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Different  spike  train  distances  assess  rate  and  temporal  coding  in  different  ways.
Spike  train  distances  can  be  categorized  into  spike-  and  time-resolved.
Sensitivity  to temporal  coding  depends  on the  rate  of  the  processes.
Time  (spike)-resolved  distances  perform  better  for  reasonably  high  (very  low)  rates.
The  RI-SPIKE-distance  is assessing  timing  information  only.
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a  b  s  t  r  a  c  t

Background:  It is commonly  assumed  in  neuronal  coding  that  repeated  presentations  of  a stimulus  to  a
coding neuron  elicit  similar  responses.  One  common  way  to assess  similarity  are  spike  train  distances.
These  can  be  divided  into  spike-resolved,  such  as the  Victor-Purpura  and  the  van  Rossum  distance,  and
time-resolved,  e.g.  the  ISI-,  the  SPIKE-  and  the  RI-SPIKE-distance.
New method:  We  use  independent  steady-rate  Poisson  processes  as surrogates  for  spike  trains  with
fixed  rate  and  no  timing  information  to address  two  basic  questions:  How  does  the sensitivity  of  the
different  spike  train  distances  to  temporal  coding  depend  on  the  rates  of the  two  processes  and  how  do
the  distances  deal  with  very  low  rates?
Results:  Spike-resolved  distances  always  contain  rate  information  even  for parameters  indicating  time
coding.  This  is  an  issue  for reasonably  high  rates  but  beneficial  for very  low  rates.  In contrast,  the  oper-
ational  range  for detecting  time  coding  of  time-resolved  distances  is  superior  at  normal  rates,  but  these
measures  produce  artefacts  at very  low  rates.  The  RI-SPIKE-distance  is  the  only  measure  that  is sensitive
to  timing  information  only.
Comparison  with  existing  methods:  While  our  results  on rate-dependent  expectation  values  for  the  spike-
ate dependence
loor effect

resolved  distances  agree  with  Chicharro  et  al. (2011), we  here  go  one  step  further  and  specifically
investigate applicability  for very  low  rates.
Conclusions:  The  most  appropriate  measure  depends  on  the  rates  of  the  data  being  analysed.  Accordingly,
we  summarize  our results  in  one  table  that  allows  an  easy  selection  of  the  preferred  measure  for  any

ublis

kind  of data.

© 2018  The  Authors.  P

. Introduction
Neurons respond to stimulation with discrete events called
pikes and a consecutive sequence of such spikes over time form
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a spike train (Rieke et al., 1996). The effect of a spike is to release
neuronal transmitters at synapses, and with enough input from the
other neurons a downstream neuron fires a spike (Bear et al., 2007).

Neurons can code information in the rate and/or in the timing of
the spikes (Quian Quiroga and Panzeri, 2013). Neuronal informa-
tion whether coded in spike rate or in spike timing is linked to the

length of the encoding window. The rate at which a relevant prop-
erty of the neural code can change, and the maximum rate at which
changes in the stimulus can be represented, is the rate at which the
neural code can adjust to the new representation. A definition for
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ate and time coding schemes has been provided by Theunissen
nd Miller (1995) as follows:

“It is generally accepted that a rate encoding scheme is one in which
the relevant information encoded about the stimulus is correlated
only with the number of elicited spikes within the encoding window
and is not correlated with any aspect of the temporal pattern of the
spikes within the encoding window.”
“In a temporal encoding scheme, the relevant information is corre-
lated with the timing of the spikes within the encoding window, over
and above any information that might be correlated with the number
of spikes within the window.”

It is important to note that this definition of temporal coding
oes not require rate correlation actually to be present. Also it is not

imited to single spike correlations but applies to any correlations
n spike patterns that would not be expected due to rate alone.

There is plenty of evidence suggesting that information is coded
n rate averaged over short periods of time. An example is rate cod-
ng in directional tuning within the motor cortex (Georgopoulos,
995). However, another view is that for very fast reaction sensory
nd motor systems this kind of temporal averaging is too slow (van
ullen et al., 2005). When the organism needs to make decisions
ased on sensory stimuli in time scales of hundreds of milliseconds

t is not possible to average over time at every stage of the pathway
rom stimulus detection to reaction. Thus it has been proposed that
or each neuron first the spike latency of a response could code for
ntensities of a stimulus forming tuning curves similar to those of
ate (van Rullen et al., 2005). The problem is that there is no spe-
ific trigger instant from when to calculate time delays. However,
pike time coding has been shown to be very generally used in
elaying among others gustatory, somatosensory, olfactory, audi-
ory, and visual information (Di Lorenzo and Victor, 2003; Harvey
t al., 2013; MacLeod et al., 1998; Fukushima et al., 2015; Reich
t al., 2001) at least as long as relevant timing signals are available
o the experimenter (van Rullen et al., 2005). Using a simulation of
anglion cells it could be demonstrated that information transfer
rom multiple cells firing only one single spike can exceed that of
ure rate coding (van Rullen and Thorpe, 2001).

Whichever coding type is used, the main assumption behind all
euronal coding research is that repeated presentations of the same
timulus result in a similar spike train responses, whereas presen-
ations of different stimuli typically yield very dissimilar responses.
ne very common approach to measure such similarity are spike

rain distances (see e.g. Houghton and Victor, 2010; Victor, 2015),
hich are designed to assess similarity based on rate and timing
ithin spike trains. In this paper we deal with four commonly

sed as well as the more recent spike train distances. The spike-
esolved Victor-Purpura distance (Victor and Purpura, 1996, 1997),
nd the van Rossum distance (van Rossum, 2001) are defined by
sing spikes as the main elements of the measures while the time-
esolved ISI-distance (Kreuz et al., 2007, 2009), the SPIKE-distance
Kreuz et al., 2011, 2013), and the RI-SPIKE-distance (Satuvuori
t al., 2017) are based on time.

