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Abstract: Background: Radiomics shows promising results in supporting the clinical decision pro-

cess, and much effort has been put into its standardization, thus leading to the Imaging Biomarker 

Standardization Initiative (IBSI), that established how radiomics features should be computed. 

However, radiomics still lacks standardization and many factors, such as segmentation methods, 

limit study reproducibility and robustness. Aim: We investigated the impact that three different 

segmentation methods (manual, thresholding and region growing) have on radiomics features ex-

tracted from 18F-PSMA-1007 Positron Emission Tomography (PET) images of 78 patients (43 Low 

Risk, 35 High Risk). Segmentation was repeated for each patient, thus leading to three datasets of 

segmentations. Then, feature extraction was performed for each dataset, and 1781 features (107 orig-

inal, 930 Laplacian of Gaussian (LoG) features, 744 wavelet features) were extracted. Feature robust-

ness and reproducibility were assessed through the intra class correlation coefficient (ICC) to meas-

ure agreement between the three segmentation methods. To assess the impact that the three meth-

ods had on machine learning models, feature selection was performed through a hybrid descriptive-

inferential method, and selected features were given as input to three classifiers, K-Nearest Neigh-

bors (KNN), Support Vector Machines (SVM), Linear Discriminant Analysis (LDA), Random Forest 

(RF), AdaBoost and Neural Networks (NN), whose performance in discriminating between low-

risk and high-risk patients have been validated through 30 times repeated five-fold cross validation. 

Conclusions: Our study showed that segmentation methods influence radiomics features and that 

Shape features were the least reproducible (average ICC: 0.27), while GLCM features the most re-

producible. Moreover, feature reproducibility changed depending on segmentation type, resulting 

in 51.18% of LoG features exhibiting excellent reproducibility (range average ICC: 0.68–0.87) and 

47.85% of wavelet features exhibiting poor reproducibility that varied between wavelet sub-bands 

(range average ICC: 0.34–0.80) and resulted in the LLL band showing the highest average ICC (0.80). 

Finally, model performance showed that region growing led to the highest accuracy (74.49%), im-

proved sensitivity (84.38%) and AUC (79.20%) in contrast with manual segmentation. 

Citation: Pasini, G.; Russo, G.; 

Mantarro, C.; Bini, F.; Richiusa, S.; 

Morgante, L.; Comelli, A.;  

Russo, G.I.; Sabini, M.G.;  

Cosentino, S.; et al. A Critical  

Analysis of the Robustness of  

Radiomics to Variations in  

Segmentation Methods in  

18F-PSMA-1007 PET Images of  

Patients Affected by Prostate  

Cancer. Diagnostics 2023, 13, 3640. 

https://doi.org/10.3390/ 

diagnostics13243640 

Academic Editor: Dechang Chen 

Received: 30 October 2023 

Revised: 29 November 2023 

Accepted: 8 December 2023 

Published: 11 December 2023 

 

Copyright: © 2023 by the authors. Li-

censee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/). 

ingstefano
Evidenziato



Diagnostics 2023, 13, 3640 2 of 18 
 

 

Keywords: radiomics; prostate; machine learning; 18F-PSMA-1007 PET; segmentation; robustness; 

reproducibility 

 

1. Introduction 

Prostate cancer (PCa) is estimated to be the most prevalent type of cancer in men in 

2023 and the second leading cause of cancer death, only below lung and bronchus cancer 

[1]. Its early diagnosis is commonly carried out through prostate specific antigen (PSA) 

screening, followed up by transrectal ultrasound-guided biopsy (TRUS-biopsy) in men 

who present elevated values of PSA. However, PSA testing includes poor specificity, thus 

leading to patients over treatment and men undergoing unnecessary biopsies [2,3]. More-

over, prostate biopsy is associated with some risks, such as hematuria, infection, pain, 

inflammation and sepsis [4]. Therefore, imaging modalities such as Magnetic Resonance 

Imaging (MRI) have been introduced to support the diagnostic process, providing accu-

rate prostate cancer localization, guiding targeted biopsies and for local cancer staging [5]. 

However, MRI could not be sufficiently accurate in detecting certain portions of prostate 

cancer lesions, that only by adding molecular information provided by Positron Emission 

Tomography (PET) imaging could be identified [6]. Moreover, PET imaging showed ex-

cellent sensitivity and specificity for recurrent prostate cancer and promising results in 

the detection of bone metastasis, especially when the Prostate-specific membrane antigen 

(PSMA) is targeted by radioligands such as 68Ga (Gallium 68) [7,8]. However, its short-

comings related to short-half life, non-ideal energies and difficult production motivated 

the consideration of 18F-labelled analogs, and the 18F-PSMA-1007 has been individuated as 

the candidate compound to overcome such issues [9]. 

Furthermore, radiomics has recently emerged as a promising technique harnessing 

advanced computational methodologies to derive quantitative data from medical images, 

such as PET [10], MRI [11], Computed Tomography (CT) [12], or molecular hybrid imag-

ing [13]. These quantitative metrics are subsequently employed for constructing predic-

tive models that can offer assistance in diagnosing, planning treatment and forecasting 

outcomes across a spectrum of diseases, spanning from oncology [14] to neurodegenera-

tive disorders [15,16]. 

