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ABSTRACT

Diatoms are a major but poorly understood
phytoplankton group. The recent completion of
two whole genome sequences has revealed that
they contain unique combinations of genes, likely
recruited during their history as secondary endo-
symbionts, as well as by horizontal gene transfer
from bacteria. A major limitation for the study
of diatom biology and gene function is the lack
of tools to generate targeted gene knockout or
knockdown mutants. In this work, we have
assessed the possibility of triggering gene silencing
in Phaeodactylum tricornutum using constructs
containing either anti-sense or inverted repeat
sequences of selected target genes. We report
the successful silencing of a GUS reporter gene
expressed in transgenic lines, as well as the knock-
down of endogenous phytochrome (DPH1) and
cryptochrome (CPF1) genes. To highlight the utility
of the approach we also report the first phenotypic
characterization of a diatom mutant (cpf1). Our data
open the way for reverse genetics in diatoms and
represent a major advance for understanding their
biology and ecology. Initial molecular analyses
reveal that targeted downregulation likely occurs
through transcriptional and post-transcriptional
gene silencing mechanisms. Interestingly, molecu-
lar players involved in RNA silencing in other eukary-
otes are only poorly conserved in diatoms.

INTRODUCTION

Diatoms are successful unicellular algae that arose
at least 180 million years ago following a secondary

endosymbiotic event and that assimilate at least 20% of
CO; on the planet (1,2). The molecular basis for their
ecological success is largely unknown. Recently, analysis
of whole genome sequences from Thalassiosira pseudonana
(3,4) and Phaeodactylum tricornutum (5) indicate that
these organisms have particular metabolic pathways and
other unique features that might partially explain their
extraordinary adaptation to a very wide range of habitats
and environmental conditions. For example, they contain
not only genes encoding typical components of photosyn-
thesis but also genes encoding components typical of
animal cells, never found previously in a photosynthetic
eukaryote (3). Diatoms have also recruited an enormous
number of genes by horizontal gene transfer from prokary-
otes, and many are likely to provide novel possibilities
for metabolite management and for the perception of envi-
ronmental signals (5). Comparative analyses of the two
diatom genomes indicate major differences in genome
structure, and a substantial fraction of diatom specific
genes of unknown function (around 40%), whose charac-
terization represents a major challenge for the comprehen-
sion of diatom biology (5).

Due to the ecological significance of diatoms and their
potential in helping to dissect the evolution of eukaryotes,
efforts have been made in recent years to develop molec-
ular techniques based on nuclear transformation (6,7),
genome-enabled resources such as comprehensive EST
libraries (http://www.biologie.ens.fr/diatomics/EST3/)
(8,9), and whole genome microarrays (10). Nevertheless,
a major limitation for the study of diatom gene function is
the lack of tools to generate knockout or knockdown
mutants through forward or reverse genetic approaches.
The generation of loss-of-function mutants by insertional
mutagenesis appears difficult in a diploid organism such as
P. tricornutum that may lack a sexual cycle. As there is no
evidence for homologous recombination events in diatoms
(11), it is also unlikely that targeted gene disruption
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via homologous recombination can be developed as a
standard approach.

In the last decade, ~20-30-nt RNA molecules generated
by double-stranded RNA (dsRNA) precursors have been
found to act as novel regulators of gene expression by
participating in different RNA silencing processes that
are collectively referred to as RNA-mediated interference
(RNAi) (12-15). This regulation can drastically affect
genome function, e.g. by affecting chromatin structure,
transcription, RNA processing, RNA stability and trans-
lation (16,17). RNAIi has also emerged as an extremely
powerful tool for functional genomic analyses in many
organisms. For a long time, one method to interfere
with expression of a target gene had been the stable trans-
formation of constructs expressing a gene or gene frag-
ment in the anti-sense orientation (18,19). Subsequently,
the discovery that the ultimate trigger for gene silencing
was double-stranded RNA revealed that this process can
be enhanced by simultaneous sense and anti-sense expres-
sion or by the direct production of high levels of dsSRNA
from inverted repeat constructs. Although exogenously
triggered RNA silencing remains one of the least under-
stood silencing systems (13), in the last years many
attempts have been made to improve the technology
(20-23), and to define optimal knockdown constructs
for stable, efficient and high-throughput gene silencing in
plants and animals (24-27).

In this report, we have investigated the possibility
of achieving gene silencing in the diatom model species
P. tricornutum by introducing constructs that express
anti-sense or inverted-repeat containing RNAs. We show
that a GUS reporter gene expressed in a transgenic line
can be successfully silenced using both types of constructs,
revealing for the first time the presence of a functional
silencing machinery in diatoms and demonstrating the fea-
sibility of targeted gene knockdown in these organisms.
Additionally, we show that expression of two endogenous
P. tricornutum genes, encoding phytochrome (Dphl) and
cryptochrome/photolyase family 1 (CPF1), can also be
modulated using a similar approach. A detailed in silico
analysis of the diatom genomes for known components
of the RNAi pathway indicates that molecular
players involved in RNA silencing in other eukaryotes
are only poorly conserved in diatoms, and that distantly
related proteins may fulfil their function in these
organisms.

