interface design assumes that activities
should be performed in order to reach user goals. The approach is tool supported: there is a logging
tool able to store events generated during user sessions .at the client side and another tool,
WebRemUSINE, that takes the logs and the task model and is able to provide evaluators with
information regarding task performance and pages of the site. To this end, the tool exploits the
hierarchical structure and the flexible set of temporal relationships that are specified in the task
model. This approach supports remote evaluation where evaluators and users are separated in time

and space.

Keywords: Model-based evaluation, Task Models, Remote evaluation, Automatic tools for
usability evaluation.

Introduction
Creating a Web site allows millions of potential users with various goals and knowledge levels to

access the information that it contains. For this reason, interest in usability evaluation of Web sites
is rapidly increasing. In general terms, many methods for usability evaluation have been proposed:
they range from inspection-based methods based on the ability of the evaluators (such as heuristic
evaluation or cognitive walkthrough) to methods based on users involvement (such as usability
testing or cooperative evaluation) or to others that use modelling techniques for example to predict
time performance (such as GOMS-based methods).

There are many motivations for automatic tools able to support evaluation process. The total or
partial automation of usability cvaluation can reduce the time required and costs and release
evaluators from repetitive and tedious tasks. A number of tools for usability evaluation of
traditional graphical applications have been proposed, however, the different nature of Web
interfaces requires specific tools. In this paper we present a method and a relative tool to detect
usability problems in Web interfaces through a remote evaluation. Our approach combines two
techniques that usually are applied scparately: empirical testing and model-based evaluation. The
reason for this integration is that models can be useful to detect usability problems but their use can
be much more effective if they can be related to the actual use of a system. Qur tool is able to
analyse the possible inconsistency between the actual user interactions and the task model of the
Web site that describes how its concrete design assumes that activities should be performed. To
support remote evaluation, we have developed a technique that allows recording user actions during
a site visit. The analysis of the logged data is based on the comparison of the traces of actions
performed with the temporal constraints described in the task model. This analysis provides
evaluators with a number of results that are related to the tasks that users intend to perform and the
Web pages and their mutual relationships.

In the paper, we first discuss related works in the arca of automatic support for usability evaluation
of Web sites, next we describe the method supporting our approach and the underlying architecture.

1

Then, we move on to provide more detailed description of the logging tool that we have developed
to collect data during user sessions, the preparation phase that is required to apply the method and
the automatic evaluations that can be performed by our tool. During the description we discuss how
the results provided can be helpful for evaluators to detect usability problems in Web sites.

Related Works

In recent years, interest in automatic support to usability evaluation of Web sites has been an
increasing. The methods for usability evaluation of Web sites can be classified into two types of
approaches: empirical evaluation, where users are directly involved to some extent, and analytical
evaluation where various combinations of criteria, guidelines and models are applied to the
evaluation of the site directly by the evaluators.

In the former group there are techniques based on the analysis of Web server logs whose
effectiveness is strongly limited by the validity of the data (that cannot capture the accesses to the
pages stored into the browser cache) and the impossibility to capture local user interaction with the
user interface techniques (menus, buttons, fill in text, ...). To overcome these limitations another
approach, WebVip (Web Visual Instrumenter Program) [SLD98]}, has been developed at NIST. This
tool allows logging of user interactions and the resulting log files can be analysed through VISVIP
[CS99] a graphical tool that visualises the paths followed by the users during the site visit, The log
files generated by WebVIP include user interactions (such as checkboxes, menu selections),
interactions with the browser windows and events relative to loading the web pages. The logging
tool proposed requires a number of modifications in the HTML pages that must be evaluated
because each tag representing a user interface component calls for adding Javascript code to record
the interaction. Because of the many modifications required, WebVip needs a copy of the entire
site. Unfortunately copying the entire site' can generate many eIrors: if relative paths have not been
used then some paths can be no longer valid; in case of interactive sites some functionality of the
site can be lost (such as CGI scripts or other structures that were in the original Web server),
inserting code for recording logs may interfere with the normal behaviour of the user interface
components that may aiready have specific event handlers created by their designers. Also WET
[EC99] considers client-side logs but they are obtained more efficiently without requiring copy of
the entire site. In this case it is sufficient to include the javascript file in the heading of the page.
This javascript file includes the specification of the events that can be detected and the handling
functions able to capture them. In WET only the click, change, mouseover and page load events are
recorded. This limitation is due also to the lack of automatic tools able to analyse the data. Since the
analysis is performed manuaily it is important to have readable log files with a content useful for
the evaluator. Adding all possible events in the log file increases the complexity of its content since
one user interaction can correspond to many events. For example, sending a form implies the
generation of a sequence of various events (mouseover, mousedown, mouseup, click, submit).
Other techniques are based on the use of questionnaires but they have limited ability to find detailed
usability problems.