Regarding prostate cancer, PET-based radiomics has been successfully used to pre-

dict intraprostatic lesions [17,18], the low-vs-high lesion risk [19], the Gleason Score (GS) 

[20] and bone metastases [21,22]. However, most of the studies employed 68Ga-PSMA-11 

[17,18], while few radiomics applications investigated the potential of 18F-PSMA-1007 

[20,23]. Moreover, although its several benefits and the publication of the Imaging Bi-

omarker Standardization Initiative (IBSI), that established how radiomics features should 

be calculated [24], radiomics still lacks standardization and the variability in segmentation 

methods, image pre-processing parameters and machine learning pipeline could limit 

study reproducibility [25]. In the literature, there are several studies that investigated the 

impact of segmentation methods on radiomics features [26–28], but none focused on 18F-

PSMA-1007 PET-based images of patients affected by prostate cancer. Therefore, the aim 

of this study is to focus on the impact of segmentation methods on 18F-PSMA-1007 PET-

based radiomics models for the prediction of the high pathological grade in prostate can-

cer and on the robustness and reproducibility of radiomics features to variations in seg-

mentation methods. Furthermore, this study highlights the potential of 18F-PSMA-1007 

PET in differentiating between high-risk and low-risk prostate cancer. 
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2. Materials and Methods 

2.1. Study Design 

Eighty-one patients underwent 18F-PSMA-1007 PET/CT imaging using two different 

scanners (General Electric Milwaukee, WI, USA, Discovery 690FX&MOT and Siemens 

Knoxville, TN, USA, Biograph Horizon 4R). For the first scanner (30 patients), 16 row hel-

ical CT scan was used with the following conditions: tube voltage (140 kVp), tube current (800 

mAmax). PET collection time of every bed was 90 s, the whole-body scanning needed 7–8 beds. 

PET matrix was 256 × 256, and CT matrix was 512 × 512. PET voxel size was 2.73 × 2.73 × 3.27 

mm3 and CT voxel size was 1.37 × 1.37 × 3.75 mm3. For the second scanner (51 patients), 16 row 

helical CT scan was used with the following conditions: tube voltage (130 kVp), tube current 

(345 mAmax). PET collection time of every bed was 90 s, the whole-body scanning needed 6–7 

beds. PET matrix was 512 × 512, and CT matrix was 512 × 512. The PET voxel size was 1.45 × 

1.45 × 3 mm3 and the CT voxel size was 0.98 × 0.98 × 3 mm3. The tracer produced was intrave-

nously injected into patients at a standardized dose of 4 MBq/kg. After the tracer administra-

tion, the patients rested in a quiet room for about 120 min before scanning. 

Inclusion patients’ criteria were: (1) diagnosis of PCa through biopsy; (2) elevated 

serum PSA value; (3) no therapy before PET scan, neither surgery, chemotherapy, radio-

therapy, endocrine therapy, or anything else. Subjects who met the above three criteria 

simultaneously were included in our study. The patients without exhibiting relevant ra-

diotracer uptake above background in the prostate on 18F-PSMA-1007 imaging were excluded. 

Consequently, at least in this phase, only patients with positive PET scans were considered. 

The study complies with the Declaration of Helsinki, and local ethics committee approval was 

obtained (REDIRECT Study, n.101/2022). Finally, the number of patients was further de-

creased to 78 (29 GE Milwaukee, WI, USA, 49 Siemens Knoxville, TN, USA) due to segmenta-

tion reasons explained in Section 2.3. The complete tables are reported in Section 3.1. 

2.2. Gleason Score 

PCa often demonstrates varying levels of aggressiveness across different regions of 

the tumor due to its inherent heterogeneity [29]. To quantify this variation, a grading sys-

tem is used to assign grades to the two primary areas of cancerous tissue under examina-

tion, and the sum of these grades determines the overall Gleason score (GS). In other 

words, the GS is a scale used to assess the severity of prostate cancer based on its biopsy. 

The GS ranges from 6 to 10 and is assigned based on the appearance of cancer cells in 

tissue samples. The higher the GS, the greater the severity of prostate cancer. Specifically, 

the pathologist identifies the two most prevalent patterns of cancerous growth within the 

tissue samples. Each pattern is assigned a grade on the GS, ranging from 1 to 5. The two 

grades assigned to the patterns are added together to obtain the final GS. The first number 

represents the predominant grade within the tumor. For instance, a GS of 3 + 4 = 7 signifies 

that the tumor is predominantly grade 3, with a smaller portion being grade 4. These two 

grades are summed to derive the final GS, which, in this instance, is 7. In general, the 

degree of aggressiveness in PCa can be categorized as follows [30]: 

• GS ≤ 6: Signifying tumors with slow growth tendencies that typically do not metas-

tasize to distant organs beyond the prostate (non-metastatic). 

• GS = 7: Indicating tumors of intermediate aggressiveness. 

• GS between 8 and 10: Corresponding to highly aggressive tumors with a propensity 

for metastasis. 

In our study, tumors with GS 3 + 3 or 3 + 4 were classified as low grade, while tumors 

with GS 4 + 3, 4 + 4, or 4 + 5 were designated as high grade. 