MATERIALS AND METHODS
Cell culture

The CCMP632 strain of P. tricornutum Bohlin was
obtained from the Provasoli-Guillard National Center
for Culture of Marine Phytoplankton. Cultures were
grown in f/2 medium (28) at 18°C under white fluorescent
lights (70 pmolm 's '), 12h:12h dark-light cycle.
Analyses of the wild-type and knockdown mutants have
been performed on cells in exponential phase of growth
and collected simultaneously, 4 h after the beginning of the
light period.
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Gene silencing vectors

GUS, Dphl and CPF1 silencing vectors were generated
and introduced in P. tricornutum as described in
Supplementary Data.

GUS assay

Histochemical assays were performed on cells grown on
plates (11). For spectro_}ahotometric assays, a cell pellet
corresponding to 5 x 10" cells was resuspended in 120 ul
GUS extraction buffer (S0 mM NaP pH 7, 10 uM B-mer-
captoethanol, 0.1% Triton X-100), twice frozen and
thawed and finally centrifuged at 15000¢ for Smin at
4°C. GUS assays were performed by incubating 10 pg of
total protein extract with the substrate p-nitrophenyl
glucuronide (PNPG) at 1 mM final concentration. After
a 2-h incubation at 37°C, the reaction was stopped by
adding 0.4ml 2.5M 2-amino-2methyl-1,3 propandiol and
absorbance was measured at 415nm. Enzymatic activity
was calculated on the basis of the OD recorded and
the molar extinction coefficient of the GUS substrate
p-nitrophenol (29). The percentage of GUS activity in
the silenced clones was normalized with the activity in
the Pt/GUS strain (100% activity).

Gene expression and protein analyses

RNA extraction and quantitative real time-PCR (qRT-
PCR) were performed on wild-type cells and on the
GUS, DPHI and CPFI silenced lines as described in
Supplementary Data and (6). Proteins were extracted
and analysed by western blotting as described in
Supplementary Data.

DNA methylation analyses

McrBC PCR. Genomic DNA (600 ng) was digested over-
night at 37°C with the McrBC enzyme (BioLabs), which
requires GTP as cofactor. The presence of methylated
sites was verified by performing a PCR on the GUS
gene. As negative control, the same amplification reaction
was performed on DNA digested with McrBC without
GTP. Different fragments were amplified by PCR: the 5
fragment of the GUS gene, corresponding to the first
998 bp, using the primers /Gusfw and Guslrv; the 3’ frag-
ment, covering the 945-1807-bp sequence with primers
3Gusfw and 4Gusrv; the promoter and terminator regions,
amplified with primers FepBfw and Gusrvl, and 5Gusfw
and FcepArv, that yield 600-bp and 240-bp products,
respectively. As an independent control, the full-length
CPFI of 2000bp was amplified with primers CpfIfw
and Cpflrv. For primer sequences see Supplementary
Data.

Bisulfite sequencing. Genomic DNA from the fir-1 RNAi
clone was treated with bisulfite using the MethylCode
Bisulfite Conversion Kit (Invitrogen). The converted
DNA was subsequently amplified by PCR with
AccuPrime™ Taq DNA Polymerase (Invitrogen) using
a combination of primers for sense and anti-sense ampli-
fication of the FcpBp-GUS-FcpA3' region (Supplemen-
tary Data). PCR products were cloned in pCR2.1
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vectors using TA cloning kit (Invitrogen) and transformed
into TOP10 Escherichia coli. Positive colonies were iden-
tified by PCR, and products were subsequently sequenced.
From each pair of primers, 8—12 reads were then aligned
with the fir-1 construct using ClustalW to identify methy-
lated (unconverted) cytosine residues.

UV damage response

Different dilutions of wild-type and ¢pfI mutant cells
(3x10° 2.5%x10°, 1.5x10° and 1.25x 10° cells) were
spotted on f/2 agar plates. Cells were irradiated with UV
light at 100J/m~ using an UV Stratalinker (Stratagene)
and were then transferred under white light to promote
photoreactivation. Plates inoculated in an identical
manner but without UV exposure were used as control.
Cell survival after UV exposure was monitored after
1 week of growth under normal Ilight conditions.
Experiments were repeated three times with similar results.

Sequence and phylogenetic analyses

We examined the P. tricornutum and T. pseudonana
nuclear genomes for the presence of genes encoding
RNAIi components as described in Supplementary Data.
The phylogenetic tree of Ago-Piwi family proteins was
constructed with the AGO-PIWI domain using the
Neighbor Joining method with the Mega 4 platform (30).

A wild-type
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RESULTS AND DISCUSSION
Silencing of a GUS reporter gene in P. tricornutum

In order to establish a gene silencing methodology for
diatoms we first targeted a reporter gene expressed in a
transgenic line, as has been done in other organisms
(31,32). We specifically used B-glucoronidase (GUS)
because GUS activity can be easily detected and quantified
in diatoms (Figure 1A) (11).

