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Abstract
Phase transitions represent a compelling tool for classical and quantum sensing applications. It has
been demonstrated that quantum sensors can in principle saturate the Heisenberg scaling, the
ultimate precision bound allowed by quantum mechanics, in the limit of large probe number and
long measurement time. Due to the critical slowing down, the protocol duration time is of utmost
relevance in critical quantum metrology. However, how the long-time limit is reached remains in
general an open question. So far, only two dichotomic approaches have been considered, based on
either static or dynamical properties of critical quantum systems. Here, we provide a
comprehensive analysis of the scaling of the quantum Fisher information for different families of
protocols that create a continuous connection between static and dynamical approaches. In
particular, we consider fully-connected models, a broad class of quantum critical systems of high
experimental relevance. Our analysis unveils the existence of universal precision-scaling regimes.
These regimes remain valid even for finite-time protocols and finite-size systems. We also frame
these results in a general theoretical perspective, by deriving a precision bound for arbitrary
time-dependent quadratic Hamiltonians.

1. Introduction

Critical systems, i.e. those undergoing a phase transition, represent a valuable resource for metrology and
sensing applications. Indeed, in proximity of the critical point of a phase transition, a small variation of
physical parameters can lead to dramatic changes in equilibrium and dynamical properties [1, 2]. In turn,
when one or more system parameters depend on an external field, this diverging susceptibility can be
exploited to obtain a very precise estimation of the field intensity. Such criticality-based sensing has already
found applications in current technological devices, such as transition-edge detectors [3] and bolometers
[4]. These kind of sensors are based on a classical working principle, that is, they do not follow optimal
sensing strategies from the quantum mechanical point of view, even when quantum models are required to
describe their physical behavior. In this context, the aim of critical quantum metrology is to exploit
quantum fluctuations in proximity of a quantum phase transition (QPT) [5] to achieve quantum advantage
in sensing protocols. In the last few years, a series of theoretical studies [6–21] have shown that quantum
critical sensors can achieve the so-called Heisenberg limit, where the squared signal-to-noise ratio (SNR)
scales like N2T2, where N is the number of probe systems, and T is the protocol duration.

Only very recently, it has been shown [22] that the Heisenberg scaling can also be achieved using
finite-component QPTs [23–30]. In these systems, we have only a finite numbers of components
interacting; the usual thermodynamic limit is then replaced by a scaling of the system parameters [31–35].
A variety of protocols based on finite-component QPTs have been proposed considering light–matter
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interaction models [36–41] and quantum nonlinear resonators [42]. A critical quantum sensor can then be
realized using small-scale atomic or solid-state devices, circumventing the complexity of implementing and
controlling many-body quantum systems. Finite-component critical systems belong to fully-connected
models, whose low-energy physics can effectively be described in terms of non-linear quantum oscillators in
the thermodynamic or parameter-scaling limit [25, 26, 43–46]. The class of fully-connected models is of
high interest for two main reasons: (1) it provides a very convenient theoretical testbed to derive
fundamental results with both analytical and numerical techniques; (2) it includes models of immediate
experimental relevance for different quantum platforms, such as the quantum Rabi (QR), the Dicke and the
Lipkin–Meshkov–Glick (LMG) models.

Critical quantum metrology protocols can be categorized in two main approaches, which we will label as
static and dynamical. (A) The static approach [6–11, 13–19, 22] exploits the susceptibility of equilibrium
properties of critical systems. In a Hamiltonian settings, the static approach consists an adiabatic sweep that
brings the system in close proximity of the critical point, to then measure an observable on the system
ground state. Similarly, in a driven-dissipative setting, the static approach consists in exploiting the critical
properties of the system steady-state. The static approach is simpler to realize in practical implementations
but it is limited by the critical slowing down: as the critical point is approached, the estimation precision
diverges, but also the time required to prepare such equilibrium state. (B) The dynamical approach
[20, 21, 37] typically refers to a sudden quench that brings the system close to the critical point, i.e., to the
QPT, to then monitor the dynamical evolution of the system, which may also have a critical dependence on
the system parameters.

In general, however, we can interpolate between these two approaches, considering protocols that bring
the system close to the QPT in a continuous and time-dependent fashion. This naturally establishes a bridge
between two distinct research fields, namely, quantum metrology and the study of non-equilibrium critical
dynamics triggered by a QPT [47, 48]. One example is the emergence of universal scaling laws as predicted
by the Kibble–Zurek mechanism [11, 49–53]. However, these intermediate protocols have hitherto rarely
been considered from a metrological perspective.

Understanding the scaling of the estimation precision with respect to the protocol duration time is of
utmost relevance in critical quantum metrology. Recent results suggest that, for a large class of spin systems,
the dynamical and equilibrium approaches have a similar scaling of the estimation precision in the
thermodynamic limit [11]. For fully-connected models, either under thermodynamic [43–46] or
parameter-scaling limit [25, 34, 35] it was shown that dynamical protocols have a constant factor advantage
over static protocols due to the critical slowing down [37]. It has also been shown that a direct application
of shortcuts-to-adiabaticity [54] can not improve the scaling of the estimation precision of critical quantum
sensors [38]. However, a unifying treatment is still missing. Indeed, so far the scaling of the estimation
precision has only been analyzed considering either sudden quenches or strictly adiabatic evolutions, and
focused on specific models and observables in the thermodynamic limit.

In this article, we present a theoretical analysis of different families of finite-time metrological protocols
that allows us to establish a connection between static and dynamic approaches to critical quantum
metrology. In particular, we provide a comprehensive analysis of the metrological power of fully-connected
models displaying a QPT. The critical properties of these Hamiltonians can be described by a single unifying
model, made of a non-linear oscillator. We evaluate the quantum Fisher information (QFI) achievable with
protocols based on sudden quenches, adiabatic sweeps and finite-time ramps toward the critical point. We
also derive a precision bound for protocols involving Gaussian states under time-dependent Hamiltonians.
This bound accurately reproduces our findings in most parameter regimes and thus put them in a more
general perspective. Our analysis unveils the existence of different time-scaling regimes for the QFI, such as
the emergence of a Kibble–Zurek scaling law in the QFI under finite-time ramps. We show that these
scalings are not limited to a certain model or a certain regime of parameters, but describe the vast majority
of critical estimation protocols with fully-connected models. Importantly, these results are valid both in and
outside of the thermodynamic limit.

In the following subsection we provide a summary of the results, while the rest of this article is
organized as follows. In section 2 we show how the critical properties of fully-connected models can be
captured by a non-linear oscillator. We discuss this mapping in details with two examples, namely, the LMG
model [45, 46, 55] and the QR model [25, 26]. In section 3, we introduce our metrological protocol, briefly
recalling the definition of the QFI, and several important bounds to it which can be found in the literature.
In section 4, we introduce our bound for metrology with time-dependent Hamiltonian and Gaussian states.
In sections 5 and 6, we discuss the metrological properties of three different protocols in the vicinity of the
QPT. We show how these protocols allow to draw a connection between the static and dynamic approach.
Finally, in section 9, we present the main conclusions of the article and an outlook.
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1.1. Summary of results
We start by introducing and putting into context fully-connected models and quantum metrological
protocols. In fully-connected models such as the QR and LMG models, we can define an effective ‘system
size’, η, which controls the non-linearity of the system; in the case of the Rabi model, it is given by the
frequency ratio of the qubit and the field, while in the LMG or Dicke model, it corresponds to the number
of qubits. In the so-called thermodynamic or scaling limit, η → ∞, all of these models can be effectively
described as Ĥ = Ĥ0 + Ĥ1, with (� = 1)

Ĥ0 = ω

[
p̂2

2
+ (1 − g2)

x̂2

2

]
, (1)

Ĥ1 = ω
f (g)

η
x̂4, (2)

up to first order in 1/η, where x̂ and p̂ are the quadratures of a bosonic field, x̂ = â+â†√
2

and p̂ = i(̂a†−â)√
2

. Here
g is an effective and dimensionless coupling strength, ω is the typical frequency scale of the system, while
f(g) is a function of the dimensionless coupling that depends on the considered model (but is typically of
order 1). In the thermodynamic limit η → ∞, this model undergoes a QPT at gc = 1 (cf section 2). In this
study, we will always remain in the normal phase, for g < gc. This stands in contrast with other approaches
where one actually crosses the critical point, typically to exploit symmetry-breaking effects [8, 10, 13, 17].

The working principle of the considered families of protocols is as follows. We assume that all
parameters are known, except the one to be estimated, such as for example g or ω. Notice that this
framework is relevant in the design of practical sensors [42]. First, the system is initialized in its ground
state, far from the critical point. Then the value of a controllable parameter is changed in order to push the
system in proximity of the phase transition. Finally, we perform a measurement on the final state, profiting
from the high critical susceptibility to gain information about the parameter we want to estimate.

For the sake of clarity, let us compare the working principle of the protocols here considered with the
standard interferometric approach to quantum metrology. In the latter, a given probe system is initialized,
then the phase to be estimated is imparted on the probe, and finally a measurement is performed. On the
contrary, in the protocols here considered the information about the parameter to be estimated is encoded
in the probe system during the sweep or quench of the controllable parameter (which is varied to bring the
system close to the critical point). In this sense, the quantum criticality is not used only as a mean to
generate a quantum state that is subsequently used in a parameter estimation protocol: the critical nature of
the system is exploited to efficiently encode information about the parameter to be estimated onto the
probe system itself.

The precision achievable by a given estimation protocol is upper-bounded by QFI Ix = 4[〈∂xψ|∂xψ〉 −
|〈∂xψ|ψ〉|2], where |ψ〉 is the system state at the end of the protocol, which depends on the unknown x. The
QFI is a figure of merit of theoretical relevance, which corresponds to the estimation precision when the
optimal measurement is performed, a task which can be highly nontrivial. In practice, one rather considers
the squared SNR Qx = x2Ix, which gives the estimation precision obtained with a specific measurement
setup.

1.1.1. Scaling regimes
We consider three different preparation protocols, as illustrated in figure 1. First, sudden quenches in which
the coupling is abruptly increased from g = 0 to its final value gf ∼ gc = 1, followed by an evolution for a
time T. Second, adiabatic ramps in which the coupling varies in time g(t) toward the QPT always fulfilling
the adiabatic condition Δ̇(t) 	 Δ2(t) [56–59], where Δ denotes the energy gap between ground and
first-excited states, which vanishes at the QPT as Δ ∼ |g − gc|zν , where here zν = 1/2 [22, 25, 45]. We
found that if g evolves according to

g(t) =

(
1 − 1

1 + (t/τQ)2

)1/2

, (3)

with τQ some time constant verifying τQ 
 1/ω, then the evolution remains adiabatic at all time. However,
the critical point is only approached in the long-time limit, but never reached. These two families of
protocols (sudden quenches and adiabatic ramps) epitomize the ‘dynamic’ and ‘static’ approaches, and
constitute the two poles of our analysis. The third family of protocols is given by finite-time ramps in which

g(t) = 1 −
(

T − t

T

)r

, (4)
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Figure 1. Schematic illustration of the main results regarding the scaling of the QFI with respect to the parameter x of interest
and versus the time T. Left: different protocols considered here, namely, a sudden quench (blue dashed line), adiabatic (green
dotted line) and finite-time ramps (red solid lines). Right: sketch of the three different regimes (I, II, and III) for the different
dynamical protocols, log Qx vs log T. On top, we show the scaling regimes for these three protocols. The first regime I
corresponds to very fast dynamics T 	 1/ω. In this regime, the QFI scales in a non-universal fashion, and depends on the
specific parameter x considered. We also have a small SNR Qx = x2Ix 	 1. The second regime II is within the range
1/ω 	 T 	 1/Δ, where here Δ is the energy gap at the critical point (for finite η). In this regime, the sudden quench leads to a
remarkable T6 scaling, while the adiabatic ramp achieves a T4 scaling. For the finite-time ramps we find two different behaviors
depending on r. On the one hand, for 1/ω 	 T 	 r/ω, the finite-time ramp mimics the dynamics of a sudden quench, and thus
one recovers the T6 scaling (IIa). On the other hand, for r/ω 	 T 	 1/Δ, the QFI adopts a Kibble–Zurek scaling, which here
corresponds to T4r/(2+r) (IIb). This scaling is dominated by the ground-state properties of the system; in the limit r 
 1, we
recover the adiabatic T4 scaling. Therefore, the finite ramp draws a connection between the ‘dynamic’ and ‘static’ scalings (which
we depict in blue and red, respectively). Finally, for times T 
 1/Δ, the QFI becomes quadratic in time for the sudden quench,
while for adiabatic the QFI saturates to a constant value given by the ground state at gc. For the finite-time ramp, the QFI

saturates to the same value, but after a time r
Δ

(
ω
Δ

)2/r
. Note that in the thermodynamic limit, the third regime is pushed to

T → ∞ as Δ → 0. Comparing the three strategies, we find that the sudden quench always yields the best scaling for ωT � 1.
The same is true if we compare the absolute value of the precision, instead of the scaling.

where r > 0 is an exponent which describes the non-linearity of the ramp close to the QPT [60]. Contrary
to the adiabatic ramp, this protocol allows one to reach the critical point in finite time, but it does not
ensure perfect adiabaticity. By tuning r and T, we can make the evolution more or less adiabatic, and thus
draw a connection between the two previous protocols.

As sketched in figure 1, we found three different scaling regimes for the QFI depending on the total
duration of the protocol T. The first one, I, concerns fast evolutions, in which the scaling of the QFI
depends on the parameter to be estimated in a non-universal manner. Note that this regime is characterized
by a small SNR Qx = x2Ix 	 1. The second and third regimes, II and III, are universal in the sense that we
obtain the same QFI scaling for almost any parameter x, and any fully-connected model. The regime II is
valid for 1

ω
	 T 	 1/Δ, where here Δ represents the gap at g = gc for finite η. In this regime, the

finite-size effects are not yet relevant, and thus one can ignore the quartic term (2), so that the system
behaves as in the thermodynamic limit. For a sudden quench in this regime, we found that the QFI scales as
(ωT)6. For the adiabatic preparation, the precision is dominated by the ground-state properties of the
Hamiltonian. The QFI in proximity of the QPT diverges as Ix ∼ |g − gc|−γ̃ with γ̃ = 2 [61]. Plugging in the
profile (3), we find that the QFI scales as (ωT)γ̃/(zν) = (ωT)4, as previously reported in [22].

The finite-time ramp leads to a scaling which depends on the behavior of g(t) close to the critical point,
i.e. on the non-linear exponent r. For r 
 1 and T � r/ω, the finite-time ramp mimics a sudden quench,
and hence the characteristic T6 scaling is recovered. We refer to this regime as IIa. On the contrary, for
r/ω 	 T 	 1/Δ, one enters another domain, which we call IIb. In this region, the QFI obeys a
Kibble–Zurek scaling law, such that Qx ∼ (ωT)γ̃r/(zνr+1), which in this case gives a (ωT)4r/(2+r) scaling. In the
limit r 
 1 and T > r

ω , i.e., for a very slow and non-linear evolution, the adiabatic scaling (ωT)4 is
retrieved. Therefore, the finite-time ramp draws a connection between the two extreme cases studied before,
that is, for short enough T the ramp behaves as a sudden quench, while for long T and high r, it becomes a
fully adiabatic evolution.

4
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Finally, if the protocol time surpasses 1/Δ, we enter the regime III, where finite-size effects can no
longer be neglected. In this regime, we find that a sudden quench leads to (ωT)2, restoring an
Heisenberg-like behavior. To the contrary, for the adiabatic and finite-time ramps, the QFI saturates to its
maximum ground-state value Ix ∼ Δ−γ̃/(zν), and thus it displays a T0 scaling. In the thermodynamic limit,
the energy gap at the critical point vanishes, Δ → 0, and the third regime is pushed to T → ∞. It is worth
mentioning that comparing the three strategies, we find that a sudden quench to g = 1 always gives the
highest QFI for a given T, both with and without finite-size effects.

1.1.2. Precision bound
In addition to this, we have derived an upper bound to the QFI which allowed us to re-derive the various
scaling regimes, with little to no calculations. This bound is valid if the system state is a squeezed state
evolving under a quadratic, time-dependent Hamiltonian of the form

Ĥx(t) = (x̂, p̂)hx(t)(x̂, p̂)T, (5)

with hx(t) being a (in general time-dependent) two-by-two matrix which encodes the parameter x to be
evaluated. This simple model captures most of the metrological protocols with fully-connected systems, in
the thermodynamic limit. In general, this evolution does not conserve the average number of excitations;
hence it belongs to the category of active interferometry. For such an evolution, we found that the QFI is
bounded by

Ix(T) � 8

[∫ T

0
dt
√
χ(t)2 + φ(t)2 (2N(t) + 1)

]2

, (6)

with T the duration of the protocol, N(t) the average number of excitations at time t, N(t) = 〈ψ(t)|â†â|
ψ(t)〉, and φ(t) and χ(t) are the eigenvalues of the matrix Mx(t) = ∂xhx(t). Note that N(t) is a very
coarse-grained description of the system, while χ and φ can be obtained just from Ĥx. Therefore, this
expression allows to bound the QFI with minimal information about the state of the system. Notice that,
contrary to previous bounds [62–66], this expression takes explicitly into account the fact that the number
of excitations varies in time. We stress that this bound efficiently reproduces the scaling in T and general
features of regimes II and III. Furthermore, although this bound has been derived for squeezed states and
purely quadratic Hamiltonian, we showed that a similar expression can be found when the state is
coherently displaced, which could be used to describe more general protocols.

1.1.3. Saturability of the QFI
The QFI provides an upper bound on the best precision allowed by quantum mechanics. However, in a
practical implementation, we need to measure a specific observable, and use the measurement results to
infer the value of the unknown parameter. Depending on the choice of observable, the actual precision may
saturate or be very far away from the QFI. We have analyzed the accuracy that can be reached by
performing homodyne or photon-counting measurements, or more complex observables. Let us summarize
our main findings in the following. The first insight is that, in general, the relevant information is encoded
in the noise of the bosonic mode. The quadrature always have zero mean value 〈x̂〉 = 〈p̂〉 = 0. Instead, the
fluctuations 〈x̂2〉, 〈p̂2〉 become very sensitive to the parameter to be measured, as the critical point is
approached. Then we notice that in all cases a given quadrature shows a much larger noise than the other
ones, and in general the antisqueezed quadrature provides the best precision. However, we found that
homodyne measurement of either of the two will almost always give the same precision scaling, except in
one specific case where measuring the anti-squeezed quadrature provides a significant advantage. The
reason why the antisqueezed quadrature is convenient (although it shows larger fluctuations) is that these
fluctuations themselves are highly sensitive to the parameter of interest. This is in contrast with the
traditional paradigm of quantum metrology, where noise of some observable is reduced in order to obtain
an effective probe to sense small displacements or phase-shifts. Critical quantum metrology provides an
alternative framework, in which noise is not an hindrance blurring the signal, but instead is the signal itself.

