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ABSTRACT: Satellite-based precipitation estimates (SPEs) are generally validated using ground-based rain gauge or radar

observations. However, in poorly instrumented regions, uncertainty in these references can lead to biased assessments of SPE

accuracy. As a result, at regional or continental scales, an objective basis to evaluate SPEs is currently lacking. Here, we evaluate

the potential for large-scale, spatially continuous evaluation of SPEs over land via the application of collocation-based techniques

[i.e., triple collocation (TC) and quadruple collocation (QC) analyses]. Our collocation approach leverages the Soil Moisture to

Rain (SM2RAIN) rainfall product, derived from the time series analysis of satellite-based soil moisture retrievals, in combination

with independent rainfall datasets acquired from ground observations and climate reanalysis to validate four years of the

EuropeanOrganisation for theExploitation ofMeteorological Satellites (EUMETSAT) SatelliteApplication Facility on Support

to Operational Hydrology andWaterManagement (H-SAF)H23 daily rainfall product. Large-scale maps of theH23 correlation

metric are generated using both TC and QC analyses. Results demonstrate that the SM2RAIN product is a uniquely valuable

independent product for collocation analyses, because other available large-scale rainfall datasets are often based on overlapping

data sources and algorithms. In particular, the availability of SM2RAIN facilitates the large-scale evaluation of SPE products like

H23—even in areas that lack adequate ground-based observations to apply traditional validation approaches.
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1. Introduction

Satellite-based precipitation estimates (SPE) are increas-

ingly being applied to important environmental applications

such as numerical weather prediction, flood forecasting, and

agricultural drought monitoring. A potential SPE of interest

is the H23 gridded precipitation product generated by the

European Organisation for the Exploitation of Meteorological

Satellites (EUMETSAT) SatelliteApplication Facility on Support

toOperational Hydrology andWaterManagement (H-SAF). The

H23 product is based on the temporal resampling of H-SAF’s

passive microwave (PMW) instantaneous precipitation rate prod-

ucts obtained from various satellite platforms and provides cov-

erage of Europe, Africa, and parts of South America (608S–758N,
608W–608E) at a 0.258 spatial resolution with 1-day data latency.

Given these attributes, the H23 product is suitable for re-

gional near-real-time monitoring and forecasting activities.

However, it is a demonstrational precipitation product within

H-SAF that is not currently publicly released. Prior to its release,

an accurate statistical error assessment is required to ensure

compliance with prespecified user accuracy and generate un-

certainty estimates for downstream applications (estimations of

streamflow, drought severity, inundation extent, etc.).

Over a regional or continental domain, SPEs like H23 are

generally validated via comparisons against a single reference

dataset (e.g., a modeling product or spatially interpolated

ground observations acquired from rain gauge networks and

ground-based weather radars) (e.g., Ebert et al. 2007; Sapiano

and Arkin 2009; Stampoulis and Anagnostou 2012). However,

such references are subject to their own uncertainties (Villarini

et al. 2008; Stampoulis and Anagnostou 2012; Kidd et al. 2012;

Prein and Gobiet 2017) that can bias SPE evaluation metrics.

In recent years, collocation-based mathematical solutions

based on the cross-comparison of multiple independent datasets

have been increasingly applied to obtain error estimates for

measurement or model estimates of geophysical variables such

as soil moisture (e.g., Scipal et al. 2010; Draper et al. 2013; Chen

et al. 2018), leaf area index (e.g., Fang et al. 2012), and ocean

wind and wave heights (e.g., Caires and Sterl 2003; Chakraborty

et al. 2013; Wang et al. 2014). The application of collocation-

based approaches to rainfall products is described in Mahfouf

et al. (2007), Wang et al. (2018), and Massari et al. (2017).

Depending on the number of independent datasets available,

either triple collocation (TC, requiring three datasets) or qua-

druple collocation (QC, requiring four datasets) analysis can

be applied. Previous applications of TC for SPE evaluation

(Roebeling et al. 2012; Alemohammad et al. 2015; Massari et al.

2017; Li et al. 2018) have demonstrated its potential value for

global- and regional-scale studies that include data-scarce regions.

The chief advantage of collocation approaches is they do not

require that any single available dataset be considered as an error-

free reference. Instead, TC analysis requires only the availability

of three datasets with mutually independent errors. To construct

such a triplet, satellite- and ground-based datasets can be com-

bined with precipitation fields from model reanalysis products.

Because reanalysis datasets are typically generated retrospectivelyCorresponding author: F. Chen, fan.chen@usda.gov
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by ingesting a broad range of satellite, atmospheric, and ground

observations, their quality is relatively high. However, the breadth

of data combined to generate these products can also undermine

their independence with respect to other members of a rainfall

product triplet. Likewise, while multiple SPE datasets are com-

monly available, they generally contain cross-correlated errors due

to their overlapping use of common satellite instrumentation and/

or retrieval algorithms (Massari et al. 2017).

An innovative and independent candidate product for the

application of TC to SPEs can be generated using remotely

sensed soil moisture time series via the Soil Moisture to Rain

(SM2RAIN) method (Brocca et al. 2014). The SM2RAIN al-

gorithm inverts rainfall accumulation from satellite soil moisture

observations using the time difference between two successive

measurements. SM2RAIN-derived rainfall products (hereinafter

referred to as ‘‘SM2R’’) have been shown to perform relatively

well at both regional and global scales and outperform other

SPEs in data-scarce regions of the world, such as Africa and

South America (Brocca et al. 2019). In a recent study, a short-

latency rainfall product generated by combining the Integrated

Multisatellite Retrievals for Global Precipitation Measurement

(GPM) Early Run (IMERG-ER) product with multiple-satellite

SM-based rainfall products generated using SM2RAINwas found

to improve the correlation and root-mean-square error metrics of

IMERG-ER by 20% and 40%, respectively (Massari et al. 2020).

Since the source of rainfall information utilized in SM2R is

fundamentally different from other large-scale rainfall products,

it is an appealing candidate for TC analysis. Furthermore, the

availability of SM2R estimates (with the addition of a fourth

rainfall dataset) enables the application of QC to back out error

cross-correlation (ECC) information in cases in which error

dependency between two products cannot be ruled out (Gruber

et al. 2016a). Nevertheless, important limitations of SM2Rmust

be considered, including the 1) underestimation of peak rainfall

events, 2) presence of spurious low-intensity rainfall events due

to high-frequency soil moisture fluctuations associated with

random measurement error, and 3) limitation to only terrestrial

and liquid-phase precipitation (Brocca et al. 2019).

Taken together, the newly developed SM2R product and re-

cent advances in collocation approaches provide a novel path for

validating SPE products. In this study, we explore this possibility

by conducting a collocation-based, regional- and continental-scale

SPE validation analysis that is enhanced relative to the common

practice of relying on a single-source reference dataset. To this

end, we will first perform a QC analysis to provide a robust as-

sessment of the H23 correlation metric (with respect to unknown

ground truth) when three additional independent rainfall datasets

(i.e., SM2R, a gauge-based gridded rainfall dataset and a climate

reanalysis product) are available. Next, we will validate an anal-

ogous TC analysis that removes the earlier dependence on

ground-based observations. In this way, we will attempt to

develop a credible TC analysis for assessing the H23 product that

does not require the availability of high-quality, ground-based

observations. Once validated, we will apply our TC analysis to the

broader H23 domain (608S–758N, 608W–608E).
The remainder of the paper is organized as follows: section 2

provides information about the various rainfall datasets used

in our analysis, section 3 explains our TC and QC methods and

assessment strategy, section 4 describes our main findings, and

section 5 summarizes and discusses our results.