The Victor-Purpura distance (Victor and Purpura, 1996, 1997)
nd the van Rossum distance (van Rossum, 2001) utilize time
cale parameters q and � respectively. For the extreme time scale
arameter values q = 0 and � approaching infinity, respectively, the
istances evaluate spike count as an indicator of rate. While this
orks in some cases, it ignores any temporal correlations in spike

iming within the counting window. In order to be more and more
ensitive not only to rate but also to timing information, the time-

cale parameter has to be moved towards the opposite side of
he parameter range. For this reason, these parameters are often
aken as deciding between rate or time coding (Victor, 2005). Spike-
esolved spike train distances have been applied to identify rate and
cience Methods 299 (2018) 22–33 23

time coding in recordings e.g. from the auditory system (in song-
birds, Wang et al., 2007; Tang et al., 2014) or the visual system
(salamander retinas, Chichilnisky and Rieke, 2005, or visual cortex
of cats, Samonds and Bonds, 2004). On the other hand, the time-
resolved ISI-distance (Kreuz et al., 2007, 2009), SPIKE-distance
(Kreuz et al., 2011, 2013), and RI-SPIKE-distance (Satuvuori et al.,
2017), are time scale free and thus do not require a parameter, but
they assess timing information in the data in relation to the local
time scale.

The existence of rate and time coding in neural representa-
tions within the brain (or even their coexistence in different brain
regions) is a very important field of investigation. Since spike train
distances are used to quantify the (dis)similarity of spike trains are
thus one of the most used tools to tackle this issue, it is equally
important to understand their definitions of similarity. Therefore,
in the first part of this study we  investigate the specific sensitivities
of the measures to rate and time coding. Any distance responding to
rate difference between the spike trains is sensitive to rate coding.
If a distance is sensitive to spike timing, it causes deviations from
the distance obtained for pure rate coding (rate difference) if such
can be defined for the measure. This definition also implies that if
a timing responsive distance is not sensitive to rate difference, it
assesses purely timing information. These distinctions allow us to
quantify the operational ranges of the distances for detecting time
coding using pairs of independent steady rate Poisson spike trains
(with reasonably high rates) as surrogates for random spike trains
with no timing information.

In the second part of this study we  look at limitations of the
different spike train distances regarding their ability to deal with
very low spike rates in the data. Neuronal spike trains have a very
strong restriction regarding the information they can convey over
the spike generating process that is called the floor effect. This
is because they are discrete samples from a distribution and the
smallest units measurable is a single spike. As an example one
might have a neuron firing at 1 Hz for a 1 s recording and the spike
count distribution consists mostly of values 0, 1, or 2 spikes. Equally,
if a neuron fires at 2 Hz, it still exhibits a considerable amounts of
spike trains with 0, 1 or 2 spikes, even if it is more likely to also
produce spike trains with 4 or 5 spikes. Since differences between
10 Hz and 20 Hz are more visible from fewer recordings, this floor
effect only affects the low end of the rate scale. Here, due to the
insufficient sampling it is not possible to carry out a meaningful
statistical analysis of the spike train distances based on the num-
ber of spikes. Instead, in this part of the study we use sampling
over multiple realizations of steady rate Poisson processes to esti-
mate the minimal rate that is needed in order to still obtain reliable
estimates of timings in the data.

The remainder of the paper is organized as follows. In Section 2
we introduce the spike train distances used in this study and intro-
duce the statistical method used. The results (Section 3) are divided
into three parts. In the first part we analyze both the spike-resolved
and the time-resolved distances for the normal case where the total
rate of the processes is reasonably high and thus far from exhibiting
the floor effect. In the second part we  examine the functionality of
both types of distances for rates so very low that the floor effect
takes place. A series of simple examples specifically constructed to
illustrate the most important implications of the results obtained
is presented in the third part. Finally, in Section 4 we discuss the
results and present our conclusions.

2. Methods
There are many different ways to quantify similarity in spike
trains. In this section we  qualitatively describe four established and
one recently proposed spike train distances. These spike train dis-
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ances can be divided into two main categories. The first category
Section 2.1) contains measures where spikes are the main element
or constructing the distance. For the second category (Section 2.2)
he main unit of the analysis is time since the values are assigned
ver time rather than over spikes. The mathematical definitions for
he spike-resolved and time-resolved spike train distances can be
ound in Appendices A and B, respectively. Finally, in Section 2.3

e summarize the analysis and the statistical methods used in this
tudy.

.1. Spike-resolved spike train distances

The spike-resolved distances are based on the idea that for each
pike there should be a matching spike in the other spike train. Thus
ven if not defined exactly in this manner, they will try finding pairs
or spikes and consider unpaired spikes as rate difference. Thus,
hey consider rate first and timing second, since any excess spikes
re always considered in the distance and only after that the timing
ifferences are added.

Here we describe the two spike-resolved distances proposed by
ictor and Purpura and by van Rossum which so far have been most
ommonly used in the context of neuronal coding. Other spike-
esolved measures such as SPIKE-synchronization (Kreuz et al.,
015) are not considered in the scope of this study.