Let us now focus on the differences between different families of critical quantum protocols. For the
adiabatic ramp, or the finite-time ramp with small r, we show that measuring the fluctuations of a single
quadrature is enough to saturate the QFI. For the sudden quench, measuring a single quadrature yields a
precision scaling like T4, less favourable than the QFI T6. We showed that reaching in practice the T6 scaling
of the QFI of sudden-quench protocols is possible, but it requires implementing non-standard
measurement setups. Accordingly, the sudden quench allows reaching a higher QFI than a finite-time ramp,
but more complex measurements are required to fully exploit this advantage.

5
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1.1.4. Effect of decoherence
Finally, we studied how our findings are affected by decoherence. We analyzed the dynamics near g = 1 in
the presence of boson loss with a rate κ. For the adiabatic (non-linear) ramp, we found two distinct cases:
as long as the protocol duration is smaller than the dissipation timescale, i.e. for T 	 1

κ
, the system does

not have time to equilibrate. The dynamics is then very similar to what we have in the absence of decay, and
the QFI still follows the T4 (Kibble–Zurek T4r/(2+r)) scaling. However, if T � 1

κ , the system reaches the

steady-state before the end of the protocol. Then, we observe that the QFI saturates at a value ∼ω4

κ4 . Further
increasing T does not improve the precision beyond this point.

For the sudden quench, the situation is more intricate. We find the appearance of another timescale,
T0 = ω−2/3κ−1/3. This timescale corresponds to the moment where the purity of the system starts dropping.
Then the QFI behaves as follows: for T 	 T0, the system is still essentially pure and behaves as it did in the
absence of decay, so that one recovers the T6 scaling. For T0 � T � 1

κ , the system is no longer pure, but it
does not yet reach the steady-state. The QFI shows a scaling T3. Finally, for T � 1

κ
, the system reaches the

steady-state, and the QFI saturates at a value ∼ κ4

ω4 .

2. QPTs in fully-connected models

As aforementioned, here we focus on a family of fully-connected models that undergo a QPT. In the
following we provide the general details of an effective model (cf section 2.1), namely, a non-linear
oscillator, that captures the critical features of this family of models, such as the QR (cf section 2.2) and the
LMG (cf section 2.3), among others. This effective description is also valid to describe other relevant
systems [35], such as a driven Kerr resonator [32] or other long-range interacting systems [67].

2.1. Effective model: non-linear oscillator
The effective model that describes the low-energy physics of fully-connected models consists in a non-linear
oscillator, whose Hamiltonian is given by equations (1) and (2). We are particularly interested in the regime
where η → ∞, i.e. in Ĥ0 given in equation (1), which we will call in the following the scaling or
thermodynamic limit. In this limit, the Hamiltonian exhibits a second-order QPT at the critical point
gc = 1. The ground state of Ĥ0 is a squeezed vacuum state, which can be expressed in two equivalent ways,
that is,

|ψb〉 = exp

[
1

2

(
|z|e−iθ â2 − |z|eiθa†2

)]
|0〉

= (1 − 4|b|2)1/4 exp
[
eiθ|b|a†2

]
|0〉, (7)

where we have defined z = |z|eiθ and b = 1
2 tanh(|z|)eiθ. The direction of squeezing is encoded in θ. The

squeezing norm can be expressed either through |z| or |b|. Each of these two conventions can be more or
less convenient depending on the calculation to make; in the following, we will use both. The number of
excitations is related to the squeezing parameter via N = sinh2(|z|). In the ground-state of (1), we have
b = −1/2 + (1 +

√
1 − g2)−1 and θ = 0 for 0 � g � 1. The quadrature fluctuations change with the

coupling as

〈x̂2〉 ∝ 1√
1 − g2

, (8)

〈p̂2〉 ∝
√

1 − g2.

The spectrum is harmonic, and the energy gap is equal to

Δ = ω
√

1 − g2, (9)

so that Δ ∼ |g − gc|zν with zν = 1/2 for |g − gc| < 1. When the system approaches the critical point, the
squeezing diverges and the number of excitations becomes infinite.

For η < ∞, however, the quartic term (2) is no longer negligible near the critical point, and stabilizes
the system. Although the model can then no longer be solved exactly, one can still resort to a variational
approach to extract scaling arguments, supported by exact numerical simulations [25]. The quartic term
will be non-negligible when 〈(1 − g2)x̂2〉 ∼ 〈 f (g)

η
x̂4〉, where the average is taken over the ground state in the

η → ∞ limit. Since the thermodynamic-limit ground state is Gaussian, Wick’s theorem gives 〈x̂4〉 ∼ 〈x̂2〉2

up to an irrelevant prefactor. Hence, we find that the quartic term starts to play a role for 1 − g2 ∼ η−2/3.
When the quartic term becomes important, the quadrature variance can no longer diverge. Instead, it

6
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saturates 〈x̂2〉 ∼ η1/3, and becomes weakly dependent on g. Similarly, the gap stabilizes around a finite
value, Δ ∼ ωη−1/3. Finally, above the critical point g > 1, the effective x̂ potential assumes a double-well
structure [25, 34, 35], and the ground state becomes degenerate, which marks the phase transition. This
structure corresponds to the usual Landau potential for second-order phase transitions.

To summarize, the region g < 1 can be divided into two regimes: on the one hand, for g2 < 1 − η−2/3,
the system remains harmonic, and the quantities describing the system scale with g. On the other hand, for
1 − η−2/3 < g2 < 1, the variance and gap saturate at certain values which scales with η. This region is
denoted as the critical region. Its typical width, denoted by Γ, scales as Γ ∼ η−1/ν , with ν = 3/2. As η
increases, the critical region shrinks, and the saturation value of the gap becomes smaller.

This behavior can be retrieved by using the concept of scale-invariance and critical exponents [25, 27,
68–73]. We give here a brief sketch of the argument, and refer the reader to appendix A for more details.
Even though the model (2) has no spatial structure, we can still define a renormalization group-like
approach [70, 71], in which the field quadratures, rather than the position in space, are rescaled. More
precisely, performing a transformation p̂ → αp̂, x̂ → 1

α x̂, η → 1
α6 η, ω → 1

α2 ω, 1 − g2 → α4(1 − g2), the
Hamiltonian (1) and (2) remains approximately invariant; the invariance becomes exact at the critical
point. Thus, quantities such as the energy gap must also be invariant. Now, in the thermodynamic limit, the
gap is given by Δ = ω(1 − g2)1/2. For general g and η, we can write Δ ∼ ω(1 − g2)1/2f (g, η,ω), with f some
scaling function [70, 71]. Such scaling function must satisfy several constraints, since Δ must be invariant
under the scaling transformation and must become independent of η in the limit η → ∞, and independent
of g in the critical region, in the limit 1 − g2 	 Γ. The simplest expression satisfying these constraints is

Δ ∼ ω(1 − g2)1/2f
(

1−g2

Γ

)
∼ ω(1 − g2)1/2f

(
1−g
η1/ν

)
, with f(x) → 1 for x 
 1, and f(x) → x−1/2 for x 	 1.

In general, for any quantity A that behaves as A ∝ |g − gc|α in the η →∞ limit, one can write A ∝ |g − gc|α
hA

(
(gc − g)Γ−1

)
= |g − gc|αhA

(
(gc − g)η1/ν

)
for η < ∞, with hA(x) → 1 for x 
 1, and hA(x) → x−α for

x 	 1. This means that, within the critical region 1 − g2 < Γ, the quantity A will saturate at a value that
scales as Γα = η−α/ν . Note that this corresponds to the standard finite-size scaling in spatially extended
systems. Therefore, knowing how A scales with g in the thermodynamic limit, we can infer how it scales
with η in the critical region. This can be summarized by the following heuristic:

Heuristic 1. The scaling of a quantity in the critical region can be obtained by taking its scaling with g in
the thermodynamic limit, and substituting 1 − g2 with Γ ∼ η−2/3. Or said differently, a quantity for η finite
and 1 − g2 � η−2/3 is equal to the same quantity in the thermodynamic limit, at a coupling g∗2 = 1 − η−2/3:
the value inside the critical zone is equal to the value near the edge of the zone.

We can readily verify that this heuristic is satisfied for both Δ and 〈x̂2〉. In the thermodynamic limit, we
have Δ ∼ ω

√
1 − g2 and 〈x̂2〉 ∼ (1 − g2)−1/2; near the critical point, we have Δ ∼ ωη−1/3 ∼ ω

√
Γ and

〈x̂2〉 ∼ η1/3 ∼ Γ −1/2. Exact numerical simulations [25] confirm that this behavior holds in general.

2.2. QR model
Let us consider a single two-level system, or a spin, interacting with a bosonic mode according to the QR
model Hamiltonian,

ĤQR = Ωσ̂z + ωâ†â + 2λ(â† + â)σ̂x, (10)

where σ̂i are Pauli operators describing the qubit (we take the convention [σx,σy] = iσz), and [a, â†] = 1.
This model can describe a large number of physical systems, such as a single atom interacting with a
photonic mode in the context of cavity QED [74], the interaction of internal degrees of freedom of a
trapped ion with the vibrational motion [75], or artificial atoms interacting with an LC resonator in
superconducting circuits [76]. We are interested in evaluating one of the parameters ω, Ω, or λ, assuming
the other two are known. This task can be mapped to several estimation problems using the
above-mentioned platform; for example, in trapped ions, the qubit frequency Ω can be sensitive to an
external magnetic field. Therefore, the estimation of Ω could be useful for space-resolved quantum
magnetometry.

In the limit ω 	 Ω, this model can be mapped to the non-linear oscillator (1) and (2), by the mean of a
perturbative Schrieffer–Wolff transformation [25]. Let us define the frequency ratio η = Ω

ω
. We apply a

unitary operator Ŝ = e
i λ
λc

√
η σ̂y (̂a+â†)− λ3

3λ3
cη

√
η
σ̂y (̂a+â†)3

, where we have defined λc =
√
ωΩ
2 . This leads to

eîSĤQRe−îS = Ωσ̂z + ω λ2

2λ2
c
σ̂z(â + â†)2 + ωâ†â − ω λ4

8λ4
cη
σ̂z(â + â†)4 plus higher-order terms of order 1

η
√
η and

smaller. Such transformation is valid for 0 � λ � λc, where the spin and the boson are now decoupled, up
to second order in perturbation theory. We can now project the spin in its low-energy subspace |↓z〉, and
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obtain the effective Hamiltonian

ĤQR,eff = ω

{
p̂2

2
+

[
1 −

(
λ

λc

)2
]

x̂2

2
+

λ4

4λ4
cη

x̂4

}
− Ω + ω

2
, (11)

which is in the same form of the Hamiltonian Ĥ given in equations (1) and (2), up to a constant term, and
with g = λ

λc
= 2λ√

ωΩ
, η = Ω

ω , and f(g) = g4/4. Therefore, the physics of the QR model can be captured by
the non-linear oscillator model, where g is the physical spin–boson coupling, normalized by the
frequencies, and η is the ratio between the qubit and boson frequencies. Previous numerical simulations
confirm that this is a faithful description of the system close to the critical point [25].

For g � 1, the system finds itself in the so-called normal phase. To first order in 1/η in the η → ∞
limit, the ground state reads as | ↓z〉|ψb〉 where the field is in a vacuum squeezed state. As one gets closer to
the critical point gc = 1, the fluctuations and the number of bosons increase, while the spin remains
unperturbed due to the large energy difference. Beyond the critical point, for g > 1, the system enters the
so-called superradiant phase, with a doubly-degenerate ground state, which feature a bosonic population
∝ η and a coherent state in the spin degree of freedom [25]. A direct correspondence can be established
between this phenomenology and the superradiant QPT of the Dicke [34, 77–79] and LMG model (see
below, and for example reference [27]), with the frequency ratio η = Ω

ω playing the role of a large number
of spins. Therefore, we see here that the parameter η can be interpreted as an effective system size, even in
this model with no spatial extension. It is worth mentioning that the existence of such superradiant QPT in
light–matter systems has been subject to a vibrant theoretical debate [80–85]. Such fundamental limitation
can however be sidestep relying on effective implementations of ultrastrongly-coupled systems [86–90], as
demonstrated by recent experimental observations of this QPT in distinct platforms [91–93].

2.3. LMG model
The LMG model [55] describes a system of N spins coupled through an all-to-all interaction, whose
Hamiltonian can be written as

ĤLMG = hĴz −
Λ

N
Ĵ2

x. (12)

Here Ĵz =
∑N

i σ̂
i
z is a collective operator describing the excitations of the chain of spins. The term Ĵ2

x

accounts for the all-to-all interaction,
∑

i,jσ̂
i
xσ̂

j
x, while the parameter Λ controls its strength and so the

nature of the ground state of the LMG. The LMG can be considered as a limiting case of the Ising model
with long-range interactions, and thus has been proven very useful to test different aspects of critical
quantum dynamics and the role of long-range interactions [94–104], which has been experimentally
realized in trapped-ion setup [105–108] and with cold gases [109–111].

In the thermodynamic limit N →∞, the system undergoes a QPT at Λc = h, as shown in [45, 46,
112, 113]. For |Λ| � Λc the system is in the normal paramagnetic phase, while it enters in the
symmetry-broken ferromagnetic phase for Λ > Λc where the ground state is two-fold degenerate, and
〈Jx〉 
= 0 acts as a good order parameter. In the thermodynamic limit, this system can be mapped to the
non-linear oscillator model (1) and (2), by performing a Holstein–Primakoff transformation [112, 114].
The LMG Hamiltonian commutes with the total spin operator Ĵ2 = Ĵ2

x + Ĵ2
y + Ĵ2

z , and therefore, the

Hilbert space can be split into sectors corresponding to the value of Ĵ2. In each spin sector, the interaction
term can be decomposed as Ĵx =

1
2 (̂J+ + Ĵ−), where the operators Ĵ± describe raising and lowering within

the spin ladder. In the subspace with largest angular momentum J = N/2, and for 0 � Λ � Λc, the
Holstein–Primakoff transformation maps the spin states to a bosonic field according to Ĵz = −N

2 + â†â, and

Ĵ+ = â†
√

N − â†â. Intuitively, the operator Ĵ+ is mapped on a bosonic creation operator, plus some extra
term which encodes the non-linearity of the spin operator. In the limit N → ∞, this non-linearity becomes

negligible, and we have Ĵ+ ∼
√

Nâ†. Then we can expand the spin operator as Ĵ+ =
√

Nâ† − â†2 â
2
√

N
, plus

higher-order terms. In this manner, one finds

ĤLMG,eff = h

(
p̂2

2
+

(
1 − Λ

h

)
x̂2

2

)
+

Λ

4N

(
x̂4 +

x̂2p̂2 + p̂2x̂2

2
− 2x̂2 +

1

2

)
− h

2
, (13)

which is very similar to the effective non-linear oscillator, equations (1) and (2), upon the identification
ω = h, g2 = Λ

h , η = N and f(g) = g2/4. Note that the constant term − h
2 can be safely ignored. In the limit

N →∞, the quartic term vanish; the ground state is a squeezed state with 〈x̂2〉 ∝ (1 − g2)−1/2, and
〈p̂2〉 ∝ (1 − g2)1/2, which leads to a diverging entanglement among the N coupled spins as g → 1 [115]. The
higher-order terms start to become relevant close to the point g = 1. At this stage, the fluctuations of x̂
become dominant over p̂. Hence, 〈p̂4〉 	 〈p̂2x̂2〉 	 〈x̂4〉, and 〈x̂2〉 	 〈x̂4〉. Hence, finite-size effects appear

8
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primarily as a quartic potential x̂4 as in the non-linear oscillator. Therefore, the phenomenology of the LMG
reduces to that of the non-linear oscillator (1) and (2).

3. Quantum critical metrology

3.1. Protocol
We now discuss how a metrological protocol exploiting quantum critical effects can be implemented. For
concreteness, we will consider a system described by the QR model (10); the discussion would be exactly the
same for other fully-connected models. Let us assume, for instance, that we want to evaluate the frequency
ω, assuming that the other parameters are known and controllable. We prepare the system in its
ground-state at λ = 0, with the boson and qubit decoupled. Then we change the coupling constant from 0
to a certain target value λ, within a time T. As discussed in section 1.1, we consider three families or
protocols, i.e., quenches, adiabatic ramps and finite-time ramps. These different profiles are sketched in the
left side of figure 1. In all cases, the system at the end of the evolution can be written as

|ψω(λ, T)〉 = |ψf 〉. (14)

In the left side, we have indicated explicitly that the final state depends both on the final coupling value λ,
the protocol duration T, and the (unknown) bosonic frequency ω. On the right side, we have used a
short-hand notation to lighten the equations. Then we measure some observable on the system, such as the
number of bosonic excitations, spin state, etc. Finally, the measurement results are used to reconstruct the
value of ω. Depending on the choice of observable, the evaluation may be more or less precise. A standard
result in quantum metrology [116] states that if the choice of observable is optimized, the maximum
achievable precision is bounded by the QFI Iω according to

δω � 1√
Iω(λ, t)

, (15)

where the QFI reads as
Iω = 4

[
〈∂ωψf |∂ωψf 〉 − |〈∂ωψf |ψf 〉|2

]
. (16)

Here δω denotes the standard deviation of the estimated ω, and |∂ωψf〉 is the derivative of the state |ψf〉
with respect to ω. Under certain conditions [116], it is guaranteed that there exists a choice of observable
which allow to saturate this bound. For example, in the case of the evaluation of ω in the critical Rabi
model, some of us have shown in [22] that quadrature or photon-number measurements on the bosonic
field are optimal. In the case of pure state, the QFI can also be identified with the susceptibility [117], a
quantity commonly used in the condensed matter community. The same reasoning can be applied if,
instead of ω, one aims at evaluating the coupling λ, or any other parameter x. This reasoning can also be
extended to mixed states, for which the QFI has a more involved expression [116]. Here we will only
consider pure states.