2. Rainfall data products

a. H-SAF H23 product

As noted above, our primary goal is the enhanced large-scale

evaluation of the H-SAF demonstrational H23 rainfall product

using SM2Rand collocation approaches.H-SAFdemonstrational

products are currently provided to users for testing and feedback

without any commitment on quality or availability. The H23 is a

level-3 gridded precipitation product providing daily (0000–

0000 UTC) mean rainfall rate estimates in units of millimeter per

hour that is based on the temporal resampling of PMW instan-

taneous precipitation rate estimates obtained from multiple

satellites (http://hsaf.meteoam.it/description-h02b-h03b-h05b-

h15b-h17-h18-h23.php) on a 0.258 3 0.258 grid over the full

Meteosat Second Generation (MSG) disk (608S–758N, 608W–

608E). Gridded PMW-based mean precipitation is obtained from

the temporal resampling of instantaneous precipitation maps

provided by H-SAF operational product H01 (Casella et al. 2013;

Sanò et al. 2013; Mugnai et al. 2013a,b) and H02B (Sanò et al.

2015), for SSMIS andAMSU/MHS, respectively, by exploiting all

available DMSP SSMIS and MetOp/NOAA AMSU/MHS sat-

ellite overpasses. In addition to daily-mean hourly rainfall rates,

the total number of satellite-based PMW overpasses within the

last 24h that was used to derive the daily estimate is also provided

on a grid-by-grid basis in the H23 product. In a future version of

H23, currently under development, overpasses from all other

GPM constellation radiometers will also be considered.

A prototype version of H23 described in Ciabatta et al. (2017)

and provided by theH-SAF consortium for the period 2011–14 is

applied here as a test-case dataset. H23 data since 2018 are

available on the H-SAF FTP site (ftphsaf.meteoam.it) following

registration (http://hsaf.meteoam.it/user-registration.php). For

simplicity, we refer to this retrospective test dataset as ‘‘H23’’

since the algorithm and the input data are the same as for the

contemporary H-SAF product.

b. E-OBS

The European Daily High-Resolution Observational Gridded

Dataset (E-OBS) v17.0 precipitation product is based on the

spatial interpolation of daily rainfall observations acquired

from over 10 000 rain gauge stations in Europe on a regular

0.258 3 0.258 grid between 258 and 758N and between 408Wand

758E (van Engelen et al. 2008). The E-OBS data applied here

were downloaded from the European Climate Assessment and

Dataset project (ECA&D; https://www.ecad.eu). The E-OBS

product has been designed to provide the best-available estimate

of gridscale, daily (0000–0000 UTC) precipitation accumulations

via a three-step interpolation process. First, monthly precipitation

totals are interpolated onto a 0.258 grid using thin-plate splines.

Next, daily anomalies are interpolated onto the same grid using

universal kriging with an external drift factor for temperature.

Last, monthly totals and daily anomalies are merged into a single

daily rainfall estimate for each grid cell.

Figure 1 describes the density of rain gauges within Europe

that underlie E-OBS accumulation estimates during our period
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of interest (2011–14). Note that E-OBS v17.0 data are missing

over Poland. In addition, gauge observations within Russia are

missing for calendar year 2014.

c. SM2RAIN-ASCAT (SM2R)

The SM2RAIN-ASCAT (Brocca et al. 2019) daily rainfall

dataset is based on the application of the SM2RAIN algorithm

(Brocca et al. 2013, 2014) to soil moisture retrievals acquired

from the Advanced Scatterometer (ASCAT) on board the

MetOp-A and MetOp-B satellites (i.e., H-SAF product H113).

TheEUMETSATH-SAFASCATproduct has a varying spatial

resolution of 25–34 km from near swath to far swath and is

available on a discrete global grid with a nominal spatial reso-

lution of 25 km and a grid spacing of 12.5 km. Using MetOp-A

(2007–present) and MetOp-B (2013–present) in tandem pro-

vides at least two measurements per day at midlatitudes. The

ASCAT surface soil moisture retrievals are linearly interpolated

into an equally spaced 12-hourly time series before application

of the SM2RAIN algorithm. For additional details regarding the

preprocessing of ASCAT data, see Brocca et al. (2019).

SM2RAIN is based on the inversion of the soil water balance

equation to solve for surface rainfall accumulation. It assumes

negligible evapotranspiration and surface runoff during rainfall

events at the scale of the satellite soil moisture retrievals. Brocca

et al. (2014, 2015) describes the SM2RAIN algorithm and its

underlying assumptions. The SM2RAIN-ASCAT rainfall

dataset (hereinafter referred to as ‘‘SM2R’’) provides daily

rainfall accumulation with a spatial resolution of 25 ; 34 km

on a 12.5-km grid for the period 2007–18. Because of limita-

tions on the availability of ASCAT soil moisture retrievals,

SM2R only provides liquid rainfall accumulation estimates

over land (Brocca et al. 2019). The SM2RAIN-ASCAT dataset

(v1.0) utilized here is available for download (https://doi.org/

10.5281/zenodo.2580285).

TheASCAT data used to generate SM2Rweremasked when

their Surface State Flag indicated frozen conditions. To assess

the H23 product over the widest range of surface conditions

possible, additional masking of SM2R rainfall estimates (based

on, e.g., soil moisture noise and/or sensitivity, vegetation density

or topographic complexity) was not applied. However, the im-

pact of vegetation density on SM2R performance, as well as the

overall reliability of our TC analysis, is discussed in section 5.

The SM2R data for 2011–14 were resampled onto a regular

0.258 grid by spatially averaging 12.5-km pixels whose centers

fall within each 25-km grid box. It should be noted that ERA5

rainfall (described below) is used to calibrate the parameters of

SM2RAIN algorithm and also as the reference dataset to apply

monthly bias corrections to SM2R data records (Brocca et al.

2019) during a postprocessing step. This raises an obvious concern

about violating the error independence assumption underlying

TCandQC—see section 4a for additional discussion on this point.

d. ERA5

ERA5 is the latest-generation European Centre for Medium-

RangeWeather Forecasts (ECMWF) atmospheric reanalysis. It is

available from 1950 onward and will eventually replace the ERA-

Interim reanalysis product (Hersbach et al. 2018). ERA5 is based

on 4D-Var data assimilation using Cycle 41r2 of the Integrated

Forecasting System (IFS). Here, the global 0.258 gridded ERA5

hourly total precipitation field is used together with ERA5

snowfall estimates to obtain hourly total precipitation estimates.

Daily accumulations were obtained by summing hourly accumu-

lations between 0000 and0000UTCnext day.AllERA5data used

here are available from the C3S Climate Data Store (C3S 2017).

Note that ERA assimilates satellite radiance observations

(infrared and microwave) and ground-based radar precipitation

observations (from 2009) to produce its reanalyzed precipita-

tion field. Because of the potential cross-use of SSMIS and

FIG. 1. Number of ground gauges per 0.258 grid cell underlying the E-OBS daily rainfall estimates (2011–14).

FEBRUARY 2021 CHEN ET AL . 247

Brought to you by University of Maryland, McKeldin Library | Unauthenticated | Downloaded 06/19/24 02:38 PM UTC

https://doi.org/10.5281/zenodo.2580285
https://doi.org/10.5281/zenodo.2580285


AMSU/MHS microwave observations in both the ERA5 and

H23 products, it is necessary to consider the possibility of H23

and ERA5 estimates containing cross-correlated error. Such

error cross dependence would violate a key TC assump-

tion—see section 4a for further discussion.

3. Method

a. Triple collocation

Triple collocation (TC) is based on the underlying assump-

tion of a linear additive error model linking multiple inde-

pendent measurement systems with the unknown truth:

X5a1bT1 « , (1)

whereX is assumed to correspond to a daily rainfall product;T is the

true daily rainfall accumulation; a and b are additive and multi-

plicative biases, respectively; and « is mean-zero random error.

The extended triple collocation (ETC, hereinafter referred to

as TC) approach (McColl et al. 2014) can be applied to estimate

the correlation R of a measurement system relative to T. Given

the availability of three gridded daily rainfall products (X,Y, and

Z) that linearly relate to the true daily rainfall intensity as de-

scribed in Eq. (1), the correlation between X and the unknown

truth T can be estimated as

R
X
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s
XY

s
XZ

s2
XsYZ

s
, (2)

where sXY is the temporal covariance ofX and Y, for example,

and s2
X is the variance of X.