In the latter group we have tools such as Bobby [BURL] that aims to support verification of
application of accessibility guidelines. WebSat [SLD98] provides a usability evaluation by
analysing the HTML code through six categories of usability guidelines (accessibility, form use,
performance, maintainability, navigation, readability). Design Advisor [FO0] is based on guidelines
derived from the use of eye-tracking techniques that identify which interface elements attract user
attention (animations, images, colours, ...) by identilying the scanning path on the Web page. In
Web Criteria [WebCriteria99] an expert user model is applied. Instead of real users, the simulated
user always follows an ideal path where no errors are performed and the shortest path is always
selected.

In our case we follow a hybrid approach because our environment is able to analyse data relative to
aser interactions and then compare them to the task model corresponding to the design of the Web
site. To this end, the first issue we addressed was what type of log files to consider. To detect user

2

actions we have used a technique similar to that used in Wet. Our tool exploits the possibility of
defining handlers of browser events in order to record user interactions. The differences between
Wet and our logging tool are two: Wet records only some event types because the analysis of the
log files is manual whereas in our case the analysis is automatic and it is possible to record a wider
set of events; in addition, to save log files WET uses cookies but with this technique it is possible to
save only a limited amount of information (about 4K per cookie, with a maximum of 20 cookies per
site) whereas our method uses a Java applet that is able to save log files in the server without
limiting the amount of data, thus even with Jong user session there is no loss of data.

Differently from NetRaker [NRURLY], during the session users are free to navigate as they wish: our
method requires only that they clearly express what their current goal is from the list of supported
tasks. The analysis of Web interfaces based only on heuristics can be useful to remove usability
problems but the lack of user involvement can be a strong limitation and other problems can not be
detected. In any event, our environment has already been integrated with functionality that perform
a static analysis of the Web page. Our approach is strongly different from WebCriteria that
considers the performance of an expert user who selects the shortest path from the homepage to the
target page whereas in our case we consider the actual navigation path followed by users whatever
level of experience they have.

The Method _
Our approach combines two types of evaluation techniques that usuvally are applied separately:
empirical testing and model-based evaluation. In empirical testing the actual user behaviour is
analysed during a work session. This type of evaluation requires the evaluator to observe and record
user actions in order to perform usability evaluation. Manual recording of user interactions requires
a lot of effort thus automatic tools have been considered for this purpose. Some tools support video
registration but also video analysis requires time and effort (usually it takes five times the duration
of the session recorded) and some aspects in the user interaction can still be missed by the
evaluator. In model-based evaluation, evaluators apply user or task models to predict interaction
performance and identify possible critical aspects. For example GOMS (Goals, Operators, Methods
and selection rules) has been used to describe an ideal error-free behaviour. Model-based
approaches have proven to be useful but the lack of consideration for actual user behaviour can
generate results that can be contradicted by the real user behaviour. It becomes important to identify
a2 method that allows evaluators to apply models in evaluation still considering information
empirically derived. To this end the main goals of our work are:
¢ To support remote usability evaluation where users and evaluators are separated in time and/or
space [HCK96};
e To analyse possible mismatches between actual user behaviour and the design of the Web site
represented by its task model in order to identify user errors and possible usability problems;
¢ To provide a set of quantitative measures (such as execution task time or page downloading
time), regarding also group of users, useful for highlighting some usability problems.

The starting point was RemUSINE [PB0O0], an automatic tool based on the use of task models to
support evaluations of graphical applications. This tool was not suitable for web applications whose
specific aims are to support tasks related to retrieving and accessing information, and navigation is
based on links to remote pages. In RemUSINE to identify errors (useless actions for the current
task), the possible enabling and disabling of user interface actions was considered. Then, if users try
to perform an action, this means that they want to perform the associated task, and if the action is
disabled, then an error is performed. For example, suppose the user has to perform some actions and
then save the data. If the user tries to save the data before terminating the sequence of actions
planned, then this action would be disabled, and the error can be automatically detected. During
Web site evaluation it is not possible to apply this concept because usually links are always enabled.
Thus, in this context it is difficult to automatically identify user intentions. The solution that we

3

have adopted to capture this information is to display the high-levels tasks that are supported by the
Web site asking the user to indicate explicitly what task they want to perform. During the testing,
since we perform remote evaluation without direct observation of the user interactions, it is
important to obtain logs with detailed information. We have designed and implemented a logging
tool able to record a set of actions wider than those contained in server logs. WebRemUSINE
compares the logs with the task model and provides results regarding both the tasks and the Web

pages supporting an analysis from both viewpoints.

The method is composed of three phases:

e Preparation, it consists in creating the task model of the Web site, collecting the logged data
and defining the association between logged actions and basic tasks;

o Automatic analysis, where WebRemUSINEs examines the logged data with the support of the
task model and provides a number of results concerning the performed tasks, errors, loading
time, ...

e FEvaluation, the information generated is analysed by the evaluators to identify usability
problems and possible improvements in the interface design.