To compute the QFI, we can now apply the mapping which we discussed in the section 2. For
fully-connected models, the system can be described in terms of the non-linear oscillator model,
equations (1) and (2). We consider first the thermodynamic limit, when the quartic term is negligible. In
this case, whether through the quench or ramp process, the bosonic mode evolves under an effective
quadratic Hamiltonian. At the end of the evolution, the system is in a squeezed vacuum state |ψb(x,T)〉,
where the squeezing parameter b depends both on the unknown parameter x and on the protocol duration
T. For squeezed states, the expression (16) can be rewritten in terms of the derivative of the squeezing
parameter (see appendix B for details of the derivation)

Ix = 2

((
∂|z|
∂x

)2

+ cosh2(|z|)sinh2(|z|)
(
∂θ

∂x

)2
)

=
8

(1 − 4|b|2)2

∣∣∣∣∂b

∂x

∣∣∣∣
2

=
8

(1 − 4|b|2)2

((
∂|b|
∂x

)2

+ |b|2
(
∂θ

∂x

)2
)
. (17)

Recall that b = |b|eiθ = 1
2 tanh(|z|)eiθ. Therefore, if we want to evaluate a parameter x using the Rabi or

LMG model, we can find analytically the expected precision by mapping the model to the effective bosonic
model, express the squeezing as a function of x, then use equation (17) to compute the QFI. Rather than the

9
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QFI itself, we will mostly focus on the quantity Qx = x2Ix, which gives the squared SNR of the estimation
protocol.

For finite η, the evolution is no longer quadratic, and the state cannot be expressed analytically.
However, we can still obtain the QFI relying on numerical simulations truncating the Fock state basis,
which complements the analytical results previously obtained.

3.2. General bounds, Heisenberg and super-Heisenberg scaling
Although the achievable precision can be obtained exactly by computing the QFI, this computation is, in
general, a difficult task. Even for the very simple non-linear oscillator model equations (1) and (2),
numerical simulations have to be used unless η → ∞. The computation becomes even more challenging
when mixed states are considered. Therefore, there has been considerable efforts to derive bounds which are
insensitive to the specifics of the evolution. Several bounds can be found in the literature [118–121],
although there is sometimes some confusion about their range of validity. For the sake of clarity, we provide
here a short review of these bounds, and when they can or cannot be used. Let us consider a probe system
evolving for a time T under an Hamiltonian Ĥx(t), which depends on the unknown parameter x. Ĥ may be
in general time-dependent and/or depend on x is a non-trivial way. At the end of the evolution, the
parameter is now encoded in the final state |ψx(T)〉. By measuring this state, we can now evaluate x with a
precision bounded by the QFI: Ix = 4

[
〈∂xψx(T)|∂xψx(T)〉+ (〈∂xψx(T)|ψx(T)〉)2

]
. Without computing this

expression exactly, we can find useful bounds by making several assumptions about the evolution. In
particular, let us consider the following set of assumptions:

(1) The probe system is composed of a fixed number of probes N. (2) The Hamiltonian Ĥx is bounded,
and acts independently on each probe Ĥx =

∑
i Ĥi

x. (3) Ĥx depends linearly in the unknown parameter x:
Ĥx = xÂ, with Â some operator independent of x. (4) Ĥx is time-independent.

Although this list of assumptions may seem long, it is satisfied in the vast majority of current
metrological protocols, in particular in atomic interferometry and atomic clocks. When these conditions are
satisfied, the achievable QFI scales at most quadratically with the time and the number of probes [119]

Ix(T) ∼ N2T2. (18)

This is the so-called Heisenberg limit, which is the backbone of most works in quantum metrology.
Ubiquitous as it is, however, the Heisenberg bound only applies when the above list of conditions is
satisfied. Several studies have shown how relaxing one or several of these conditions allows to achieve
so-called super-Heisenberg scaling. An early example can be found in the work of Boixo et al [120]. They
considered a situation in which the Hamiltonian Ĥx acts on several probes at once, and cannot be written as
a sum of local contributions. This is the case, for instance, if the parameter to be evaluated is a interaction
strength between neighboring spins on a lattice. Let us consider, for instance, that the Hamiltonian Ĥx

involves two-body interactions, Ĥx = x
∑

i σ
i
xσ

i+1
x . In this case, Boixo et al [120] have shown that the QFI

can scale as

Ix(T) ∼ N4

(2!)2
T2, (19)

which is indeed a super-Heisenberg scaling in N. In general, for a Hamiltonian involving k-body
interactions, the QFI can scale as N2kT2. Another possibility is to look at time-dependent protocols. This
was first studied in details by Pang and Jordan in reference [121]. Let us consider that the Hamiltonian is
now time-dependent, but we still have Ĥx(t) = xÂ(t) and Â(t) is bounded. Then we can define its
maximum and minimum eigenvalues, which we will call λM(t) and λm(t), respectively. In this case, Pang
and Jordan showed that the QFI could be bounded by

Ix(T) �
[∫ T

0
dt |λM(t) − λm(t)|

]2

. (20)

This limit allows to go beyond quadratic time-scaling. Let us consider, for instance, that the Hamiltonian
Ĥx(t) is local, but increases linearly with time. Then we will have in general λM,m(t) ∝ Nt, which may result
in

Ix(T) ∼ N2T4. (21)

and more generally, if Ĥx(t) scales like tα, we can achieve a scaling T2α+2. Hence, it is possible to achieve
faster-than-quadratic scalings in time by using time-dependent Hamiltonians. Therefore, we see the
Heisenberg scaling can be surpassed, provided that the system is non-linear in time, or the Hamiltonian is
non-local, which means that the eigenvalues and observables do not scale linearly with the system size. We
can summarize this in the following heuristic:

10
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Heuristic 2. To beat the Heisenberg scaling, go non-linear.

For time-dependent protocols, controlling the system state may be difficult. A common solution then is
to use quantum control techniques, such as counter-diabatic driving or shortcuts to adiabaticity [54]. At
first sight, quantum control would seem to be very promising in the context of critical quantum metrology.
Indeed, let Ĥ = xÂ be a Hamiltonian with a critical point. Near this point, the system will generally be
infinitely sensitive to a perturbation. However, preparing the system adiabatically will take infinite time
because of the vanishing energy gap. One may want to apply quantum control to quickly bring the system
near the critical point, and hence enjoy infinite precision in a finite time. However, the control term must be
fully known, which means in particular that it must be independent of the unknown parameter x. Hence,
the total operation must be of the form

Ĥx(t) = xÂ+ B̂(t), (22)

where B̂, which contains all the control terms, is independent of x, and Â is time-independent. For such a
Hamiltonian, it was shown very recently by Gietka et al [38] that the QFI scales at most like T2. Hence,
naive control shortcuts does not allow to achieve infinite precision in finite time, or even to achieve
super-quadratic scalings in time. However, this does not exclude the possibility of reaching super-
Heisenberg scaling; it only shows that, if we want to achieve such a result, the part of the Hamiltonian
which encodes the parameter, Â, needs to be itself time-dependent. In the course of this article, we will
show how simple adiabatic ramps or quenches can indeed be used to achieve non-trivial time scalings in a
quantum critical system, without using quantum control.

4. A bound for active interferometry with Gaussian states

Many interferometric experiments involve photonic systems, in which the photon number can be both
fluctuating and time-dependent. Heisenberg-like scalings do not always hold for these systems, since the
number of particles is not uniquely defined. In particular, it is known that by using exotic photon
distribution, an infinite precision can in principle be achieved with a finite (even very small) average
number of photons [79, 122]. Therefore, one needs to put constraints on the photon statistics in order to
derive meaningful bounds to the achievable precision. A common choice is to consider Gaussian states,
which are often encountered in experiments [62–66, 123]. We can then find bounds which involve the
average number of photons, 〈N̂〉. For instance, if we use a coherent or squeezed state to evaluate a
phase-shift in a Mach–Zehnder interferometer, the QFI obeys, at best, a Heisenberg-like bound Iφ ∼ 〈N̂〉2

[63]. In this scenario, the photon number is fluctuating, but the average value 〈N̂〉 is constant in time.
In our case we face a different scenario. Even though in the η → ∞ limit, the bosonic mode is indeed in

a squeezed, Gaussian, state, its squeezing parameter varies in time, and the average photon number
continuously increases as we approach the critical point. Therefore, our system belongs to the more general
category of active interferometers. For this scenario too, several bounds have been obtained [62–65]; the
QFI generally scales, at most, like N2

tot, with Ntot the average photon number at the end of the evolution.
Nevertheless, to the best of our knowledge, none of these bounds discuss explicitly the dynamics of the
active encoding, i.e. the duration of the protocol. Here, we introduce an important generalization of these
bounds, which explicitly takes into account the time-dependence and which is valid for active
interferometry with Gaussian states.

Let us consider quadratic Hamiltonians Ĥx = (x̂p̂)hx(x̂p̂)T, with x̂ and p̂ the field quadratures, and hx a
Hermitian two-by-two matrix, which depends on the unknown parameter x. Under such Hamiltonian, an
initially prepared vacuum state becomes squeezed, expressed by (7). The derivative of the Hamiltonian can
be expressed itself as a quadratic field operator,

∂xHx(t) = (x̂p̂)Mx(t)(x̂p̂)T, (23)

with Mx = ∂xhx a (time-dependent) Hermitian matrix. Then at all time, this matrix can be diagonalized,
and its eigenvalues are denoted by φ and χ. Then we have shown that the QFI can be bounded by

Ix(T) � 8

[∫ T

0
dt
√
χ(t)2 + φ(t)2 (2N(t) + 1)

]2

, (24)

with N(t) the (time-dependent) average number of photons N = 〈ψ(t)|â†â|ψ(t)〉. The detailed proof, as
well as additional comments on previous bounds, can be found in appendix C. If φ and χ are
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time-independent, we can rewrite

Ix(T) � 8(χ2 + φ2)

[∫ T

0
dt (2N(t) + 1)

]2

. (25)

This bound constitutes our first result. It involves only, on the one hand, the eigenvalues χ and φ, and, on
the other end, the average number of photons in time. The former can be deduced from the expression of
Ĥx only, without any reference to the state of the system; the latter is the smallest amount of information we
can have about the system state. Hence, this expression allows one to bound the scaling of the QFI with very
little information about the state. Note also the formal similarity of this expression with equation (20). Our
expression includes explicitly the time-dependence of the number of probes, and the ordinary eigenstates of
the Hamiltonian has been replaced by the eigenstates of the matrix Mx, which are closely related to the
notion of symplectic eigenvalues for Gaussian states [66, 79]. Although the formula shown here has been
derived for vacuum squeezed states and purely quadratic Hamiltonians, we also show in appendix C that
similar expressions can be obtained when we allow the state to have non-zero displacement and a linear
contribution in the Hamiltonian.

We stress again that, for squeezed states, the QFI can also be explicitly computed using (17). However,
this bound will be most convenient to discuss the time-scaling of the QFI, with no or little actual
calculations. We can already see that, in the limit where N is time-independent, we retrieve the Heisenberg
prediction N2T2. On the contrary, it is also immediately apparent from equation (25) that if the number of
photons increases in time, this bound predicts a higher-than-quadratic time scaling; typically, if the photon
number increases in time like tα, our bound will predict a QFI ∼ T2α+2. If we define Ntot the maximum
number of photon during the evolution (which, in our case, is the photon number at the end of the
evolution), then we also find that the QFI is always limited by N2

totT
2, which also makes the connection with

the previous results for active interferometry with Gaussian states [62, 63]. Contrary to these previous
results, our bound takes explicitly the time-dependence of N into account, and allows to study more
complex time scalings, as we show in the following.

5. Sudden quench dynamics

Let us now put together all the elements introduced in the previous sections. We will study the precision
that can be achieved using the quench protocol sketched in section 3.1. For that, we use the terminology of
the QR model, and refer to â as a photonic field. However, we stress again that the same results can be
directly obtained with other fully-connected models.

5.1. Thermodynamic limit
Let us first consider that we want to estimate ω, the other parameters being known. We switch
instantaneously the physical coupling to a target value λ, and then let the system evolve freely. We can
eliminate the spin degree of freedom, and we are left with the bosonic field evolving under (1) and (2), with
g = 2λ√

ωΩ
. In the thermodynamic limit η → ∞, the Hamiltonian is purely quadratic, and the state at all

time will be a squeezed state of the form (7). In particular, the squeezing parameter b adopts the following
form (see appendix D for the details of the derivation)

b(t) =
2 − g2

2g2
+

i
√

1 − g2

g2 tan

[√
1 − g2ωt − i arctanh

(
2
√

1−g2

2−g2

)] . (26)

If we quench the system away from the critical point, g2 < 1, the system will evolve periodically in time,
with a period given by the inverse of the gap, i.e. τ = π

ω
√

1−g2
. Moreover, from equation (26) it follows that

b(nτ ) = 0 with n integer, and b((n + 1/2)τ) = g2

2(2−g2) its maximum value. The photon number

N(t) = 4|b(t)|2
1−4|b(t)|2 has the same periodicity, and its minimum and maximum values are 0 and g4

4(1−g2) ,
respectively. We stress that we have made no approximation here, aside from setting η → ∞. By contrast, if
we quench the system directly at the critical point g = 1, the expression above can be analytically continued,
and simplifies to

b(t) =
ωt

2(ωt − 2i)
. (27)

In this case, we find that the number of photons grows indefinitely in time according to N(t) = (ωt)2

4 . This
is only possible at g = 1 and η → ∞, when there is no stabilizing quartic term in the Hamiltonian, cf

12
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Figure 2. Top panels show the dynamics of the number of bosons N(t) (a) and the squeezing phase θ(t) (b) upon a sudden
quench to g close to the critical point gc = 1, namely, g2 = 0.8, 0.9 and 0.95. For g < 1, N(t) and θ(t) undergo periodic

oscillations, whose period is given by the inverse of the energy gap
(
ω
√

1 − g2
)−1

. Panels (a) and (b) are plotted against the

rescaled time ωt
√

1 − g2/π to highlight this behavior. Panel (c) shows the maximum number of bosons obtain numerically
(points), NM versus 1 − g2, which follows NM = g4/(4(1 − g2)) (solid line). Panel (d) shows the dynamics for a quench to g = 1.
N(t) grows monotonically as N(t) = (ωt)2/4, while θ(t) approaches zero as θ(t) = arctan(2/ωt) (not shown here). See main text
for further details.

equation (2). The time-evolution for the photon number and the squeezing angle are displayed on figure 2,
both at and away from the critical point.

By combining (26) and (17), we can now compute the QFI and the SNR Qω = ω2Iω. The formula (17)
involves the derivative of b with ω. We have so far expressed b in terms of g and ω. However, if we rewrite
everything in terms of the physical parameters, we find that g itself depends on ω, since we have g = 2λ√

ωΩ
.

Therefore, the QFI will involve two components, coming from ∂g
∂ω

∂b
∂g and ∂b

∂ω
, respectively. As we discuss in

appendix E, the first contribution actually dominates in most parameter regimes. On figure 3 we plot Qω

with respect to the duration of the protocol T and the distance to the critical point, 1 − g2. The SNR shows
plateaux, separated by intervals π

ω
√

1−g2
. The log–log plot reveals that, for T > 1

ω
√

1−g2
, the QFI has a

secular increase
(

ωT
(1−g2)

)2
. In the top row of figure 4, we study more systematically the scaling of the SNR

with T. We see that the SNR shows actually three different regimes. For short durations ωT � 10, we obtain
a quartic scaling Qω ∝ T4. For 10 � ωT � 1√

1−g2
, the SNR scales like T6. Finally, beyond the first plateau,

for ωT � 1√
1−g2

, the SNR settles on a quadratic scaling T2. If we quench the system to values g closer to 1,

the quadratic regime kicks in later. In the limit g → 1, the first plateau extends to T → ∞, and the T6

scaling lingers for ever.
The same analysis can be conducted when the unknown parameter is the physical coupling λ. In the

bottom row of figure 4, we show the scaling of Qλ = λ2Iλ with time. For short time, the SNR scales like T2,
instead of T4 for Qω . For longer time, the features of Qλ and Qω are exactly the same. As we discuss in
details in appendix E, this is because a change in either ω or λ have essentially the same effect, which is a
renormalization of the effective coupling variable g. We can actually make this argument more general. Let
us consider any model which can be mapped to (1). We want to evaluate a physical parameter x. Then as
long as the renormalized coupling g depends on x, the SNR Qx for long T will have the same behavior,
independently of x and of the model. In particular, we will get the same T6 and T2 scalings if we want to

evaluate h or Λ in the LMG model, since we have g =
√

Λ
h in this case. A similar dynamical behavior was

also obtained recently by Chu et al [37]. Here, we show that these scalings have a broad range of
application. We will also show in section 5.2 how these results extend to the regime of finite η as well.
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Figure 3. SNR for the evaluation of ω as a function of total time T for different couplings g2 = 0.9, 0.99 and 0.999. In panel
(a), the collapse of all the points and the emergence of plateaux separated by π/(ω

√
1 − g2) are evident (cf figure 2(a)). Panel

(b) shows the same as (a) but in a log–log scale.

Figure 4. SNR for a sudden quench as a function of the protocol time T and to estimate the parameter ω (a) and λ (c). All the
plots are in the thermodynamic limit, η→∞. Points represent numerical simulations and the solid line is the prediction of the
general bound for g = 1 (cf equations (28) and (29)). The QFI can be fitted as a polynomial (ωT)β ; the fitted value of β is plotted
on panel (b) and (d) for Qω and Qλ, respectively. For short times (ωT) � 10, the SNR scales like T4 (Qω) or T2 (Qλ). This
corresponds to the regime I sketched in figure 1. For (ωT)�10, the SNR scales like T6, for both parameters (regime II in figure 1).
For g = 1 (full green points), this regime holds until T →∞. In contrast, for g < 1, one enters in regime III for ωT 
 1√

1−g2
,

where the SNR scales like T2. The vertical dotted lines in (b) and (d) correspond to 1/Δ to highlight the transition from regime
II to III. For ωT � 10, the general bound prediction fits well the results.

We can gain a better intuition of this complex interplay of scalings by using the general bound (25). Let
us start with the case g = 1, when the system is quenched at the critical point, and let us consider that we
want to evaluate λ. Then we have (we recall that g = λ/λc):

∂λĤ = −ω
λ

λ2
c

x̂2 = −ω
g

λc
x̂2.

This operator is clearly of the form (23), with Mλ = −ω g
λc

[
1 0
0 0

]
. The matrix is already diagonal, with

eigenvalues φ = −ω g
λc

and χ = 0, which are both time-independent. Taking the expression of N(t) and
plugging these elements in (25), we find a bound for the SNR, which reads as
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Qλ = λ2Iλ � 8ω2g4

[∫ T

0
dt (2N(t) + 1)

]2

=

(
2

9
(ωT)6 +

8

3
(ωT)4 + 8(ωT)2

)
. (28)

Similarly, for the bosonic frequency ω, we find ∂ωĤ =
(

p̂2

2 + (1 − g2) x̂2

2

)
+ g2

2 x̂2, and thus φ = χ = 1
2 .

