11th Internationai Conference

Software Engineering & its Applications

F o

% % \’"ﬁf\’g“«“' ey

_m‘fﬁ:« o vl ‘/

December, 8.9 & 10 1998
PROCEEDINGS - pUol.

Preprints

A Systematic Approach for Integration Testing of
| Complex Systems

Frédéric Merciert-f, Antonia Bertolinot,
Pascale Le Gallt and Gilles Bernot?

T : Istituto di Elaborazione della Informazione t: LaMl, Universite d'Evry
CNR, Via S. Maria, 46 Cours Monseigneur Romero
56126 Pisa, Italy 91025 Evry Cedex, France

Abstract: For modular systems with hierarchical structure, approaches like top-
down, bottom-up, and mixed strategies thereof, have traditionally been used for
integration testing purposes. Such approaches are evidently no longer adequate
for modern complex systems, which are made of many components (each, likely,
a complex system itseif) variously distributed and interconnecting. New
strategies for arbitrary software architecture need to be identified.

We introduce a novel approach, based on a dedicated specification formalism

called information spaces. Such approach supports a systematic decompaosition

into relevant subsystems for testing, driven by system structure and information
. Processing.

We illustrate the funding concepts of our approach, i.e. architecrure topology,

event expressions, information slices of a specification and finally resr classes,

which figure a new means to raise integration errors.

Keywords: integration testing, software architecture, test class

1 Introduction

Traditionally, we all learnt that the integration testing of large systems must proceed
In incremental steps. For modular systems with hierarchical structure, top-down vs.
bottom-up are two well-known alternative strategies and in practice, mixed strategies
are used according to the cost of stubs and drivers (simulating resp. called and calling
modules).

However, such approaches no longer fit the needs for testing and analysing modern
complex systems. These ones do not follow classical hierarchical structure and are
made of many components (each, likely, a complex system itself), variously
distributed and interacting concurrently on network. New strategies for arbitrary
software architecture need to be identified.

But before any further consideration on integration testing, it is important to state
exactly what we are focusing on. Let us start from the definition of integration given
in [Parr897 : "Integration is the process of assembling those modules or components,
which have been developed and previously tested in isolation, into a system which
will appear 10 be a single entity". In the case of current complex systems, this process,
whose objectives still remain the same, will add three elements which have not been
previously tested. These three elements are: components' connectivity, components'
communication and combinations of distributed functionalities.

To fill these needs, there is a general agreement that integration testing, much more
than any other test stage, must gather correlatively both structural and functional
testing criteria. But the principal weakness of current approaches [Jorg95] is that,

while led by some good intuitions, they try to reuse existing techniques instead of
identifying more adequate approaches and develop new techniques to support them',

Spanning from the detailed specification to (some part of) the code, the tester will
build his/her reference object based on his/her own understanding of the system.
After that, the whole set of coverage criteria [Beiz95], also used in unit testing, can be
applied according to costs and objectives. ~

We notice at least two flaws in such approaches. First the estimation of model
adequacy relies directly on the expertise of the tester and is then subject to
unexpected variations. Second the way to achieve the defined coverage is let in
shadow and always relies on a deep understanding of functions involved in the model,
Thus is also true for structural unit testing, but we can consider that achieving a
coverage criterion on a complex System architecture would be far more difficult than
solving some predicates, when it is teasible. .

study {Sect. 2), we introduce (Sect. 3) a couple of funding concepts such as System
architecture and event expressions. Finally (Sect, 4) we outline the notions of
information slice of a specification and the associated test classes, which figure a new
means to raise integration errors during systematic testing.

2 Case Study : TRMCS

To support the reader intnition while we illustrate our approach, we will use a case
study titled Teleservices and Remote Medical Care System (TRMCS) [Bals98]. The
System provides assistance services to users with specific needs, like disabled or
elderly people. A typical assistance service is to send relevant information to a local
phone-center so that family, medical and/or technical assistance car be notified of
critical circumstances. A top level model of the system, which so far involves few
components, is drafted in Fig. 1.

1: phonelnfo
2 id
3: state

Fig. 1: Top level mode} of TRMCS

In this model the component named Customer holds for a human customer that enrols
in the system. The Ccomponent named Patient holds for a possible technical device

‘Probably because in the same way than the "Bourgeois Gentilhomme" of Moliere was speaking in
prose without knowing it, we were integrating without any necessity to fix our intwition in a theoretical
corpus.

(e.g. a PC) that interfaces a human patient with the rest of the system. Typically, such
a device regularly sends information about the state of the monitored patient.

Such a model does not Justify so far the label of a complex system. However, a

description of the same system at an intermediate leve] of abstraction, such as in Fig.
2, already reveals many interactions hidden at the top level.