In addition to the linearity assumption, TC also requires

1) mutually independent error impacting X, Y, and Z; 2) errors

that are uncorrelated to T (i.e., error orthogonality); and 3) the

stationarity of signal and error statistics (i.e., homoscedasticity)

(Gruber et al. 2016b; Draper et al. 2013; Zwieback et al. 2012).

Since TC is known to break down for very low product skill, we

apply TC only at pixels where significant (p 5 0.05) levels of

mutual correlation exist between all three rainfall products. To

ensure the stationarity of signal and error statistics, a common

practice is to remove seasonal signals from the raw time series of

estimates prior to the application of TC (e.g., Chen et al. 2017;

Gruber et al. 2016b; Su and Ryu 2015). However, because of the

binary nature of precipitation events, zero values are meaningful

observations that should not be artificially transformed into non-

zero anomaly values. Therefore, raw daily rainfall time series are

used here in our TC and QC analyses.

b. Quadruple collocation

As noted above, a critical assumption in TC is that errors in

each product are mutually independent. To maximize the likeli-

hood of error independence, the rainfall products examined here

are based on a wide range of measurement principles. The H23

product is a blended PWM precipitation product based on ob-

servations provided by SSMIS on board DMSP satellites and

AMSU/MHS on board MetOp-A/B and NOAA-18/19 satellites.

Although the SM2R product is also remote sensing-based, it is

derived fromactive scatterometer observations of the land surface

acquired from the MetOp-A/B satellites—a completely different

strategy than that employed by theH23 product. Likewise, ERA5

precipitation estimates are generated via the assimilation of a

wide range of atmospheric and land surface variables into a cou-

pled land–atmosphere modeling system. The E-OBS product is

generated via spatial interpolation of ground-based rain gauge

observations with no ancillary data.

However, despite our best efforts to diversify sources of rainfall

information, it is difficult to eliminate the possibility of error co-

dependence. When a fourth rainfall product is available, R can be

estimatedusingQCbasedon the formulation given inGruber et al.

(2016a). The same assumptions for TCalso apply forQC, but since

the four datasets constitute an overconstrained system, QC can

solve for one additional nonzero error covariance term via a least

squares solution (Pierdicca et al. 2015). Therefore, the zero ECC

assumption can be relaxed to allow nonzero ECC to exist between

one, and only one, pair of data products. This provides an oppor-

tunity to verify the zero ECC assumption underlying TC.

Given four rainfall measurement systems X, Y, Z, W, and

assuming that nonzero ECC exists only between X and Y, the

least squares solution for the QC problem is

M5

s2
X

s2
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s2
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s2
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where s2
T is the true daily rainfall variance, b is the multipli-

cative bias in Eq. (1), s2
« is the variance of the random error,

and s«X«Y is the error covariance between X and Y.

The least squares solution for the parameters in S is

Ŝ5 (ATA)
21
ATM . (4)

Correlation with the unknown truth is

R
X
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

s2
«X

s2
X

s
. (5)

The ECC between X and Y is

ECC
XY

5
s
«X«Y

s2
«X
s2
«Y

� � . (6)

c. Rainfall error model

For rainfall estimates, a multiplicative error model

X5aTbe« (7)

is often considered to be more appropriate than an additive

error model like Eq. (1) (Hossain and Anagnostou 2006; Tian

et al. 2013; Alemohammad et al. 2015). Here, e« is the multi-

plicative random error and a and b describe systematic biases.

Tian et al. (2013) compared the additive and multiplicative

error models applied to daily precipitation datasets across the

United States and suggested that the use of amultiplicativemodel

allows for the improved separation of random errors from sys-

tematic signals and is applicable to a wider range of daily pre-

cipitation values. In addition, applying a log transformation to a

multiplicative error model converts it to a linear form that is

amenable to TC (Alemohammad et al. 2015; Massari et al. 2017).

However, the challenge in applying a multiplicative error

model to daily precipitation lies in the log-transformation process,

which requires that all raw values be nonzero. Solutions to this

problem include temporal aggregation (e.g., Alemohammad et al.

2015) to remove zeros in the time series or simply discarding zero

observations (e.g.,Massari et al. 2017).However, as pointed out in

Massari et al. (2017), daily precipitation errors have different

characteristics than multiday accumulation errors due to the

frequent presence of zero daily values. Also, TC rainfall metrics

are less reliable when their sampling power is reduced by the

removal of zero values. To resolve this issue, Massari et al.

(2017) compared the performance ofmultiplicative and additive

error models during the application of TC to daily precipitation

estimates in the United States and concluded that, despite the

theoretical advantages of a multiplicative error model, an addi-

tive error model provides reasonable and more robust error re-

sults. Therefore, in this analysis, we employed an additive error

model for both the TC and QC analyses presented below.

d. Collocation analyses of R

Correlation metricR results for H23 estimated using both TC

(with aH23–SM2R–ERA5 triplet) andQC (with aH23–EOBS–

SM2R–ERA5 quadruplet) will be discussed in section 4. During

preprocessing, individual 0.258 grid cells aremasked for the cases

of 1) less than 100 complete daily data triplets (for TC) or

quadruplets (for QC) or 2) the lack of significant correlation

(p value, 0.05) between all cross-sampled data pairs utilized in

TC or QC.

Figure 2 shows examples of the spatial coverage provided

by each of the four rainfall products utilized in the QC

analysis. As seen in the figure, the spatial coverage of QC

results is primarily constrained by availability of the E-OBS

dataset. For example, the QC analysis must be masked

within Poland due to the lack of E-OBS coverage there.

Due to E-OBS coverage limitations, the QC analysis was

carried out over a relatively limited geographic domain

(308–608N, 108W–608E) covering (most of) Europe plus a

small coastal strip of northern Africa. Because it does not

utilize E-OBS, TC was performed within a much larger

geographic domain between 408S and 608N and 608W and

608E—comprising all of Europe and Africa as well as por-

tions of South America.

4. Results

As discussed above, our evaluation of the H23 daily

precipitation product is based on the application of QC

and TC analysis. Section 4a presents a QC analysis of ECC

existing between the H23, SM2R, and ERA5 rainfall

products. Next, QC-estimated correlation metrics (i.e.,RQC)

for the H23, SM2R, E-OBS, and ERA5 products are pre-

sented, and the impact of gauge density on the accuracy of

E-OBS-based evaluation metrics is examined. Section 4b

presents TC-estimated correlation results (i.e., RTC) and

discusses the impact of nonzero ECC on RTC using RQC as a

reference.

a. Quadruple collocation estimates of R

1) ERROR CROSS CORRELATION

The H23, SM2R, and ERA5 products are all based, to

varying degrees, on satellite observations. As discussed earlier,

there is potential overlap between the source of rainfall in-

formation contained in both the H23 and ERA5 products as

well as the ERA5 and SM2R products. If present, ECC be-

tween these products will lead to biased collocation-based

correlation metrics. QC provides a way to estimate ECC

within product quadruplets—provided it exists between only

one dataset pair (see section 3b). To investigate the presence

of ECC, three separate QC scenarios were performed: (i) the

‘‘H23–ERA5’’ case, in which nonzero ECC is assumed to

exist only between H23 and ERA5; (ii) the ‘‘H23–SM2R’’

case, in which nonzero ECC is assumed to exist only between

H23 and SM2R; and (iii) the ‘‘ERA5–SM2R’’ case, in which

nonzero ECC is assumed to exist only between ERA5

and SM2R.

QC-based ECC derived from (6) for these three hypotheti-

cal scenarios are presented in Fig. 3. Overall, absolute values of

ECC are generally low (i.e., less than 0.20) across most of the

study region. However, moderate levels of positive ECC be-

tween H23 and ERA5 are found in northwestern Russian and

Finland (Fig. 3a). In contrast, moderate levels of negative ECC
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between H23 and ERA5 are seen around the northern coast of

the Black Sea.More consistent negative ECC is found between

ERA5 and SM2R across a broad swath of eastern Europe and

Russia (Fig. 3c).