Figure 1 shows the architecture of our system where rectangles represent transformation modules
and ovals the input and output of such modules. The environment is mainly composed of three
modules: the ConcurTaskTrees editor (publicly available at http://giove.cnuce.cnr.it/ctte.html)
developed in our group; the logging tool that has been implemented by a combination of Javascript
and applet Java to record user interactions; WebRemUSINE, a java tool able to perform an analysis
of the files generated by the logging tool using the task mode! created with the CTTE tool.

/ Designer work area \

Evaluation

ConcurTaskTrees N
results

Editor

k.

Event-Task
Associations

e e e i i o — i e e e it i

AT T T T T T T T T = T~ ,./ <
// \\ / \
{ Browser1 , ! Browser n
I ogl I | Logn
| I
I | vesssssnmesemessconsns .
| |
| Logging i Logging
! |_'> Tool l! Tool ¢ |
!] ! _ 1
|\ [Web Interface J ll \ r Web Interface J

A\ /
\\-.. ________ 3 _____ - // \"--._____._____?, ______ ’/

Figure 1: the architecture of our environment for remote evaluation.

Task models describe the activities to perform in order to reach user's goals. We have used the
ConcurTaskTrees (CTT) [P99] notation to specify them. This is a notation where it is possible to
graphically represent the hierarchical logical structure of the task model. It is possible to specify a
number of flexible temporal relationships among such tasks (concurrency, enabling, disabling,
suspend-resume, order-independence, optionality, ...) and for each task it is possible to indicate the
objects that it manipulates and a number of aitributes. The notation also allows designers to indicate
how the performance of the task should be allocated (to the user, to the system, to their interaction}
through different icons.

The logging tool is able to store various events detected by a browser. The Javascripts are
encapsulated in the HTML pages and are executed by the browser. When the browser detects an
event, it notifies the script for handling it. By exploiting this communication, the script can capture
the events detected by the browser and add a temporal indication. Our tool works for the two main
Web browsers (Micorosft IE and Netscape Communicator). Then, a Java applet stores the log files
directly in the application server.

WebRemUSINE performs an automatic evaluation of a Web site providing the evaluator with a set
of measures, concerning also group of users, useful to identify usability problems. The input for the

tool are the task model and the log files recorded during the test sessions. As Figure 1 shows

WebRemUSINE is composed of two submodules:

e The preparation module, this module filters the information recorded during the testing, then the
evaluator has to associate cach basic task with the corresponding event. All the event-basic task
associations are recorded in a file.

o The evaluation module, it has three inputs: the task model, the log files and the event-basic tasks
associations. This information is useful to analyse the logs with the support of the task model
and identify errors performed by the user during the navigation. By following the sequence of
events stored in the log it is possible to identify the corresponding tasks (through the event-basic
tasks association) and comparing the sequence with the temporal relationships among the tasks
it is possibie to identify the tasks performed correctly and those that generate errors. It is also
possible to calculate the completion time for the relative tasks. All results are displayed by
WebRemUSINE in various formats both textual and graphical.

The WebRemUSINE analysis can point out usability problems such as tasks with long performance
or tasks not performed according the task model corresponding to the Web site design. These
clements are useful to identify the pages that create problems to the user. As previously explained,
log files store both user interactions (mouse movements, keyboard input, link selection) and
browser behaviour (start and end of page loading). The events corresponding to user interactions are
associated with interaction tasks whereas the internal browser events are associated with system
tasks. Thus the evaluation performed provides information concerning both tasks and Web pages.
These results aflow the evaluator to analyse the usability of the Web site from both viewpoints, for
example comparing the time (o perform a task with that for loading the pages involved in such a
performance. WebRemUSINE also identifies the sequences of tasks performed and pages visited
and is able to identify patterns of use, to evaluate if the user has performed the correct sequence of
tasks according to the current goal and to count the useless actions performed. In addition, it is also
able to indicate what tasks have been completed, those started but not completed and those never
tried. This information is also useful for Web pages: never accessed web pages can indicate that
either such pages are not interesting or that are difficult to reach. All these results can be provided
for both a single user session and a group of sessions. The latter case is useful to understand if a
certain problem occurs often or is limited to specific users in particular circumstances.

The Logging tool
Our logging tool is able to extend the browser behaviour by associating a script with the event

handlers. Thus, it is possible to capture the user interactions with a Web site. All the pages should
include this seript. Unfortunately, these scripts are not persistent thus the visibility of the variables
is limited to the page where they are defined whereas users can navigate across multiple pages
within a web site. The collection of the data relative to multiple pages is performed through a Java
applet that is activated at the beginning of the test and is active for all the session. Figure 2 shows
the architecture of this module. Each page of the site includes the script for logging user
interactions. All events are communicated to the applet that concatenates them. Lastly, at the end of
the session the applet provides the server with all the logged events. For this purpose, in the server
there is a servlet able to collect the data and save them into a file.

e CLIENT o —mmmmmmmmmmmmee e .