Customer

1: phoneinfo

2:id

3: alarm(id)

4: check{id)

3: clock

6: noCheck{id)

7: alarmAck(fd,phoneinfo)
8: noCheckAck(id,phoneinfo)
9: acklid)

10: masterOwOfOrder

Fig. 2: A more detailed model of TRMCS

The TRMCS component (dashed area) has taken shape in this model. For
geographical needs it has been configured as a main server and a sub-server. To
ensure availability, the latter has been doubled in a master / slave architecture. Finally
an external timer has been added. One can also notice that some information from and
to previous TRMCS component has a more precise description. In particular, the
previous state information has been refined in check and alarm, where check informs
regularly the system of the steady state of the real patient (and in the same time of the
working order of the Patient device), and alarm warns of a critical state of the real
patient,

For space limitation we will not exhibit the full specification of this example but we
will focus on subsets to illustrate our formalism and testing framework.

3 Specification Formalism

This work lays within the frame of the emerging field of Software Architecture
[ROSA98], although we prefer to talk more generally of System Architecture, with a
special focus on integration festing concerns. As most current studies in this field
essentially focus on the specification and verification of models, our approach stands
out by considering the use of architecture models as reference object for the testing of
implemented systems.

Consequently, our approach is complementary to current trend and opens the question
of testability of system architecture.

In the following we define the funding notions of architecture topology and evenr
expressions before introducing the formalism of information space on which our
approach relies.

3.1 Architecture Topology

The most intuitive representation of a complex system made of interacting
components remains that of an oriented graph.

- Definition. (Architecture) An architecture is an oriented graph G =(N ,A) so that :

N is a set of nodes corresponding to the components of the described architecture;

A eNXN is aset of arcs corresponding 1o the communication channels between
components.

What we describe using such a graph is a constrained space of communication, driven
by our intuition of the expected role and behaviour of each component, as well as the
intuition of the objective and the meaning of each connection. Nevertheless, we know
from experience that several architectural solutions can fill the same requirements.
Consequently, one can consider architecture topology like a flexible support to what
we are really interested in: the information processing, i.e., the global behaviour of
the system.

3.2 Event Expressions

The information associated to any system is basically of two kinds: primary
information, like that derived from physical measurements, or more generally any
piece of information indivisible at the level of abstraction we are. The second kind
corresponds to the information that is the result of a computation and so carries out
the system's functionality. Using the notions of information signature and information
terms, we define these two kinds respectively as basic and functional information
terms.

Definttion. (Information Signature) An information signature is a couple L =(I,F)
so that:

I is a set of basic information names:

F' is a set of function names with strictly positive arity;

The infinite set Ty of information terms on ¥ contains I and all terms recursively
derivable by functions in F.

For example, id is a basic information associated with the Customer/ Patient concept,
while alarm(id) extends the meaning of id building a new information.

To express the computation occurring between a basic primary information and a

synthesised one, we then define a language of event expressions :

_ holds for the empty event.

i{t] (resp. o[f]) where ¢ €Ty, holds for the input (resp. output) event of the
information .

¢.€, where ¢ and e, are event expressions, holds for a sequence of event
expressions. For instance, iid].o[alarm(id)] specifies that after the input of id,
the output of alarm{id) occurs.

e, &e, holds for a conjunction of event expressions. Intuitively, this operator
expresses that either the sequence ¢,.e, or the sequence e,.¢, are expected to
occur.

ele, holds for an exclusive dis junction of event expressions. This operator expresses
that either ¢, or e, are expected to occur.

e! holds for a "one time" expectation of e. This specific statement introduces a
modal dimension in the possible execution paths associated to event expressions.
For example, the event expression i[z‘d]!.(o[alarm(z'd)]lo[check(id)]) describes the
sequences i{id).o[alarm(id)] or ilid].olcheck(id)) for the first possible execution
paths and o[alarm(id)] or o[check(id)] for the following ones.

e;;€, holds for a set of independent event expressions. Each of ¢, and e, can occur
independently of the other. Intuitively this corresponds to the allocation of threads
to ¢ and e,.

Finally, given a signature %, we define the set sen(X) of all possible event
expressions (or senmtences) on X (i.e. event expressions with information terms
belonging to 7).

3.3 Information Space

We can finally define information spaces that gather the concepts of architecture
topology, information terms and event expressions. Precisely, in an information
space, the behaviour of each component of the architecture is described by an event
expression and each communication channel is labelled with carried information
terms.

Definition. (Information Space) An information space is a tuple IS = <Z, G, ﬁ), such
that :
Z is an information signature;
G is an architecture topology,
1=)i _) _ A= T,
= , ct (2] { b ’
M=, i1,) is avector f mapping functions 1N = sen(%)

and such that for each event expression associated with a node, input (resp. output)
information label the incoming (resp. outgoing) arcs*

Since our approach is based on the former definitions, we now present part of the
TRMCS specification based on the above formalism of information spaces.