The weak ECC found between H23 and both SM2R (Fig. 3a)

and ERA5 (Fig. 3b) is generally consistent with our earlier as-

sumption that error in H23 is independent of both SM2R and

ERA5 errors. However, the presence of negative ERA5–SM2R

ECC is counterintuitive given that SM2R is scaled to match

ERA5 at monthly scale (which, if anything, should induce

positive ECC). Given our stated focus on validating H23, a

complete discussion of ERA5 versus SM2R ECC is outside the

scope of this analysis. Nevertheless, to mitigate the impact of

nonzero ECC in the QC results, final RQC values presented

below are derived by averaging results from all three QC as-

sumption scenarios. Since ECC also impacts TC analysis, it will

be further examined in the context of TC results presented in

section 4b.

In the above scenarios, the ECC between E-OBS and the

other three rainfall products is assumed to be negligible. There

are potential reasons to question this assumption. For example,

both E-OBS and SM2R have known issues surrounding the

detection of small rainfall events. This shared tendency could

conceivably lead to nonzero ECC between the two products.

To examine this issue, we performed an additional QC analysis

where ECC betweenE-OBS and SM2Rwas estimated. Results

FIG. 2. Examples of 24-h (0000–2359 UTC) rainfall accumulation coverage for 31 Mar 2014 obtained by each of the four rainfall

products utilized here. (a) H23 covers a geographic extent between 608S and 758N and between 608W and 608E, (c) E-OBS covers (most)

European land area between 258 and 758N and between 408W and 758E, (b) SM2R is functionally quasi global (with limited availability

above ;608N because of frozen soil), and (d) ERA5 is a true global product.
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(not shown) suggest minimal amounts of ECC between SM2R

and E-OBS (i.e., 81% of pixels within60.20 and 98.6% within

60.40). This suggests that ECC between E-OBS and the other

rainfall products examined here is relatively small.

2) CORRELATION METRIC VIA QC

Correlation coefficients (versus unknown truth) obtained from

applying quadruple collocation (RQC) to theH23, E-OBS, SM2R,

and ERA5 quadruplet of daily rainfall products are plotted in

Fig. 4.As notedabove, plotted values are obtained fromaveraging

results from three different QC scenarios—each assuming non-

zero ECC between a different pair of the H23, SM2R, and ERA5

products. Missing RQC results are either due to either poor data

coverage (e.g., white areas in Poland associated with missing

E-OBS estimates) or nonphysical QC results (e.g., gray areas in

Norway, Sweden, andRussia where SM2R struggles to accurately

resolve daily rainfall). For H23, moderate to high (i.e., 0.6–0.8)

RQC values are generally found across the study domain.

Relatively low RQC values (;0.4) are found in regions charac-

terized by complex orography (e.g., the Alps and Caucasus

mountain ranges), as well as in Kazakhstan and nearby areas of

Russia. The overall satisfactory performance of daily H23 rainfall

estimates within a broad European domain is not unexpected,

since it is derived by combining precipitation algorithms (i.e.,

used in H-SAF H01 and H02B products) specifically tailored

for Europe and relevant areas of northern Africa. Likewise,

observed difficulties in retrieving accurate precipitation esti-

mates in complex orography are well known.

Among the four products (H23, E-OBS, SM2R, and ERA5),

ERA5 demonstrates the best overall performance across the

study area, with RQC values consistently above 0.8. E-OBS

demonstrates the highest RQC scores in western Europe, con-

sistent with its excellent rain gauge coverage there. However,

the performance of E-OBS degrades considerably in areas of

eastern/southeastern Europe with lower gauge densities (Fig. 1;

further discussion below). Such degradation is a well-known

tendency for gridded precipitation datasets based on the inter-

polation of rain gauge observations (e.g., Prein andGobiet 2017;

Zandler et al. 2019). Estimated RQC values over Italy for SM2R

(;0.7) and ERA5 (;0.8) are very close to the values reported in

Brocca et al. (2019) where Pearson’s correlation coefficient was

calculated using reference data from high-quality regional gauge

networks.

Between the two satellite-based datasets (SM2R and H23),

the former has slightly better skill in southern Spain, northern

Africa, the southern United Kingdom, and the Middle East. In

contrast, H23 is superior in France, Germany, and the Balkans

and outperforms SM2R over mountainous regions of south-

western Europe. Poorer SM2R performance over continental

Europe (including Russia) can likely be traced back to the

relatively low skill of ASCAT soil moisture retrievals there

relative to other satellite soil moisture products (Chen et al.

2018). Notably low correlation between SM2R and other

rainfall datasets was found at high latitudes (north of 508N),

which results in large areas of northeast Europe being masked

in Fig. 4c. This suggests that relatively large ASCAT retrieval

error over continental Europe propagates into SM2R rainfall

estimates and contributes to overall lower SM2R skill.

As a product generated from quality-controlled, ground-

based observations, E-OBS is a natural choice for a benchmark

product to validate SPEs. However, relatively poor E-OBS

performance in some areas (see Fig. 4b) indicates that E-OBS

is ill suited to serve as a universal reference. For example, Fig. 5a

maps the direct Pearson’s correlation (R) between H23 and

E-OBS (obtained withoutQC or TC), while Fig. 5b provides the

difference between the direct R values and the H23 RQC results

shown in Fig. 4a as a function of E-OBS rain gauge station

density. Direct H23 versus E-OBS R is lower than RQC across

Europe with the most severe discrepancy found in eastern

Europe where E-OBS is based on very sparse ground observa-

tions (i.e., less than 1 station per 0.258 grid cell in Fig. 1).

FIG. 3. The QC-derived estimates of ECC (a) between the H23

and ERA5, (b) between the H23 and SM2R, and (c) between the

ERA5 and SM2R daily rainfall products.
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As gauge density increases from zero to one or more

station(s) per grid cell, the difference between TC- and QC-

based correlation estimates drops considerably and stays

at a relatively constant value of around 0.1. Thus, Fig. 5

demonstrates that, due to increasing errors in E-OBS

associated with relatively fewer contributing rain gauges,

the validation of SPE products against E-OBS (or other ground-

based dataset) will spuriously degrade correlation-based eval-

uation metrics—particularly in areas where observations

underlying the product are very sparse.

FIG. 4. QC-based estimates of correlation coefficient metrics (RQ vs unknown truth) for the (a) H23, (b) E-OBS, (c) SM2R, and

(d) ERA5 daily rainfall products. Only pixels with collocated data from all four products and passing the significant correlation test

described in section 3a are shown. Gray-shaded grid cells indicate a failed QC analysis (negative or nonphysical results), whereas ter-

restrial grid cells in white suggest data that are missing or were masked during a prescreening process (see section 3d).

FIG. 5. (a) Map of the (directly sampled) temporal correlation between H23 and E-OBS. (b) The difference between RQC and the direct

correlations plotted in (a) as a function of E-OBS rain gauge station density.
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b. Triple collocation estimates of correlation metrics

1) COMPARISON OF RQC AND RTC

Above, QC is demonstrated to provide a more robust

evaluation of the H23 product over sparsely gauged areas.

However, its application is still limited to areas containing a

minimum level of rain gauge coverage. In the case where

ground-based observations (such as E-OBS) are unavailable,

TC can be applied instead. Therefore, by freeing us from

the constraint of ground observations, TC allows for rainfall

evaluation over a wider geographic area. Here, utilizing aH23–

SM2R–ERA5 daily rainfall product triplet, RTC is obtained

for a larger spatial domain (relative to earlier RQC results in

Fig. 4) covering the entire African continent, the Arabian

Peninsula, and the eastern portionof SouthAmerica (Figs. 6a,c,e).

Note that RTC results are now also available over Poland since

E-OBS availability is no longer required. Because EuropeanRQC

results are obtainedwith ground-based observations, they provide

a useful point of comparison for RTC estimates. To this end,

Figs. 6b, 6d, and 6f compare the RTC and RQC results for each

product over areas of Europe and North Africa where E-OBS

data are available (see domain in Fig. 4).