/ \
| |
' |
' |
! [
! |
‘ |
! |
' |
' |
\\ S /
_— SERVER —— e - -
/ \
| SERVLET |
| N a
| AAaO] |
| ~ ~ — }
N Log File _ /!

Figure 2: The architecture of the logging tool.

The script redefines event handlers in order to support recording of the following events: abort and
error on images; change on form elements, click and dbiciick on links, images and form elements,
load and unload of pages, submit and reset of forms, resize and scroll of browser windows (see
Figure 3). An event handler is a piece of code associated with an interaction object. When the user
performs an interaction, such as button or link selection, the corresponding event handler is
performed. For example, it is possible to implement an event handler that when the mouseQver
event occurs on a link then shows a corresponding message at the bar level. To this purpose it is
required to redefine the function predefined as event handlers. Our tool works with both Netscape
and Internet Explorer even if they have different ways to analyse user-generated events. Figure 4

shows an excerpt from an example of log.

var isNetscape = (navigator.appName. indexOf ("Netscape") != -1);
var isIE = (navigator.appName.indexOf ("Microsoft") != -1);

if (isNetscape)

{
document . captureEvents (Event .CLICK |Event.DBLCLIK);
window.captureEvents (Event .LOAD | Event . UNLOAD | Event .RESIZE) ;

function kime{){...}
function handler(e)

{

//when the “load” event occurs then the defined event handlers
//onChange, onAbort, onError,onSubmit and on Reset
//are activated on the asscciated objects
for {(var i=0;i<document.forms.length;i++)
{
document . forms[i] .onsubmit = handler;
document . forms[i] .onreset = handler;
for (var =0;j<document.forms{i}.elements.length;j++)
document . forms[i] .elements{j] .onchange = handier;
1
for (var 1 =0; i<document.images.length;i++)
document . images [i] .onabort=handier;

document.onclick = handler;
document .ondblelick = handler;
window.onload = handler;
window.onunload = handler;
window.onresize= handler;

if(isIE) window.onscroll = handler;

Figure 3: Structure of the code of the logging tool.

It is more difficult to understand user intentions from an automatic analysis when Web applications
arc considered. We aim to automatically determine if the user is able to reach the information
desired and if he is able to follow the best navigational path. For example, if the user wants to
download a program from a Web site he can access various pages of the site without finding the
download page. Our goal is to highlight this problem, which reveals a usability problem since the
user is not able to reach his goal. To this end, we have decided to provide the list of high-level tasks
that are in the task model of the web site. This list represents the activities that can be performed
during the site visit and the user has to select which one is the current goal. At any time, the user
can change the current goal and select another task. To implement this, during the site test the
browser window is divided into two frames: one to show the list of possible target tasks and the
other showing the site pages. A radio button implements the possibility of selecting the target high-
level task with labels indicating the task names (see Figure 5).

time:9938136567562

LOAD http://marte.cnuce.cnr.it/sigchi/membership.htm
time: 993813661640

CHANGE TARGET=textarea NAME=Address:
time:993813666096

CLICK TARGET=radio NAME=AddressType: VALUE=BUSINESS
time: 993813668399

CLICK TARGET=submit NAME=B1 VALUE=Send
time:993813668479

SUBMIT TARGET=form

time:993813673757

CLICK TARGET=link NAME=home HREF=http: //marte.cnuce.cnr.it/sigchi/index.htm
time:993813673887

UNLOAD

Figure 4: An excerpt of log.

The selection of one target high-level task activates a specific event handler that, as it happens with
user-generated events, creates an clement in the log file composed of a temporal indication.

Our solution has taken into account that when a Web page with a script is accessed then also the
script is executed. However, the variables of the script are visible only from when the page is
downloaded until a new page is loaded. This lack of data persistency during loading of multiple
pages was the first issue to address. Cookies represent one possible solution to keep information
regarding the session in a persistent manner, with the possibility of sharing then across multiple
pages. Usually, cookies are a mechanism that can be used from server-side connections (such as
CGI scripts) to store and retrieve information on the client side of the connection. Javascripts are
able to access and save information in cookies thus making it accessible also from the server. This
mechanism has some limitation on the amount of information that can be stored in the client sysiem
and for long sessions some data can get lost. We have chosen another solution to overcome the
stateless of the Web [G98]. The page appearing in the browser is composed of two frames (see
Figure 5). The first frame contains the applet while the second frame shows the web site pages

containing the script.