.1.1. Victor-Purpura distance
The Victor-Purpura distance (Victor and Purpura, 1996, 1997)

s based on finding the minimal cost for transforming one spike
rain into the other using the three elementary operations of delet-
ng, inserting and shifting spikes. While both deletion and insertion
arry a cost of 1, the parameter q is used to evaluate the cost of
hifting a spike. The theoretical range of values the Victor-Purpura
istance can obtain for a pair of spike trains will always fall in range
f [n2 − n1, n2 + n1], where n1 and n2 are the spike counts of the two
pike trains. With a q-value of zero, shifting spikes to coincide costs
othing and in this case the total distance between spike trains is

ust the difference in spike count (n2 − n1), since the extra spikes in
he spike train with the higher rate need just to be deleted to con-
ert one to another. On the other hand, very high q values require
ore timing accuracy between spikes, since the distance is the sum

f all spikes in the spike trains that do not exactly match a spike in
he other spike train (up to n2 + n1). Thus the parameter q is often
aken as an indicator of the relative importance of rate and time
oding (Victor, 2005).

.1.2. van Rossum distance
The van Rossum distance (van Rossum, 2001) ties the spikes to

 more biological context by using a kernel, which can be consid-
red as the effect a spike will have on the postsynaptic neuron (see
lso Houghton, 2009). An exponentially decaying kernel with time
onstant � is applied to each spike and differences in the effect pat-
erns are considered when calculating the distance. The larger is �,
he longer lasts the effect of a spike.

Although the resulting profiles are time-dependent there is no
ime-normalization. Rather, the values are obtained in a spike-
ased manner, since each spike is convolved with a kernel
unction. For this reason the distance obtained from the time-
esolved profile is actually spike-resolved. Often the Victor-Purpura
istance and the van Rossum distance are considered interchange-
ble with parameter conversion � = 1/q  (compare Schrauwen and
ampenhout, 2007).
.2. Time-resolved spike train distances

For the time-resolved distances it is more important when a
pike occurs in relation to its neighbours than if there is a match
cience Methods 299 (2018) 22–33

for it in the other spike train. As a consequence timing is more
important than rate and in the distance rate is seen through dif-
ferences in ISI-lengths rather than the spike count. Thus, these
measures consider spike timing first and rate differences enter only
as a consequence of that timing.

The three time-resolved measures used in this study are the
ISI-distance, the SPIKE-distance and the RI-SPIKE-distance. These
measures are calculated by integrating instantaneous dissimilarity
values over continuous time rather than summing over discrete
spikes. All of these distances are time scale independent since they
do not require a time scale parameter.

The time-resolved profiles used to calculate these distances are
obtained by comparing the spike trains based on previous and fol-
lowing spikes of both spike trains at each time moment. Due to
missing information before the first and after the last spike, edge
effect corrections are applied and special cases of empty spike trains
and one spike are treated separately by adding auxiliary spikes (See
Appendix of Satuvuori et al., 2017).

2.2.1. ISI-distance
The ISI-distance (Kreuz et al., 2007, 2009) assesses the dissim-

ilarity of the spike trains based on instantaneous rate synchrony,
where the rate is estimated from the inverse of the local interspike
intervals (ISIs). It is calculated by averaging the local rate dissimi-
larity over the total length of the recording. The ISI-distance obtains
the minimum value zero for identical local rates everywhere which
means not only perfectly identical spike trains but also spike trains
consisting of constant and equal interspike intervals with a global
phase shift. It can grow arbitrarily close to one for periodic spike
trains with ever larger rate differences.

2.2.2. SPIKE-distance
While the ISI-distance assesses local rate dissimilarity, the

SPIKE-distance (Kreuz et al., 2011, 2013) additionally takes into
account difference in spike timing. For the simple case of spike
trains with steady rates this means that whereas the ISI distance
will assess any two processes with the same rate as identical,
whereas the SPIKE-distance also evaluates the phase shift. The
SPIKE-distance obtains its minimum value zero for exactly iden-
tical spike trains only. The theoretical upper limit is one (since this
is the limit for the time profile), but in practice the maximum value
is 0.55 due to how spikes can be arranged to be as far from each
other as possible in the spike trains (as can be shown using, e.g., an
evolutionary algorithm).

2.2.3. RI-SPIKE-distance
The latest time-resolved measure is called rate independent

(RI)-SPIKE-distance (Satuvuori et al., 2017). While both the ISI-
distance and the SPIKE-distance are sensitive to differences in rate,
in the RI-SPIKE-distance this sensitivity has been removed. This
allows the measure to purely focus on spike timing information.

2.3. Analysis and statistical considerations

In this study we  use the definition of time coding as correla-
tions beyond rate (Theunissen and Miller, 1995) to investigate how
the sensitivity of the different spike train distances to rate and time
coding depends on the rate of the spike trains. To address this ques-
tion we follow common practice (see e.g. Softky and Koch, 1993;
Hanes et al., 1995; Berry and Meister, 1998) and use pairs of inde-
pendent steady rate Poisson spike trains as surrogates for random
spike trains with fixed rate and no timing information. We  sample

the distances over multiple realizations in order to calculate the
expectation values and to estimate the statistical significance. Any
spike trains from spike generating processes that are more similar
than expected can be considered containing information beyond
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Table  1
An overview of all spike train distances. Reasonably high rates denotes the normal
case  of rates that are high enough to avoid any floor effect (more than 4 spikes
overall), whereas very low rates refers to rates so low that the floor effect takes place
(total number of spikes equal to or lower than 4). Timing means pure spike timing
information, rate pure spike count difference, and synchrony taking into account
time local similarities in both rate and spike timing.
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ure randomly distributed spikes. The results consist of two parts,
ne where we  deal with reasonably high overall spike rates and one
here we look at the special case of very low rates.