Due to the pioneering nature of the work, different con-
structs were generated containing either anti-sense or
inverted repeat fragments of the GUS gene (Figure 1B).
To increase the number of silenced transformants and to
make the screening more efficient, we cloned the GUS
fragments as part of a transcriptional fusion downstream
of the selectable Sh ble gene, which confers resistance
to the antibiotic phleomycin (11). To drive transcript
expression, we tested two different P. tricornutum promot-
ers, FcpBp and H4p, from the Fucoxanthin Chlorophyll
a/c-binding Protein B and a Histone H4 gene, respectively.
The FcpB promoter is routinely used to obtain strong
expression of transgenes in P. tricornutum (33,34) and
the H4p, although weaker, has been recently identified
as a good candidate to drive constitutive expression (6).
To determine whether anti-sense RNA length could also
affect silencing efficiency, we generated different anti-sense
constructs containing GUS fragments of 240 and 390 bp.
The constructs containing the inverted repeat GUS

Pt/GUS

H4
200 bp ( -

Antisense constructs {

H4;
Inverted repeat

constructs FepBp

8.5 GUS units/pg protein

phleoR GUS  FcpA%

(hla)

hleoR GUS FcpA3’
(hsa)

FcpB| hleoR GUS  FcpA3’
(fla)

FcpB| hleoR GUS FcpA3’
(fsa)

hleoR GUS GUS FcpA3
(hir)

phleoR GUS GUS FcpA%

(fir)

Figure 1. (A) Wild-type (left) and transgenic P. tricornutum cells (right) expressing the GUS gene, grown on agar plates and stained for GUS activity.
Groups of cells are shown in blow up. GUS activity in the Pt/GUS strain used for the silencing analysis is indicated. (B) Schematic maps of the anti-
sense and the inverted repeat constructs. Anti-sense constructs: GUS fragments of 240 or 390 bp cloned between the stop codon of the selectable
Sh ble gene and the diatom FcpA terminator region. Inverted-repeat constructs: the GUS fragments were cloned in sense and anti-sense orientation.
The region of self-complementarity is shown in blue, whereas the non-complementary region (corresponding to the spacer) is indicated by the
diagonal lines. H4p (Histone 4 promoter), FcpBp (Fucoxanthin Chlorophyll a/c-binding Protein B promoter).
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Figure 2. Molecular analysis of silenced clones. (A) PCR analysis of the full length GUS gene in the untransformed wild-type strain (wt), in the
transgenic GUS expressing cells (Pt/GUS), and in selected silenced clones. M, 1 Kb DNA size marker. (B) GUS activity of the clones shown in (A).
Values are normalized to the mean GUS activity of the Pt/GUS strains (100% activity). Pt/GUS data are the mean of 10 independent sub-clones
from the GUS parental transgenic strain. (C) Relative GUS mRNA levels analysed by qRT-PCR in the same strains, and normalized with respect to

the expression of an internal standard RPS gene.

fragments were expected to encode for RNAs that fold
into hairpin structures. As it has been shown that the
presence of a spacer between the self-complementary com-
ponents increases the stability of the hairpin structure (35),
we cloned a long sense fragment and a shorter anti-sense
fragment, complementary only for 240 bp and generating
a loop of 150 bp after annealing (Figure 1B).

The different constructs were introduced in a transgenic
P. tricornutum line expressing the GUS reporter gene
(Pt/GUS) and putative transformants expressing the
silencing construct were first selected on phleomycin.
A preliminary screening of GUS expression levels per-
formed by histochemical assays indeed indicated that
around 50% of clones displayed a reduced GUS staining
(data not shown). We therefore initiated a more detailed
analysis by randomly selecting 10 independent antibiotic
resistant clones as well as 10 sub-clones from the parental
Pt/GUS strain. In each case, the presence of the full-length
GUS gene was verified by PCR, and the level of GUS
activity quantified (Figure 2 and Supplementary Table 1).

Using both anti-sense and inverted repeat constructs
driven by the FcpB promoter, at least five clones out of
10 showed significantly reduced GUS activity compared to
the parental strain (Supplementary Table 1). With the
inverted repeat constructs (fir) two clones showed a level
of GUS activity below 25% and three others around 50%.
Similar results were obtained with the anti-sense short
fragment (fsa), while the long anti-sense fragment (fla)
had an even more pronounced effect, with nine clones
out of 10 displaying GUS activity equal or lower than
25% of the parental strain (Supplementary Table 1).
Fewer phleomycin resistant clones were obtained with
the H4 promoter. Nevertheless, more than half of the
transformants showed a significant reduction in GUS
activity: with the inverted repeat constructs (hir), two
clones displayed GUS activity levels close to 50% of the
parental strain, and four others below 25%
(Supplementary Table 1). With the H4p anti-sense con-
structs, PCR-analysis revealed loss of the GUS transgene
in 6 out of 20 transformants, likely occurring before and
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independently of the transformation event. These clones
were not considered in further analyses. However, of the
remaining clones, six displayed at least 4-fold reduction of
GUS activity with the short fragment (hsa), and two with
the long fragment (hla). In contrast, independent sub-
clones from the parental Pt/GUS strain did not exhibit
significant reduction in GUS activity over time (Figure 2
and Supplementary Table 1).