Lst of High Love) Tusks:

corunn ttrest i ACT
We e gariclry nterested i having prvate compacies 1
esembers. fn this carr 3 spocardp i requeed amd e mooey is wsed
Sorthe SITEHI actvites Greebng rpamuatio, vibed speskers, ek)
Toheosms mrnber, Bl v the spglicaive bekw, Make sare g
yeorite b cooved sdéesa smee we premarly ctmascae 43 ¢ mak

SIGCHE ltaly Membezshlp Application

€ AvcessSits

 ArcenMemhashipinf

£ visiMembentipPaps
© hacomeMember [

£ AscossPecplich Membership Verswas g .

© VistPeoplePage i:&ﬂémuurn i
£ srachlficenlale SIGCH) haly g tn wachrerk of profes amal why Web Slte pages
‘161 ol vcerstn Lachrork of rofeaiomal who e
it EDTEDBIE g wi e st stssiarh i, ok kb
. enich the commuc alinn betwesn bomans aod cowpusers, Suoe
P ArtenCeazdina m it rans Eor SIGCHI Haly's acthien are:
 AccensEvectinh —
= AccesBylawinfo + Taols end Reshescue fox bekiee user interface dengn
. I Agrestpousmalols Ve Productstht exabudy Bres s0hion W eer beface poblers
Applet and list of Aot . vt mi RC]
. AtessCrurserlafa ¢ Tochs adYechmiques foc oy cvahiton
hlgh level taSkS — oot i serkerns ta e SIGCHI Ty, W fee s reieed T
““_‘_’"""‘"—‘—. E seonsons | et I oo voing ember, mtiberbp 1 ACM SIGCHL
feqired. Moo voliog meehers £ ot be coma oBBearr, oor dertbem.
Coved mewbrs inchude 8 sasicly ofprofeasionaly wod studsotd wih o

Figure 5: Layout structure of Web application during testing.

While the user interacts with the site, the script captures all the events and communicates them to
the applet. All the information is kept by the applet during the session and only at the end is saved

9

into a file. The end of a session is explicitly indicated by the user selection of the stop button in the
frame with the applet and the high-level tasks. Since applets can store information on the server, the
log files are transmitied to the server, where the evaluators can access all of them. The
communication between applet and server is performed through a serviet that stores the information
received from the applet into a file. Servlets are able to access some information regarding the client
system and, in some cases, the user. In our case the servlet inserts in each file a heading with the
following information: date and time of log reception, [P address and host name of the client
system. User name is provided directly from the user. The last operation of the servlet is to save the
file in a predefined directory in the server system.

The Preparation Phase
The main goal of the preparation phase is to create an association between the basic tasks of the task

model and the events that can be generated during a session with the Web site. This association
allows the tool to use the semantic information contained in the task model to analyse the sequence
of user interactions. In this phase, the frame with the list of high-level tasks supported is also
created. This is performed automatically through a depth-first analysis of the task model and the
generation of the corresponding HTML code supporting the possibility of selecting one of them.
Once the association file is created, it can be used to analyse as many user sessions as desired
without any additional effort. _

Basic tasks are tasks that cannot be further decomposed while in high-level tasks we have complex
activities composed of sub-activities. The log files are composed of set of events. If an event is not
associated with any basic task, it means that either the task model is not sufficiently detailed, or the
action is erroneous because the application design does not call for its occurrence. For example,
when a user sends a form then two events are stored in the log: one associated with the selection of
the Submit button and the other one with the actual transmission of the form. Thus, in the task
model two basic tasks are required one interaction task for the button sclection and one system task
for the form transmission otherwise it is uncompleted, Whereas if the user selects a non interactive
image it means that an error has been performed which also points out a usability problem since it
shows that the user does not understand that the image is static with no functionality associated.

In the logs there are three types of events: user-generated events (such as click, change), page-
generated events (associated with loading and sending of pages and forms) and events associated
with the change of the target task by the user.

Tasks can belong to three different categories according to the allocation of their performance: user
tasks are only internal cognitive activities that thus cannot be captured in system logs, interaction
tasks are associated with user interactions (click, change, ...) and system tasks are associated with
the internal browser generated events. In addition, the high-level tasks in the model are those that
can be selected as target tasks by the user. Each event is associated with a single task whereas a task
can be performed through different events. For example, the movement from one field to another
one within a form can be performed by mouse, arrow key or Tab key. The one-to-many association
between tasks and events is also useful to simplify the task model when large Web sites are
considered so that we need only one task in the model to represent the performance of the same task
on multiple Web pages.