In the first part (Section 3.1) we reduce the dimension by keep-
ng the sum of the two rates fixed and analyze how the rate
atio determines the expectation value, i.e., the distance value that
esults of rate coding alone. We  then assess the ability of the spike
rain distances to detect timing information in the data via their
perational ranges for temporal coding which we define as the
ange of values the distances can obtain after differences in rate
ave already been taken into account.

In the second part (Section 3.2) we examine the floor effect
hich can occur for spike trains with very low rates. Rate can be

stimated by averaging over large numbers of redundant cells or by
veraging over repeated presentations of the same stimulus (Bialek
t al., 1990). The rate is by definition an average quantity and not a
roperty of a single spike train. While counting spikes will always
rovide an estimate of the rate, the question of similarity is more
omplicated for spike train distances, since they also contain tim-
ng information. Thus, first we compare in very general terms, using
imple spike counting, estimates of the total rate of two spike train
airs, one pair with equal rates and one pair with a very high rate
atio. In order to have any timing information that can be compared
n the data, there must be at least one spike in both spike trains. We
gain use Poisson models to identify for both spike train pairs the
owest rate at which this is violated with only 5% probability. In the
ext step we evaluate for both kinds of spike train distances the full
ependence of the distance values on the two rates of the indepen-
ent Poisson processes. Once more we use a 5% confidence layer as

ndicator of a value being outside of the distribution obtained for
ure rate.

In both parts of this study we work with spike trains of unit
ength 1 s, since this way the rate exactly equals the expectation
alue for the number of spikes in one spike train. For the spike-
esolved Victor-Purpura and van Rossum distance we  also look at
he influence of the respective time scale parameter. All our results
or both the spike-resolved and the time-resolved spike train dis-
ances are gathered in Table 1.

. Results

In the first part (Section 3.1) we investigate the rate-dependent
ensitivity of the different distances to temporal coding. Whereas
his analysis is carried out for reasonably high rates, in the second
art (Section 3.2) we focus on very low spike rates for which the

oor effect can occur. Each time we first discuss the spike-resolved
nd then the time-resolved spike train distances. In the third part
e illustrate with simple examples the most important differences

etween the two kinds of spike train distances.
cience Methods 299 (2018) 22–33 25

3.1. Detecting time coding

Identifying time coding can be difficult, since many spike train
distance measures respond to changes in both rate and timing. In
order to detect time coding one has to know what is the expected
distance when only rate is considered. To this aim, we first calculate
the expectation values for pure rate code using Poisson spike trains
of varying rate ratios by averaging over a sufficient number of real-
izations (here we  use 1000) such that all timing fluctuations cancel
out. For the spike-resolved Victor-Purpura distance it is straightfor-
ward to eliminate the effect of the rate coding. Here the operational
range for time coding, i.e., the range of values that can be obtained
beyond rate difference, is easily obtained by subtracting the spike
count difference (Victor-Purpura distance for q = 0). For the time-
resolved distances this is not possible and the operational range
becomes simply the range of values.

3.1.1. Spike-resolved spike train distances
First we estimate the operational range for time coding for the

spike-resolved distances. As a first step in Fig. 1A we show the
dependence of the Victor-Purpura distance on the rate ratio for
three different values of the time scale parameter q. For large values
of the parameter value q the distance always attains its maximum
value independent of the rate ratio. Since the curves are made such
that the sum of the rate of the two  processes is 1000 Hz for a pair
of spike trains of unit length 1 s, the result is a constant line at
DV = n1 + n2 = 1000 (compare Section 2.1.1). The total rate is kept
reasonably high in order not to run into the floor effect. The only
region where the parameter q has any reasonable effect is within
the first decade around a rate ratio of one.

In Fig. 1B we  depict the operational range for timing information
obtained by subtracting the spike count difference (q = 0) which is
always part of the total distance value independently of the time-
scale parameter. We  can see that while for equal rate processes
timing information covers almost the whole range of the distance,
the operational range is lost very fast with increasing rate differ-
ence. As a result, ever larger portions of any distance value come
from spike count difference. This holds true even for very large
q-values which supposedly indicate timing information.

Thus, in order to obtain spike timing information using the
Victor-Purpura distance, the spike trains must have very similar
rates. As a consequence of how the distance is defined, the mini-
mum distance for any spike train pair is obtained for q = 0. For this
parameter value the distance equals exactly the spike count dif-
ference between the spike trains. In contrast, when q approaches
infinity, the distance becomes spike count over both spike trains
and considers spike trains with a smaller overall number of spikes
as more similar. The only region where the distance has any time
coding detection capability is when rates are almost identical and
q is in some intermediate range. While the parameter q is often
taken as deciding the relative importance of rate and time coding
(Victor, 2005), this is not the whole story. We  refrain from examin-
ing the van Rossum distance in detail, because it behaves similarly
to the Victor-Purpura distance but requires normalization between
parameter values since the maximum distance value depends on
the choice of tau.