This leads to a SNR bound

Qω � 1

2

(
2

9
(ωT)6 +

8

3
(ωT)4 + 8(ωT)2

)
. (29)

Hence, for short time, the general bound predicts a quadratic scaling. However, as soon as T is large
enough (typically for ωT > 10), the T6 term dominates. Therefore, our bound correctly predicts that, for a
quench at the critical point g = 1, the SNR features a T6 for long enough time. Figures 4(a) and (b) also
show the general bound prediction. For Qλ there is an excellent agreement for all times, i.e., the bound is
saturated. For Qω , the bound fails to predict the correct scaling for shorter times, but a qualitative
agreement is recovered for ωT > 10 (in this regime, the bound actually overestimates the actual result by a
factor 2, but captures the scaling). Note that one can retrieve the T6 scaling with hardly any calculation by
noting that for long enough times, the photon number is large N(t) 
 1, and the bound becomes

essentially proportional to
[∫ T

0 dt N(t)
]2

. The dynamics (27) gives a N(t) which scales quadratically with t;

therefore, the integral
∫ T

0 N(t)dt scales like T3, and the bound is T6. Therefore, by simply looking at the
scaling of N with time, we can understand the behavior of the SNR for a quench at the critical point.

For a quench away from the critical point, the quadratic scaling Qω ∝ T2 can also be retrieved from a
simple argument. First, let us note that the integral

∫ T
0 N(t)dt is monotonic in T. Therefore, the precision

predicted by the general bound can only grow with the protocol duration. Second, although its exact
expression is a bit involved, the photon number predicted by (26) is periodic in time, of periodicity
τ = π

ω
√

1−g2
. Let us assume that the average photon number oscillates between zero and its maximum value

NM. Let us define α = 1
NMτ

∫ τ

0 N(t)dt. Except in very specific cases (for instance, if N increases in very short

bursts), α will be typically of order 1. Then we have
∫ t

0 N(t′)dt′ = NM(αt + F(t)), where

F(t) =
∫ t

0
N(t)
NM

− α dt is a periodic function, with |F| � 1, and F(nτ ) = 0 for integer n. For long t, we will
have F(t) 	 αt. Then, if the QFI saturates the general bound, it follows

Ix(T) ∼ 32(χ2 + φ2)α2N2
MT2 ∼ N2

MT2, (30)

for long T, and

Ix(T = nτ) = 8(χ2 + φ2)[2nταNM + nτ]2

= n2Ix(T = τ), (31)

for every n = 1, 2, . . . . Therefore, without even computing the general bound, we can deduce from these
simple arguments that it must be monotonic, show a secular quadratic increase in T, and be self-similar at
intervals nτ . These qualitative features are exactly those of the SNR on figure 3. Furthermore, the maximum
number of bosons, as shown in figure 2(c), scales like NM ∝ 1

1−g2 . Therefore, the general bound prediction,

including the N2
M prefactor, gives Qω ∝

(
T

1−g2

)2
, which is what we observe in figure 3. Combining

everything together, we now have the following picture: for short times, the QFI is dominated by
non-universal terms, and the general bound is generally not saturated. For times 1 	 ωT � ωτ , the effect
of the gap is not yet relevant. The system behaves essentially as if it were quenched at the critical point, i.e.

the photon number increases like N(t) ∼ t2, and the bound scales as
[∫ T

0 N(t)dt
]2

∝ T6. Finally, for

durations T larger than τ , the system undergoes periodic oscillations, and the general bound becomes

N2
MT2 ∼

(
T

1−g2

)2
. Hence, we have shown that our bound allows to accurately grasp the various scaling

regimes of the SNR for ωT � 1.

5.2. Finite-size effects
The previous results have been obtained in the thermodynamic limit η → ∞. For η finite, the system
evolves under the equations (1) and (2), and the evolution can no longer be exactly solved. Therefore, we
resort to numerical simulations with a converged number of Fock basis to find the QFI. We consider a
sudden quench to the critical point with η finite. The results are plotted on figure 5. In the limit η → ∞,
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Figure 5. (a) SNR for a sudden quench at g = 1 versus time, for various values of η (points) together with the result for η→∞
(solid blue line). The SNR scales like T4 for ωT � 10, T6 for 10 	 ωT 	 η1/3, and T2 for ωT 
 η1/3. These results coincide with
what we would obtain for η →∞, doing a quench to g∗ =

√
1 − η−2/3 (see figure 4). Panel (b) shows the fitted exponent β to

illustrate the different scaling regimes depending on ωT and η. The dotted vertical lines indicate the inverse gap at the critical
point, ω/Δ = η1/3, for each value of η. We see that the final T2 scaling regime is established for ωT ∼ ω/Δ.

we have a T6 scaling in the long-time limit, as already discussed. For η finite, however, we observe a
transition from T6 to T2, which takes place when ωT ∼ η1/3.

This behavior can be understood with the following argument. For finite η, a gap stabilizes around the
critical point, of order ωη−1/3. For short times, this finite gap is not relevant, and the system evolves as it
would in the thermodynamic limit. Another formulation would be to say that, for small time, the number
of photons is still small, and the quartic term in equation (2) is therefore negligible. However, for longer
times, the finite gap will create a periodic revival behavior. This resembles the phenomenology in the
thermodynamic limit when quenched away from the critical point. We can here invoke heuristic 1: the
behavior for a quench at g = 1 for finite η is similar to the behavior one would obtain in the thermodynamic
limit by quenching the system at g∗ =

√
1 − η−2/3. Hence, we see that, although the state is now

non-Gaussian and the bound (25) is no longer applicable, we have the same essential features as in the
thermodynamic limit, with a periodic behavior for N, and a SNR showing a secular T2 increase. The
difference is that the period of the oscillations, and the boundaries between different scaling regimes, is now
given by the parameter η, instead of the effective coupling g.

6. Adiabatic and finite-time ramps

We will now analyze the metrological consequences when, instead of being abruptly quenched, the
parameters are slowly tuned to their final values. In this case, the QFI is mostly dominated by the
ground-state, equilibrium properties of the Hamiltonian, which corresponds to the static paradigm
considered in reference [11].

6.1. Adiabatic ramp in the thermodynamic limit
To evolve the state in a controlled way, a possible solution is to tune the parameters very slowly in time, in
order to keep the evolution adiabatic. We will consider the thermodynamic limit η → ∞. We take (1), and
slowly increase g toward the critical point. We will define ε = 1 − g2 for convenience of notation. As long as
the time scale introduced by the external driving (Δ/Δ̇) is much larger than the typical time scale of the
system (1/Δ), i.e., as long as

Δ̇

Δ
	 Δ, (32)

the evolution will be adiabatic to very good approximation (see references [57–59] for time-dependent
perturbation theory in this context, as well as [50]). Here Δ is the energy gap during the evolution, and Δ̇

its time derivative. Hence, when initialized in the ground state, the system will remain in it during the
evolution. Note that Δ ∝ ω

√
ε, and Δ̇/Δ ∼ ε̇/ε. In reference [22], a time-profile fulfilling these criteria was

derived for ε, which reads as

ε(t) =
1

1 + (t/τQ)2
, (33)

with τQ some time constant. During this non-linear ramp, we start from ε(0) = 1, i.e. g(0) = 0, and then
we gradually approach the critical point ε = 0. The evolution speed ε̇ is high at first, then gradually
decreases to keep up with the closure of the energy gap. More precisely, we have Δ̇/Δ2 = (t/ωτ 2

Q)/√
1 + (t/τQ)2. Therefore, as long as τQ = 1

ϕω
, with ϕ 	 1, the criterion (32) will be satisfied, even in the
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Figure 6. (a) SNR for the parameter ω under an adiabatic ramp (33) with τQ = 1/(ϕω), versus ωT, for different values of ϕ,
together with the bound for ϕ = 10−1 (solid black line) (cf equation (25)). (b) Scaling exponent β for Qω obtained as a best fit to
Qω ∼ (ωT)β . For short times (regime I) T � 1/ω one finds β = 8, where the prediction of (35) does not hold. The general
bound is also loose. For longer times, we find β = 4 as predicted in (35) (regime II), and the general bound fits the scaling.
Similar results can be found for Qλ but with a scaling β = 4 for T � 1/ω (not shown here).

thermodynamic limit, when the gap becomes exactly zero at the critical point. Note, however, that we only
approach asymptotically the critical point, but we never reach it. The corresponding time-profile is
schematically plotted in green in the left-hand side of figure 1.

Therefore, if we let the system evolve under this ramp for a time T, we expect the system to evolve
adiabatically, and to be prepared in the ground-state of the Rabi Hamiltonian. That is, it will be in a
squeezed state (7) with |z| = − 1

4 log(ε(T)) and θ = 0. Using (17), the QFI can then be computed exactly as

Iω =
1

8ω2

(
1

1 − g2

)2

=
1

8ω2 ε(T)2
. (34)

Restoring the dependency of ε on T, and in the limit of large T, we find

Qω = ω2Iω ∼
(

T

τQ

)4

= (ϕωT)4. (35)

Therefore, the SNR in this case can scale quadratically in time. This scaling can also be understood through
the general bound (25). For long t, N ∼ 1√

ε(t)
∼ t/τQ. Since N increases roughly linearly in time, the

squared integral in (25) scales as T4.
Figure 6 shows the scaling with T of the SNR, computed with exact simulation (see appendix D). We

find that the T4 scaling is indeed recovered for ωT � 10. The adiabatic behavior, however, is broken for very
small T. Indeed, the fulfillment of condition (32) means that the population of excited states oscillates
quickly, with an oscillation rate given by the energy gap, which here is of order ω. For T 
 1/ω, the system
evolves over several periods, these population will be averaged out, and the system will indeed remain in its
ground state. However, if we let the system evolve for a time shorter than the oscillation period 1/ω, the
system can become excited, and the adiabatic prediction (35) is not satisfied anymore. In this regime, we
observe that the SNR scales instead as T8. Since this behavior holds only for short times, and is associated
with extremely small SNR, it should be irrelevant in practice.

Let us stress that these results can also be expressed in terms of critical exponents. Let us assume that the
gap scales like Δ ∼ εzν , and the QFI scales like Ix ∼ ε−γ̃ . Then we can design a ramp ε(t) = 1

1+(t/τQ)1/(zν) ,

which will satisfy the adiabaticity condition as long as τQ 
 1/ω. Plugging this expression in the QFI, we
find Ix ∼ T γ̃/(zν). In our case, we have zν = 1/2 and γ̃ = 2, which gives the T4 scaling. Finally, we also
studied the evaluation of λ; we found that, for ωT � 10, we recover the T4 scaling. As in the sudden quench
case, the SNR becomes independent of the parameter being evaluated.

6.2. Finite-time ramp: Kibble–Zurek mechanism
The previous ramp, although it optimally keeps the system in the ground state, may be challenging to
implement in practice. In general, it might easier to implement ramps according to

g(t) = gc

(
1 −

(
T − t

T

)r)
, (36)

with 0 < r < ∞. The corresponding time-profile is plotted in red in the left-hand side of figure 1. In this
subsection, we still assume that we are in the thermodynamic limit. Contrary to the previous case, the
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Figure 7. (a) SNR Qω for a finite-time ramp (36) versus ωT, for various values of the non-linear exponent r. We also show the
resulting bound from equation (25) for r = 4 (solid black line). (b) Fitted exponent β in the interval ωT ∈ [103, 104], which
agrees very well with the KZ predicted exponent, 4r/(2 + r). (c) Illustration of the behavior of Qω for r 
 1, compared to the
sudden quench results (solid blue line). Panel (d) shows the fitted exponent β, which clearly reveals a T6 scaling as for a sudden
quench protocol, but which holds only for 10 � ωT � r.

critical point gc = 1 is reached in finite time, g(T) = gc. However, the dynamics will cease to be adiabatic in
the proximity of the QPT, which is at the core of the Kibble–Zurek mechanism [11, 49–53]. In particular,
when Δ̇ ∼ Δ2 [50], the adiabaticity will be broken, which defines the so-called freeze-out time. In our case,

this takes place at a time tf = T
[

1 −
(
ωT

r

)− 2
r+2

]
, which corresponds to a value

1 − gf =

(
ωT

r

)−2r/(2+r)

. (37)

In this case, the standard Kibble–Zurek argument [49–53] states that the evolution can be decomposed
into two parts. First, an adiabatic evolution with the coupling moving from g(0) = 0 to g(tf ) = gf . Second,
an impulse regime in which the system cannot react to external changes imposed by g(t), and thus the
system is effectively quenched from gf to the final value g(T) = gc = 1. Moreover, the QFI at the end of the
evolution becomes approximately equal to the QFI at the freeze-out instant.

Combining this with equation (34), the KZ mechanism predicts a QFI proportional to 1
ω2(1−g2

f
)2 , which

results in

Qω =

(
ωT

r

)4r/(2+r)

. (38)

We computed the SNR under (36) (see appendix D) and compared it to this prediction. The results are
plotted in figure 7. On the top panel, we show the scaling of the SNR for relatively small r. We observe that,
for 10 � ωT, the SNR scales indeed according to the KZ value. Note that the bound (25) is able to capture
this scaling behavior. A closer examination, with higher values of r (bottom row of figure 7) reveals that
there are actually three scaling regimes. For very short times ωT � 10, Qω scales as T4. For 10 < ωT < r,
one obtains Qω ∝ T6, while for ωT > r, we recover the Kibble–Zurek scaling (cf equation (38)). This can be
interpreted as follows. For ωT < r, the freeze-out value 1 − gf is larger than 1. Since g must be positive, this
is not possible, which means that the adiabaticity is actually broken from the very beginning of the
evolution. Therefore, the entire evolution can be deemed as a sudden quench, in which the coupling is
instantaneously brought from g(0) = 0 to gc = 1, and left to evolve for a time T (cf section 5); we then
recover the T6 scaling we observed in section 5. For ωT > r, 0 � gf � 1, so that the evolution can be
decomposed according to the adiabatic-impulse approximation and the KZ argument holds (cf figure 7).
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Figure 8. Panels (a) and (b): SNR Qω and its fitted exponent β, respectively, for an adiabatic ramp with ϕ = 10−2 and different
finite values of η, together with the case η → ∞ (solid blue line). The evolution for finite η follows the thermodynamic limit
prediction for small ωT, then saturates at a value Qω ∼ η4/3. Horizontal dashed lines show the SNR of the ground state at gc for
different η, which also corresponds to the saturation of the SNR obtained by performing the adiabatic ramp for η → ∞, but
only up to g∗ ∼

√
1 − η−2/3 (solid color lines) (see main text for details). Panels (c) and (d) show the same but for a finite-time

ramp with r = 1. In the long-time limit, the SNR saturates to the same value (note that the curve for η = 105 does not show the
saturation because the display time is too short).

In the limit r → ∞, the KZ prediction (38) leads to Qω ∝ T4. However, this scaling can only be attained
for very long protocols, for ωT > r → ∞. Furthermore, the SNR carries a very small prefactor 1

r4 . We can
connect this to the results for the fully adiabatic ramp which we introduced in section 6.1, where Qω ∝ T4,
with a prefactor ϕ4 	 1. The critical point is not reached in the adiabatic ramp, but asymptotically
approached for very long T. Therefore, we see that in the limit r 
 1 and ωT 
 1, the finite-time ramp and
the fully adiabatic ones become similar. By contrast, for r 
 1 and 1 	 ωT 	 r, the finite-time ramp has
the same behavior as the sudden quench, as shown in the lower panel of figure 7. Hence, depending on the
tuning of r and T, the non-linear ramp provides an interpolation between the simple linear ramp, the fully
adiabatic evolution, and the sudden quench.

6.3. Finite-size effects
Finally, we study the adiabatic (33) and finite-time ramps (36) for finite-size system. The results are
displayed in figure 8. For the adiabatic ramp at short times ωT 	 η1/3, we observe the same behavior as in
the adiabatic limit, with a scaling going from T8 to T4. This can understood as follows: for finite η, the gap
saturates around its minimum value in the critical region, of width Γ ∼ η−2/3. Now, if we apply the
evolution (33) for a total time ωT 	 η1/3, we will obtain at the end of the evolution
ε(T) ∼

( τQ
T

)2 
 η−2/3 = Γ. In other words, at the end of the evolution, we will have 1 − g2 
 Γ.
Therefore, we remain safely out of the critical zone; the finite-size effects play a negligible role, and we
recover the η → ∞ results. To the contrary, if ωT 
 η1/3, the adiabatic ramp brings us within the critical
zone. In this region, the QFI saturates at a value Iω ∼ 1

ω2Γ2 = 1
ω2 η

4/3. This result can be retrieved using (34)

and applying heuristic 1. This is depicted in the upper panels of figure 8. For ωT 
 η1/3, the SNR saturates
at a value ∝ η4/3, and becomes independent of T. Note that this equivalent to perform the adiabatic ramp
to get only up to g∗ =

√
1 − Γ ∼

√
1 − η−2/3. We stress that the same results hold for Qλ.

The results for the finite-time ramp are very similar. Let us consider again the freeze-out value (37). For
ωT

r 	 η(2+r)/3r , it follows 1 − gf 
 Γ, i.e. the freeze-out occurs outside of the critical zone, and thus the
thermodynamic limit results are recovered. For ωT

r 
 η(2+r)/3r , the SNR saturates at η4/3. Those are the
features we observe in the lower panels of figure 8, where we plotted the evolution for r = 1. First, we obtain
the short-time scaling T4, then the KZ scaling T4r/(2+r) = T4/3, and finally the saturation with a T0 scaling.
For larger r, there exists an intermediate region for 1 	 ωT 	 r, where the SNR scales like T6.
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To sum up, finite-size effects for a sudden quench (cf figure 5) and in adiabatic and finite-time ramps
(cf figure 8) have a similar impact. For short durations, the finite-size effect are negligible, and we recover
the thermodynamic limit scalings. For long time, the finite-size effects are dominant. The transition
between these two regimes is governed by the minimum gap value, ωη1/3. These various regimes are
summarized in figure 1.

To conclude this section, let us discuss how the performances of the different strategies compare against
each other. From figures 4 and 7, on the one hand, and figures 5 and 8, on the other hand, we can see that a
sudden quench at g = 1 is always the optimal strategy, in the sense that it always gives the highest QFI for a
given duration T [124]. This is particularly visible when η becomes large, in which case the precision
achievable with the ramp quickly saturates when T increases, while the performances of the quench keep
improving. Fully exploiting these improved performances, however, requires a somewhat more complex
measurement strategy, as we will see in the next section.