The main activity supported by the WebRemUSINE tool during the preparation phase is the
creation of the association files for interaction and system tasks. The list of basic tasks and the
events contained in the log files considered are loaded in two separate lists (see Figure 6). In the
figure, the list with task names contains the names of all the basic interactive tasks while the list of
events contains the list of events that appear in the log considered. If the user performs multiple
times one event, that event appears only once in the list. Each event is composed of its description
and the indication of the corresponding page. All the events associated with one page are grouped in
the presentation. The association is created by selecting one element in each list and pressing the

10

Associate button. The events associated are removed from the list while tasks remain visible
because they may be associated with other events. When a task is associated then it is shown by a
different colour. All the associations performed can be visualised and edited for removing
previously created associations. In this case, the removed event will be shown again in the list of
events.

%, hitp:/marte.couce.caritsigechl/memb ership.htm
CLICK TARGET=submit NAME=B1 VALUE=Gend
GHANGE TARGE T=text NAME=F ax;
GHANGE TARGET=text NAME=HOmeTel:
CLICK TARGE T=radio NAME=Ad drassType : VALUE=Business
CLICKTARGwET mage SRC=| arte.chuce.cnriifsigehiimgligent .oif

{4
‘ CHANGE TARGET=lext NAME=Emait:

Figure 6: Tool support for the preparation phase.

The Analysis and Evaluation Phase

Once the task-event association has been created then it is possible to move on to the evaluation
phase. The evaluation provides a number of results regarding both tasks and pages allowing
evaluators to perform an analysis from both viewpoints. For example, during the evaluation the tool
calculates both the time to perform a task on a page and the time of visit of the same page. Thus, the
evaluator can deem if it is the entire page to create problems to the user (for example, because it
contains too much information) or if it is the task performance to require too long time. Through the
log analysis WebRemUSINE identifies:

¢ The sequences of tasks performed and pages visited;

e The patterns existing in such sequences;

e If the user has performed the correct sequence of actions for reaching the current goal, if the
goal has been achieved or if useless actions have been performed;

Correctly performed tasks, those that have caused user errors and those never tried;

The pages of the site never visited;

Time taken to perform tasks;

Time to download and visit pages.

The above results can be calculated both for single logs than for all the sessions available. In
addition, WebRemUSINE is able to calculate summary information and statistics regarding the set

11

of sessions considered. This evaluation is performed by exploiting the basic tasks/events association

that allows the tool to analyse user behaviour with the support of the task model.

As we explained beforehand, the logged events are associated with basic tasks and the target tasks

with high-level tasks in the model. The analysis performed depends on the type of task:

e Tor basic tasks the tool checks that the temporal relationships defined in the task model are not
violated; if a disabled basic task is performed then a precondition error is indicated otherwise
the task is considered correctly performed;

e For high-level tasks the tool determines if all the corresponding basic tasks have been correctly
performed (and thus the goal has been correctly achieved) and if some useless basic tasks has
been performed.

During the analysis, the WebRemUSINE tool internally uses a simulator that was implemented for
the CTTE tool. This simulator takes a task and is able to indicate what the next enabled tasks are
according to the constraints indicated in the task model. Thus, at the beginning WebRemUSINE
activates the simulator that returns the list of initially enabled tasks. Then, for each event in the log
WebRemUSINE asks the simulator to perform the corresponding basic task and return the enabled
tasks after its performance as well as the high-level tasks that have completed their performance.

WebRemUSINE also shows analysis of log files. In the readable list (see Figure 7), for each event
three types of information can be given: the event is associated with a basic task and the
performance was either correct (number 5 in the figure) or a precondition error occurred (number 7
in the figure), alternatively the event was not associated with any basic task (number 4 or 6 in the
figure), In addition to the event description and the name of the corresponding basic task (if any),

the tool also shows the basic tasks enabled after the performance of the basic task considered and

the name of the current high-level target task. This information is useful for evaluators for an

interactive analysis of the sequence of actions performed.

4) EBvent: hitp:fmaste.cnuce. cnr.it'sigehiftafiscrizione.im CLICK TARGET=lext NAME=Name:
The event is not assaciated with any task

5) Event: hitp:fimarte.cnuce.cnritisigehiitariscrizione.htm CHANGE TARGET=lext NAME=Name:
Associated task: TypeName perfonned correctly
Enabled tasks: Analyzelnfn,T‘,rpeAddress,relumTuTup,Changel,anguage,89!ectPeople,Selec!Events,Eelect
Target task: AccessMembershipinfe [active]

6) Event: htfp:fmarte.cnuce.carlisigehifitaliscrizions.him CLICK TARGET=text NAME=Emall:
The event is hot associated with any task

7} Event: http:¥rarte cnuce.cnr.ifsigchifitaiscrizione. sm CLICK TARGET=submil NAME=B1 VALUE=Send
Associated task: SendForm --Precondition Ecror--
Enabled tasks: Analyzelnfo TyneAddress, returnToTop,Changel anguage, SelectPeapie Selectbvents, Selec
Target task: AccessMembershipinfo [aclive]

8) Bvent: http:fmarte.cnuce.cnritsigehifitafiscrizione. htm SUBMIT
The event Is hot associated with any {ask

Figure 7: Simulation of log file with the support of the task model.