Taken together, the percentage of clones with reduced
GUS activity was significant. Both anti-sense and inverted
repeat constructs driven by FcpB or H4 promoters
appeared to be similarly effective in repressing transgene
expression, in contrast with what is observed in higher
plants and in animals, where constructs containing
both sense and anti-sense components are generally
more efficient than those containing a single gene fragment
(36,37). Further analyses using different GUS anti-sense
and inverted repeat fragments and different target genes
(transgene and endogenous) will be necessary to assess the
generality of this unexpected result.

Silencing stability

We performed GUS assays on the resistant clones after 1
month and after 1 year to test silencing stability. For the
clones used for molecular analysis, the assay was repeated
every 2 months. As shown in Supplementary Table 1, the
level of GUS activity did not change after 1 month and
most of the clones examined maintained similar GUS
activities even after 1 year, indicating that silencing was
stable. However, a few clones (13%) recovered GUS activ-
ity similar to that of the parental strain after 10 months
or 1 year, indicating a loss of the phenomenon. As the
clones were maintained under antibiotic selection and
the transgenes were still stably integrated in the genome
(data not shown), it is likely that silencing was lost at a
step downstream of transgene expression or that the silen-
cing construct got silenced itself through expression
of GUS transgene mRNA. We did not observe any clear
difference in silencing stability with the inverted repeat or
anti-sense constructs, or with different promoters driving
expression of the transgenes.

Molecular analysis of clones with reduced GUS activity

Amplification of the full-length GUS gene in almost all
the clones analysed indicated that the reduction in GUS
activity was not due to loss of the transgene (Figure 2A
and Supplementary Table 1). The integrity of the regula-
tory promoter and terminator regions was also confirmed
by Southern blot analysis (Supplementary Figure S1). To
investigate whether the attenuation of GUS activity was
the result of reduced GUS mRNA levels, we selected two
clones from each transformation series for gRT-PCR ana-
lysis. As shown in Figure 2C, steady-state levels of the
GUS transcript were reduced to an extent that correlated
with GUS activity. These results clearly indicated that for
the tested constructs, GUS gene silencing is associated
with a reduction in transcript abundance.

As yet uncharacterized factors such as transgene copy
number or site of integration in the genome might explain
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the observed variability in the silencing level, as also
shown in other organisms (38-40).

To exclude that reduction in GUS transcript could
result from a general inhibition of gene expression by
dsRNAs, the mRNA levels of four different genes (actin,
ubiquitin, cdkA and RPS) were analysed by qRT-PCR.
This revealed no significant variation between the Pt/
GUS parental strain and selected clones, indicating that
reduction in GUS mRNA level is specifically triggered
by the silencing constructs (Supplementary Figure S2).
Additionally, we also quantified GUS activity in 10 inde-
pendent Pt/GUS clones transformed with an unrelated
dsRNA construct. This was achieved using an hir
construct that is able to functionally target the diatom
NOA gene (34) for downregulation (Rogato,A. and
Falciatore,A., unpublished). None of the hir:NOA trans-
formants showed a significant reduction in GUS activity
(Supplementary Figure S3A and B). The reported minor
variations might be due to residual nonspecific transgene
silencing or to variation in transgene expression during
subcloning or to the indirect effect of NOA gene silencing,
since it is known that this gene plays a role in the modu-
lation of stress responses (34).

De novo cytosine methylation is associated with GUS
transgene silencing

Since it has been shown that exogenously synthesized
dsRNAs can inhibit the expression of a specific gene
of interest by triggering post-transcriptional mRNA clea-
vage, we searched for the presence of small RNAs com-
plementary to the GUS transcript using standard
procedures (31). Based on preliminary data, we were not
able to detect fragments of 20—30 nt in the silenced clones
(data not shown), although we cannot exclude that the
methods for identification of these molecules need to be
optimized in diatoms.