Due to these findings we  suggest that one should not use the
Victor-Purpura distance nor the van Rossum distance for detecting
timing information for spike trains that do not have nearly identical
rates. Additionally, since the q = 0 case for the Victor-Purpura dis-

tance is simply spike count and estimates purely rate we  regard it
as well suited for detecting rate coding. These findings are marked
at the top of the first main column of Table 1 for the normal case of
reasonably high rates.
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Fig. 1. Statistics of two Poisson spike trains with a fixed total rate of 1000 Hz divided among the two  spike trains. (A) Dependence of the Victor-Purpura distance on the rate
r ge for
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atio  for three different values of the time scale parameter q. (B) The operational ran
PIKE distance (compare Mulansky et al., 2015) and the RI-SPIKE-distance (see Satu
atios  values can go down to almost zero which is indicated by increasingly darker 

.1.2. Time-resolved spike train distances
In Fig. 1C we show the rate ratio dependence for the ISI-distance,

he SPIKE-distance and the RI-SPIKE-distance. The ISI-distance and
he SPIKE-distance consider not only timing but also rate informa-
ion. Accordingly, when only rate is considered, they obtain their

inimum value for pairs of spike trains with equal rate. In contrast,
he RI-SPIKE-distance ignores differences in rate and thus has a flat
esponse independent of the rate ratio.

Fig. 1D depicts the operational ranges of all three measures. For
ny given rate ratio the operational range is defined as the over-
ll range of values from minimum to maximum, i.e. the range that
s covered due to deviations from the expectation value caused by
he influence of spike timing. All three distances can obtain mini-

um  values arbitrarily close to zero for any rate ratio (an extreme
xample for large rate ratios would be a infinitesimally narrow
ulti-spike burst matching a single spike). Regarding the maxi-
um  values, the ISI-distance is able to cover the whole interval

y approaching the value of one arbitrarily close (the higher rate
pike train is evenly distributed, the lower rate spike train is con-
entrated on the edges). This is not the case for the SPIKE-distance
nd the RI-SPIKE distance which yield the maximum values of 0.5
nd 0.54, respectively, for spike train pairs with alternating spikes

nd the excess spikes of the higher rate spike train concentrated at
he edges.1

1 Note that the maximum values for the SPIKE- and the RI-SPIKE-distance shown
ere were obtained for sufficiently high spike numbers also in the lower rate spike
rain. Otherwise the edge effect can lead to slightly higher values (e.g. up to 0.61
nstead of 0.5 for the SPIKE-distance). All results for maximum and minimum values
 spike time coding is marked in grey. (C) Same dependence for the ISI-distance, the
et al., 2017). (D) Operational ranges for spike time coding. For all distances and rate
s of grey.

The important result here is that, in contrast to the Victor-
Purpura distance, all three distances cover a wide range of values
even for very high rate ratios. For the ISI-distance and the SPIKE-
distance this full operational range means that they are always able
to identify both local rate and local spike timing information at
the same time. This makes them the best candidates for evaluat-
ing synchrony in general. The RI-SPIKE-distance, on the other hand,
was specifically designed to ignore differences in rate, so it is obvi-
ous that it should not be used for detecting rate coding. However,
this very property makes it best suited for detecting pure timing
information.

These results are marked in Table 1 at the bottom of the first
main column for the standard case of reasonably high rates.

3.2. Floor effect

Even though the rate is a continuous property that can assume
any value, the spike trains are sampling the rate with discrete sam-
ples. Thus, while for reasonably high rates the “resolution” of the
sampling is high enough, as there are sufficient discrete samples
available to give a good estimate of the actual rate, at the low end
the sampling is not sufficient, since there are only a few discrete
values the spike count can assume. This is called the floor effect.
In order to study the floor effect we  first generate 10,000 realiza-
tions of two pairs of unit Poisson spike trains, one pair with equal
rates (rate ratio = 1) and one pair for which the rate of one of the

were obtained and/or confirmed with an evolutionary algorithm (see, e.g. Price et al.,
2006).
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Fig. 2. The floor effect for spike trains with a very low rate. Mean overall rates
(dashed lines) and overall numbers of spikes in the two  spike trains at 5% confidence
(solid lines) over 10,000 realizations for a spike train pair with a rate ratio of one
(red curves) and a pair with a very high rate ratio (green curves). While the mean
values which perfectly match the expectation values (curves not visible) are growing
linearly with the rate of the process with higher rate (note the logarithmic x-scale),
the actual spike counts can only attain discrete values. Moreover, due to the floor
effect it takes 1.5 spikes for spike train pairs with rate ratio one and 3 spikes for
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pike train pairs with very high rate ratio to get at least a single spike in either of
he  two spike trains at 95% probability. (For interpretation of the references to color
n this figure legend, the reader is referred to the web version of the article.)

pike trains is lowered considerably (rate ratio � 1). Subsequently,
or each of these pairs we calculate the mean and the 5% confidence
oundary from the distribution of total spike counts of the sum of
he two trains. This means that at any given rate there is only a 5%
hance of getting spike trains with less spikes than this boundary.

As can be seen from Fig. 2, the average values follow the actual
ate linearly, but the 5% confidence boundary is discrete, since spike
rains can only have an integer number of spikes. Due to this floor
ffect, most of the rate information is not contained within one
hort spike train. One needs to have a good sampling of the process
ither from multiple repetitions or from longer recordings in order
o get a meaningful rate estimate. While the mean of the rate is
xactly the true rate of the processes, one can have empty spike
rains at over 5% chance when the corresponding confidence curve
s at 0. We  can see from Fig. 2 that in order to reach non-empty
pike trains at 95% confidence, one should obtain spike trains with
n average rate of 3 spikes for high rate ratios and 1.5 for equal
ates. This means that if one knows that the two spike trains are
rom the same process, they need to have a minimum rate of 1.5
pikes/recording. Note that this factor 2 between the 5% boundary
or a rate ratio of 1 and the 5% boundary for a high rate ratio is
bserved over all rates. The reason is that for very high rate ratios
he spike train with the lower rate tends to be empty and thus non
ero samples are only drawn from one spike train instead of two.