2.3. Segmentation and Segmentation Agreement 

For each patient, image segmentation was performed through both manual and semi-

automated methods to extract PCa volumes from PET studies once uploaded to matRadi-

omics 1.5 [31], a comprehensive radiomics framework that enables the import of 
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biomedical images, the segmentation of the target, the extraction and selection of the ra-

diomics features and the implementation of the predictive model via machine learning 

algorithms within the same software. Regarding the segmentation task, for the manual 

approach, an experienced nuclear medicine physicist (C.M. author) manually performed 

the slice-by-slice delineation. For the semi-automatic approach, we used two semi-auto-

matic segmentation algorithms implemented in matRadiomics 1.5 [31], namely region 

growing [32,33] and thresholding [34,35]. Specifically, both semi-automatic methods were 

initialized drawing a Region of Interest (ROI) that surrounds the target and locates the 

portion of the image that was subsequentially elaborated by the region growing algo-

rithm, based on the “activecontour” MATLAB function [32,33], and the thresholding algo-

rithm [34,35], that uses a percentage of the maximum level of grey in the ROI as a thresh-

old. Since three patients could not be segmented through region growing and threshold-

ing, they were discarded from the total, that decreased from 81 to 78. Figure 1 shows the 

workflow that led from image visualization to image segmentation. Finally, we compared 

the obtained binary segmentations using the Jaccard Index [36] given in the equation be-

low with X and Y being sets of segmentations. 

𝐽(𝑋, 𝑌) =
|𝑋 ∩ 𝑌|

|𝑋 ∪ 𝑌|
=

|𝑋 ∩ 𝑌|

|𝑋| + |𝑌| − |𝑋 ∩ 𝑌|
 (1) 

 

Figure 1. From image visualization to prostate cancer segmentation using manual, thresholding and 

region growing methods. In the image on the left, a PET slice displaying the tumor is visible, while 

on the right, three blue masks enclosing the prostate tumor are shown. These masks, obtained using 

three different segmentation algorithms, are then used to extract the radiomics features. 

2.4. Feature Extraction 

Feature extraction was repeated, for each patient, using the three sets of segmenta-

tions (manual, based on region growing and based on thresholding), ending with three 

datasets of extracted features. A total of 1781 radiomics features were extracted per dataset 

using the Pyradiomics [37] extractor integrated in the matRadiomics software 1.5. Radi-

omics features were extracted from the original images (107), from the wavelet decom-

posed images (744) and from the Laplacian of Gaussian (LoG) filtered images (930), and 

they could be grouped in three categories: (i) Shape features, based on target morphology, 

(ii) First Order Statistics Features, based on the distribution of level of grays within the 

target, and (iii) Texture features based on the pattern of level of grays within the target. 

Furthermore, Texture features could be grouped in the gray level co-occurrence matrix 

(GLCM), gray level run length matrix (GLRLM), gray level size zone matrix (GLSZM), 
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neighboring gray tone difference matrix (NGTDM) and the gray level dependence matrix 

(GLDM) [38–42]. 

The Pyradiomics configuration used in our analysis is reported in Table 1. The other 

parameters were left to Pyradiomics’ default. Figure 2 shows the workflow from feature 

segmentation to feature extraction. 

Table 1. Pyradiomics configuration used for the feature extraction process. 

Bin width 0.25 

Isotropic Resampling 2 × 2 × 2 

Interpolator SitkBSpline 

Wavelet Method Coif1 

Log Sigma [0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5] 

Normalization True; Scale = 1 

 

Figure 2. From segmentation to feature extraction for each segmentation method. The blue area 

that overlays each image represents the generated segmentation mask. 

2.5. Feature Robustness 

After feature extraction, the intraclass correlation coefficient (ICC) was calculated for 

every feature to quantify inter-observer feature reproducibility and consequently feature 

robustness when using three segmentation methods. The ICC score ranges from 0 to 1, 

representing no reproducibility to perfect reproducibility, respectively. Following Koo 

and Li guidelines [43], ICC values have been grouped in ranges, ICC < 0.5, 0.5 < ICC < 0.75, 

0.75 < ICC < 0.9, ICC > 0.9, indicating poor, moderate, good and excellent reproducibility, 

respectively. It was computed using the formula proposed by McGraw and Wong in case 

3A (A,1) [44] to measure absolute agreement as 

𝐼𝐶𝐶 =
𝑀𝑆𝑅 − 𝑀𝑆𝐸

𝑀𝑆𝑅 + (𝑘 − 1)𝑀𝑆𝐸 +
𝑘
𝑛

(𝑀𝑆𝐶 − 𝑀𝑆𝐸)
 (2) 

where MSR =  mean square for rows, MSE  =  mean square error, MSC  =  mean square for 

columns, k =  number of observers involved and n  =  number of subjects, j indicates the j-

th feature and KClass the total number of features for each class. 

The ICCs were consequently averaged by grouping features by feature Class, thus 

obtaining the ICCShape, ICCStatistics, ICCGLCM, ICCGLDM, ICCGLRLM, ICCGLSZM, ICCNGTDM. The 

general formula is 

ingstefano
Evidenziato



Diagnostics 2023, 13, 3640 6 of 18 
 

 

𝐼𝐶𝐶𝐶𝑙𝑎𝑠𝑠 =
1

𝐾𝐶𝑙𝑎𝑠𝑠
 ∑ 𝐼𝐶𝐶𝑗

𝐾𝐶𝑙𝑎𝑠𝑠
𝑗=1   (3) 

Finally, boxplots that summarize the distributions of ICC values were derived, as 

detailed in Section 3, specifically within Section 3.3. 