7. Saturability of the QFI

In this section, we will comment on how the QFI limits the actual precision that could be reached in an
experimental implementation of our protocol. We will focus on the thermodynamic limit. Let us first recall
how our protocol would be exploited to measure the frequency ω. Starting from λ = 0, we increase the
coupling following a quench or a ramp of duration T, producing some state |ψf 〉. We then measure some
observable Ô, and use the measurement results to infer the unknown value ω. The error δω is then limited
by the Fisher information (FI), given by

δω � 1√
Fω(Ô)

, Fω(Ô) =

(
d〈Ô〉
dω

)2

Var(Ô)
,

where both the average and the variance of Ô are taken over the state |ψf 〉. The choice of a different
observable Ô may render the estimation more or less precise. The QFI then gives us a lower bound on the
error δω, when the choice of Ô is optimized. This bound can generally be saturated (see [116] for the
formal conditions), in which case we have MaxÔ Fω(Ô) = Iω , or equivalently, in terms of the squared SNR,
o.e. ω2Fω(Ô), which gives Qω when Ô is optimized. The optimal observable may however be extremely
complicated as a combination of higher-order moments. However, since the states in our case are Gaussian
or close to Gaussian, we can expect that measuring the second-order correlations will be sufficient to reach
the QFI. In this section, we will show that this is indeed the case. For the ramp, the QFI scaling can be
reached by measuring the fluctuations of one quadrature through homodyne detection. For the quench, a
more complex quadratic operator is needed, which requires measurements of the fluctuations along both
quadratures.

7.1. Finite-time ramp
Let us consider first the adiabatic ramp, in the thermodynamic limit. The system is prepared in its ground
state, with a coupling value g very close to one. The natural observables in a bosonic system are the
quadratures, which can be accessed by homodyne measurement. However, the quadratures always have zero
average value in our case. Therefore, measuring Ô = x̂ or Ô = p̂ will always lead to 〈Ô〉 = 0, and hence zero
precision. Instead, we need to look at the fluctuations of the quadratures, by measuring x̂2 and p̂2. In
practice, this could be made by performing an homodyne detection of one quadrature, and integrating the
noise of the homodyne current. A natural choice is to measure the squeezed quadrature, by setting Ô = p̂2,

this gives 〈Ô〉 =
√

1 − g2 (see equation (8)). We then get ω d〈Ô〉
dω = (ω dg

dω )
d
√

1−g2

dg ∼ 1

ω
√

1−g2
[125]. The

variance is derived using Wick’s theorem, we get Var(Ô) = 3〈p̂2〉2 ∼ 1 − g2. Putting everything together, we

get Fω(p̂2) ∼
(

1
ω(1−g2)

)2
. The precision has then exactly the same scaling in 1 − g2 than the QFI obtained in

equation (34), eventually, restoring the dependency of 1 − g2 = ε(T) on T, as per (36), we find the same
(ωT)4 scaling as the QFI. This argument indicates that measuring the noise in one quadrature allows to
saturate the QFI. Our exact numerical simulations confirm this insight, as shown in figure 9. Here, the high

precision has two origins: on the one hand, the derivative d〈Ô〉
dω scales like (1 − g2)−1/2 and diverges as the

critical point is approached, thus the observable becomes very sensitive. On the other hand, the noise
Var(Ô) ∼ 1 − g2 is suppressed. However, Ô = p̂2 is not the only observable which saturates the QFI.
Indeed, let us see what happens if we measure the anti-squeezed quadrature instead, and set Ô = x̂2. Then

we find 〈Ô〉 = (1 − g2)−1/2, ω d〈Ô〉
dω ∼ (1 − g2)−3/2, and Var(Ô) ∼ (1 − g2)−1. We then obtain
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Figure 9. Left: ratio between the FI Fω[Ô] for an observable Ô and the QFI Iω . Right: corresponding scaling exponent β such
that Fω[Ô] ∼ (ωT)β (the solid black line represents the scaling of the QFI). Top row, panels (a) and (b), correspond to a sudden
quench protocol where Ô = x̂2, p̂2 and Â as introduced in equation (39). Note that the observable Â yields a T6 scaling as the
QFI, while other quadratures provide T4. The results for an adiabatic ramp with ϕ = 10−1 are plotted in the middle row, panels
(c) and (d), where both quadratures are sufficient to saturate the QFI and thus its T4 scaling (solid black line for the QFI in (d)).
The results for non-linear ramps with r = 1 (full symbols) and r = 2 (open symbols) are shown in panels (e) and (f), which
indicate that it is possible to saturate the QFI and thus reproduce the corresponding Kibble–Zurek scaling (horizontal dashed
lines in (f)). If we set r to be very large (not shown here), we observe first a T4 scaling which corresponds to the sudden quench
regime, and then a KZ scaling for r

ω
	 T 	 1

κ
, followed by a saturation.

Fω(x̂2) ∼
(

1
ω(1−g2)

)2
. Hence, the measurement along the anti-squeezed quadrature gives the same scaling of

precision as the measurement along the squeezed one, and also saturates the QFI. This is because, although

the variance is much larger (and actually divergent) in this case, the derivative d〈Ô〉
dω is correspondingly

higher. Instead of homodyne detection, we may also measure the number of photons â†â = x̂2+p̂2−1
2 . The

photon number is essentially dominated by the anti-squeezed quadrature, and give the same FI. This is
actually a more general property, coming from the critical scaling behavior. If an observable Ô scales like

some power (1 − g2)α near the critical point, the derivative ω d〈Ô〉
dω ∼ d〈Ô〉

dg will scale like (1 − g2)α−1, and if

the dynamics is (at least approximately) Gaussian, we will also have Var(Ô) ∼ 〈Ô〉2 ∼ (1 − g2)2α.
Combining these quantities, one finds a SNR which scales always like (1 − g2)−2, independently of the value
of α.

If we now consider the finite-time ramp, the above arguments remain essentially unchanged. As it can
be seen in figure 9, homodyne measurement along both x̂ and p̂ quadratures gives a FI which increases with
the ramp time T, and saturates the QFI in almost any case. We checked other quadratures and obtained
every time the same scaling, with only a change in the prefactor. We found a single exception to that rule:
for a linear ramp r = 1, measuring the squeezed quadrature p̂2 gives a precision which saturates to a finite
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value, and fail to reach the QFI. By contrast, measuring the anti-squeezed x̂2 always allows to saturate the
QFI. Hence, we have a situation in which measuring the noisy quadrature is not just a good strategy, but
actually a much better one than measuring the quadrature where noise is suppressed. Note that this is a very
isolated case; if a measurement is performed along a slightly tilted direction, or if the ramp is slightly
non-linear, the QFI scaling will be restored very fast. These results indicate, on the one end, that homodyne
detection is almost always optimal when the ramp is used. On the other end, and counter-intuitively, they
show that it is not necessary, or even counter-productive, to measure observables whose fluctuations are
suppressed. Several works have considered using critical point as a tool to produce states with reduced
quantum noise [12], which can then be used in standard phase-shift sensing protocols. Here, instead, the
relevant parameters are encoded in the noise signature itself. Our protocol amplifies the noise, but with an
amplification coefficient which depends critically on the parameter to be estimated.

7.2. Sudden quench
To understand the FI achievable in the sudden quench case, we need to describe the dynamics of the
quantity to be measured. In appendix F we provide the analytical expression for the time-evolution of x̂2, p̂2

and â†â, and the associated FI. The key findings are the following: measuring the photon number, or the
noise along any quadrature, always yields a precision scaling with the quench duration like (ωT)4. We recall
that the QFI scales like (ωT)6, and therefore, homodyne and photon-number measurement are always
suboptimal. However, we also identified a family of observables which allows saturating the QFI. An
example of observable saturating the QFI can be expressed as

Â = − x̂2

(ωT)2
+ p̂2. (39)

This observable can be accessed via Gaussian operations and homodyne measurements, but it clearly
requires a non-trivial measurement setup. These analytical results are confirmed by our numerical
simulations. For example, in figure 9 we show the comparison between one- and multi-quadratures
measurement strategies, and how the latter can saturate the QFI.

Let us conclude this section with two comments. First, although the sudden quench gives the best QFI,
fully reaching this precision comes at the cost of a more complex measurement procedure. If,
experimentally, only single-quadrature measurement or photon counting are available, the precision will fall
short of the QFI. However, the sudden quench will still give a quartic scaling, while the finite-time ramp

will give a KZ scaling T
2r

r+2 � T4. Therefore, even when the measurements are constrained, the quench is
still the optimal strategy. The advantage will only be less important than in the absence of measurement
constraints.

Second, we have focused the discussion on the measurement of ω. The results are unchanged if we want
to measure λ instead. Once again, this is because a change in either ω or λ have the same effect, namely a
renormalization of the effective coupling g (see appendix F for more details).

8. Decoherence effects

Finally, let us look at the effect of decoherence in our model to assess the robustness of the reported QFI
scalings [126–128]. We will focus on the effect of photon loss in the thermodynamic limit. The density
matrix ρ̂ then evolves according to the following Lindblad equation,

dρ̂

dt
= −i[Ĥ0, ρ̂] + κ(2âρ̂â† − â†âρ̂− ρ̂â†â). (40)

We consider both sudden quench and finite ramp to g = 1, in the regime κ � ω. The behavior of the QFI is
displayed in figure 10. Let us first look at the non-linear ramp. If the ramp duration T is short enough, the
system does not have time to relax to the steady-state, and the QFI still obeys first the non-universal T4

scaling and then the KZ scaling. For very long T, however, the system decays to the steady-state before the
ramp is completed. In this latter case, we find that the QFI saturates and stops increasing with T. The
smaller κ, the longer the KZ scaling holds, and the larger the final QFI. A fit for various κ reveals that the

steady-state QFI scales like ω4

κ4 . In addition, it is worth mentioning that the impact of decoherence in this
context may lead to an anti-Kibble–Zurek scaling [129–133]. Although not evident from the results shown
in figure 10, the corrections to the noiseless QFI may follow a universal anti-Kibble–Zurek scaling in the
weak decay regime κ/ω 	 1 as discussed in reference [26].

For the sudden quench, the situation is more intricate. We see the appearance of a new time-scale
T0 ∼ ω−2/3κ−1/3. The evolution shows four regimes: for T � 1

ω
, the QFI follows the non-universal T4
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Figure 10. Impact of decoherence on the QFI for a sudden quench (top row) and a non-linear ramp with r = 2 (bottom row).
Panels (a) and (c) show the behavior of the SNR Qω for increasing values of κ/ω, from 10−6 to 10−1, while panels (b) and
(d) show the resulting fitted-exponent β such that Qω ∼ (ωT)β . Vertical dashed lines in (b) indicate the transition from coherent
to a noisy regime for κ/ω = 10−3, 10−4 and 10−6, that takes place at a time T0 ∼ ω−2/3κ−1/3 (the lines correspond to
(κ/100)−1/3), while the horizontal dashed line in (d) shows the predicted Kibble–Zurek scaling for r = 2.

scaling. For 1
ω

� T � T0, the QFI follows a T6 scaling, as it does in the absence of noise. For T0 � T � 1
κ

,
the QFI shows a new regime, with a scaling law T3. Finally, for T � 1

0κ, the steady-state is reached, and the

QFI saturates again at a value that scales as ω4

κ4 . As we show in appendix G, this time-scale T0 can be
understood by looking at the noise structure of the state. During the evolution, the system is in a squeezed
thermal state,

Ŝ(z)e
− log

(
υ+1
υ−1

)
â†â

Ŝ(z)†, (41)

where Ŝ(z) = exp
[

1
2

(
|z|e−iθ â2 − |z|eiθa†2

)]
is the squeezing operator, and υ is the so-called symplectic

eigenvalue [66], which describes the purity of the state (or, equivalently, its effective temperature). For
υ = 1, we have a pure state with zero temperature, and for υ →∞, we have a completely mixed state with
infinite effective temperature. During the quench, both the squeezing |z| and the thermal parameter υ
increase. However, for T � T0, the thermal noise is still very small, and the state is effectively a pure
squeezed state, with the same properties as in the noiseless case. For T � T0, the thermal noise becomes
important, and the system enters the new scaling regime. As a last remark, let us also emphasize that the
total photon number (including both squeezing and thermal noise) always grows quadratically in time,
both for T � T0 and T � T0. For T � T0, the QFI scales like T6, which can be obtained using our

Heisenberg-like bound Iω ∝
(∫

dt(2N(t) + 1)
)2

. By contrast, for T � T0, the QFI scales like T3, which
could be obtained by a bound of the form Iω ∝

(∫
dt(2N(t) + 1)

)
. Hence, this time scale T0 represents also

a transition from a Heisenberg-like to a shot-noise metrological behavior.

9. Conclusion and outlook

We have presented a thorough analysis of the QFI achievable in the context of critical quantum metrology
with fully-connected models. In particular, we considered three families of critical quantum metrology
protocols: sudden quenches, adiabatic sweeps and finite-time ramps. Sudden quenches and adiabatic sweeps
are limiting cases which make use of dynamical and static properties of critical systems, respectively.
Alternatively, in finite-time ramps the adiabaticity of the protocol can be continuously tuned, providing a
formal connection between the first two cases. We have shown the existence of different regimes,
characterized by different scalings of the QFI with the protocol duration. Most of these scaling regimes are
universal, in the sense that they are independent of both the specific model and the parameter being
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evaluated. In particular, our protocols can achieve T6, T4 or Kibble–Zurek T4r/(2+r) scaling, which go
beyond the paradigmatic quadratic time scaling. This is because our protocols belong to the category of
active interferometric protocols, in which the number of probes is allowed to change in time. We have also
provided a general upper bound for the QFI achievable using time-dependent quadratic Hamiltonians. We
showed that such bound provides an accurate estimate of the scaling of the achievable precision in most
regimes, as a function of the time-dependent average number of photons generated during the
implementation of the protocol. In general, this bound proved to be a valuable resource to extract the most
important features of each scaling regime. We showed that the optimal precision predicted by the QFI could
be reached using standard homodyne or photon-number measurements. Finally, we studied how the losses
affect our protocols, and showed that non-trivial scaling regimes survive as long as the protocol duration is
smaller than the dissipation rate.

The interest in this analysis is of both practical and theoretical nature. Let us briefly discuss these aspects
separately. From a practical point of view, our study can guide the implementation of critical quantum
sensors with atomic and solid-state quantum optical devices. For example, fully-connected models include
finite-component critical systems, which can present critical properties without the complexity of
many-body quantum systems. The identification of different scaling regimes, and the analysis of the
precision achievable with finite-time ramps, make it possible to identify the optimal working point given
the characteristics of the considered quantum technology. In the manuscript we focus mostly on the QR
model as a case study, but the introduced method can be directly applied to any instance of fully-connected
models, such as the LMG or Dicke model.

From a purely theoretical point of view, our results stress out the link between critical quantum
metrology and the emergence of universal scaling laws such as the Kibble–Zurek mechanism. Besides its
significance for sensing applications, the QFI is itself an interesting physical quantity, as it gives a measure of
the system response to external perturbations. Our analysis provides then a characterization of the static
and dynamical susceptibility of quantum critical systems in proximity of the critical point. Our analysis has
been performed in the quantum regime, using quantum-information theoretical tools. Yet, it is not obvious
how the different reported precision regimes relate to distinct measures of non-classicality. Similar results
might be found in systems featuring thermal phase transitions; this would constitute a worthwhile topic for
further investigations.

Our study also suggests possible future directions to improve critical quantum metrology protocols from
a fundamental perspective. In general, the Heisenberg scaling is defined under a specific set of assumptions
and it is expressed as a function of fundamental resources, such as time or number of probes. Our general
upper bound for the QFI shows how the scaling in time could be improved by generalizing the class of
considered protocols. Furthermore, we have shown that the sudden quench strategy performs generally
better than the finite-time ramp. Both features indicate that a dynamical modulation of the Hamiltonian
could be a promising way to improve the performances of such protocols (see for example the recent work
[134]). An example could be the introduction of a periodic time-dependence in the Hamiltonian term that
encodes the parameter to be estimated. However, we have also shown that, to fully exploit this dynamical
behavior, it is necessary to go beyond single-quadrature measurement. It is therefore of importance to study
which measurement strategies would allow to exploit these features while remaining experimentally
accessible. In addition, another interesting avenue within critical quantum metrology would be determining
the role of the range of the interactions within a quantum many-body system [135] in this dynamical
scenario.
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Appendix A. Scale-invariance and critical exponents

Let us consider the following parameter transformation:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p̂ → p̂′ = αp̂,

x̂ → x̂′ =
1

α
x̂,

η → η′ =
1

α6
η (thereforeΓ → Γ′ = α4Γ)

ω → ω′ =
1

α2
ω

1 − g2 → (1 − g′2) = α4(1 − g2)

. (A1)

This corresponds simply to a Bogoliubov transformation on the quadrature, accompanied by a rescaling
of the parameters.

Now, let us assume we start from some large but finite value of η, with some value of g; then we apply
the rescaling with α < 1, which makes the system evolve toward larger and larger η, while maintaining g in
the interval [0, 1]. Under this transformation, the quadratic term of the Hamiltonian (2) remain exactly
invariant. The quartic term can be decomposed into two contributions; the factor ω 1

4η x̂4, which is
scale-invariant, and the term f(g), which is not. Let us assume here we derive the effective model starting
from the QR model, i.e. f(g) = g4. Then the full Hamiltonian transforms as

Ĥ ′ = Ĥ + ω
(g′4 − g4)

4η
x̂4 = Ĥ + ω(g′2 + g2)

(1 − g2)(1 − α4)

4η
x̂4. (A2)

Both terms g′2 + g2 and 1 − α2 are of order 1 at most. Hence, we can neglect them and the correction is

bounded by ω (g′4−g4)
4η x̂4 ∼ ω (1−g2)

η
x̂4. Now, this correction is of the same form as the original quartic term,

but with an additional (1 − g2) term. This is because the rescaling is a dilatation transformation on g; the
amount by which g changes is proportional to its distance to the critical point. If originally we have g = 1,
the scaling transformation just gives (1 − g

′2) = α4(1 − g2) = 0 → g′ = 1; in other words, the critical point
g = 1 is a fixed point of the renormalization flow. Therefore, for g = 1, the correction to the Hamiltonian
must exactly vanish, which is indeed the case. For g 
= 1, the coupling constant will change; the longer the
initial distance 1 − g2 to the critical point, the bigger the change, and the larger the correction.