.2.1. Spike-resolved spike train distances
The rate dependence surface is plotted for many different rate

ombinations and three different parameter values for the Victor-
urpura distance in Fig. 3A–C, and for the corresponding parameter
alues with the van Rossum distance (Fig. 3D–F). The first thing to
ote is that the general shape of the surfaces is very alike between
he two spike-resolved distances using the parameter conversion

 = 1/q. In the following we discuss the Victor-Purpura distance in
ore detail, since the definition for it is more intuitive.

As can be seen in Fig. 3A–C, the smooth mean surfaces trace
xactly the total rate of the processes for high rate ratios identical to
ig. 2 mean spike counts and the 5% confidence layer traces so close
y to the mean that they cannot be distinguished. It is important

o note that there is no visible artefact from the floor effect in the
istance measure but the curves are smooth, since the distance

s always primarily spike count difference. This is caused by the
roperty that the parameter q only has an effect in a very narrow
cience Methods 299 (2018) 22–33 27

area near identical rates as we  have already seen in Section 3.1.
For low rates the Victor-Purpura distance is almost flat and close to
zero since the range [n2 − n1, n2 + n1] tends to vanish.

In Fig. 3D–F we  can see that for the van Rossum parameter � = 1/q
the distance performs very similar to the Victor-Purpura distance.
However, a comparison of distances obtained with different param-
eter values can be done with the Victor-Purpura distance, but not
with the van Rossum distance since there the range of values also
depends on the time scale parameter.

Both distances can be used for very low rates without artefacts,
since they assess rate first and timing second. These findings are
marked at the top of the second main column of Table 1.

3.2.2. Time-resolved spike train distances
In Fig. 4 are again plotted the mean and 5% confidence boundary

for the distribution, but this time for the ISI-distance, the SPIKE-
distance and the RI-SPIKE-distance. The means of the distance
values grow once the random processes start introducing spikes.
In Fig. 4A one can see the mean rate surface of the ISI-distance.
While the surface increases almost linearly up to 1 Hz, the scaling
to total time makes the distance settle to an expectation value that
depends on the rate ratio. However, it is important to note, that the
5% confidence layer does only get above zero after a threshold rate
is reached. This means that below this threshold there is at least a
0.05 chance of getting two empty spike trains due to the floor effect
(compare again Fig. 2).

In Fig. 4B we  can see that the general shape of the mean sur-
face for the SPIKE-distance shares the rate-dependent nature of the
ISI-distance. On the other hand, the RI-SPIKE-distance (Fig. 4C) by
construction shows no rate dependence. This means that the dis-
tance is purely based on spike timing and ignores rate differences
in the spike trains.

In contrast to the spike-resolved Victor-Purpura and van
Rossum distances, the time-resolved ISI-distance, SPIKE-distance
and RI-SPIKE-distance can attain any distance value between zero
and the maximum even for very low rates. While both kinds of dis-
tances are affected by the same floor effect, the definition of time
coding by Theunissen and Miller (1995) as being over and above
any information coded in rate is not satisfied for time-resolved dis-
tances, since the measures attempt using timing information even
before there is sufficient rate. Only once it becomes unlikely to have
two empty spike trains the boundary starts to increase and the
values obtained start being reliable. This increase is not only man-
ifested for empty spike trains. Already spike trains from processes
with lower rates are more likely to be similar by chance than those
obtained with higher rates. From this we can conclude that spike
train distance values can only be considered non-random, when the
rate of the spike-generating process is high enough not to produce
empty (or quasi empty) spike trains and when the similarity of a
pair is below the 5% confidence interval surface. Even for these the
similarity has to be very pronounced not to be considered as being
drawn from a random distribution.

The ISI-distance, the SPIKE-distance and the RI-SPIKE-distance
are time-resolved which allows an instantaneous assessment of
similarity. The normalization of the measures means that the spikes
are assessed in relation to the length of the local ISIs. This time-
scale independence allows comparisons of spike trains with very
different rates.

The reason why the ISI-distance, the SPIKE-distance and the RI-
SPIKE-distance can draw any values even for spike trains that have
very few if any spikes is an artefact from the normalization used
for these measures. Since the values are time-resolved, and even

a single spike needs to be comparable, the measures apply edge
effect corrections (Satuvuori et al., 2017). For this reason already
for such extreme cases as a spike train pair composed of an empty
spike train and a spike train with just one spike the distances can
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Fig. 3. Statistical assessment of the Victor-Purpura distance and the van Rossum distance for three different values of the time scale parameter. The blue surface represents
the  mean of 1000 spike train pair realizations with corresponding rates. The green 5% confidence boundary trails the mean surface so close that it cannot be seen. The red
lines  show fixed rate producing on average 1000 spikes in total in the two  spike trains and thus corresponds to the curves shown in Fig. 1A. The parameter values for the
Victor-Purpura distance are (A) q = 0, (B) q = 1000 and (C) q = 1010. For the van Rossum distance we use the parameter values � = 1/q. Only for (D) we avoid division by zero by
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etting � = 1/10−10. The other two cases yield (E) � = 1/1000 and (F) � = 1/1010. Note t
f  spikes and thus independent of the parameter value. For the van Rossum distanc

nterpretation of the references to color in this figure legend, the reader is referred 

btain virtually all of their range (depending on the location of this
ingle spike). While the time-resolved nature gives the measures
he advantage of being able to assess similarity in time, instead of
ust assessing timings of pairs of spikes, it becomes a downside for
ery low spike counts when not enough information is available

o form meaningful time-resolved profiles. Because of this we  do
ot suggest using time-resolved measures for processes with a very

ow rate. These results for the ISI-distance, the SPIKE-distance and

ig. 4. Same as Fig. 3, but this time for the ISI-distance (A), the SPIKE-distance (B) and th
op)  and the 5% confidence boundary (green, bottom) in two  separate subplots. The red l
f  the references to color in this figure legend, the reader is referred to the web  version o
r the Victor-Purpura distance the range of values is only determined by the number
ime scale dependent kernel size changes the range of the distance axis as well. (For

 web  version of the article.)

the RI-SPIKE-distance can be found in Table 1 at the bottom of the
second main column for very low rates.