2.6. Feature Selection and Machine Learning Methodology 

For each dataset of extracted features, feature selection was performed through a hy-

brid descriptive-inferential approach to streamline the feature reduction and selection 

process. This method uses point biserial correlation to assign scores to the features, ar-

range them in descending order based on their scores and then iteratively construct a lo-

gistic regression model, as extensively documented in [45]. To sum it up, during each it-

eration, the model’s p-value is compared to the previous iteration’s p-value. If the p-value 

fails to decrease in the current iteration, the process concludes and the logistic regression 

model is established. We ended with three subsets of selected features (manual, region 

growing and thresholding) that were given as input to six machine learning models, Lin-

ear Discriminant Analysis (LDA), K-Nearest Neighbors (KNN), Radial Basis Function 

(RBF) Support Vector Machines (SVM), Random Forest (RF), AdaBoost and Neural Net-

works (NN). Models’ performances were assessed through 30 times repeated five-fold 

cross validation and accuracy, area under curve (AUC), sensitivity, specificity, precision 

and f score were calculated. Cross validation was implemented in such a way that each 

model was trained and validated with the same folds. 

2.7. Statistical Analysis 

Data were first analyzed through Lilliefors test [46,47], histogram visual inspection 

and q-q plots (quantile-quantile plots) to verify the assumption of normality and using 

Levene’s test [48] to assess homogeneity of variance. Therefore, Kruskal–Wallis test [49,50] 

was used to assess if feature classes (Shape, First Order Statistics, GLCM, GLRLM, 

GLSZM, GLDM, NGTDM) had a statistically significant impact on ICC values for each 

image type (original, LoG, wavelet), Friedman test [51,52] was used to assess if wavelet 

sub-bands (HHH, HLH, HHL, HLL, LLL, LHL, LLH, LHH) had a statistically significant 

impact on wavelet features. Moreover, to assess if models and segmentations had a statis-

tically significant impact on model performance, two separate Friedman tests [26,51,52] 

were performed. Each test was followed by a post hoc test corrected with Dunn–Sidak [53] 

correction for multiple comparisons. Finally, 95% confidence intervals were calculated for 

each model performance through 1000 bootstrapping [54]. 

Statistical analysis was performed using MATLAB R2023b [55]. 

3. Results 

3.1. Clinical Data 

A total of 81 patients were included in this study and they were divided into two 

groups based on their GS score (46 Low Grade, 35 High Grade) as reported in Table 2. 

Table 2. Characteristics of the 81 patients with primary prostate cancer involved in this study. 

PET/CT Scanner Patients 
Low Grade 

GS = 3 + 3/3 + 4 

High Grade 

GS = 4 + 3/4 + 4/4 + 5 

GE 30 20 10 

Siemens 51 26 25 

Total 81 46 35 

After segmentation, because the semi-automated algorithms failed to correctly iden-

tify the tumor region in 3 patients, the total number of patients decreased to 78 (43 Low 
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Grade, 35 High Grade), as shown in Table 3. Specifically, three low-grade GS patients were 

removed from the analysis. 

Table 3. Characteristics of the 78 patients after segmentation. 

PET/CT Scanner Patients 
Low Grade 

GS = 3 + 3/3 + 4 

High Grade 

GS = 4 + 3/4 + 4/4 + 5 

GE 29 19 10 

Siemens 49 24 25 

Total 78 43 35 

3.2. Segmentation Agreement 

The segmentations obtained using manual, thresholding (TS) and region growing 

(RG) methods were compared pairwise through the Jaccard Index. The lowest average 

Jaccard Index value (0.51) was obtained comparing manual and RG segmentations, while 

the highest average Jaccard Index value (0.58) was obtained comparing TS and RG meth-

ods, as shown in Figure 3. 

 

Figure 3. Pairwise segmentation agreement matrix between the three segmentation methods (manual, 

thresholding (TS) and region growing (RG). Numbers represent the average Jaccard Index values. 

3.3. Feature Robustness Results 

After feature extraction, feature robustness was assessed and the results are summa-

rized in the box plots shown in Figures 4–6. Each class of features is represented by a 

boxplot, together with the average ICC value, and each figure is representative of the im-

ages used (original, LoG filtered and wavelet decomposed). For the original images, the 

GLCM feature class reached the highest average ICC value (ICCGLCM-original = 0.89), while 

the Shape feature class reached the lowest (ICCShape-original = 0.27). The GLSZM feature class 

reached the second lowest average ICC value (ICCGLSZM-original = 0.65). For the LoG filtered 

images, the GLCM feature class reached the highest average ICC value (ICCGLCM-LoG = 0.87), 

while the GLSZM feature class reached the lowest (ICCGLSZM-LoG = 0.72). For the wavelet 

decomposed images, the GLCM and the First Order Statistics feature classes reached the 

highest average ICC values (ICCGLCM-wavelet = 0.56, ICCFirst Order Statistics-wavelet = 0.56), while the 

GLSZM feature class reached the lowest (ICCGLSZM-wavelet = 0.44). Complete results are re-

ported in Table 4. Statistical significance between feature class groups was assessed using 

the Kruskal–Wallis analysis and was repeated for each image type (original, log and wave-

let). Since the Kruskal–Wallis tests were significant (pthreshold = 0.05) for each image type 

group (poriginal = 3.5 × 10−7, pLoG = 4.3 × 10−12, pwavelet = 0.0031), they were followed by post hoc 

tests corrected by the Dunn–Sidak correction for multiple comparisons. For the original 

image type, the ICCs of the Shape feature class differed significantly from those belonging 

to the First Order Statistics (pShape-Statistics = 2.1 × 10−6), GLCM (pShape-GLCM = 3.6 × 10−7) and 
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GLRLM (pShape-GLRLM = 0.02) feature classes. For the LoG image type, the ICCs of both the 

First Order Statistics and GLCM feature classes differed significantly from those belong-

ing to the GLSZM (pStatistics-GLSZM = 0.00012, pGLCM-GLSZM = 2.1 × 10−5), GLDM (pStatistics-GLDM = 

1.2 × 10−5, pGLCM-GLDM = 1.8 × 10−6) and NGTDM (pStatistics-NGTDM = 4.2 × 10−5, pGLCM-NGTDM = 1.7 × 

10−5) feature classes. In addition, the ICCs values belonging to the GLDM and NGTDM 

feature classes differed significantly from those belonging to the GLRLM class (pGLDM-GLRLM 

= 0.014, pNGTDM-GLRLM = 0.0057). For the wavelet image type, the ICC values of both the First 

Order Statistics and GLCM feature classes differed significantly from those belonging to 

the GLSZM (pStatistics-GLSZM = 0.0047, pGLCM-GLSZM = 0.0034) feature class. 