12

In the automatic analysis of the target high-level tasks five possible results can be achieved:

Success, the user is able to perform a sequence of basic tasks that allows achieving complete
performance of the high-level task;

Failure, the user starts to perform the required basic task to achieve the current goal but he is
unable to complete its performance;

Warning type 1, it is possible to detect performance of basic tasks useless for the current goal
but that do not preclude its completion;

Warning of type 2, the user starts to perform correctly a high-level tasks but then some useless
basic tasks are performed that disable the possibility of reaching the goal;

Warning of type 3: the user has not been able to enable the performance of the target high-level
task.

Regarding single sessions the tool provides various information:

&

The list of basic tasks performed correctly with indication of the number of times they have
correctly been performed;

The list of basic tasks that have wrongly been performed for a precondition error with the
indication of the number of times the error has been made;

The list of tasks never performed correctly;

The pattern of tasks (frequent sequence of tasks) that have correctly been performed during the
session and indication of their frequency.

This information allows evaluators to easily identify what tasks create problems and what tasks are
efficiently performed. The indication of tasks never tried is useful to identify parts of the user
interface that are difficult to reach. In the case of frequent task patterns, the designer can decide to
change the design in order to make their performance simpler and faster.

Tasks:

1) ShowSponsorsPage
2) SeleciEvents

|3) GelectPeople

4) ShowidembershipPage
5) TypeName

6) TypeAddress

7) SendForm

3) ShowEventsPage

9} SelectSponsors

¥ 0) ShowPecplePage

User Information;

Name Marucci
Date 03Jul 2001
Time 15:53.02
Duration 8h 1m 40s

Figure 8: WebRemUSINE output: user task performance.

13

The tool is able to provide the time of task performance for both basic and high-level tasks. The
time for the high-level tasks is given by the sum of the performance of all the composing basic
tasks. Since one task can be performed multiple times during a session, the tool shows minimum,
maximum and average time of performance through different colours in the bar associated with the
task (see Figure 9). By selecting one bar it is possible to get detailed information on the time
performance in each execution.

The tool also provides temporal information regarding when etrors occur. This. is useful to
understand whether user performance improves during the test. For example, “if errors are
concentrated in the initial phase of the test it can mean that the user interface is easy 10 learn to use.

Regarding the navigation among pages the tool is able to determine the following information:
e The visited pages and the number of accesses;

e The visit patterns during navigation and their frequency;

e The time of downloading and visit of each page.

Analysing the number of accesses to the web pages is interesting. Pages accessed very frequently
may indicate a rigid design. For example, if the access to the various parts of the site requires
always selection of the home page, this page will have a high number of accesses and this solution
would be inefficient since it would be faster to provide the list of the possible parts of the site
available at any time. On the other hand, pages rarely accessed indicate parts of the site that are
either not interesting or difficult to reach. If the same problem occurs for many users then it
becomes important to redesign the site to better support access to this information.

Patterns of pages accessed are another important aspect to analyse especially if they contain errors
that occur frequently in various users' sessions.

The analysis of the time can indicate many usability problems. If transferring a page takes too long
then it is possible to identify too large files. For example, if the loading of images is often
interrupted (generating an abort event captured by the logging tool) it is possible to understand that
users do not like to wait too Iong to see them. In these cases it is better to reduce the dimensions to
improve the site usability. The downloading time is calculated from when the user asks for the new
page until the new page is completely loaded.

Time visit of a page is calculated from when a page is completely loaded in the browser until the
user asks for a new page. The visit time depends on the structure of the page. Long pages containing
a lot of textual information require from the user longer time to identify the required information.
The visit time is affected also by the number of links in the page because users have to consider
them to decide how to carry on the navigation. To allow evaluators to better analyse the visit time
for cach page the tool is also able to provide some measures (number of words and links contained)
obtained through a static analysis of the HTML code to determine the complexity of the structure of
the page as Figure 9 shows.

14

http:/inarte.cnuce.chr.it/sigchis
1} itafaventi.htm
2} index.hkn
3) hews.htm
e 1 4} itafmembri.him
i firkcs 30 5) membership.him
" {6) everts him
i 7) people.him

links 18
words 354

links 204
words 2093

User Information:.

Name Santaro
Date 03 Jdul 2001
Time 17:41:47
Duration Gk B 218

e R

Figure 9: WebRemUSINE output: page visit times.

The tool is also able to analyse not only single sessions but also group of sessions and then provide
statistical and summary information concerning them. For example, it provides both the average
and the standard deviation of:

o Total time taken by the user session;

e Number of completed tasks;

e Number of errors subdivided into precondition errors and other errors;

e Number of scrollbar movements and change dimensions events.