Let us first put the layout of a specification. An information space specification has a
title and is built of three parts. The first part corresponds to the list of all information

components with their associated event expressions. Finally, the third part is the list
of all communication channels (i.e. couple of components) with their associated set of
carried information. For example, if we focus on the part of the architecture
containing the Customer, the Patient, the Router! and the MasterSubServer, we have
the following piece of the TRMCS specification (not relevant event statements are
written in light):

TIf Decessary, to avold some ambiguity we eXpress which arc is concerned with a given input (resp.
output) event,

info_spec: TRMCS
view: global
info_description:
id:
"user identifier."
alarm(id):
"alarm signal."
check(id);
"check signal.”
ack(id):
"acknowledgement to the user."

Customer

components:
Customer:
{ofphoneintol . i(id} . ofid])!

& (9) | Patient:

Masrér i{id]! . (ofalarm(id)] . ifack(id)] | ofcheck(id)])
@ = Routerl:
(R~

Patient

{ifcheck(id)] . olcheck(id)]
lifalarm(id)] . ofalarm(id)] . i[ack(id)] . ofack(id)])
MasterSubServer:
(i[alarm(id)] . ofakarm(id;) . ifalarmAck(id,phonetnfon) .

2:id ofack(id)] . o[phancinfo)
3: alarm{id) F{ilcheck(id)] . ilclack]it . ti{check(id)] . i[ciock]
4: checkfid) Hclock] . olnofunciid)) . i!_m)C)k—'-rkAck(id,phc:n::!nﬂa;!
9 acklid) - ophonelntn]i;
ol masterQ0]
connections:

Customer -> Patient :id

Patient -> Routerl : alarm(id); check(id)

Router] -> Patient : ack(id)

Router! -> MasterSubServer : alarm{id}; check(id)

MasterSubServer -> Router] : ack(id)

Fig 3: Part of TRMCS information space specification.

We are now ready to address integration testing concerns within the framework of
information spaces.

4 Test Classes

Building up a specification using the information space formalism gives us a strongly
defined reference object from which It is possible to conceive tests. In particular
verifying the adequacy of the implemented system to its information space obviously
fits the goals of integration lesting, since both architectural and information
processing aspects of system's tomponents are expressed within the specification.

We now introduce a concept of coverage over information Spaces, standing on the
intuition that testing the processing of an information at a particular point of the
System corresponds to testing a related sub-part of the system.

The functional meaning associated to this intuition is clear: this information has a
definition domain and is possibly the result of several computations through the
System; so the underlying goal is to verify the adequate composition of the
computations leading to this information.

The structural counterpart is also obvious: as the building process of an information is
variously distributed over the components of the architecture, testing an information
also verifies the connectivity and the interfaces of the components involved in its

building process. Clearly to achieve a complete verification of the interaction between
system's components, it is not only Necessary (o test all information handled by the
system, but also to do so at any sensitive point of the architecture.

Deriving from an information space, which implicitly defines the global event
schedule over the system, all and only the part of the specification relevant to a
specific information corresponds to extracting a slice of the information space. Given
an input event i/t] and its location, an information slice is an information space
segment whose behaviour description is identical to the global information space with
respect to ift].

For example in TRMCS, the slice associated to- the input of the information
alarm(id) from the Server component is the following :

3 alarm{id)

=)
> Slave
SubServer

Fig. 4; An information slice of TRMCS w.r.L. the information alarm(id)

If we now consider the set of slices related to all information handled by the system,
we can observe that some slices are included in some other. Indeed, this simply
reflects the intuition that the building process of an information defines a hierarchy of
information dependencies. More interesting is the range of integration testing
strategies that can stand on this observation: from the more internal slices to the more
external ones, or the opposite or something else... the field is still open.

We are now in a position to introduce fes: classes that constitute a first step towards
how to test information slices. Given an information slice, defining a test class (which
has to be filled with test cases associated to a more concrete level) corresponds to
assigning specific test roles to some of the slice components. Basically, we
distinguish between those components from which test input data are launched (the
launchers) and those other ones on which the test oracle could be located. What we
do is a partition of the set of components related to the slice. Oracles and associated
launchers are the borders of the slice, since the launchers produce basic information
necessary to build the information tested on the oracle. The other components in the
slice form the part of the system that is actually tested to verify their interactions.

Intuitively, oracles are those components that receive the selected information as
nput and keep it (i.e., do not re transmit It).

Considering again the slice associated with the information alarm(id) given as input
to the server component (Fig. 4), we select the Server as the sensitive oracle, while
the two routers and the two sub-server have been rejected since they only act as -
transmitters of the information alarm(id). Then we back track on the siice from the
Server till the Patient component. This one produces the information alarm(id) and is
then selected as a launcher.