 

Figure 4. ICC box plots for the original image type. Mean value expressed by the black numbers 

next to the ‘×’ sign, while the horizontal line is the median. 

 

Figure 5. ICC box plots for the LoG image type. Mean value expressed by the black numbers next 

to the ‘×’ sign, while the horizontal line is the median. 
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Figure 6. ICC box plots for the wavelet image type. Mean value expressed by the black numbers 

next to the ‘×’ sign, while the horizontal line is the median. 

Table 4. Feature robustness results (average ICC) grouped by image type and feature class. The 

hyphen is present where shape features were not computed. 

Image Type Shape Statistics GLCM GLDM GLRLM GLSZM NGTDM 

Original 0.27 0.87 0.89 0.75 0.77 0.65 0.72 

LoG - 0.84 0.87 0.73 0.81 0.68 0.72 

Wavelet - 0.56 0.56 0.51 0.54 0.44 0.49 

As reported in Figure 7, the following results were obtained: 

• Excellent reproducibility (ICC > 0.9) was reached by 51.18% LoG features, 48.60% 

original features and only 9.01% wavelet features. 

• Good reproducibility (0.75 < ICC < 0.9) was reached by 14.02% original features, 

22.47% LoG features and 17.07% wavelet features. 

• Moderate reproducibility (0.5 < ICC < 0.75) was reached by 18.69% original features, 

15.38% LoG features, 26.08% wavelet features. 

• Poor reproducibility (ICC < 0.5) was reached by 18.69% original features, 10.97% LoG 

features, 47.85 % wavelet features. 

Furthermore, as shown in Figure 8, 71.43% Shape features obtained poor reproduci-

bility, and only 7.14% Shape features reached good reproducibility, while excellent repro-

ducibility was reached by 38.30% First Order features, 42.98% GLCM features, 23.31% 

GLDM features, 32.57% GLRLM features, 28.95% GLSZM features and 20% NGTDM fea-

tures. Finally, ICC values were evaluated per wavelet band (HHH, HHL, HLH, HLL, LLL, 

LLH, LHL, LHH), as shown in Figure 9. 
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Figure 7. Frequency of poor, moderate, good, excellent reproducible features divided by image type. 

 

Figure 8. Frequency of poor, moderate, good, excellent reproducible features divided by feature class. 
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Figure 9. ICC box plots for the wavelet sub-bands (HHH, HHL, HLH, HLL, LLL, LHL, LLH, LHH). 

Mean value expressed by the black numbers next to the ‘×’ sign, while the horizontal line is the median. 

The highest average ICC (0.8) was reached by the LLL sub-band, while the lowest 

average ICC (0.34) was reached by the HHL sub-band. 

Since the Friedman test suggested statistical significance (pthreshold = 0.05) between sub-

bands groups, a post hoc test with Dunn–Sidak correction for multiple comparisons was 

performed. It resulted that the ICCs of the LLL sub-band significantly differed from those 

belonging to the other sub-bands (pLLL-LHL = 1.1 × 10−8, pLLL-LLH = 5.0 × 10−8, pLLL-LHH = 6.3 × 

10−5, pLLL-HHH << 0.05, pLLL-HHL << 0.05, pLLL-HLH << 0.05, pLLL-HLL << 0.05). Moreover, the LHL, 

LHH and LLH sub-band ICC values differed significantly from those belonging to HHH 

(pLHL-HHH = 5.6 × 10−11, pLHH-HHH << 0.05, pLLH-HHH = 9.8 × 10−12), HLH (pLHL-HLH = 0.0010, pLHH-

HLH = 4.3 × 10−7, pLLH-HLH = 0.00035), HHL (pLHL-HHL << 0.05, pLHH-HHL << 0.05, pLLH-HHL << 0.05) 

and HLL (pLHL-HLL = 4.19 × 10−9, pLHH-HLL = 5.9 × 10−14, pLLH-HLL = 8.5 × 10−10) sub-bands. In 

addition, the ICC values of the HLH sub-band differed significantly from those belonging 

to the HHL (pHLH-HHL = 3.0 × 10−5) sub-band. The notation p << 0.5 is used instead of p = 0, 

obtained when the p was very low and software precision could not represent it. 