Despite their lack of reliance on ground-based observations,

H23RTC estimates inEurope andNorthAfrica correspond closely

to earlier RQC results (Fig. 6a). This correspondence supports the

application of non-ground-based rainfall products such as SM2R

and ERA5 to obtain robust R estimates for SPE products in the

absence of ground-based observations or in areas where such da-

tasets are of low-quality due to poor spatial coverage. H23 RTC

results also appear to be relatively unbiased versus RQC (Fig. 6b).

SM2R RTC estimates agree well, both in terms of spatial pattern

and magnitude, with a previous TC analysis using a high-quality

ground-based dataset (i.e., GPCC, see Brocca et al. 2019).

However, when compared to SM2R RQC results derived above, a

pronounced high bias is seen in SM2R RTC results at lower values

of RQC (,0.6). This bias suggests the violation of assumptions

underlying the application of TC to SM2R and is likely linked to

the observed tendency for nonzero SM2R–ERA5 ECC (Fig. 3c).

The underperformance of SM2R (as indicated by lowerRQC

values) can be linked to the impact of vegetation density on

ASCAT soil moisture retrieval accuracy. For example, we

compared a 0.258 grid monthly-mean leaf area index (LAI)

map for average July conditions, derived from 1981 to 2015

observations acquired from the Advanced Very High Resolution

Radiometer (AVHRR; Mao and Yan, 2019), to RQC results

plotted in Fig. 4. A strong negative correlation (R 5 20.50) is

found between SM2R RQC and climatological July LAI values

andmost (74%) of the low skill pixels (i.e., SM2RRQC, 0.6) are

associated with mean July LAI values above 2—a threshold

commonly met in northeastern Europe where forest coverage

fraction is high. This suggests that the low quality of ASCAT soil

moisture retrievals in densely vegetated areas significantly re-

duces the quality of SM2R rainfall estimates.

However, vegetation density does not appear to affect the

validity of TC results for products other than SM2R. That is,

neither H23 nor ERA5’s DR (i.e., RTC 2 RQC) is significantly

correlated with mean July LAI. Therefore, despite the lower-

quality SM2R in densely vegetated areas, the RTC metric for

other rainfall products (notably H23) remain largely unbiased,

supporting the usefulness of SM2R in TC analysis across a wide

range of surface vegetation conditions. However, caution

should be used when directly comparing SM2R with other

rainfall datasets without using a collocation-based analysis. In

such cases, stringent masking of SM2R is advised to remove

pixels where ASCAT soil moisture retrievals are less reliable

due to the presence of dense vegetation, highly arid surface

conditions, complex topography, and/or waterbodies.

2) INTERCOMPARISON OF H23, SM2R, AND

ERA5 VIA RTC

As expected, RTC maps in Fig. 6 show patterns in Europe and

northernAfrica that echo earlierRQC results in Fig. 4. However,

interesting tendencies can be noted in areas outside of the

E-OBS spatial domain. For example, SM2R is significantly su-

perior to H23 over nearly all of Africa. The relatively poor

performance of the H23 product in the Sahel region of Africa

(i.e., the transition zone between the Sahara Desert and tropical

rain forest) is not surprising given that highly variable surface

emissivity conditions in the Sahel pose a unique challenge for

PMW-based rainfall inversion (Alcoba and Gosset 2015). Here,

the H-SAF H01 and H02B PMW rainfall products (from which

H23 is derived) have been found to overestimate the frequency

of rain day (i.e., false detection). This tendency is believed to be

associated with the inaccurate specification of surface type and

emissivity in PMW retrieval algorithms (Alcoba and Gosset

2015). On the other hand, the Sahel region is generally consid-

ered to be well suited for soil moisture remote sensing due to its

relatively low levels of vegetation biomass (Chen et al. 2018).

South of the Sahel region ofAfrica, SM2R continues to show

the highest overall skill, followed by ERA5 and H23. In par-

ticular, the performance of H23 and ERA5 is significantly

worse in the equatorial zone between 158S and 158Nwhere the

seasonal movement of the intertropical convergence zone

leads to strong rainfall seasonality. In this region, satellite soil

moisture retrievals (utilized in SM2R) appear to provide a

better proxy to infer rainfall amounts than PMW-based esti-

mates. However, this conclusion should be treated with caution

given the possibility that SM2R RTC values are positively bi-

ased due to high vegetation density [see Fig. 6f and discussion

in section 4b(1)]. Note that extremely low SM2R–ERA5 cor-

relations were found in the same area by Brocca et al. (2019).

In South America, H23 achieves higher RTC values (;0.8 and

above) overAtlantic coastal regions andmoderate (;0.5–0.6)RTC

values inland. SM2R, on the other hand, shows excellent skill

(;0.8) in the northern part of the Brazilian Highlands—a drier

region east of the Amazon basin. Brocca et al. (2019) obtained

similar RTC values for SM2R in this area. Again, note that SM2R

RTC values are likely incorrectly inflated in regions covered by

tropical rain forests. Finally, relatively high H23 RTC values are

found in areas of the Middle East (e.g., Saudi Arabia) that fall

within the H23 domain (but are not shown in the overlapping E-

OBS–H23 domain in Fig. 4). Finally, note that missing RTC values

in Fig. 6 are due to a combination of poor data coverage (e.g.,

SM2R in the SaharaDesert), lack of temporal correlation between

SM2Rand the other two products (i.e., H23 andERA5) or a failed

TC analysis (e.g., equatorial Congo, indicated via gray shading).
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Figure 7 presents an RTC-based pairwise comparison be-

tween H23, SM2R, and ERA5 that indicates areas where one

product is significantly superior (at 95% confidence) to the

other. Terrestrial pixels shaded white indicate either: missing

results due to data availability, masking during preprocessing or

cases where neither product is significantly better than the other.

White pixels in Europe (Fig. 7a) indicates that H23 and SM2R

have comparable temporal correlation (versus unknown truth)

FIG. 6. Estimates of correlation coefficient obtained from a TC analysis (RTC) for (a) H23, (c) ERA5, and

(e) SM2R, along with (b),(d),(f) respective scatterplots of RTC vs RQC for each product for areas of Europe and

NorthAfrica where E-OBS estimates are available (see the domain in Fig. 4). Gray-shade grid cells indicate a failed

TC analysis (negative or nonphysical results), whereas terrestrial grid cells in white indicate data that are missing

or were masked during a prescreening process (see section 3d).
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there. Likewise, large masked areas of southern Africa (south of

;258S) in Figs. 7a–c reflect that R differences between these

products are largely nonsignificant. In other areas, the significant

advantages of each product are relatively well defined geo-

graphically:H23 outperforms SM2R in areas of northernEurope,

southern Brazil, and Uruguay. Likewise, SM2R outperforms

both H23 and ERA5 in the Sahel, southern Africa, and eastern

Brazil and ERA5 is consistently superior to H23. However, as

discussed above, the superior performance of SM2R outside of

Europe should be viewed with caution given the potential for

SM2R RTC values to be biased high (Fig. 6f).

5. Summary

This studypresents avalidation strategy for satellite precipitation

products based on the application of triple (TC) and quadruple

(QC) collocation techniques and the newly available SM2RAIN-

ASCAT product (i.e., SM2R). The proposed method is applied to

evaluate the H-SAF H23 daily precipitation product relative to

three other large-scale precipitation products. Specifically, esti-

mates of correlation versus unknown truth are generated via both a

QC analysis (based on an H23–E-OBS–SM2R–ER5 quadruplet)

and a TC analysis (based on a H23–SM2R–ERA5 triplet).

On the basis of collocation results,H23 correlation versus true

daily rainfall accumulations is moderate to high (;0.6–0.8)

across most of western Europe, South America, and Africa and

relatively poor (;0.2–0.4) in areas of equatorial Africa and

continental Europe. The performance of SM2R is comparable

to H23 in the Mediterranean region but poorer in Scandinavia

and over continental Europe. SM2R outperforms ERA5 and

H23 inAfrica south of the Sahel and in northeastern Brazil—with

the caveat that SM2RRTC is potentially overestimated in areas of

(genuinely) low skill.Across all products, ERA5demonstrates the

best overall performance and exhibits poor R results (,0.4) only

in equatorial areas of Africa.