Small RNAs can also trigger transcriptional gene silen-
cing (TGS) associated with DNA modification and chro-
matin remodelling (41,42). We therefore investigated the
appearance of DNA methylation within the GUS gene of
silenced clones using the McrBC methylation-restriction
system (Figure 3A). The parental transgenic line did not
show any difference in amplification of the GUS gene
after McrBC treatment. By contrast, in silenced clones
the partial or total failure to amplify the GUS gene from
MecrBC-treated genomic DNA indicated that the gene was
indeed methylated. Reduction in PCR amplification
was observed for the 5 region (PCR2) and for the 3’
region (PCR3). As both the anti-sense and inverted-
repeat constructs were only complementary to the 3’ end
of the GUS gene, these results suggested a spreading of
methylation along the gene sequence. Consequently, we
also checked for possible methylation of the promoter
and terminator regions of the chimeric GUS gene (PCRI1
and 4, Figure 3A). While reduced amplification products
were observed using primers specific for the terminator
sequence (PCR4), no differences with the parental Pt/
GUS strain were detected when amplifying the FcpBp
promoter, suggesting that only the transcribed region
was modified in the silenced clones.
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Figure 3. De novo cytosine methylation in silenced clones. Methylation
analysis performed on the Pt/GUS expressing cells, and on selected
silenced clones. (A) PCR amplifications performed on genomic DNA
digested with McrBC, in the presence (+) and absence (—) of GTP,
using primer sets specific for the GUS transgene and its regulatory
regions. PCR analysis shows the amplification of the FcpBp region
(PCR1), amplification of the first (PCR2) and second (PCR3) half of
the GUS gene, the terminator region (PCR4), and amplification of the
CPFI gene used as control. Arrows indicate the bands corresponding
to the expected amplification products. M, 1-kb DNA size marker.
Schematic representation of the genomic region used for the analysis
and the region targeted for silencing is indicated above. (B) Schematic
representation of the methylation profile obtained by bisulfite sequen-
cing of the fir-1 clone. Vertical bars show the distribution of mC in the
sense and anti-sense strands. The targeted region is indicated.

We subsequently used bisulfite sequencing to quantify
cytosine methylation and to characterize methylation pro-
files in the fir-1line. The analysis confirmed DNA methy-
lation in the silenced line, revealing a total of 17 mC, all in
a CG context, 15 of them being found symmetrically on
both sense and anti-sense strands, while two were found
only on the anti-sense strand (Figure 3B). Six of these sites
were located in the silencing region. Cytosine methylation
was also found outside of this region, with three
mCs located immediately downstream and the remaining
sites spreading further upstream up to the promoter.
Introduction of the silencing vector in the GUS expressing
line therefore caused de novo DNA methylation within the
targeted region as well as methylation spreading along
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the transcribed region, as also observed in plants (43,44).
It thus seems that the production of dsSRNAs in P. tricor-
nutum feeds backward to alter chromatin structure at the
level of DNA regions with which they share sequence
identity by the process called RNA-directed DNA methy-
lation (RADM) (45). No cytosine methylation at CHG or
CHH sites was found, suggesting that RNAi-induced de
novo methylation in P. tricornutum may occur only in the
CG context.

All together, these results indicate that in silenced
clones, generated with both the anti-sense and inverted-
repeat constructs, methylation marks correlate with tran-
scriptional (or post-transcriptional) silencing of the GUS
transgene. Although more analysis will be required
to characterize the small RNAs and effector proteins puta-
tively associated with this phenomenon, computational
analyses revealed the presence of putative DNA methyl-
tranferase genes (DMT) likely implicated in both de novo
and maintenance cytosine methylation (data not shown).
Interestingly, one of these encodes a bacterial DNMTI
orthologue. Association of cytosine methylation to trans-
gene silencing is of particular interest since it has also been
found in the sequences of diatom transposable elements,
likely implicated in the control of their mobility under
stress (Maumus,F. et al., sumbitted). This might suggest
the presence of a surveillance system against foreign
DNAs that might act through chromatin-targeted
RNAI, as shown in other organisms (14).

Silencing of the endogenous P. tricornutum DPHI and
CPFI genes

In order to test whether endogenous genes could also be
silenced, we attempted to knockdown the expression of two
putative photoreceptors identified in the P. tricornutum
genome: the phytochrome (Dphl) and cryptochrome/
photolyase family protein 1 (CPF1). Different vectors con-
taining inverted repeat sequences from the DPHI and
CPF1 genes were generated. To drive DPH]I silencing, a
vector whose expression was under control of the FcpBp
was tested (fir-Dphl), whereas vectors containing the
FepB or the H4 promoters were constructed for CPFI
down-regulation (fir-CPF1 and hir-CPF1) (Figure 4A
and B). The targeted regions corresponded to the 5 and
3’ regions, respectively, of DPHI and CPFI (Figure 4C
and D). Putative silenced clones were screened by immu-
noblot for decreased Dphl and CPF1 content using spe-
cific antisera generated in the laboratory. From a total of
70 transgenic clones, six displayed reduced amounts of
Dphl protein, ranging between 25 and 50% of wild-type
levels. Three of these clones (dphl-1, dphl-2 and dphl-3)
are shown in Figure 4E. For CPF1, from a total of 50
transformants, five displayed protein levels between 10
and 30% of wild-type levels. The use of the H4 and
FepB promoters gave similar results: two of the silenced
clones were obtained from screening 28 transformants
containing the vector fir-CPF1 (clones ¢pfI-1 and cpfi-2
in Figure 4F) and three from a screen of 22 transformants
containing vector hir-CPF1 (¢pfI-3 in Figure 4F). These
data are the first to show silencing of endogenous diatom
genes, and confirm a silencing efficiency of around 10%.
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Figure 4. Silencing of endogenous DPHI and CPFI. (A and B) Schematic representation of the fir-Dphl and hir- and fir-CPF1 constructs used for
transformation. (C and D) Schematic representation of DPHI and CPFI targeted regions. (E and F) Analysis of Dphl and CPF1 protein levels by
immunoblot in independent silenced lines (clones dphl-1 to dphl-3, and clones cpfi-1 to cpfi-3). Dphl and CPF1 protein levels were quantified using
a serial dilution of proteins from wild-type cells as standard. The same membranes were incubated with D2, and histone H3 antibodies as loading
control, respectively. (G and H) DPHI and CPFI mRNA levels in the silenced clones quantified by qRT-PCR. Normalization was done relative