3.3. Examples
In previous sections we  have done statistical analysis of the spike
train distances. In this section we give a brief overview of the impli-
cations of the results using constructed examples (Fig. 5). In Fig. 5A

e RI-SPIKE-distance (C). For the sake of visibility we separate the mean vales (blue,
ine represents the fixed rate equivalent to the curves in Fig. 1C. (For interpretation
f the article.)
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Fig. 5. Simple examples illustrating some of the most important differences between the Victor-Purpura distance DV and the SPIKE-distance DS . (A) Floor effect: SPIKE-
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istance  looks for timing in a single spike. (B) Spike trains with different rates: Vic
istance  is insensitive to exactly matching spikes. (D) Simple clustering example: i
istance  can never really focus on the timing information, even for large q-values.

e see typical examples of spike trains near the floor effect. There
s hardly any visible rate and thus determining timing is problem-
tic. Since the Victor-Purpura distance is primarily assessing rate
nd only second single spike timing, it gets the distance of one for
oth spike train pairs. However, the SPIKE-distance always incorpo-
ates timing and thus it can reach a very large variety of different
alues (0.42 and 0.07 in these example spike trains) even when
here is very little timing information. This is due to the inflated
ontribution of the edge effects.

In Fig. 5B we see another situation, where we  have two spikes
t a short distance of each other. It is clearly visible that in the
rst spike train pair there is more timing information beyond rate

han in the second. However, since the Victor-Purpura distance con-
iders only the closest spike pairs, the distance will be the same
ndependently of how the four other spikes are arranged. This is
gain due to rate first assessment of similarity. The SPIKE-distance
ses timing assessment over time rather than over spikes and indi-
ates a clear distinction between the two cases.

However, even the Victor-Purpura distance itself is ambiguous
n respect to whether the value is obtained from rate or from tim-
ng. In Fig. 5C we see two very different scenarios. In the top spike
rain there is a perfectly coincident pair of spikes plus a few addi-
ional spikes in the second spike train. If we compare this to the
xactly identical spike trains with only the two coinciding spikes
emoved we get exactly the same distance. In both cases this value
omes purely from rate difference. However, there is a considerable
ifference in timing correlation between the two spike trains. This

s clearly reflected by the values obtained for the SPIKE-distance.
In Fig. 5D we show how serious these effects are. As we men-

ioned already in Section 3.1, the Victor-Purpura distance and the
an Rossum distance can hardly distinguish any timing informa-
ion once the rate ratio is 10-fold or more. However, the effects
re realized already for much lower rate differences. In this exam-

le we consider three spike trains (2, 10 and 4 spikes). The first
wo spike trains clearly contain timing correlations, while the third
oes not correlate with either of the two. We  can observe that the
ate difference obtained with low q values (here q = 10−2) is basi-
rpura distance ignores timing information of extra spikes. (C) The Victor-Purpura
trast to the SPIKE-distance, for spike trains with different rates the Victor-Purpura

cally the spike count difference between pairs. The result is that
the spike trains 1 and 3 have more similar rate than any other pair.
Then by tracking the distances for increasing q-values the order of
the distances remains the same until single spike timing reaches
its peak at q = 100.6. Here the distances from 1 to 2 and 2 to 3 are
equal. However, still the distance between 1 and 3 prevails as the
smallest one indicating that they are the most similar pair. While
after this q-value the distance from 1 to 2 is closer than 2 to 3, the
pair with built in time correlations, 1 and 2 never reaches the range
where it would be the most similar. In Fig. 5D relative distances are
drawn as distance triangles with the respective distances for differ-
ent q. For comparison we have added the distance triangle obtained
for the spike trains using the SPIKE-distance, which, since it is not
restricted to comparing pairs of spikes and thus rate first, finds the
most time correlated pair with ease.

4. Discussion and conclusions

Spike train distances can be constructed in a few different ways.
The basic components common to all are the spikes in time. Some
spike train distances are evaluated over values attached to spikes,
like the Victor-Purpura distance (Victor and Purpura, 1996, 1997),
and the van Rossum distance (van Rossum, 2001), and thus dif-
ference in spike count becomes a dominant feature. We  call these
spike-resolved distance measures. For the ISI-distance (Kreuz et al.,
2007, 2009), the SPIKE-distance (Kreuz et al., 2011, 2013), and the
RI-SPIKE-distance (Satuvuori et al., 2017) effects of spikes are eval-
uated in relation to time and these distances are thus time-resolved.