The evaluation of collocation results indicates that

SM2R is a useful independent rainfall dataset that enables the

application of QC and TC approaches for the evaluation of

large-scale rainfall products. Despite instances of poor SM2R

performance and error correlation with H23 or ERA5, no no-

ticeable bias is found inH23’sRTC results (generated using SM2R)

relative to RQC (generated using ground-based rainfall observa-

tions). This suggests that SM2R, together with collocation-based

analyses, can be applied to reliably evaluate H23, even in areas

where ground observations are scarce. Our analysis also sug-

gests that, in areas where SM2R accuracy is negatively affected

by suboptimal surface conditions for ASCAT soil moisture

retrieval, QC/TC results are still generally robust for other par-

ticipating datasets in the collocation analyses.

Although the ability of SM2R to validate SPEs via the ap-

plication of QC and TC is encouraging, several caveats should

be noted. First, TC analysis provides only a correlation eval-

uation metric and does not provide absolute estimates of other

commonly applied rainfall metrics like additive and multipli-

cative bias, as well as categorical statistics such as false alarm

ratio and the probability of detection. The recent development

and application of Categorical Triple Collocation approaches

(McColl et al. 2016; Dong et al. 2020) suggests the potential

application of TC to obtain categorical metrics describing the

rainfall detection performance of SPEs; however, these ap-

proaches have yet to be widely applied.

Our collocation analyses are sensitive to the presence of ECC

between products (see section 3d)—particularly sincewe have not

removed seasonal signals from each product prior to collocation

analysis. The presence and impact of potential ECCbetweenH23,

SM2R, and ERA5 is discussed in section 4. In addition, SM2R’s

tendency to underestimate extreme rainfall events can potentially

introduce error correlation with respect to other products suffer-

ing from a similar systematic bias. It should be stressed that our

QC analysis largely failed to find evidence of such error cross

correlation—at least within the European domain over which it

was applied. Nevertheless, careful assessment of cross-correlated

error impacts is necessary before collocation results can be used

with confidence. In particular, while SM2R enables a relatively

FIG. 7. Pairwise comparison of RTC between the (a) H23 and SM2R, (b) H23 and ERA5, and (c) SM2R and ERA5 products. Grid cells

in color indicate corresponding product having higher RTC while the difference between the two products is statistically significant with

95% confidence (on the basis of a 100-member bootstrapped distribution). Terrestrial pixels in white reflect areas with data that are

missing or were masked during preprocessing or areas where observed RTC differences are nonsignificant.
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accurate representation of ERA5 and SM2R skill in data-poor

regions (via collocation analysis), the RTC of SM2R itself may

be biased. Eventually, the reliability of QC will be maximized

by its application to the highest quality precipitation product.

Therefore, the use of new gauge analysis datasets, such as recently

released Global Precipitation Climatology Centre (GPCC) daily

products (Ziese et al. 2018) is recommended for future study.

At present, the reliable, comprehensive validation of SPE

products remains focused on the use of interpolated rain gauge

data (e.g., Puca et al. 2014). However, this approach requires

sufficient rain gauge density to accurately reproduce spatial

patterns at the satellite’s resolution, which can only be satisfied

over a small fraction of Earth’s land surface. It is estimated that

between 608S and 608N, where a majority of the world’s rain

gauges operate, only 6.5%of land area is locatedwithin 10kmof a

gauge (Kidd et al. 2017). Therefore, collocation-based SPE vali-

dation approaches are a valuable tool for vast land regions that are

ungauged or data-scarce. Given the difficulty of obtaining wholly

independent estimates of rainfall at the global scale, innovative

rainfall products like SM2R provide a unique resource for efforts

to improve the large-scale validation of SPEs.

Acknowledgments. This study is supported by theEUMESAT

SatelliteApplicationFacility onSupport toOperationalHydrology

and Water Management (H-SAF) project (H_AVS18_04). We

acknowledge the E-OBS dataset from the EU-FP6 project

ENSEMBLES (http://ensembles-eu.metoffice.com) and the data

providers in the ECA&D project (http://www.ecad.eu). The au-

thors also gratefully acknowledge the Italian Civil Protection

Department and thank Drs. Luca Brocca, Daniel Casella, and

Paolo Sanò for their extremely valuable suggestions.

Data availability statement. H23 is requested from http://

hsaf.meteoam.it/. ERA5 is downloaded from http://doi.org/

10.24381/cds.e2161bac. E-OBS is downloaded from: http://

www.ecad.eu. SM2RAIN-ASCAT is downloaded from: http://

doi.org/10.5281/zenodo.2591215.

REFERENCES

Alcoba, M., and M. Gosset, 2015: Verification study over West

Africa of PMW precipitation products using X-pol radar ob-

servations and rain gauges.H-SAFFinalRep.HSAF_AS15_03,

45 pp., https://hsaf.meteoam.it/documents/visiting-scientist/

HSAF_AS15_03_Final_Report.pdf.

Alemohammad, S. H., K.A.McColl, A. G. Konings, D. Entekhabi,

and A. Stoffelen, 2015: Characterization of precipitation

product errors across the United States using multiplicative

triple collocation. Hydrol. Earth Syst. Sci., 19, 3489–3503,

https://doi.org/10.5194/hess-19-3489-2015.

Brocca, L., F. Melone, T. Moramarco, and W. Wagner, 2013: A new

method for rainfall estimation through soilmoisture observations.

Geophys. Res. Lett., 40, 853–858, https://doi.org/10.1002/grl.50173.

——, and Coauthors, 2014: Soil as a natural rain gauge: Estimating

global rainfall from satellite soil moisture data. J. Geophys. Res.

Atmos., 119, 5128–5141, https://doi.org/10.1002/2014JD021489.

——, and Coauthors, 2015: Rainfall estimation from in situ soil

moisture observations at several sites in Europe: An evaluation

of SM2RAIN algorithm, J. Hydrol. Hydromech., 63, 201–209,

https://doi.org/10.1515/johh-2015-0016.

——, and Coauthors, 2019: SM2RAIN–ASCAT (2007–2018):

Global daily satellite rainfall data from ASCAT soil moisture

observations. Earth Syst. Sci. Data, 11, 1583–1601, https://

doi.org/10.5194/essd-11-1583-2019.

C3S, 2017: ERA5: Fifth generation of ECMWF atmospheric re-

analyses of the global climate. Copernicus Climate Change

Service Climate Data Store (CDS), accessed 7 February 2019,

https://doi.org/10.24381/cds.e2161bac.

Caires, S., and A. Sterl, 2003: Validation of ocean wind and wave

data using triple collocation. J. Geophys. Res., 108, 3098,

https://doi.org/10.1029/2002JC001491.

Casella, D., and Coauthors, 2013: Transitioning from CRD to

CDRD in Bayesian retrieval of rainfall from satellite passive

microwave measurements: Part 2. Overcoming database pro-

file selection ambiguity by consideration of meteorological

control on microphysics. IEEE Trans. Geosci. Remote Sens.,

51, 4650–4671, https://doi.org/10.1109/TGRS.2013.2258161.

Chakraborty, A., R. Kumar, and A. Stoffelen, 2013: Validation of

ocean surface winds from the OCEANSAT-2 scatterometer

using triple collocation. Remote Sens. Lett., 4, 84–93, https://

doi.org/10.1080/2150704X.2012.693967.

Chen, F., and Coauthors, 2017: Application of triple collocation in

ground-based validation of SoilMoistureActive/Passive (SMAP)

Level 2 data products. IEEE J. Sel. Topics Appl. Earth Obs., 10,

489–502, https://doi.org/10.1109/JSTARS.2016.2569998.

——, W. T. Crow, R. Bindlish, A. Colliander, M. Burgin,

J. Asanuma, and K. Aida, 2018: Global-scale evaluation of

SMAP, SMOS and ASCAT soil moisture products using

triple collocation.Remote Sens. Environ., 214C, 1–13, https://

doi.org/10.1016/j.rse.2018.05.008.