But such a test class is not yet precise enough. In particular we do not state if the
lransmission process we test should be handled by MasterSubServer or by
SlaveSubServer.

We note that the execution of a class related to a specific information may depend on
other information terms, which condition the achievement of desired schedules. We
call these particular information the triggers of a given class and add it to the test

class definition.

Finally, a test class has the following profile -
(info,oracle,launchers, triggers)

Ty X N x (N) x (T

For the information alarm(id) we obtain the two following test classes: {alarm{id),
server, {Patient}, @) and {alarm(id), server, {Pan'gnt}, {masterOuz‘OfOrder})_ In fact,

In particular this notion of a context (on which the test classes extraction process is
basically funded) can be extended to give further details like "on which intermediate
information we focus our attention to fill a given test class". The set of these
extensions based on information Space specification is yet not fully developed and we
currently investigate some clues more specifically related to the test plan building
process.

Finally the following table gives all the results we obtained for the TRMCS case
study with an enhanced version of test classes description.

Information f Oracle Launchers Triggers Via
phonelnfo Server {Customer}
PhoneCenter {Server; Patient} alarmAck(...)
PhoneCenter {Server; Patient} {masterQG} alarmAck(...)
PhoneCenter {Server; Patient} noCheckAcky...)
PhoneCenter {Server: Patienr} {masterO0} noCheckAck(...)
ack(id) Patient {Server; Patient} alarmAcki...)
Parient {Server; Patient} {masterOQ} alarmAck(...)
alarmAcki...) MasterSubServer {Server; Patient} alarmfid)
SlaveSubServer {Server; Patient} {masterO0} alarm(id)
noCheckAck(...) | MasterSubServer {Server; Patient} noCheck(id)
SlaveSubServer {Server; Patient} tmasterOO} roCheckiid)
alarm(id) Server {Parien:s}
Server {Parient} {masterOQ}
noCheck(id) Server {Patient} {clock} checkiid)
Server {Patiens} {clock; masterO O} check(id)
check(id) MasterSubServer {Patient}
SlaveSubServer {FPatient} {masterQO}
clock MasterSubServer | T, imer}
SlaveSubServer {Timer} {masterQQ}
masterQQ SlaveSubServer {MasterSubServer}
id

With respect to system level testing, we can observe that the testing of phonelnfo
involved transitively almost all information of the system. Moreover as the test
classes of ack(id} are included in those of phonelnfo (intuitively a kind of slice
dependency), it is possibie (and advisable) to plan these test classes to be run
together, which supports our intuition of the strict correlation between these two
information. Finally we observe that id cannot be tested with our current definition of
oracles selection. Indeed, id has a slightly different role than the other information
and stands more as a kind of internal variable of the system. It is to say that testing
more significant information like phonelnfo implicitly tests information like i,

5 Conclusions and Future Work

Supported by information spaces and test classes,” we have presented a flexible
integration testing approach based on the notion of information processing by
components.

But this work is still ongoing and for the future we plan the following investigations:

* to enrich the language of event expressions while keeping the information slice
extraction decidable.

* to address test plan extraction based op information slicing and related
information test classes.

* to establish links between our abstract specification of information spaces and a
more concrete one in order to generate test cases and fil] information test classes.

Finally, as a practical counter part, an interactive compiler of information spaces
specifications is currently under development. This is actually designed to extract
information test classes as presented in this article. One can assume that the variety of
case studies we will be able to handle with this tool will allow us to address new
development stages of strongly associated theoretic and practical aspects of
integration testing of distributed systems.

Acknowledgements
Thanks are due to the "OLOS" European HCM research network (Contract CHRX-
CT94-0577), which supported Frédéric Mercier's work at [E] in Pisa under its
programme of young researcher exchanges. This work was also partly supported by
the ESPRIT-IV Working Group 22704 ASPIRE, the ESPRIT-IV Working Group
23531 FIREworks and the French research project "PRC-GDP ALP"

References

[Bals98] S. Balsamo, P. Inverardi, C. Mangano and F. Russo "Performance
Evaluation of a Software Architecture : A Cage Study", IEEE Proc. IWSSD.9, April
1998.

[Beiz95]. Boris Beizer "Black Box Testing", Wiley, 1995,

[Jorg95] Paul C. Jorgensen "Software Testing, A Craftsman's Approach", CRC Press,
1995.

[Parr89] Norman Parrington and Marc Roper "Understanding Software Testin g", Ellis
Horwood, 1989.

[ROSA98] ROSATEA International Workshop on the Role of Software Architecture
in Testing and Analysis, July 1998, Marsala, Ttaly.