3.4. Feature Selection and Machine Learning Results 

After feature extraction, feature selection was performed on the three datasets of ex-

tracted features (manual, region growing, thresholding). We ended with three subsets of se-

lected features, all containing only one feature, as shown in Table 5. For the dataset based on 

manual segmentation, only the feature named “wavelet_LLL_firstorder_Minimum” was se-

lected, while the feature named “wavelet_HHL_glszm_LowGrayLevelZoneEmphasis” was se-

lected for the dataset based on thresholding segmentation. For the dataset based on region 

growing segmentation, the feature named “wavelet_HLH_glszm_LowGrayLevelZoneEmphasis” 

was selected. All selected features belonged to the wavelet decomposed image type. Six ma-

chine learning models based on the three subsets of selected features were built using LDA, 

KNN, SVM, RF, AdaBoost and NN, whose performances (accuracy, AUC, sensitivity, speci-

ficity, precision, fscore) are reported in Tables 6–11. All performances are averaged on 30 rep-

etitions of five-fold cross validation. Results show that all six models based on manual seg-

mentation reached the highest specificity (LDA: 86.05%, SVM: 81.40%, KNN: 79.61%, RF: 

75.66%, AdaBoost: 70.23%, NN: 68.91%) and the highest precision (LDA: 75.10%, SVM: 

71.43%, KNN: 70.19%, RF: 65.90%, AdaBoost: 59.87%, NN: 54.69%) when compared to the 

models based on region growing (RG) and thresholding (TS). Instead, sensitivity was always 
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higher in the models based on semi-automatic segmentation methods, and the RG-SVM 

reached the highest value (sensitivity = 85.24%), while the RG-LDA had the second highest 

value (sensitivity = 84.38%). Moreover, all six models based on region growing segmentation 

reached the highest fscore (LDA: 74.80%, SVM: 73.09%, KNN: 71%, RF: 70.54%, AdaBoost: 

61.29%, NN: 64.29%) when compared to the models based on manual and thresholding seg-

mentations. 

The RG-LDA also reached the highest accuracy (74.49%) and the highest AUC (79.20%). 

Finally, even if the Friedman test suggested that models had a statistically significant 

impact on machine learning performance, post hoc tests corrected with Dunn–Sidak cor-

rection for multiple comparisons did not find a significant performance difference be-

tween models. On the contrary, the Friedman test suggested that segmentation had a sta-

tistically significant impact on model performance, and statistical significance was also 

found during post hoc tests corrected with the Dunn–Sidak correction for multiple com-

parisons. It resulted that accuracies differed significantly (pRG-TS = 0.022) between region 

growing and thresholding methods, that AUCs differed significantly (pmanual-RG = 0.0067, pTS-RG 

= 0.031) between manual and region growing methods, and between thresholding and region 

growing methods, that sensitivities differed significantly (pmanual-RG = 0.0012) between manual 

and region growing methods, that specificities differed significantly between manual and re-

gion growing (pmanual-RG = 0.032) methods and between manual and thresholding methods 

(pmanual-TS = 0.0077), that precisions differed significantly (pmanual-TS = 0.027) between manual and 

thresholding methods, and that the fscore differed significantly between manual and region 

growing methods (pmanual-RG = 0.0061). Complete results per iteration are provided for each 

model and segmentation methods in the Supplementary File. 

Table 5. Subset of selected features divided by manual method. 

Segmentation Selected Features 

Manual wavelet_LLL_firstorder_Minimum 

TS wavelet_HHL_glszm_LowGrayLevelZoneEmphasis 

RG wavelet_HLH_glszm_LowGrayLevelZoneEmphasis 

Table 6. LDA classifier performance for the three segmentation methods. Numbers in brackets rep-

resent the 95% confidence interval. Maximum values represented in bold. 

Segmentation Accuracy AUC Sensitivity Specificity Precision Fscore 

Manual 
70.64% 

(70.47–70.81%) 

73.08% 

(72.69–73.41%) 

51.71% 

(51.43–52.19%) 

86.05% 

(86.05–86.05%) 

75.10% 

(74.99–75.27%) 

61.25% 

(61.01–61.63%) 

TS 
70.60% 

(70.26–70.85%) 

73.40% 

(73.63–74.38%) 

74.48% 

(74.29–74.95%) 

67.44% 

(66.90–67.91%) 

65.07% 

(64.69–65.42%) 

69.45% 

(69.21–69.72%) 

RG 
74.49% 

(74.10–74.91%) 

79.20% 

(78.89–79.50%) 

84.38% 

(83.90–84.86%) 

66.43% 

(65.81–67.13%) 

67.19% 

(66.78–67.65%) 

74.80% 

(74.44–75.19%) 

Table 7. SVM classifier performance for the three segmentation methods. Numbers in brackets rep-

resent the 95% confidence interval. Maximum values represented in bold. 

Segmentation Accuracy AUC Sensitivity Specificity Precision Fscore 

Manual 
70.47% 

(70–71.11%) 

73% 

(72.56–73.41%) 

57.05% 

(56.29–58%) 

81.40% 

(80.78–82.17%) 

71.43% 

(70.73–72.45%) 

63.41% 

(62.72–64.17%) 

TS 
68.50% 

(67.78–69.19%) 

72.50% 

(71.89–73.08%) 

74.19% 

(73.43–74.86%) 

63.88% 

(63.02–64.81%) 

62.60% 

(61.91–63.31%) 

67.89% 

(67.19–68.51%) 

RG 
71.84% 

(74.10–74.91%) 

77.32% 

(77.06–77.63%) 

85.24% 

(84.57–85.71%) 

60.93% 

(60.16–61.63%) 

63.99% 

(63.57–64.38%) 

73.09% 

(72.71–73.40%) 
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Table 8. KNN classifier performance for the three segmentation methods. Numbers in brackets rep-

resent the 95% confidence interval. Maximum values represented in bold. 