Ciabatta, L., A. C. Marra, G. Panegrossi, D. Casella, P. Sanò,
S. Dietrich, C. Massari, and L. Brocca, 2017: Daily precipitation

estimation through different microwave sensors: Verification

study over Italy. J. Hydrol., 545, 436–450, https://doi.org/

10.1016/j.jhydrol.2016.12.057.

Dong, J., W. T. Crow, and R. H. Reichle, 2020: Improving rain/no-

rain detection skill by merging precipitation estimates from

different sources. J. Hydrometeor., 21, 2419–2429, https://

doi.org/10.1175/JHM-D-20-0097.1.

Draper, C., R. Reichle, R. de Jeu, V. Naeimi, R. Parinuss, and

W.Wagner, 2013: Estimating rootmean square errors in remotely

sensed soil moisture over continental scale domains.Remote Sens.

Environ., 137, 288–298, https://doi.org/10.1016/j.rse.2013.06.013.

Ebert, E. E., J. E. Janowiak, and C. Kidd, 2007: Comparison of near-

real-time precipitation estimates from satellite observations and

numerical models. Bull. Amer. Meteor. Soc., 88, 47–64, https://

doi.org/10.1175/BAMS-88-1-47.

Fang, H., S.Wei, C. Jiang, andK. Scipal, 2012: Theoretical uncertainty

analysis of global MODIS, CYCLOPES, and GLOBCARBON

LAI products using a triple collocation method. Remote Sens.

Environ., 124, 610–621, https://doi.org/10.1016/j.rse.2012.06.013.

Gruber, A., C.-H. Su, W. T. Crow, S. Zwieback, W. A. Dorigo, and

W. Wagner, 2016a: Estimating error cross-correlation in soil

moisture data sets using extended collocation analysis. J. Geophys.

Res. Atmos., 121, 1208–1219, https://doi.org/10.1002/2015JD024027.

——, ——, S. Zwieback, W. Crow, W. Dorigo, and W. Wagner,

2016b: Recent advances in (soil moisture) triple collocation

analysis. Int. J. Appl. Earth Obs. Geoinf., 45, 200–211, https://

doi.org/10.1016/j.jag.2015.09.002.

Hersbach, H., and Coauthors, 2018: Operational global re-

analysis: Progress, future directions and synergies with

NWP. ECMWFERARep. Series 27, 63 pp., https://doi.org/

10.21957/tkic6g3wm.

256 JOURNAL OF HYDROMETEOROLOGY VOLUME 22

Brought to you by University of Maryland, McKeldin Library | Unauthenticated | Downloaded 06/19/24 02:38 PM UTC

http://ensembles-eu.metoffice.com
http://www.ecad.eu
http://hsaf.meteoam.it/
http://hsaf.meteoam.it/
http://doi.org/10.24381/cds.e2161bac
http://doi.org/10.24381/cds.e2161bac
http://www.ecad.eu
http://www.ecad.eu
http://doi.org/10.5281/zenodo.2591215
http://doi.org/10.5281/zenodo.2591215
https://hsaf.meteoam.it/documents/visiting-scientist/HSAF_AS15_03_Final_Report.pdf
https://hsaf.meteoam.it/documents/visiting-scientist/HSAF_AS15_03_Final_Report.pdf
https://doi.org/10.5194/hess-19-3489-2015
https://doi.org/10.1002/grl.50173
https://doi.org/10.1002/2014JD021489
https://doi.org/10.1515/johh-2015-0016
https://doi.org/10.5194/essd-11-1583-2019
https://doi.org/10.5194/essd-11-1583-2019
https://doi.org/10.24381/cds.e2161bac
https://doi.org/10.1029/2002JC001491
https://doi.org/10.1109/TGRS.2013.2258161
https://doi.org/10.1080/2150704X.2012.693967
https://doi.org/10.1080/2150704X.2012.693967
https://doi.org/10.1109/JSTARS.2016.2569998
https://doi.org/10.1016/j.rse.2018.05.008
https://doi.org/10.1016/j.rse.2018.05.008
https://doi.org/10.1016/j.jhydrol.2016.12.057
https://doi.org/10.1016/j.jhydrol.2016.12.057
https://doi.org/10.1175/JHM-D-20-0097.1
https://doi.org/10.1175/JHM-D-20-0097.1
https://doi.org/10.1016/j.rse.2013.06.013
https://doi.org/10.1175/BAMS-88-1-47
https://doi.org/10.1175/BAMS-88-1-47
https://doi.org/10.1016/j.rse.2012.06.013
https://doi.org/10.1002/2015JD024027
https://doi.org/10.1016/j.jag.2015.09.002
https://doi.org/10.1016/j.jag.2015.09.002
https://doi.org/10.21957/tkic6g3wm
https://doi.org/10.21957/tkic6g3wm


Hossain, F., and E. N. Anagnostou, 2006: A two-dimensional sat-

ellite rainfall error model. IEEE Trans. Geosci. Remote Sens.,

44, 1511–1522, https://doi.org/10.1109/TGRS.2005.863866.

Kidd, C., P. Bauer, J. Turk, G. Huffman, R. Joyce, K.-L. Hsu, and

D. Braithwaite, 2012: Intercomparison of high-resolution pre-

cipitation products over Northwest Europe. J. Hydrometeor.,

13, 67–83, https://doi.org/10.1175/JHM-D-11-042.1.

——, A. Becker, G. J. Huffman, C. L.Muller, P. Joe, G. Skofronick-

Jackson, and D. B. Kirschbaum, 2017: So, how much of the

Earth’s surface is covered by rain gauges? Bull. Amer. Meteor.

Soc., 98, 69–78, https://doi.org/10.1175/BAMS-D-14-00283.1.

Li, C., G. Tang, andY.Hong, 2018: Cross-evaluation of ground-based,

multi-satellite and reanalysis precipitation products: Applicability

of the triple collocation method across mainland China.

J. Hydrol., 562, 71–83, https://doi.org/10.1016/j.jhydrol.2018.04.039.
Mahfouf, J.-F., B. Brasnett, and S. Gagnon, 2007: A Canadian

PrecipitationAnalysis (CaPA)Project:Descriptionandpreliminary

results.Atmos.–Ocean, 45, 1–17, https://doi.org/10.3137/ao.v450101.

Mao, J., and B. Yan, 2019: Global monthly mean leaf area index

climatology, 1981-2015. ORNLDAAC, accessed 15 September

2020, https://doi.org/10.3334/ORNLDAAC/1653.

Massari, C., W. Crow, and L. Brocca, 2017: An assessment of the

performance of global rainfall estimates without ground-

based observations. Hydrol. Earth Syst. Sci., 21, 4347–4361,

https://doi.org/10.5194/hess-21-4347-2017.

——, and Coauthors, 2020: A daily 25 km short-latency rainfall

product for data-scarce regions based on the integration of

the Global Precipitation Measurement mission rainfall and

multiple-satellite soil moisture products. Hydrol. Earth Syst.

Sci., 24, 2687–2710, https://doi.org/10.5194/hess-24-2687-2020.
McColl, K. A., J. Vogelzang, A. G. Konings, D. Entekhabi,

M. Piles, and A. Stoffelen, 2014: Extended triple collocation:

Estimating errors and correlation coefficients with respect to

an unknown target.Geophys. Res. Lett., 41, 6229–6236, https://
doi.org/10.1002/2014GL061322.

——, A. Roy, C. Derksen, A. G. Konings, S. H. Alemohammed,

and D. Entekhabi, 2016: Triple collocation for binary and

categorical variables: Application to validating landscape

freeze/thaw retrievals. Remote Sens. Environ., 176, 31–42,

https://doi.org/10.1016/j.rse.2016.01.010.

Mugnai, A., and Coauthors, 2013a: Precipitation products from the

hydrology SAF. Nat. Hazards Earth Syst. Sci., 13, 1959–1981,

https://doi.org/10.5194/nhess-13-1959-2013.

——, and Coauthors, 2013b: CDRD and PNPR satellite

passive microwave precipitation retrieval algorithms:

EuroTRMM/EURAINSAT origins andH-SAF operations.

Nat. Hazards Earth Syst. Sci., 13, 887–912, https://doi.org/

10.5194/nhess-13-887-2013.