Now, let us compare the correction with the quadratic term of the Hamiltonian; the two are of

comparable strength when 〈x̂4〉
η

∼ 〈x̂2〉, with an average taken over the ground state of the unperturbed

Hamiltonian Ĥ. We can see, however, that this is never the case, since the ratio 〈x̂4〉
〈x̂2〉 ∼ 〈x̂2〉 is η1/3 at most.

We can also express it so: either we have 1 − g2 
 Γ originally, and in this case the term x̂4

η
is small; or we

have 1 − g2 � Γ 	 1, and in this case it is the term 1 − g2 in the correction which is small.
The same reasoning can be made if we start from another model than the QR model. The quartic term

is f (g) x̂4

η . x̂4

η is exactly invariant under the rescaling. Then either we start from 1 − g2 � Γ, in which case g is

almost left unchanged by the flow, and therefore f(g) is also invariant; or we start from 1 − g2 
 Γ, in

which case f(g) does changes, but then the term x̂4

η
is so small that the correction is negligible.

Therefore, no matter the value of g from which we start, as long as η is large, the Hamiltonian remains
approximately invariant under the scaling transformation, with a correction which is always small. At the
critical point g → 1, the system becomes exactly scale-invariant. Therefore, we find here the usual scaling
features of a critical system, despite the absence of spatial structure.

In standard quantum many-body systems one defines scaling relations in terms of correlation length and
system size. The correlation length in the thermodynamic limit scales as the coupling according to the
critical exponent ν, e.g. ξ ∼ (1 − g2)−ν . A correlation length, of course, cannot be defined directly for a
fully-connected system [70, 71]. Yet, the frequency ratio η can be interpreted as an effective system size,
even in the zero-dimensional QR model. As for a candidate of correlation length, we need a quantity that
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scales as the system size under the scaling transformation. 〈Δx〉6, with Δx the standard deviation of x̂,
satisfies this property. Therefore, we can now define the notations L = η, ξ = 〈Δx〉6. In the critical region,
the quadrature variance equals the system ‘size’, or more precisely, it reaches the maximum value allowed by
the quartic term. We have the critical exponents for ξ and the gap Δ, ξ ∼ (1 − g2)−ν in the thermodynamic
limit, ξ ∼ L at the critical point and Δ ∼ (1 − g2)zν . In the main text, we have shown that the critical
exponents are zν = 1/2 and ν = 3/2.

We can now state the scaling argument. Let us take the gap as an example. In the thermodynamic limit,
the gap scales with the coupling as Δ ∼ ω(1 − g2)1/2. If we now consider a finite η and arbitrary g, we
should have Δ = ω(1 − g2)1/2f (ω, η, g), with f an a priori arbitrary function. However, we can constrain
this function by noting that Δ must be homogeneous to ω, and invariant under the scaling transformation
(since the Hamiltonian itself is scale-invariant). Since ω(1 − g2)1/2 has already the good dimension and is
scale-invariant, this means that f must be scale-invariant and dimensionless. Therefore, it can only depend
on combinations of ω, g and η that satisfy this property. The only combination that works results in

L/ξ = η(1 − g2)ν , or equivalently, 1−g2

Γ = η1/ν(1 − g2). Therefore, we deduce that

Δ ∼ ω(1 − g2)1/2f ( 1−g2

Γ ). The further requirement that Δ depends only g in the thermodynamic limit and
on η near the critical point brings the condition f(x) → 1 for x 
 1, and f(x) → x−1/2 for x 	 1. Therefore,
near the critical point, this argument predicts that we will have Δ ∼ ωΓ−1/2 = ωη−1/3. We can also do the
same for the quadrature variance, 〈x̂2〉 ∼ (1 − g2)−1/2. In the general case, we would have
〈x̂2〉 ∼ (1 − g2)−1/2f ′(ω, η, g). This time, the quantity 〈x̂2〉 is not scale-invariant, since the operator x̂
changes explicitly during the rescaling; therefore, the variance will evolve like 〈x̂2〉 → α−2〈x̂2〉. However, the
quantity (1 − g2)−1/2 has already the same scaling behavior; therefore, we find again that the function f′

must be scale-invariant and dimensionless. To summarize, the scaling argument can be seen as a way to
extend the usual dimensional analysis to dimensionless quantities; we must find parameter combinations
which have not only zero physical dimension, but also a zero scaling dimension.

Appendix B. QFI for squeezed states

Here we recall the derivation of the QFI for squeezed states (17). Taking a vacuum squeezed state |ψ〉, it is
convenient to introduce

|ψ〉 = 1√
cosh |z|

exp
[
−ba†,2

]
|0〉, (B1)

with b = tanh(|z|)
2 eiθ. Then,

|∂xψ〉 = −(∂x|b|)
sinh(2|z|)

2
|ψ〉 − (∂xb)â†2|ψ〉.

To compute the QFI, we make use of the following relation:

â2â†,2 =
1

4
[x̂4 + p̂4 + 2 : x̂2p̂2 : +4(x̂2 + p̂2) + 2],

where :: means we are taking the symmetric combination : âb̂ := âb̂+b̂â
2 . For the squeezed vacuum state, we

have 〈x̂2〉 = e2|z|
2 and 〈p̂2〉 = e−2|z|

2 . Then Wick’s theorem gives us 〈x̂4〉 = 〈x̂2〉2, 〈p̂4〉 = 〈p̂2〉2,
〈: x̂2p̂2 :〉 = 〈x̂2〉〈p̂2〉+ 2〈: x̂p̂ :〉2 = 〈x̂2〉〈p̂2〉, and we find

〈ψ|â2â†2|ψ〉 = 1

16
[3 cosh(4|z|) + 8 cosh(2|z|) + 5]

= (3 cosh2(|z|) − 1)cosh2(|z|).

We can now compute the products involving the derivative of the state,

〈ψ|∂xψ〉 = i(∂xθ) sinh(|z|) cosh(|z|)|b| = i(∂xθ)
sinh2(|z|)

2
,

〈∂xψ|∂xψ〉 = |∂xb|2
(
3 cosh2(|z| − 1)cosh2(|z|) − (∂x|b|)2 cosh2(|z|)sinh2(|z|).
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Finally, the QFI reads as

Ix = 4
[
〈∂xψ|∂xψ〉 − (〈ψ|∂xψ〉)2

]
= 8(∂x|b|2 + |b|2(∂xθ)2)cosh4(|z|)

= 2

((
∂|z|
∂x

)2

+ cosh2(|z|)sinh2(|z|)
(
∂θ

∂x

)2
)

=
8|∂xb|2

(1 − 4|b|2)2
. (B2)

Appendix C. QFI bounds

In this section, we make comments on the existing bounds of the QFI, we present the derivation of
equation (25), and we also show how it can be extended to displaced states.

C.1. Comments on previous bounds
The Hamiltonian Ĥx generates a unitary evolution Ûx(0 → t). The state evolves toward
|ψt〉 = Ûx(0 → t)|ψ0〉.

The QFI can be rewritten as

Ix(t) = 4
(
〈ψ0|Fx(t)2|ψ0〉 − 〈ψ0|Fx(t)|ψ0〉2

)
, (C1)

where we have defined
Fx(t) = iÛx(0 → t)†∂x

(
Ûx(0 → t)

)
. (C2)

Now, it is straightforward to show that the derivative of Fx can be expressed as:
∂tFx(t) = Ûx(0 → t)†(∂xHx(t))Ûx(0 → t). Therefore,

Fx(T) =

∫ T

0
Ûx(0 → t)†(∂xHx(t))Ûx(0 → t)dt. (C3)

We want to compute the variance of Fx on the initial state |ψ0〉. For this, we can use the convexity of the
standard deviation, i.e.

√
Var(A + B) �

√
Var(A) +

√
Var(B). From this, we can deduce

Ix(T) � 4

(∫ T

0
dt

√
Varψ0

(
Û†

x(0 → t)(∂xHx(t))Ûx(0 → t)
))2

= 4

(∫ T

0
dt
√

Varψt (∂xHx(t))

)2

. (C4)

In the first line, the variance is taken over the initial state |ψ0〉; in the second, it is taken over the
time-evolved state |ψt〉. This equation is the most general bound we can set on the precision for a
Hamiltonian evolution with a pure initial state. Again, we emphasize that this expression is valid for any
Hamiltonian Ĥx, even time-dependent. Note that the term under the integral is time-dependent in two
different ways. First, the derivative of the Hamiltonian, ∂xĤx(t), can be intrinsically time-dependent.
Second, the variance is taken over the state |ψt〉, which evolves in time.

This expression provides a unified view of all the bounds discussed in the main text. Let us assume that
we have Ĥx(t) = xÂ(t), with Â(t) = ∂xĤx(t) independent of x, and Ĥx(t) is bounded. Then we can define
the (time-dependent) extremal eigenvalues λM(t) and λm(t) of Â(t). The variance can always be bounded by
the difference between these eigenvalues: Varχ(Â(t)) � 1

4 |λM(t) − λm(t)|, for any state |χ〉, and all t.
Plugging this into (C4), we retrieve the bound (20)

Ix(T) �
[∫ T

0
|λM(t) − λm(t)|

]2

. (C5)

This bound can be saturated when the state is in a coherent superposition of the two extremal values:
|χ(t)〉 = |λM (t)〉+|λm(t)〉√

2
[119, 121]. This condition can be challenging to implement in practice, especially if

the Hamiltonian is time-dependent; however, it was shown that this could be done for small systems, using
quantum control [121].

Let us now assume that all the conditions (1)–(4) discussed in the main text are satisfied. Then the
extremal eigenvalues become time-independent; and because Ĥx is local, they can scale at most with the
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number of components. This means we have |λM(t) − λm(t)| = αN, with α a time-independent,
non-universal constant which depends on the precise expression of Ĥx. This finally gives us back the
Heisenberg limit

Ix(T) �
[∫ T

0
αN dt

]2

(C6)

� α2N2T2.

Conversely, if Ĥx acts on k particles at the same time, then the eigenvalues can scale like Nk, and we retrieve
the bounds (19). Finally, if we let Ĥx be time-dependent, but still bounded, we fall back to the discussion of
Pang and Jordan [121].

C.2. Derivation of our bound
We will now show derive our bound (25). The proof contains essentially two parts: the first part is to use
(C4), thus we reduce the estimation of the QFI to evaluating the variance of ∂xHx at each time. The second
step is to notice, using Wick’s theorem, that the variance of a quadratic Hamiltonian on a Gaussian state is
essentially equal to N2 = 〈N̂〉2. Combining the two, we find that the QFI should be bounded by a quantity

like
(∫ T

0 N(t)
)2

. More precisely, we assume that both Ĥx and its derivative ∂xĤx are purely quadratic, with

no linear part,
∂xHx = (x̂p̂)Mx(x̂p̂)T. (C7)

We also assume that, in the initial state, we have 〈x̂〉 = 〈p̂〉 = 0, which is the case for a vacuum state. We will
first assume that Ĥx is time-independent, and relax this assumption at the end. Starting with (C4), we need
to compute the variance of Ô(t) = Ûx(0 → t)†∂xHxÛx(0 → t) over the initial state. We can rewrite:

Ô(t) = [x̂(t)p̂(t)]Mx

[
x̂(t)
p̂(t)

]
.

Here Mx is a two-by-two Hermitian matrix, and x̂(t) = Ûx(0 → t)†x̂Ûx(0 → t) is the time-evolved
quadrature in Heisenberg picture. Because the Hamiltonian is purely quadratic, the quadratures stay
centered around zero at all times: 〈x̂(t)〉 = 〈p̂(t)〉 = 0 for all t. Now, at any given t, we can define two
quadratures (x̂m(t), p̂m(t))T = R(x̂(t), p̂(t))T, which are obtained from the original quadratures by a
(time-dependent) rotation R(t), and which satisfy: 〈: x̂mp̂m :〉 = 0 (where :: means we are taking the

symmetric combination : âb̂ := âb̂+b̂â
2 ). x̂m and p̂m simply correspond to the directions of maximal and

minimum squeezing, respectively. Note that these two quadratures can always be defined, even when the
state is mixed. Then we can absorb the rotation in the matrix Mx, and we obtain

Ô(t) = [x̂(t)p̂(t)]Mx

[
x̂(t)
p̂(t)

]
= [x̂m(t)p̂m(t)]R(t)MxR(t)T

[
x̂m(t)
p̂m(t),

]

with the rotated matrix

R(t)MxR(t)T =

[
A1(t) b(t) + ic(t)

b(t) − ic(t) A2(t).

]

In other words, the time-evolution has two different components. It rotates the direction of squeezing, and
changes its amount. The second operation is now encoded in the quadrature x̂m, while the first is contained
in the matrix R(t)MxR(t)T. Now, the coefficients Ai, b and c can have a very complicated time-dependence
in general. However, since R is just a rotation, the eigenstates of Mx, which we call φ and χ, remain the same
at all time. The goal is now to find a bound on Var(Ô) which depends only on this time-independent
factors. Let us expand Ô(t)

Ô(t) = A1x̂2
m + A2p̂2

m + 2b(: x̂mp̂m :) − c. (C8)

The coefficient c is a constant with no effect on the variance, and can be dropped. We can develop

Ô2 = A2
1x̂4

m + A2
2p̂4

m + A1A2(x̂2
mp̂2

m + p̂2
mx̂2

m) + b2(x̂mp̂m + p̂mx̂m)2 + 2b(2A1 : x̂3
mp̂m : + 2A2 : x̂mp̂3

m:) (C9)

= A2
1x̂4

m + A2
2p̂4

m + (2A1A2 + 4b2) : x̂2
mp̂2

m : +(b2 − A1A2) + 2b(2A1 : x̂3
mp̂m : + 2A2 : x̂mp̂3

m:),
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where we have dropped the explicit time-dependence to lighten notation. In the second line, we have used
the handy relation: x̂2

mp̂2
m + p̂2

mx̂2
m = 2 : x̂2

mp̂2
m : −1. Now, when we take the average over the initial state, we

may use Wick’s theorem 〈x̂m(t)4〉 = 3〈x̂m(t)2〉2,
〈: x̂m(t)2p̂m(t)2 :〉 = 〈x̂m(t)2〉〈p̂m(t)2〉+ 2〈: x̂m(t)p̂m(t) :〉2 = 〈x̂m(t)2〉〈p̂m(t)2〉, and
〈: x̂m(t)3p̂m(t) :〉 = 〈: x̂m(t)p̂m(t)3 :〉 = 0, at all times. Then after straightforward manipulation, we find

〈Ô2(t)〉 − 〈Ô(t)〉2 = 2(A2
1〈x̂2

m〉2 + A2
2〈p̂2

m〉2) + 4〈x̂2
m〉〈p̂2

m〉b2 − A1A2 + b2, (C10)

where all the averages are taken over the initial state. Now, we want to replace the time-dependent
components Ai, b and c by the time-independent χ, φ. We have the following relations:

χφ = A1A2 − (b2 + c2) � A1A2 − b2

χ+ φ = A1 + A2

(φ− χ)2 = (A1 − A2)2 + 4(b2 + c2) � (A1 − A2)2

φ2 + χ2 � A2
1 + A2

2.

which gives

〈Ô2(t)〉 − 〈Ô(t)〉2 = 2(A2
1〈x̂2

m〉2 + A2
2〈p̂2

m〉2) + 4〈x̂2
m〉〈p̂2

m〉b2 − A1A2 + b2

� 2
(
A2

1〈x̂2
m〉2 + A2

2〈p̂2
m〉2

)
+ 4〈x̂2

m〉〈p̂2
m〉(b2 + c2) − A1A2 + (b2 + c2)

= 2
(
A1〈x̂2

m〉+ A2〈p̂2
m〉
)2

+ (1 + 4〈x̂2
m〉〈p̂2

m〉)(b2 + c2 − A1A2)

= 2
(
A1〈x̂2

m〉+ A2〈p̂2
m〉
)2 − χφ(1 + 4〈x̂2

m〉〈p̂2
m〉).

This bound is saturated whenever c = 0; that is, when ∂xHx has no constant term. Now, we can write in
general

(ac + bd)2 − (ad + bc)2 � (ac + bd)2 � (ac + bd)2 + (ad + bc)2,

so that

(a2 − b2)(c2 − d2) � (ac + bd)2 � (a − b)2(c − d)2 + (a + b)2(c + d)2

2
,

for all a, b, c, d ∈ R. We can apply this to the first term in the previous equation, and we get

〈Ô2(t)〉 − 〈Ô(t)〉2 � (A1 − A2)2
(
〈x̂2

m〉 − 〈p̂2
m〉
)2

+ (A1 + A2)2
(
〈x̂2

m〉+ 〈p̂2
m〉
)2 − χφ

(
1 + 4〈x̂2

m〉〈p̂2
m〉
)

= (A1 − A2)2
(
〈x̂2

m〉 − 〈p̂2
m〉
)2

+ (φ+ χ)2
(
〈x̂2

m〉+ 〈p̂2
m〉
)2 − χφ

(
1 + 4〈x̂2

m〉〈p̂2
m〉
)

� (χ− φ)2
(
〈x̂2

m〉 − 〈p̂2
m〉
)2

+ (φ+ χ)2
(
〈x̂2

m〉+ 〈p̂2
m〉
)2 − χφ

(
1 + 4〈x̂2

m〉〈p̂2
m〉
)
.

Now, we have successfully eliminated all the time-dependent coefficients Ai, b and c, and we are left only
with the time-independent eigenvalues φ and χ. There is still, however, some time-dependence left in the
expectation values of the quadratures. We will now find how this bound can be amended to a more elegant
form, involving only the photon number at a given time. The expression above can be massaged as

〈O2(t)〉 − 〈O(t)〉2 � (χ2 + φ2)
[
(〈x̂2

m〉 − 〈p̂2
m〉)2 + (〈x̂2

m〉+ 〈p̂2
m〉)2

]
+ χφ

(
2(〈x̂2

m〉+ 〈p̂2
m〉)2 − 2(〈x̂2

m〉 − 〈p̂2
m〉)2 − 1 − 4〈x̂2

m〉〈p̂2
m〉
)

= 2(χ2 + φ2)[〈x̂2
m〉2 + 〈p̂2

m〉2] + χφ[4〈x̂2
m〉〈p̂2

m〉 − 1].