Segmentation Accuracy AUC Sensitivity Specificity Precision Fscore 

Manual 
70.26% 

(69.65–71.07%) 

67.41% 

(66.76–67.97%) 

58.76% 

(57.62–59.71%) 

79.61% 

(78.76–80.70%) 

70.19% 

(69.25–71.39%) 

63.92% 

(63.04–64.77%) 

TS  
66.37% 

(65.62–67.14%) 

68.58% 

(67.84–69.18%) 

67.33% 

(66.19–68.38%) 

65.58% 

(64.49–67.21%) 

61.51% 

(60.61–62.43%) 

64.23% 

(63.51–65.03%) 

RG 
71.75% 

(70.81–72.61%) 

77.86% 

(77.13–78.58%) 

77.05% 

(76–78.10%) 

67.44% 

(66.12–68.84%) 

65.91% 

(64.89–66.87%) 

71% 

(70.13–71.82%) 

Table 9. RF classifier performance for the three segmentation methods. Numbers in brackets repre-

sent the 95% confidence interval. Maximum values represented in bold. 

Segmentation Accuracy AUC Sensitivity Specificity Precision Fscore 

Manual 
67.65% 

(66.88–68.46%) 

66.77% 

(65.79–67.61%) 

57.81% 

(56–59.33%) 

75.66% 

(74.73–76.59%) 

65.90% 

(64.93–66.98%) 

61.52% 

(60.18–62.66%) 

TS  
63.55% 

(62.52–64.66%) 

67.40% 

(66.55–68.12%) 

65.62% 

(63.60–67.81%) 

61.86% 

(60.19–63.68%) 

58.40% 

(57.43–59.62%) 

61.67% 

(60.29–63.03%) 

RG 
71.15% 

(70.43–72.01%) 

73.82% 

(73.01–74.61%) 

77.05% 

(75.62–78.48%) 

66.36% 

(65.27–67.37%) 

65.12% 

(64.44–65.94%) 

70.54% 

(69.72–71.46%) 

Table 10. AdaBoost classifier performance for the three segmentation methods. Numbers in brackets 

represent the 95% confidence interval. Maximum values represented in bold. 

Segmentation Accuracy AUC Sensitivity Specificity Precision Fscore 

Manual 
63.16% 

(61.79–64.44%) 

62.91% 

(61.81–63.88%) 

54.48% 

(52.27–56.57%) 

70.23% 

(68.45–71.71%) 

59.87% 

(58.19–61.35%) 

56.95% 

(55.09–58.56%) 

TS  
57.22% 

(56.11–58.33%) 

62.70% 

(61.56–63.74%) 

58.19% 

(56.10–60.38%) 

56.43% 

(54.88–57.91%) 

52.06% 

(50.96–53.32%) 

54.87% 

53.51–56.30%) 

RG 
63.72% 

(62.56–64.74%) 

68.99% 

(67.88–70.05%) 

64.19% 

(61.71–65.71%) 

63.33% 

(61.86–64.81%) 

58.78% 

(57.52–59.81%) 

61.29% 

(59.64–62.40%) 

Table 11. NN classifier performance for the three segmentation methods. Numbers in brackets rep-

resent the 95% confidence interval. Maximum values represented in bold. 

Segmentation Accuracy AUC Sensitivity Specificity Precision Fscore 

Manual 
58.72% 

(57.48–60.56%) 

56.05% 

(54.20–57.97%) 

46.19% 

(43.43–48.95%) 

68.91% 

(66.82–70.68%) 

54.69% 

(52.90–57.02%) 

49.90% 

(47.79–52.48%) 

TS  
62.14% 

(60.66–63.50%) 

63.50% 

(61.91–65.04%) 

66.76% 

(64.57–69.14%) 

58.37% 

(56.43–60.54%) 

56.74% 

(55.34–58.23%) 

61.22% 

(59.70–62.74%) 

RG 
65.77% 

(64.27–66.97%) 

69.24% 

(67.96–70.33%) 

69.14% 

(65.90–71.52%) 

63.02% 

(61.32–64.73%) 

60.35% 

(58.95–61.55%) 

64.29% 

(62.18–65.79%) 

4. Discussion 

It has been shown in several studies that radiomics has the potential to support the 

clinical decision-making process, but it still lacks standardization, and several factors such 

as image pre-processing, image kernel reconstruction settings and segmentation methods 

could influence radiomics feature values [56]. Concerning prostates, most of the studies 

employed MRI images rather than PET images, and only few of them investigated radi-

omics feature reproducibility and robustness. In MRI images, it has emerged that normal-

ization techniques and manual segmentation repeated by different operators negatively 

impact radiomics feature reproducibility [57,58]. Indeed, manual segmentation is opera-

tor-dependent, as shown in several studies not only related to prostates, and semi-auto-

matic methods should be preferred to improve radiomics study reproducibility [59–61]. 

Therefore, we analyzed the effect of three segmentation methods (manual, thresholding, 

region growing) before and after feature extraction. The Jaccard Index showed that there 

were dissimilarities between segmentations, reaching the maximum value of 0.58 when 
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comparing thresholding and region growing methods. From our study, it emerged that 

Shape features obtained the lowest average ICC (0.27), and 71.43% of Shape features ob-

tained poor reproducibility (ICC < 0.5). This behavior could be due to the difficulties in 

identifying target contours in PET images, and it is in line with [62], that showed that 

Shape features obtained the lowest ICC performance, even if higher than those obtained 

in our study, but radiomics features were extracted with a different software, different 

radiotracers were used and the clinical aim was different. Otherwise, Texture features per-

formed better, with GLCM features exhibiting the highest average ICCs value in all the 

three image types (original, LoG and wavelet), with 61.4% GLCM features obtaining good 