Regarding basic tasks, the following averages are calculated on the group of users and showed

listed in decreasing order:

e Number of correct performance, here first tasks completed correctly from all users are shown
and then the others to better highlight those that do not create problems to any user;

e Number of times a precondition error has been generated;

e Frequency of a task pattern.

Figure 10 shows the performance time regarding a group of sessions and in detail the performance
time of the SelectPeople task.

Regarding evaluation of single pages the following average values are calculated on the number of
users:

s Average number of accesses to each page;

s Average frequency of patterns;

e Average downloading time;

5

e Average visit time.

-IJSf v 2-tﬂlSEl ace Eval] J.l Human—ﬁpul Inleraction B_rqp, CHUCE - C.
T __ o =

i
Tasks

A1) TypeMatl

{[2) ShowGeneral
86_ 43) selectName
55_| B 4) TypeAddress
o 1I5) BelectPeople
d4_| o 1E) 54

Seconds

JBession(s):
1) Marucei

2) Mori

3) Pizzolatt

33

Numiber of session: 3

User infonmation:

Name Marucci
Date 03 Jul 2005 iy d Sessions
Time 18:47:04 i

2t

Nurmber of sessiors 3 -

User Information;

Hame Marucci
Date 93 Jul 2001
Time . 18:47:04

Figure 10: WebRemUSINE output: task performance in a group of users.

Conclusions
In the paper we have shown how it is possible to perform remote testing of Web sites and analyse

the results with the support of automatic tools, We have implemented the logging tool in Javascript
while WebRemUSINE has been implemented in Java.

Once the initial preparation phase has been completed, this approach allows evaluators to analyse
large number of sessions without additional effort.

Future work will be dedicated to the application of our tool to the evaluation of large web sites to
determine whether the preparation phase in these cases may be inordinately long, thus calling for
improvements in order to make the tool easier to apply.

References

[CS99] J. Cugini, J. Scholtz VISVIP: 3D visualization of paths through web sites. Proceedings of the International
Workshop on Web-Based Information Visualization (Florence, Italy, September 1999), pp. 259-263. Institute of
Electrical and Electronics Engineers. http://www.itl.nist. gov/iad/vug/cugini/webmet/visvip/webvis-paper.htm]

[EC99] M. Etgen, J. Cantor What does getting WET (WebEvent-logging Tool) mean for web usability?. Proceedings of
HFWeb'99 (Gaithers-burg, Maryland, June 1999). http:/zing.ncsl.nist. gov/hfweb/proceedings/etgen-cantor/index.html.
[E00]) P. Faraday Visually critiquing web pages. Proceedings of HFWeb’00 (Austin, TX, June 2000).

http:/fwww.tri.sbe.com/hfweb/faraday/faraday.htm
[(398] D. Goodman Client-side persistence without cookies. May 1998,

16

http://developer.netscape.com/viewsource/goodman_nocookies/goodman _nocookies.htm]
[HCK96] R. Harton, I. Castillo, J. Kelso, J. Kalmer, W. Neale The Network as an estension of the usability laboratory.

Proceedings of CHI'96 (Vancouver, Canada, April 1996), pp. 228-235.

http://www.acm.org/sigchi/chi%6/proceedings/papers/Hartson/hrh_txt.htm

[11100] M. Ivory, M. Hearst State of the Art in Automated Usability Evaluation of User Interfaces. 2000. University of
California, Berkeley

[LPT99} G. Lynch, S. Palmiter, C. Tilt The max model: A standard web site user model. Proceedings of HFWeb’99
(Gaithers-burg, Maryland, June 1999). http://www.nist.gov/itl/div894/vyrg/hfweb/proceedings/lynch/index.html

[PBOO] F. Paternd, G. Ballardin RemUSINE: a bridge between empirical and model-based evaluation when evaluators
and users are distant. Interacting with Computers, Vol.13, N.2, 2000, pp. 151-167.

{P99] F. Paternd, Model-based design and evaluation of interactive applications, Springer Verlag, 1999. ISBN 1-85233-
155-0.

[SLD98] J. Scholtz, S. Laskowski, L. Downey Developing usability tools and techniques for designing and testing web
sites. Proceedings IIFWeb’98 (Basking Ridge, NJ, June 1998).

http://www.research.att.com/conf/hfweb/proceedings/scholtz/index. html
[TecEd99] Assessing Web Site Usability from Server Log Files. Prepared by Tec-Ed, Inc. December 1999

[WebCriteria?9] WebCriteria. Max, and the objective measurement of web sites. December 1999.

htip:/fwww. webcriteria com/pdifmax _102.cfm

[BURL] Bobby. hitp://www.cast.org/bobby

[NRURL] NetRaker Suite. http://www.netraker.com/nrinfo/products/index.asp
NIST Web Metrics. http:/fzing.ncsl.nist.gov/WebTools

17