The term 4〈x̂2
m〉〈p̂2

m〉 − 1 is always positive, due to Heisenberg’s inequality. Now, we can distinguish two

cases: if χφ � 0, we use the triangle inequality φχ � χ2+φ2

2 , and we find a new bound

〈Ô2(t)〉 − 〈Ô(t)〉2 � 2(φ2 + χ2)

[(
〈x̂2

m〉+ 〈p̂2
m〉
)2 − 〈x̂2

m〉〈p̂2
m〉 −

1

4

]

� 2(φ2 + χ2)

[(
〈x̂2

m〉+ 〈p̂2
m〉
)2 − 1

2

]
.
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where, in the last line, we have used Heisenberg’s inequality 〈x̂2
m〉〈p̂2

m〉 � 1
4 . Recall that 〈x̂〉 = 〈p̂〉 = 0. If

χφ � 0 instead, we have directly

〈Ô2(t)〉 − 〈Ô(t)〉2 � 2(χ2 + φ2)[〈x2
m〉2 + 〈p2

m〉2]

= 2(φ2 + χ2)
[(
〈x2

m〉+ 〈p2
m〉
)2 − 2〈x2

m〉〈p2
m〉
]

� 2(φ2 + χ2)

[(
〈x2

m〉+ 〈p2
m〉
)2 − 1

2

]
.

Hence, in both cases, we find the same bound. It is now easy to rewrite everything in terms of the photon

number; at each time, we have N(t) = 〈 x̂2
m(t)+p̂2

m(t)−1
2 〉, and therefore

〈Ô2(t)〉 − 〈Ô(t)〉2 � 2(φ2 + χ2)

[
(2N(t) + 1)2 − 1

2

]
.

Finally, combining this with the expression (C4), we find

Ix(t) � 8(χ2 + φ2)

(∫ T

0
dt

√
(2N(t) + 1)2 − 1

2

)2

(C11)

� 8(χ2 + φ2)

[∫ T

0
dt (2N(t) + 1)

]2

.

This derivation was performed assuming that Ĥx was time-independent. Now, if Ĥx is explicitly
time-dependent, we can still define a matrix M(t) and its two eigenvalues φ(t) and χ(t). Those are also the
eigenvalues of the rotated matrix R(t)M(t)R(t)T, at any given time t. The steps of the derivation remain
exactly the same, and we find instead

Ix(T) � 8

[∫ T

0
dt
√
χ(t)2 + φ(t)2 (2N(t) + 1)

]2

. (C12)

Note that although χ and φ are now time-dependent, there are still entirely determined by Ĥx. Thus, in this
case too, we have successfully separated the QFI into a contribution which depends on the Hamiltonian
only, and one which depends only on the average photon number.

C.3. Extension to non-zero displacements
We will now show how the bound above can be extended when the state is still Gaussian, but with a
non-zero displacement. We now assume that the initial state is an arbitrary pure Gaussian state, and the
Hamiltonian now has the form

Ĥx = (x̂p̂)hx(x̂p̂)T + u(x̂p̂)T. (C13)

For now, we will assume that u is independent of x. Then the derivative ∂xĤx is still purely quadratic, but
the state has now a non-zero displacement which may change in time. We can apply once again apply some
time-dependent rotation (x̂m, p̂m)T = R(t)(x̂, p̂)T, so that the rotated quadratures verify the following
property: x̂m = X̂ + α and p̂m = P̂ + β, with α and β scalars, and we have the following properties:
〈X̂n〉 = 〈P̂n〉 = 0 for odd n, and 〈:X̂P̂ :〉 = 0. In other words, what we have done is apply first a rotation,
then a displacement, to obtain quadratures centered around zero and aligned with the squeezing. Then we
can again absorb the rotation inside Mx, and we obtain again equation (C8). If we now develop
x̂m = X̂ + α, we find

Ô(t) = A1X̂2 + A2P̂2 + 2b(:X̂P̂ :) + 2(A1α+ bβ)X̂ + 2(A2β + bα)P̂ + (A1α
2 + A2β

2 + 2bαβ − c). (C14)

The last term is again a scalar (albeit time-dependent) with no effect on the variance, so it can be safely
neglected. Let us write μ1 = 2(A1α+ bβ) and μ2 = 2(A2β + bα). Then we can develop

Ô2 = A2
1X̂4 + A2

2P̂4 + (2A1A2 + 4b2) : X̂2P̂2 : +(b2 − A1A2) + 2b(2A1 : X̂3P̂ : +2A2 : X̂P̂3:) + μ2
1X̂2 + μ2

2P̂2

+ 2μ1μ2 : X̂P̂ : +2μ1A1X̂3 + 2μ1A2 : X̂P̂2 : +4μ1b : X̂2P̂ : +2μ2A2P̂3 + 2μ2A1 : X̂2P̂ : +4μ2b : X̂P̂2 : .

(C15)
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The first line is just the expression (C9) where we replaced x̂m and p̂m by X̂ and P̂, and the second line is
an extra term which disappears when α = β = 0. Now we can apply Wick’s theorem and exploit the
relations :X̂P̂ := 0 etc. Restoring the expression of μ1 and μ2, we finally obtain the expression of the variance

〈Ô2(t)〉 − 〈Ô(t)〉2 = 2(A2
1〈X̂2〉2 + A2

2〈P̂2〉2) + 4〈X̂2〉〈P̂2〉b2 − A1A2 + b2

+ 4(A1α+ bβ)2〈X̂2〉+ 4(A2β + bα)2〈P̂2〉. (C16)

This expression is just (C10), plus an extra term which couples the variance of the quadratures and the
displacement. The first term captures the effect of squeezing, the second the interplay between squeezing
and displacement. We now make the following manipulation: we integrate again the displacement in the
first term (noting that 〈x̂2

m〉 = 〈X̂2〉+ α2, and the same for p̂m), but not in the second term. We obtain

〈Ô2(t)〉 − 〈Ô(t)〉2 = 2(A2
1〈x̂2

m〉2 + A2
2〈p̂2

m〉2) + 4〈x̂2
m〉〈p̂2

m〉b2 − A1A2 + b2

+ 8bαβ(A1〈X̂2〉+ A2〈P̂2〉) − (4α2β2b2 + 2A2
1α

4 + 2A2
2β

4). (C17)

The first term can now be bounded, in exactly the same way as in the previous subsection, by

2(φ2 + χ2)[(2N(t) + 1)2 − 1
2 ] noting that N = 〈x̂2

m+p̂2
m〉−1

2 . For the second term, we can bound it by
applying the Cauchy–Schwarz and triangle inequalities

8bαβ(A1〈X̂2〉+ A2〈P̂2〉) � 8αβb
√

A2
1 + A2

2

√
〈X̂2〉2 + 〈P̂2〉2

� 8αβb
√

A2
1 + A2

2(〈X̂2〉+ 〈P̂2〉)

� 2(b2 + A2
1 + A2

2)(〈X̂2〉+ 〈P̂2〉)(α2 + β2)

� 1

2
(b2 + A2

1 + A2
2)(〈X̂2〉+ 〈P̂2〉+ α2 + β2)2

=
1

2
(b2 + A2

1 + A2
2)(〈x̂2

m〉+ 〈p̂2
m〉)2.

And finally, noting that b2 + A2
1 + A2

2 � 2(b2 + c2) + A2
1 + A2

2 = χ2 + φ2, we can bound the variance by

〈Ô2(t)〉 − 〈Ô(t)〉2 � 2(φ2 + χ2)

[
(2N(t) + 1)2 − 1

2

]
+

1

2
(φ2 + χ2)[(2N(t) + 1)2]

− (4α2β2b2 + 2A2
1α

4 + 2A2
2β

4)

� 5

2
(φ2 + χ2)[(2N(t) + 1)2], (C18)

which is very similar to our previous bound, but with a different prefactor.
Finally, let us consider an even more general case, when the linear term in Ĥx, u, can now depend on x.

We define v = ∂xu. We can again apply a quadrature rotation, and we get ∂xĤx = (x̂mp̂m)Mx(x̂mp̂m)T +

vR−1(x̂mp̂m)T. The rotated vector vR−1 can be written as (d1, d2); although the expression of these two terms
is unknown, we know we have d2

1 + d2
2 = |v|2, since the rotation preserves the norm. This term adds

additional linear X̂ and P̂ term. We find that the expressions (C14) and (C15) will remain the same, but we
now have μ1 = 2(A1α+ bβ + d1) and μ2 = 2(A2β + bα+ d2). Integrating the displacement in the first,
but not the second term, we get

〈Ô2(t)〉 − 〈Ô(t)〉2 = 2(A2
1〈x̂2

m〉2 + A2
2〈p̂2

m〉2) + 4〈x̂2
m〉〈p̂2

m〉b2 − A1A2 + b2 + 8bαβ(A1〈X̂2〉+ A2〈P̂2〉)

+ 4d1(A1α+ bβ)〈X̂2〉+ 4d2(A2β + bα)〈P̂2〉+ d2
1〈X̂2〉+ d2

2〈P̂2〉

− (4α2β2b2 + 2A2
1α

4 + 2A2
2β

4). (C19)

The first terms can be bounded as before. For the other terms, we find using Cauchy–Schwarz and triangle
inequalities
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d1(A1α+ bβ)〈X̂2〉+ d2(A2β + bα)〈P̂2〉 �
√

d2
1 + d2

2

√
(A1α+ bβ)2〈X̂2〉2 + (A2β + bα)2〈P̂2〉2

�
√

d2
1 + d2

2

√
(A1α+ bβ)2 + (A2β + bα)2

√
〈X̂2〉2 + 〈P̂2〉2

�
√

d2
1 + d2

2

√
(A1α+ bβ)2 + (A2β + bα)2(〈X̂2〉+ 〈P̂2〉)

�
√

d2
1 + d2

2

√
(α2 + β2)

√
(A2

1 + 2b2 + A2
2)(〈X̂2〉+ 〈P̂2〉)

�
√

d2
1 + d2

2

√
(α2 + β2)

√
(χ2 + φ2)(〈X̂2〉+ 〈P̂2〉)

d2
1〈X̂2〉+ d2

2〈P̂2〉 � (d2
1 + d2

2)(〈X̂2〉+ 〈P̂2〉)

8bαβ(A1〈X̂2〉+ A2〈P̂2〉) � 2(b2 + A2
1 + A2

2)(〈X̂2〉+ 〈P̂2〉)(α2 + β2)

� 2(χ2 + φ2)(〈X̂2〉+ 〈P̂2〉)(α2 + β2).

We have now successfully isolated the d factors, so that the bound only depends on d2
1 + d2

2 = v2. Putting
everything together, the second term in (C19) can now be bounded by

(〈X̂2〉+ 〈P̂2〉)
[

2(χ2 + φ2)(α2 + β2) + 4|v|
√
χ2 + φ2

√
α2 + β2 + |v|2

]

� 2(〈X̂2〉+ 〈P̂2〉)
[√

(χ2 + φ2)(α2 + β2) + |v|
]2

� 2(〈X̂2〉+ 〈P̂2〉)(χ2 + φ2 + |v|2)(α2 + β2 + 1)

� 1

2
(χ2 + φ2 + |v|2)(〈X̂2〉+ 〈P̂2〉+ α2 + β2 + 1)2

=
1

2
(χ2 + φ2 + |v|2)(2N + 2)2.

And finally, we can bound the variance of Ô as

〈Ô2(t)〉 − 〈Ô(t)〉2 � 2(φ2 + χ2)

[
(2N(t) + 1)2 − 1

2

]
+ 2(φ2 + χ2 + |v|2)[(N(t) + 1)2]. (C20)

The bounds (C18) and (C20) are most likely not tight, and do not explicitly give back the previous
bound (25) in the limit α,β, v → 0. However, they show that, even in the best possible case, adding a
non-zero displacement to the state should not allow to achieve better scaling that what we obtained with
vacuum squeezed states. Most importantly, these bounds differ from (25) only by some prefactors. This
indicates that much of the insight we have obtained about scaling regimes should apply also when we have
displacement.

Appendix D. Dynamics under Ĥ0

Here we give further details about the evolution of the state under Ĥ0 given in equation (1) and any
protocol g(t), the expression of the squeezing (26) and the ground-state value of b and θ. We consider the
thermodynamic limit η → ∞ of Ĥ, namely, Ĥ0, which can be rewritten as

H(t) = ωa† a − g2(t)ω

4
(a + a†)2, (D1)

with g2 � 1. The initially prepared state |ψ(0)〉 = |0〉, i.e. the ground state at g = 0 evolves following the
time-evolution operator Û(t) such that |ψ(t)〉 = Û(t)|0〉. The operator Û(t) itself evolves according to
˙̂U(t) = −iĤ(t)Û(t). Up to an irrelevant global phase, this results in

˙̂U(t) = −iω

((
1 − g2(t)

2

)
a†a − g2(t)

4
(a2 + a†2)

)
U(t), (D2)
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To find the equation of motion for b(t), we use Q-space representation, where Uα(t) = 〈α|U(t)|α〉, with |α〉
a coherent state. Using the substitution âÛ → (α+ ∂α∗)Uα and â†Ûx(0 → t) → α∗Uα, we obtain

U̇α(t) = −iω

((
1 − g2(t)

2

)
α∗(α+ ∂α∗) − g2(t)

4

(
(α+ ∂α∗)2 + α∗2

))
Uα(t), (D3)

which suggests a solution of the form of

Uα(t) = ek(t)+b(t)α∗,2+c(t)α∗α+d(t)α2
. (D4)

The equations of motion for the coefficients k(t), b(t), c(t) and d(t) follow from equation (D3). In
particular, b(t) is decoupled from the rest

ḃ(t) = −iω

(
− g2(t)

4
+ 2

(
1 − g2(t)

2

)
b(t) − g2(t)b2(t)

)
. (D5)

We can now recast the operator Uα(t) in its original form by replacing α and α∗ by â and â†, and requiring
normal ordering,

Û(t) = ek(t)eb(t)a†,2
N[ec(t)a†a]ed(t)a2

. (D6)

In this manner, an evolved state under the protocol g(t) is given by

|ψ(t)〉 = U(t)|ψ(0)〉, (D7)

where we have assumed t = 0 as initial time. Now it is easy to see that if the initial state is the vacuum,
|ψ(0)〉 = |0〉, then

|ψ(t)〉 = ek(t)eb(t)a†2 |0〉 = (1 − 4|b|2)1/4eb(t)a†2 |0〉, (D8)

the second equality being obtained by imposing normalization. This is just a squeezed state of the form (7),
with the squeezing parameter b(t) described by the equation of evolution equation (D5) with the initial
condition b(0) = 0. As discussed in the main text, equation (D5) admits a exact solution in certain cases,
such as in the sudden quench scenario.

Finally we comment that the ground-state properties of Ĥ0 can be easily obtained by setting ḃ = 0 in
(D5). Indeed, this leads to b = −1/2 + (1 +

√
1 − g2)−1 so that θ = 0, which reproduces the ground-state

squeezing of Ĥ0 [25].

Appendix E. Connection between the QFI of the physical and effective models

In section 3.1, we have discussed how to express the QFI and how, in the thermodynamic limit, it could be
computed through the derivative of the squeezing parameter (17). Here, we discuss a subtle, but important
point concerning this derivative. The model (2) is entirely described by three independent parameters, g, ω
and η. Let us first consider the limit η → ∞, in which only the first two are relevant. Let us consider that
we suddenly quench the system from zero coupling to some value g ∼ 1. The state evolves as a squeezed
state, with a squeezing parameter described by (26). We can compute the partial derivatives ∂b/∂g and
∂b/∂ω. In the limit g → 1, we can compute explicitly

g
∂b(T)

∂g
= −2 + i(ωT − 2i) +

2i(4i − ωT)

(ωT − 2i)2

ω
∂b(T)

∂ω
=

−iωT

(ωT − 2i)2

1 − 4|b|2 = 4

(ωT)2 + 4
.

For long time (more precisely, for 1 	 ωT 	 1/
√

1 − g2, which corresponds precisely to the region II in
figure 1), this reduces to

g
∂b(T)

∂g
∼ iωT (E1)

ω
∂b(T)

∂ω
∼ − i

ωT
(E2)

1 − 4|b|2 ∼ 4

(ωT)2
. (E3)
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Now, let us assume that g and ω are completely independent parameters, which we want to estimate. Let us
define the corresponding SNR Q0

g and Q0
ω . Then using (17), we have

Q0
g =

8

1 − 4|b|2

∣∣∣∣g ∂b

∂g

∣∣∣∣
2

→ (ωT)6 (E4)

Q0
ω =

8

1 − 4|b|2

∣∣∣∣ω ∂b

∂ω

∣∣∣∣
2

→ (ωT)2. (E5)

Hence, for large T, Q0
g will show a critical T6 scaling, while Q0

ω has a normal T2 scaling. This is not
surprising, since only a change of g changes the position relative to the critical point, and can thus exploit
the critical sensitivity of the system. In general, for long T, we have g ∂b(T)

∂g

 ω ∂b(T)

∂ω
.

Now, when we consider the physical QR model, the parameters g and ω are not independent anymore.
Therefore, we have to consider the derivatives ∂ωg∂gb and ∂ωb, instead. But we have shown that the first
contribution will dominate for long T. Therefore, for ωT 
 1, we will have

Qω =
8

1 − 4|b|2

∣∣∣∣ω ∂b

∂ω
+ ω∂ωg

∂b

∂g

∣∣∣∣
2

(E6)

∼ 8

1 − 4|b|2
1

4

∣∣∣∣ω∂ωg
∂b

∂g

∣∣∣∣
2

=
1

4
Q0

g ,

where we have used ∂ωg = −λ

ω3/2Ω1/2 = − 1
2

g
ω

. Similarly, if we want to evaluate λ, we must compute ∂λg∂gb;
using ∂λg = g

λ
, we find

Qλ = Q0
g . (E7)

Therefore, we see that for ωT 
 1, the estimation of λ and ω will give the same SNR, up to a constant
factor. This is precisely what we observe in section 5, with a common scaling behavior for Qλ and Qω. This
shows that, from the perspective of critical metrology, a parameter change is only pertinent insofar as it
induces a change in g, and thus moves the system toward or away from the critical point.

This argument is, however, only valid for ωT > 1. For shorter times, Qg and Qω are actually of the same
order of magnitude, and different scalings can be achieved for Qλ and Qω . The same conclusion can be
reached if we consider the adiabatic scenario rather than the sudden quench. The expression of the
squeezing parameter is different in this case, but we still find that ∂gb dominates ∂ωb. Importantly, this
conclusion can be straightforwardly carried to any model which can be effectively described by (1). If we
want to estimate any parameter x, we will obtain the same universal profile for Qx; the only exception is
when the effective coupling g is totally independent of x.