to RPS mRNA.

CPFI silencing was stronger than that observed for
DPHI. This could possibly be due to the different target
regions. However, other factors such as sequence compo-
sition, spatial and temporal gene expression patterns, and
RNA turnover rates of the targeted gene might affect
silencing effectiveness (46).

As diatoms are routinely grown under light/dark cycles
and CPF1I expression is moderately induced by light (47),
we wanted to test silencing stability under different light
conditions. Results shown in Supplementary Figure S4
indicate that CPF1 protein content could be reduced
to non-detectable levels in dark-adapted cells. Light-
induction of the CPFI gene by 3-h light treatment could
nonetheless stimulate the appearance of some protein,
which might correspond to residual levels of CPFI
mRNA accumulation when the silencing machinery has
to compete against increased gene expression. The fir-
CPF1 vector seemed slightly more efficient in maintaining
silencing after the light shift. Since it is known that the
FepB gene is light induced (6), it is likely that expression
of the silencing construct under FcpBp might also increase
following the light treatment.

Cross-hybridization using both antibodies showed
that the reduction in protein levels was specific for each
targeted gene (Figure 4E and F). Each protein also accu-
mulated to wild-type levels in a silenced Pt/GUS trans-
genic line and in Pt/GUS transformed with an unrelated
hir construct for NOA gene silencing, showing the

specificity of targeted down-regulation (Supplementary
Figure S3).

Surprisingly, analysis of DPHI and CPFI mRNA levels
by qRT-PCR gave strikingly opposite effects: while CPFI
mRNA was reduced to an extent that correlates with pro-
tein abundance, DPHI mRNA exhibits a normal, if not
elevated, level as compared to wild-type (Figure 4G and
H). Remarkably, analysis of P. tricornutum cells silenced
in other endogenous genes such as NOA also revealed
normal transcript levels (data not shown). Altogether the
data suggest the existence of two possible silencing
mechanisms based on transcriptional and/or mRNA
slicing for the GUS transgene and the CPFI endogene,
while DPHI downregulation might be affected through
translation inhibition. Further characterization of these
lines and the possible identification of small RNAs will
help deciphering silencing mechanisms in marine diatoms.

cpf1 phenotype analysis

Recently the biochemical characterization of P. tricornu-
tum CPF1 revealed that this protein is a novel blue-light
sensor displaying DNA repair activity. Additional analy-
sis in diatoms over-expressing CPFI demonstrated
that the protein also acts as a transcriptional regulator
(47). We therefore performed a phenotypic characteriza-
tion of the ¢pf7 knockdown mutant by testing UV sensi-
tivity. As shown in Figure SA, ¢pf1-1 showed substantially
reduced survival after exposure to UV compared to the
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Figure 5. Effect of CPFI downregulation on UV damage response and light-induced gene expression. (A) cpfI-1 growth defect after UV-C irradia-
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mRNA levels in 60-h dark-adapted cultures and then exposed for Smin to 3.3 umol m ?s ' of blue light. Relative transcript levels were determined by
gRT-PCR using RPS as a reference gene. Values were normalized to gene expression levels in the dark.

wild type, thus confirming a role in repair of UV damage.
Moreover, a role in blue-light regulated gene expression
was also verified by checking the expression of genes
encoding fucoxanthin chlorophyll «/c-binding protein
(FCP ajc) and glutamine synthetase (GLNAII) in dark-
adapted cells exposed to a 5-min pulse of low-intensity
blue light (Figure 5B). The results indicated that the
expression of the FCP a/c gene was significantly dam-
pened in the knockdown mutant compared to the wild
type, whereas expression of the GLNAII was enhanced.
By contrast, opposite responses were reported in
the over-expressing lines (47). These analyses represent
the first phenotypic characterization of a diatom knock-
down mutant demonstrating the utility of the approach
for gene function studies.