Pierdicca, N., F. Fascetti, L. Pulvirenti, R. Crapolicchio, and

J. Muñoz-Sabater, 2015: Quadruple collocation analysis for soil

moisture product assessment. IEEEGeosci. Remote Sens. Lett.,

12, 1595–1599, https://doi.org/10.1109/LGRS.2015.2414654.

Prein,A. F., andA.Gobiet, 2017: Impacts of uncertainties inEuropean

gridded precipitation observations on regional climate analysis.

Int. J. Climatol., 37, 305–327, https://doi.org/10.1002/joc.4706.

Puca, S., and Coauthors, 2014: The validation service of the hy-

drological SAF geostationary and polar satellite precipitation

products. Nat. Hazards Earth Syst. Sci., 14, 871–889, https://

doi.org/10.5194/nhess-14-871-2014.

Roebeling, R. A., E. L. Wolters, J. F. Meirink, and H. Leijnse, 2012:

Triple collocation of summer precipitation retrievals from SEVIRI

over Europe with gridded rain gauge and weather radar data. J.

Hydrometeor.,13, 1552–1566,https://doi.org/10.1175/JHM-D-11-089.1.

Sanò, P., D. Casella,A.Mugnai,G. Schiavon, E.A. Smith, andG. J.

Tripoli, 2013: Transitioning from CRD to CDRD in Bayesian

retrieval of rainfall from satellite passive microwave mea-

surements: Part 1. Algorithm description and testing. IEEE

Trans. Geosci. Remote Sens., 51, 4119–4143, https://doi.org/

10.1109/TGRS.2012.2227332.

——, G. Panegrossi, D. Casella, F. Di Paola, L. Milani, A. Mugnai,

M. Petracca, and S. Dietrich, 2015: The Passive microwave

Neural network Precipitation Retrieval (PNPR) algorithm for

AMSU/MHS observations: description and application to

European case studies.Atmos.Meas. Tech., 8, 837–857, https://

doi.org/10.5194/amt-8-837-2015.

Sapiano, M. R. P., and P. A. Arkin, 2009: An intercomparison and

validation of high-resolution satellite precipitation estimates

with 3-hourly gauge data. J. Hydrometeor., 10, 149–166,

https://doi.org/10.1175/2008JHM1052.1.

Scipal, K., W. Dorigo, and R. de Jeu, 2010: Triple collocation – A

new tool to determine the error structure of global soil mois-

ture products. 2010 IEEE Int. Geoscience and Remote Sensing

Symp., Honolulu, HI, IEEE, 4426–4429, https://doi.org/10.1109/

IGARSS.2010.5652128.

Stampoulis, D., and E. N. Anagnostou, 2012: Evaluation of global sat-

ellite rainfall products over continental Europe. J. Hydrometeor.,

13, 588–603, https://doi.org/10.1175/JHM-D-11-086.1.

Su, C.-H., and D. Ryu, 2015: Multi-scale analysis of bias correction

of soil moisture. Hydrol. Earth Syst. Sci., 19, 17–31, https://
doi.org/10.5194/hess-19-17-2015.

Tian, Y., G. J. Huffman, R. F. Adler, L. Tang, M. Sapiano,

V. Maggioni, and H. Wu, 2013: Modeling errors in daily pre-

cipitation measurements: Additive or multiplicative? Geophys.

Res. Lett., 40, 2060–2065, https://doi.org/10.1002/grl.50320.

van Engelen, A., A. Klein Tank, G. van de Schrier, and L. Klok,

2008: Towards an operational system for assessing ob-

served changes in climate extremes. Royal Netherlands

Meteorological InstituteEuropeanClimateAssessment&Dataset

Rep., 68 pp., https://knmi-ecad-assets-prd.s3.amazonaws.com/

documents/ECAD_report_2008.pdf.

Villarini, G., P. V. Mandapaka, W. F. Krajewski, and R. J. Moore,

2008: Rainfall and sampling uncertainties: A rain gauge per-

spective. J. Geophys. Res., 113, D11102, https://doi.org/10.1029/

2007JD009214.

Wang, H., J. Zhu, and J. Yang, 2014: Error analysis on ESA’s

Envisat ASAR wave mode significant wave height retrievals

using triple collocation model. Remote Sens., 6, 12 217–12 233,

https://doi.org/10.3390/rs61212217.

Wang,Q., Y. Zeng, C.M.Mannaerts, andV.R.Golroudbary, 2018:

Determining relative errors of satellite precipitation data over

the Netherlands. Proc. Second Int. Electronic Conference on

Remote Sensing (ECRS 2018), Online, MDPI, 7 pp., https://

doi.org/10.3390/ecrs-2-05139.

Zandler, H., I. Haag, and C. Samimi, 2019: Evaluation needs and

temporal performance differences of gridded precipitation

products in peripheral mountain regions. Sci. Rep., 9, 15118,

https://doi.org/10.1038/s41598-019-51666-z.

Ziese, M., A. Rauthe-Schöch, A. Becker, P. Finger, A. Meyer-

Christoffer, and U. Schneider, 2018: GPCC full data daily ver-

sion.2018 at 1.08: Daily land-surface precipitation from rain-gauges

built on gts-based and historic data. DWD, accessed 1 September

2020, https://doi.org/10.5676/DWD_GPCC/FD_D_V2018_100.

Zwieback, S., K. Scipal, W.Dorigo, andW.Wagner, 2012: Structural

and statistical properties of the collocation technique for error

characterization. Nonlinear Processes Geophys., 19, 69–80,

https://doi.org/10.5194/npg-19-69-2012.

FEBRUARY 2021 CHEN ET AL . 257

Brought to you by University of Maryland, McKeldin Library | Unauthenticated | Downloaded 06/19/24 02:38 PM UTC

https://doi.org/10.1109/TGRS.2005.863866
https://doi.org/10.1175/JHM-D-11-042.1
https://doi.org/10.1175/BAMS-D-14-00283.1
https://doi.org/10.1016/j.jhydrol.2018.04.039
https://doi.org/10.3137/ao.v450101
https://doi.org/10.3334/ORNLDAAC/1653
https://doi.org/10.5194/hess-21-4347-2017
https://doi.org/10.5194/hess-24-2687-2020
https://doi.org/10.1002/2014GL061322
https://doi.org/10.1002/2014GL061322
https://doi.org/10.1016/j.rse.2016.01.010
https://doi.org/10.5194/nhess-13-1959-2013
https://doi.org/10.5194/nhess-13-887-2013
https://doi.org/10.5194/nhess-13-887-2013
https://doi.org/10.1109/LGRS.2015.2414654
https://doi.org/10.1002/joc.4706
https://doi.org/10.5194/nhess-14-871-2014
https://doi.org/10.5194/nhess-14-871-2014
https://doi.org/10.1175/JHM-D-11-089.1
https://doi.org/10.1109/TGRS.2012.2227332
https://doi.org/10.1109/TGRS.2012.2227332
https://doi.org/10.5194/amt-8-837-2015
https://doi.org/10.5194/amt-8-837-2015
https://doi.org/10.1175/2008JHM1052.1
https://doi.org/10.1109/IGARSS.2010.5652128
https://doi.org/10.1109/IGARSS.2010.5652128
https://doi.org/10.1175/JHM-D-11-086.1
https://doi.org/10.5194/hess-19-17-2015
https://doi.org/10.5194/hess-19-17-2015
https://doi.org/10.1002/grl.50320
https://knmi-ecad-assets-prd.s3.amazonaws.com/documents/ECAD_report_2008.pdf
https://knmi-ecad-assets-prd.s3.amazonaws.com/documents/ECAD_report_2008.pdf
https://doi.org/10.1029/2007JD009214
https://doi.org/10.1029/2007JD009214
https://doi.org/10.3390/rs61212217
https://doi.org/10.3390/ecrs-2-05139
https://doi.org/10.3390/ecrs-2-05139
https://doi.org/10.1038/s41598-019-51666-z
https://doi.org/10.5676/DWD_GPCC/FD_D_V2018_100
https://doi.org/10.5194/npg-19-69-2012