Appendix F. FI for the sudden quench

To study the dynamics during a sudden quench, it is most convenient to move to phase space. The state is
entirely described by its covariance matrix

σ =

[
〈x̂2〉 〈: x̂p̂:〉
〈 :x̂p̂ :〉 〈p̂2〉

]
. (F1)

For a pure squeezed state (7), σ can be decomposed as:

σ =

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]⎡⎢⎣
e2|z|

2
0

0
e−2|z|

2

⎤
⎥⎦
[

cos(θ) − sin(θ)
sin(θ) cos(θ)

]
.

If we quench the system, the evolution is governed by the Hamiltonian (1), and the covariance matrix
follows a Lyapunov equation

∂tσ = Bσ + σBT,

B =

[
0 ω

ω(g2 − 1) 0

]
,
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and σ can be decomposed as σ(t) =
∑

i ci(t)Mi, with eigenmatrices obeying BMi + MiBT = λiMi. The
eigenmatrices and eigenvalues are:

M0 =

[
0 1
−1 0

]
, (F2)

M1 =

⎡
⎣ 1√

1 − g2
0

0
√

1 − g2

⎤
⎦ , (F3)

M± =

⎡
⎣ 1√

1 − g2
±i

±i −
√

1 − g2

⎤
⎦ , (F4)

with λ0 = λ1 = 0 and λ± = ±2iω
√

1 − g2. And the covariance matrix will be expressed as

σ(t) =

⎡
⎣ c1 + c+ + c−√

1 − g2
i(c+ − c−)

i(c+ − c−)
√

1 − g2(c1 − (c+ + c−))

⎤
⎦ . (F5)

Assuming we start from the vacuum, we find c1(t) = cst = 1
4

(
1√

1−g2
+
√

1 − g2

)
, and

c±(t) = − 1
8

(
1√

1−g2
−
√

1 − g2

)
eλ±t . Combining these expressions, we find the quadrature fluctuations at

the end of the evolution, for t = T:

〈x̂2〉 = 1

4(1 − g2)

[
1 − cos

(
2ω
√

1 − g2T
)]

+
1

4

[
1 + cos

(
2ω
√

1 − g2T
)]

.

〈p̂2〉 = 1

4

[
1 + cos

(
2ω
√

1 − g2T
)]

+
1 − g2

4

[
1 − cos

(
2ω
√

1 − g2T
)]

.

〈:x̂p̂:〉 = 1

4

[
1√

1 − g2
−
√

1 − g2

]
sin
(

2ω
√

1 − g2T
)
. (F6)

Now, we will consider a quench very close to the critical point, such that
√

1 − g2ωT 	 1; we can then
expand everything in powers of 1 − g2, and we find:

〈x2〉 = 1

2
+

(ωT)2

2
− (1 − g2)

(
(ωT)2

2
+

(ωT)4

6

)
,

〈p2〉 = 1

2
− (1 − g2)

(
(ωT)2

2

)
. (F7)

〈:xp:〉 = ωT

2
− (1 − g2)

(
ωT

2
+

(ωT)3

3

)
.

We now want to evaluate how accurately ω can be evaluated by performing an homodyne measurement.
For this, we need the derivative of the above expressions with respect to ω, which gives

ω
d〈x2〉

dω
= ω∂ω〈x̂2〉+ ∂ω(g2)∂g2〈x̂2〉,

= (ωT)2 + α

(
(ωT)2

2
+

(ωT)4

6

)
,

ω
d〈p2〉

dω
= α

(ωT)2

2
,

ω
d〈:xp:〉

dω
=

ωT

2
+ α

(
ωT

2
+

(ωT)3

3

)
.

Here we have defined α = ∂ω(g2), although its precise value depends on the specific model, it is always
dimensionless and of order 1. Note that, alternatively, we could also have started from the exact expressions
(F6) and then perform the derivative setting g to 1. Now, in the regime 1 	 ωT 	 1√

1−g2
, the dominant
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terms for each expressions are

〈x̂2〉 ∼ (ωT)2

2
, (F8)

〈p̂2〉 ∼ 1

2
,

〈: x̂p̂ :〉 ∼ ωT

2
,

ω
d〈x̂2〉

dω
∼ α

6
(ωT)4,

ω
d〈p̂2〉

dω
∼ α

2
(ωT)2,

ω
d〈: x̂p̂ :〉

dω
∼ α

3
(ωT)3.

These expressions have two important features: first, for the derivative, the dominant term comes from the
dependency of g on ω. We find again that, near the critical point, the sensitivity with respect to a parameter
x will depend above all on how the distance to the critical point changes with x. It also means that we will
obtain essentially the same results if we want to estimate the coupling λ rather than ω.

Second, the ratio between the derivative and the average value is always of order (ωT)2, for every
quantity. Therefore, a choice of any of these quantities as observable will yield a similar FI. For instance, let
us assume that we measure x̂2. Since the state is Gaussian, we will have Var(x̂2) ∼ 3〈x̂2〉2 as per Wick’s

theorem. Then the estimation of ω will yield a squared SNR (ω d〈x2〉/dω)2

Var(̂x2) ∼ α2(ωT)8

(ωT)4 ∼ (ωT)4. We can apply

the same reasoning to p̂2 instead, and we find the exact same scaling. Because the ratio between the variance
and its derivative is fixed for both quadratures, they will both yield the same precision.

Let us now see how we can go beyond this quartic scaling. In general, if we have access to both
quadratures, we can define arbitrary combinations of x̂2, p̂2 and : x̂p̂ :. Let us consider the following
combination

Ô =
γ

(ωT)2
x̂2 + p̂2,

with γ some real factor. Using (F8), we find that the dominant term of the derivative is given by

ω
dÔ

dω
= α(ωT)2

(
γ

6
+

1

2

)
+ O(ωT).

The dominant term of the variance is:

Var(Ô) = 2
γ2

(ωT)4
〈x̂2〉2 + 2〈p̂2〉2 +

γ

(ωT)2

(
4〈: x̂ p̂:〉2 − 1

)

=
γ2

2
+

1

2
+ γ + O

(
1

ωT

)
.

For a generic γ, we find that the derivative scales like (ωT)2, while the square-root of the variance is of order
1. Hence, we find again the same ratio (ωT)2, which gives a FI scaling like (ωT)4. However, if we set
γ = −1, we can see that the dominant term of the variance will cancel out, but not the one in the derivative.
Restoring the complete expressions, we find that Var(Ô) = 2

(ωT)2 and ω dÔ
dω = α

3 (ωT)2 in this case, which
eventually yields (

ω dÔ
dω

)2

Var(Ô)
∝ (ωT)6.

Hence, we can achieve a FI scaling like T6, which is precisely the QFI scaling.
More generally, we can define a family of operators, of the form Ô = γ

(ωT)2 x̂2 + χ
ωT : x̂p̂ : +p̂2, and tune

the parameters γ and χ to cancel the dominant term of the variance, while preserving the derivative. We
can thus obtain a family of observables saturating the QFI. Note, however, that the homodyne measurement
of a single quadrature does not belong to this family. Indeed, a single quadrature measurement gives an
operator of the form Ô = x̂2

φ = (cos(φ)x̂ + sin(φ)p̂)2. Although this operator is also a combination of x̂2, p̂2

and : x̂p̂ :2, we have access to a single tuning parameter φ. The dominant terms in the derivative and
standard deviation are
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ω
dÔ

dω
∼ (ωT)2

2
+

cos2(φ)

6
(ωT)4 +

2 cos(φ) sin(φ)

3
(ωT)3,

√
Var(Ô) ∼ 1

2
+

cos2(φ)

2
(ωT)2 + cos(φ) sin(φ)(ωT).

Now, one can follow the same reasoning and cancel the dominant term in the variance. This is indeed

possible by setting cos(φ) = − 1
(ωT) and sin(φ) =

√
1 − 1

(ωT)2 ∼ 1. However, if we do this, the dominant

term of the derivative will also cancel out. Working with the full expressions, we find that we get ω dÔ
dω ∼ 1

ωT

and
√

Var(Ô) ∼ 1
(ωT)3 in this case, which eventually will again yield a precision scaling like T2, and a quartic

FI. Hence, the measurement of a single quadrature gives us a family of state described by a single parameter
φ; however, to reach the QFI, we need to tune two parameters independently, which requires measurement
of a more complex Gaussian observable.

In summary, for sudden quench, the derivative and variance of most quantities have generically a ratio
of (ωT)2. However, this connection can be broken by a specifically chosen combination of observables,
allowing to reach the QFI scaling of T6. In general, this may require a fine-tuning of the coefficient γ, which
involves being able to measure the protocol duration with great accuracy. A possible way to circumvent this
difficulty is to perform an adaptative measurement, performing quenches of increasing duration and
improving gradually our estimate of the parameter.

Appendix G. Dynamics under dissipation

Under dissipation, the system will be in a squeezed thermal state. It is still fully described by its covariance
matrix σ. For a thermal squeezed state (41), σ can be decomposed as

σ =

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]⎡⎢⎣υ
e2|z|

2
0

0 υ
e−2|z|

2

⎤
⎥⎦[cos(θ) − sin(θ)

sin(θ) cos(θ)

]
.

We may still define two directions with minimum and maximum noise, with fluctuations υe−2|z| and υe2|z|,
respectively. The squeezing parameter hence gives the asymmetry between the maximal and minimum
noise, while the thermal noise increases the variance of both quadratures. Using the expression above, and
the original definition (F1), we can also express υ, z and θ in terms of the noise in each quadrature

tan(2θ) =
2〈: x̂p̂ :〉

〈p̂2〉 − 〈x̂2〉 ,

υ2 = Det[σ] = 4(〈x̂2〉〈p̂2〉 − 〈: x̂ p̂:〉2),

υ cosh(2|z|) = Tr[σ] = 〈x̂2〉+ 〈p̂2〉.

These expressions will be particularly useful to compute the QFI later on. Before we dive into the
time-evolution of σ, we need to comment on the expression for the QFI. The expression (16) is valid only
for pure state. For mixed state, the QFI can have a generally much more complex form. However, for a
one-mode Gaussian state, it can be expressed in a compact form as [62]

Iω =
2υ2

1 + υ2

[
1

2
sinh2(2|z|)

(
dθ

dω

)2

+ 2

(
d|z|
dω

)2
]
+

1

υ2 − 1

(
dυ

dω

)2

, (G1)

and the SNR is simply Qω = ω2Iω . The goal will then to express the angle θ, squeezing parameter |z|, and
noise parameter υ, as well as their derivative with respect to ω.

When we perform a quench in the presence of noise, the density matrix evolves under the Lindblad
equation (40). Moving to phase space, this translates into a Lyapunov equation for σ, ∂tσ = Bσ + σBT + D,

with B =

[
−κ ω

ω(g2 − 1) −κ

]
and D = κI. We may again solve this equation by defining the eigenmatrices

BMi + MiBT = λiMi. We find that the eigenmatrices Mi are the same as in the absence of dissipation, while
the eigenvalues now read as

λ0 = λ1 = −2κ, λ± = −2κ± 2iω
√

1 − g2.
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Decomposing the covariance matrix as σ =
∑

i ciMi and the diffusion matrix as D =
∑

ic
D
i Mi, and

assuming we start from the vacuum, we can find the expression for the coefficients ci upon a sudden
quench. At the end of the evolution, we find

c+(T) + c−(T) =
2c+(0)

1 + u2

[
1 + e−2κT (u sin(2κuT) + u2 cos(2κuT))

]
,

−i(c+(T) − c−(T)) =
2c+(0)

1 + u2

[
u + e−2κT (u2 sin(2κuT) − u cos(2κuT))

]
,

c+(0) = c−(0) = −1

8

(
1√

1 − g2
−
√

1 − g2

)
,

c1(T) =
1

4

(
1√

1 − g2
+
√

1 − g2

)
,

c0 = 0,

where we defined u =
ω
√

1−g2

κ
. If u is a small parameter, we have

〈x̂2〉 = 1

2
+

ω2

4κ2
(1 − C1) + u2

(
ω2

4κ2
(C3 − 1) +

C1 − 1

4

)

〈p̂2〉 = 1

2
+ u2

(
C1 − 1

4

)
(G2)

〈:x̂p̂:〉 = ω

4κ
(1 − e−2κT ) +

u2

4

(
−κ

ω
(1 − e−2κT) +

ω

κ
(C2 − 1)

)
C1 = e−2κT(1 + 2κT), C2 = e−2κT (1 + 2κT + 2κ2T2) C3 = e−2κT (1 + 2κT + 2κ2T2 + 4

3κ
3T3).

G.1. Transient regime
Let us study what happens when κT 	 1. In this regime, the quench is too short for the system to reach the
steady-state. All the quantities will depend on T. We can develop the expressions above in terms of κT. For

instance, we will have C1 ∼ 1 − 2(κT)2 + (2κT)3

3 + O((κT)4), C2 ∼ 1 − 4
3 (κT)3 + (2κT)4

8 + O((κT)5), and

C3 ∼ 1 − 2
3 (κT)4 + (2κT)5

30 + O((κT)6). After a tedious but straightforward development of the quadratures,
we arrive to

〈x̂2〉 = 1

2
+

(ωT)2

2
+

2ω2 κT3

3
+ (1 − g2)

(
− (ωT)2

2
− (ωT)4

6
+

2

3
ω2κT3 +

4

15
ω4κT5

)
,

〈p̂2〉 = 1

2
+ (1 − g2)

(
− (ωT)2

2
+

2

3
ω2κT3

)
, (G3)

〈: x̂p̂ :〉 = ωT

2
− ωκT2

2
+

1 − g2

2

(
−ωT − 2

3
(ωT)3 + ωκT + ω3κT4

)
.

Note that if we set κ = 0, we recover the expressions (F7).
Equipped with the expressions above, we can now extract the relevant parameters υ, θ and |z|. Keeping

only the largest coefficients, we find

tan(2θ) =
2〈: x̂p̂ :〉

〈p̂2〉 − 〈x̂2〉 ∼ − 2

ωT
+ (1 − g2)

2ωT

3
,

υ2 = 4(〈x̂2〉〈p̂2〉 − 〈: x̂p̂ :〉2) ∼ 1 +
1

0
3ω2κT3 − (1 − g2)

(
7

10
ω4κT5

)
,

and

Tr[σ] = υ cosh(2|z|) = (ωT)2

2
− (1 − g2)

(ωT)4

6
.

Now, we must distinguish two important cases. We can define the time-scale T0 = ω−2/3κ−1/3. As long
as T 	 T0, we have υ2 ∼ 1, and the state is almost pure. In this regime, we can work out the dominant
terms for all observables, and their derivative. Up to prefactors, the results are cosh(2|z|) ∼ sinh(2|z|) ∼
(ωT)2, υ2 − 1 ∼ ω2κT3, ω d|z|

dω ∼ (ωT)2, ω dθ
dω ∼ ωT, ω dυ

dω ∼ ω4κT5. The various terms in (G1) scale

therefore as sinh2(2|z|)
(

dθ
dω

)2 ∝ (ωT)6,
(

d|z|
dω

)2
∝ (ωT)4, and 1

υ2−1

(
dυ
dω

)2 ∝ ω6 κT7. Recall that the term
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υ2

1+υ2 is always bounded between 1/2 and 1 and can be ignored. Since we are in the regime 1
ω
	 T 	 1

κ
, the

dominant term is the first one, that is, we recover the T6 scaling we obtained in the absence of decoherence.
Hence, the short-time dynamics for the noisy quench is essentially identical to the quench without boson
loss, and gives the same QFI scaling. Note that the QFI arises from the interplay between dθ/dω and
sinh(2|z|). During the evolution, the system experiences both phase-shift and amplification in a correlated
manner. Hence, to saturate the QFI a measurement sensitive to this correlation is required. By contrast, a
measurement of a single quadrature will provide a T4 (cf section 7.2). This means that the fluctuations need
to be quadrature dependent, although not necessarily below shot noise.

In the case T 
 T0, by contrast, υ becomes large, and the thermal noise cannot be neglected anymore.
In this case, we obtain modified scalings for the observables cosh(2|z|) ∼ sinh(2|z|) ∼ ω√

κ
T1/2,

υ2 − 1 ∼ ω2κT3, ω d|z|
dω ∼ (ωT)2, ω dθ

ω
∼ ωT, ω dυ

ω
∼ (ωT)2. The terms in the QFI scale now as

sinh2(2|z|)
(

dθ
dω

)2 ∝ ω4

κ
T3 = ω2

κ2
T3

T3
0

,
(

d|z|
dω

)2
∝ (ωT)4, and 1

υ2−1

(
dυ
dω

)2 ∝ ω2

κ
T. The dominant term is again the

first one (note that the second term gives a larger scaling, but is smaller in absolute value, because T 	 1
κ ).

Hence, we see that we now achieve a cubic scaling with T.

G.2. Steady-state
In the regime κT 
 1, the quench is long enough for the system to reach its steady-state. All observables, as
well as the QFI, saturate at a constant value. Working out the expressions (G2) leads to

〈x̂2〉 = 1

2
+

ω2

4κ2
− (1 − g2)

(
ω2

4κ2
+

ω4

4κ4

)
,

〈p̂2〉 = 1

2
− (1 − g2)

(
ω2

4κ2

)
,

〈: x̂p̂ :〉 = ω

4κ
− (1 − g2)

( ω

2κ

)
,

from which we can obtain the dominant terms for the observables and their derivatives, cosh(2|z|) ∼
sinh(2|z|) ∼ ω

κ
, tan(2θ) ∼ κ

ω
, υ2 − 1 ∼ ω2

κ2 , ω d|z|
dω ∼ ω2

κ2 , ω dθ
dω ∼ ω

κ
, ω dυ

dω ∼ ω3

T3 . Plugging everything in the

QFI, we find that Qω ∼ ω4

κ4 .
To summarize, the various regimes for the quench in the presence of boson loss are the following: for

T 	 1
ω

, the dynamics follow non-universal behavior. For 1
ω
	 T 	 1

ω2/3κ1/3 , the thermal noise is still

negligible; the system behaves as in the absence of dissipation, and the QFI scales like T6. For 1
ω2/3κ1/3 	

T 	 1
κ

, the thermal noise becomes important; the system enters a thermal squeezed state, with both
squeezing and thermal noise increasing with T. In this regime, the QFI achieves a modified scaling T3.

Finally, for T 
 1
κ

, the system reaches its steady-state, and the QFI saturates at a value ω4

κ4 . All of these
findings are corroborated by the simulations presented in the main text.
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[65] Šafránek D and Fuentes I 2016 Phys. Rev. A 94 062313
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