Identification of genes encoding putative components
of the RNAi machinery in diatom genomes

The successful demonstration of GUS, CPFI and DPH]I
gene silencing prompted us to examine the available
diatom genome sequences for genes encoding putative
components of the RNAi machinery identified in other
organisms. In particular we searched for genes encoding
putative Dicer, Argonaute-Piwi and RNA-dependent
RNA polymerase (RdRP), key RNAi components already
present in the last common eukaryotic ancestor and that
have significantly expanded and diversified in multicellular
eukaryotes (48). These core components are also present
in unicellular eukaryotes with relatively large genomes
such as Chlamydomonas reinhardtii, but not in green and
red unicellular algae with small nuclear genomes (49),
suggesting an independent loss of the machinery during
eukaryotic evolution.

Dicer homologues, which process dSRNA precursors to
small RNA molecules of ~21-24nt, typically contain an
amino-terminal DEADc¢/HELICASEc domain, followed
by a domain of unknown function (DUF283), a
PAZ domain, two neighbouring RNase III domains
(RNase IIla and RNase IIIb), and a double-stranded

RNA-binding domain (dsRBD) (Figure 6A). Previous
analysis in the diatom genomes indicated the absence of
a canonical Dicer in these organisms. However, this over-
all gene structure organization does not apply to all organ-
isms. For instance, the Dicer-like protein 1 (DCL1) from
the ciliate protozoan Tetrahymena thermophila (a chro-
malveolate) only contains the two RNase III domains
and a dsRBD domain (50). The Giardia intestinalis (an
excavate) DCLI1 (51) consists of a PAZ domain, a diver-
gent DUF283 motif and two adjacent RNase III domains.
Remarkably, the highly divergent Trypanosoma brucei
(another excavate) Dicer-like 1, which contains only two
RNase III domains, drives the RNA interference pathway
in this organism (52). Therefore, to date, the only univer-
sal feature of the Dicer family is the presence of two
RNase III domains. We thus searched both diatom gen-
omes for candidate gene models matching these criteria. In
the T. pseudonana genome we found a gene model encod-
ing a protein with two RNase III domains (Tp3_11638)
and in P. tricornutum another (Pt2_48138) containing a
dsRBD followed by two RNase III domains (Figure 6A
and Supplementary Table S2). Therefore, putative
diatom Dicer-like proteins are only distantly related to
the multi-domain proteins identified in plants and ani-
mals, although the conservation in terms of domain struc-
ture and key amino acid residues with other eukaryotes
(Supplementary Figure S5A) (53), particularly from chro-
malveolates, may support their role as bona fide Dicers.

Interestingly, we identified an additional gene model
(Tp3_20605) in the T. pseudonana genome that may play
a role in RNA silencing (Supplementary Table S2).
This protein displays a domain association that we could
not find in any other organism, consisting of a DEADc/
HELICASEc followed by a C-terminal dsRBD. The
DEAD/HELICASEc domain from this protein has
homology with the DEAD/HELICASEc domains in a
range of Dicer-like proteins.

The Argonaute proteins, core components of the effec-
tor RNA-induced silencing complexes (RISC), are classi-
fied into three paralogous groups: the Argonaute-like
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Figure 6. Possible candidates for diatom Dicer-like and AGO-like RNAi components. (A) Schematic representation of domains found in various
Dicer (Dcr) and Dicer-like (Dcl) proteins. Domain abbreviations: DEXDc/HELIc, DEAD-like helicase domain/helicase C-terminal domain; DUF283,
DUF283 domain; PAZ, PAZ domain; RNAselll (a-b), ribonuclease 111 domains a and b and dsRBD, double-stranded RNA-binding domain.
Species abbreviations: Cr, Chlamydomonas reinhardtii; Gi, Giardia intestinalis; Hs, Homo sapiens; Pt, Phaeodactylum tricornutum; Tb, Trypanosoma
brucei; Tp, Thalassiosira pseudonana; Tt, Tetrahymena thermophila. (B) Phylogenetic analysis of the diatom Argonaute-like proteins. Phylogenetic tree
constructed using the MEGA 4.0 platform with the Neighbor-Joining method from a MUSCLE alignment of the PAZ and AGO domains from Ago-
like, Piwi-like, Caenorhabditis elegans-specific group 3 Argonautes, prokaryotic Argonautes, and the putative diatom Ago-Piwi-like proteins identified
in this work. The alignment was manually refined to remove gaps and erroneous positions. Numbers indicate interior branch bootstrap values as
percentage, based on 1000 pseudoreplicates (only values >60% are shown). Species abbreviations and accession numbers of proteins used to draw the
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(Dd AgnA EAL69296, Dd AgnC EAL71514); Dm, Drosophila melanogaster (Dm Agol BAAS8078, Dm Ago2 Q9VUQS, Dm Aub CAA64320, Dm
Piwi QOVKM); Eh, Entamoeba histolytica (Eh EALS51127); Gi, G. intestinalis (Gi GLP XP779885); Hs, H. sapiens (Hs Agol AAH63275, Hs Hiwi
AAC97371); Nc, Neurospora crassa (Nc Qde2 AAF43641, Nc Sms2 AAN32951); Pf, Pyrococcus furiosus (Pf Ago gi62738878); Pte, Paramecium
tetraurelia (Pte Ptiwi05S CAI44468, Pte Ptiwil0 CAI39070, Pte Ptiwil3 CAI39067, Pte Ptiwil5 CAI39065); Sp, Strongylocentrotus purpuratus
(Sp Agol XP782278, Sp Seawi AAG42533); Spo, Saccharomyces pombe (Agol O74957); Tb, T. brucei (Agol O74957); Tt, T. thermophila
(Tt Twilp AAM77972, Tt Twi2p AAQT74967); Ps, Phytophtora sojae (1109613, 1157728); Pt, P. tricornutum (FJ750269); Tp, T. pseudonana
(FJ750270).
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(AGO-like) proteins, similar to Arabidopsis thaliana
AGOIl, the Piwi-like proteins, related to the Drosophila
melanogaster PIWI, and the recently identified
Caenorhabditis elegans-specific group 3 Argonautes (15).
Animals have retained members of both the AGO-like and
Piwi subfamilies, whereas the different Argonautes identi-
fied in green algae and plants all belong to the AGO-like
subfamily (15,54). The Argonaute proteins involved in
RNAi pathways always contain distinct functional
domains: a variable N-terminal domain and conserved
C-terminal PAZ, MID and PIWI domains (15). The
PIWI domain often has endonuclease activity, although
this activity is not essential for RNAIi regulation function.
Putative proteins containing these domains were identified
both in 7. pseudonana (Tp3_1029) and P. tricornutum
(Pt2_47611; Supplementary Table S2). Multiple alignment
of the Ago-Piwi domain from diatoms with other Ago-
Piwi proteins revealed significant conservation, although
the catalytic site for endonuclease activity was only poorly
conserved (55) (Supplementary Figure S5B). Phylogenetic
analysis of the diatom Argonautes with proteins identified
in other eukaryotes revealed that they cluster together
in a clade only distantly related to the known paralogous
groups mentioned above (Figure 6B), suggesting a possi-
ble functional specialization.