(18.42%) and excellent (42.98%) reproducibility. Our study also shows that reproducibility 

differs depending on image type, and therefore on image filtering. Indeed, LoG features 

exhibited a higher rate of features with excellent reproducibility (51.18%) when compared 

with original features (48.60%) and wavelet features (9.01%). However, comparison with 

original features is not completely accurate since LoG features and wavelet features do 

not include the Shape feature class, only present in the original features. Moreover, the 

analysis showed that wavelet decomposition is the worst performing filter in terms of re-

producibility, with 47.85% wavelet features exhibiting poor reproducibility. It has been 

shown in previous studies [63,64] that image denoising could lead to more robust features, 

and the difference in performance between LoG and wavelet could be due to the different 

wavelet sub-band combinations. Indeed, the combinations that started with a high pass 

filter (HHH, HLH, HHL, HLL) obtained the lowest average ICC (ICCHHL: 0.34), while those 

that started with a low pass filter obtained the highest values, with the LLL sub-band 

showing the highest average ICC (0.8). This could be since low pass filtering managed to 

suppress image noise. 

In addition, we showed that different segmentation methods lead to different subsets 

of selected features. However, feature selection based on semi-automatic methods led to 

the same selected feature, namely “glszm_LowGrayLevelZoneEmphasis”, even if processed 

with a different wavelet combination. This result could be since semi-automatic methods 

are more reproducible and similar when compared with manual segmentations. To assess 

if thresholding and region growing are more reproducible methods than manual segmen-

tation, inter-observer variability per single method should be evaluated. Furthermore, ma-

chine learning models were impacted by segmentation methods. All manual-based mod-

els showed higher specificity than sensitivity, with a maximum of 86.05% reached by the 

LDA classifier, while semi-automatic methods showed higher sensitivity than specificity, 

with a maximum of 85.24% reached by the RG-SVM classifier, while the RG-LDA classifier 

obtained the second highest sensitivity (84.38%). Moreover, statistical tests suggested that 

the model type did not have a significantly impact on model performance and differences 

between performance derived mainly from segmentation methods. From our results, it seems 

that manual segmentation is more specific rather than sensitive, and therefore there are radi-

omics features that are more sensitive and/or specific than others. Statistical tests also corrob-

orated the findings that region growing-based models enhanced sensitivities, AUCs and ac-

curacies when compared with manual-based models. 

Finally, our study demonstrates that 18F-PSMA-1007 PET radiomics can differentiate 

between low-risk and high-risk prostate patients, reaching the highest accuracy (74.49%) 

with the RG-LDA model (accuracy: 74.49%, AUC: 79.20%, sensitivity: 84.38%). However, 

models were based on wavelet features that showed the worst average ICC performance (IC-

Cwavelet-Statistics = 0.56, ICCwavelet-GLSZM = 0.44), affecting the ability of the model to generalize. 

All our analyses have been based on matRadiomics 1.5 [31], which emerges as a tool 

in addressing the imperative of explainability in radiomics. Explainability is a critical as-

pect that enhances the interpretability of complex models and fosters trust in their out-

comes [65]. matRadiomics 1.5, with its comprehensive suite of functionalities, provides a 

robust platform to segment biomedical images and extract and analyze a wide array of 

quantitative features, allowing users to complete the whole radiomics workflow within a 

single software, simplifying the process and making it replicable. It not only has the 
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capacity to generate radiomics models but also to offer transparency and interpretability. 

As machine learning algorithms play an increasingly pivotal role in radiomics, under-

standing how these models arrive at specific predictions is essential for clinical acceptance. 

Clinicians and healthcare professionals require insights into the decision-making pro-

cesses of these algorithms, especially when the stakes involve patient diagnosis and treat-

ment planning. Transparent and interpretable radiomics models facilitate a deeper under-

standing of the features influencing predictions. Efforts in research and development are 

directed towards creating machine learning models in radiomics that not only deliver ac-

curate results but also provide interpretable rationales for their predictions, ultimately 

contributing to improved patient care and diagnostic precision. 

To date, this is the first study based on 18F-PSMA-1007 PET imaging of patients af-

fected by prostate cancer, with the aim of evaluating the robustness and reproducibility 

of radiomics features to variations in segmentation methods and the impact that segmen-

tation methods have on selected features and model performance, thereby contributing to 

the standardization of radiomics. However, this study has limitations, such as the small 

sample size and its single-center nature that could affect results generalization. In fact, 

features robustness and reproducibility depend on the dataset used, even if the clinical 

aim is the same, and/or from the center that acquired the images [66], and multicenter 

studies should be preferred. This issue can also be extended to the models’ generalization 

ability. However, the main goal of this study was not to build the best machine learning 

models but to study the effects of segmentation methods on model performance. 

5. Conclusions 

The present study, which utilizes 18F-PSMA-1007 PET imaging of prostate cancer pa-

tients, investigated the robustness and reproducibility of radiomics features to variations 

in segmentation methods. Additionally, it examined the influence that segmentation 

methods had on selected features and model performance. The results showed that the 

Shape feature class is the least robust, while the GLCM feature class is the most robust. In 

addition, segmentation methods impacted feature selection, resulting in a higher specific fea-

ture when manual segmentation was used and in higher sensitive features when semi-auto-

matic methods were used. Finally, our study demonstrates that 18F-PSMA-1007 PET radiomics 

using the RG-LDA model can differentiate between low-risk and high-risk prostate patients, 

reaching the best performance (accuracy: 74.49%, AUC: 79.20%, sensitivity: 84.38%) 
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