In some eukaryotes, RARPs are also involved in the
silencing process (56). By generating dsRNA from
single-stranded transcripts, RARP may be involved in
the initiation of RNAIi or in the amplification of the
response by increasing the amount of dsRNA (48). We
found a gene encoding putative RARP in P. tricornutum
(Pt2_45417) and two in T. pseudonana (Tp3_8685 and
Tp3_5028; Supplementary Table S2).

Recently, analysis of diatom genomes has revealed an
extraordinary combination of novel genes with the poten-
tial to encode innovative metabolisms (5). Additionally,
phylogenetic analysis of P. tricornutum genes indicates
that at least 5% of the genome is derived from bacterial
orthologues, an unusually high number for a eukaryote
(5). Thus, besides the proteins described above and
reported in Supplementary Table S2, it is likely that
novel proteins and protein complexes, perhaps also of
prokaryotic origin, are involved in the RNA regulation
and related silencing processes described in this work.
The functional and biochemical characterization of
diatom silencing complexes will therefore be of great inter-
est and will be necessary to decipher the key components
of the silencing machinery in these organisms.

CONCLUSIONS

In this work, we have demonstrated the feasibility
of establishing gene silencing in the model diatom
P. tricornutum. A range of different constructs was first
tested to trigger GUS transgene silencing and to provide
evidence for the effectiveness of the methodology.
Subsequently, inverted-repeat vectors were also used to
successfully suppress expression of the endogenous
DPHI and CPFI genes. A significant reduction in endo-
genous targeted protein content was observed in different

PAaGce 100F 12

transgenic lines, and the first phenotype resulting from
gene knockdown in a marine eukaryotic phytoplankton
organism has been reported. Together with the two
genome sequences that are now available, the possibility
of dissecting gene function through reverse genetics
represents a major advance for understanding diatom
biology and the mechanisms underlying the success of
these organisms in the oceans. The recent development
of a transformation system for 7. pseudonana (57) opens
the way for targeted gene silencing in this diatom as well,
and in the absence of other gene inactivation approaches
we expect that the technique reported here will become
widely employed.

The initial characterization of the silenced clones
presented in this work strongly supports the presence of
functional gene silencing pathways in diatoms, acting
through inhibitory transcriptional and post-trascriptional
mechanisms. Notwithstanding, in silico characterization
of non-canonical components of the RNAi machinery
(specifically Dicer-like and RISC machinery) and the ini-
tial molecular analysis of knockdown mutants also indi-
cate a possible diversification of the underlying silencing
mechanisms. Thus, deciphering the diatom RNAi machin-
ery will now be necessary to characterize the RNAi com-
ponents proposed in this work and to assess the presence
of silencing-induced small RNAs. Remarkably, endogen-
ous small non-coding RNAs (and putative miRNAs) have
been recently identified in P. tricornutum by small-RNA
library sequencing (Hess,W., Voss,B. and Falciatore,A.,
unpublished data). Hence, marine diatoms also represent
an attractive model to study evolution and differentiation
of RNAIi mechanisms in eukaryotes.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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