In this study we asked two  questions: How does the sensitivity
of the different spike train distances to rate and time coding depend
on the rates of the two processes and how high a rate is needed in
order to obtain reliable estimates of timings in the data? To answer

these questions we  used two  independent steady rate Poisson spike
trains as surrogates for rate only coding neurons and calculated
both the expectation values and the 5% confidence boundary over
multiple realizations. The results are gathered in Table 1.
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The first key finding of the analysis of time coding is that the
pike-resolved Victor-Purpura distance compares the spike trains
pike for spike and thus they are always sensitive to differences in
pike counts even for parameter values seemingly indicating time
oding. For large spike count differences the spike-resolved dis-
ances do not obtain the ability to assess timing information beyond
pike pairs and thus in many cases most of the distance comes from
ismatch in spike counts rather than timings, independently of

he time scale parameter. As a result, for the Victor-Purpura dis-
ance timing information is only available for spike trains with
lmost identical rates (as illustrated in Fig. 5B and D). Since the
ehaviour of the van Rossum distance in response to rate dif-
erences closely resembles that of the Victor-Purpura distance, it
lso has the same problem (in addition to its normalization issues
or different tau-values). These results are consistent with those
btained by Chicharro et al. (2011) for a similar analysis of rate
ifferences.

The second key finding is that the time-resolved measures
erform better in assessing timings in the normal case of reason-
bly high rates. Also these measures can provide a meaningful
nstantaneous similarity profile within the coding window. Since
hey assess similarity in time, the exact spike count becomes less
mportant and the actual timing of events becomes more relevant.
owever, they suffer from artefacts when the rates of the spike
eneration processes is so low that the floor effect takes place (see
ig. 5A for an example). For spike trains with only a few spikes one
hould use the spike-resolved Victor-Purpura or van Rossum dis-
ance, since they assess first similarity in spike count and then apply
iming information assessment only for pairs of spikes.

Investigation for neuronal coding has been going on for decades
nd the two most prominent approaches are to find similarities
n responses in rate and in timing. However, while the distinction
etween the coding types is clear in a philosophical sense as pre-
ented by Theunissen and Miller (1995), the exact nature of time
oding as being “over and above any information that might be
orrelated with the number of spikes within the window” is not
niquely defined. It depends on the type of correlation chosen.

For the spike-resolved distances sensitivity to rate never goes
way since the information contained in the timing accuracy of
pike pairs is always added on top of the rate information. For
he Victor-Purpura distance, even for high q-values the relative
mportance of timing gets smaller for increasingly different rates.

oreover, this timing information only includes the distances
etween spikes that are needed to match all the spikes of the
horter spike train with their nearest spikes in the other spike
rain. While the importance of these differences does increase with
igher q-values (Fig. 1B) it is still capped by the maximum cost of 2
er spike pair (‘delete and add’ instead of ‘shift’). The timing of the
ther n2 − n1 spikes in the longer spike train is ignored entirely (see
ig. 5B), a loss of information that again increases with larger rate
ifference. Additionally, it is ambiguous if the distance obtained
ith parameter values indicating timing truly come from timing as

hown in Fig. 5C. Therefore, while it may  sound the intuitive thing to
o, one cannot simply take the distance with a parameter indicating
ime coding and subtract the rate coding distance to get the timing
orrelations in the data. For the time-resolved ISI-distance, SPIKE-
istance and RI-SPIKE-distance the measures have been defined
s the integral over a dissimilarity profile that covers the whole
ecording time. In this case the intuitive difference between coin-
iding burst and steady rate is accounted for, since the assessment
s not done spike by spike. On the other hand, for the ISI-distance
r the SPIKE-distance there is no single value to be obtained for

ate coding in order to subtract the time coding information con-
ent without a surrogate. The only measure we have shown to be
ndependent of rate information is the RI-SPIKE-distance. This is
n important notion, since one of the most essential questions in
cience Methods 299 (2018) 22–33

the analysis of neuronal coding is if spike trains contain informa-
tion beyond rate and this measure is able to provide exactly this
assessment.

For the investigation of neuronal coding the argument between
rate and time coding types hinges crucially on the inaccuracy of the
definition of time coding. Additionally the coding types are slightly
mixed through the concept of the encoding window. If one esti-
mates rate over an encoding window and then splits it into multiple
bins, which are essentially shorter encoding windows, the result
will be an assessment of timing and timing accuracy depending on
the bin size.

Based on our analysis we  would advice against using the
spike-resolved Victor-Purpura or van Rossum distances if one is
interested in timings in the data when the rates are sufficiently
high to avoid any floor effect. Also, the original interpretation of the
parameters q and � as precision of temporal coding (Victor, 2005,
but see also Chicharro et al., 2011) is slightly misleading in the light
of this study, since it only works for nearly identical rates. In all
cases, the information about differences in rate is always included.
This seems to be consistent with results found in Lopes-dos-Santos
et al. (2015). As a result, it might be useful to reassess some older
studies, where the Victor-Purpura distance and the van Rossum dis-
tance have been used for the distinction of time coding from rate
coding in neuronal data such as the studies conducted by Wang
et al. (2007) and Tang et al. (2014) for songbird data.

If one is interested in rate, the Victor-Purpura distance and the
van Rossum distance can provide information of the rate differ-
ence between the spike trains. However, this information is equally
available from the spike count and the true strength of the mea-
sures lies in assessing synchrony of spike trains with a very low
rate, where they can provide a distance at the same time based on
rate difference and on timings of single spikes. The results for the
very low rate can be relevant in real data analysis, but most of the
time there are enough spikes to use the time-resolved distances.
The time-resolved distances always assess timing information due
to how they are defined.

For simplicity the results in this paper have been obtained for
spike trains of unit length 1 s, since for a spike train of length one
any rate will produce on average the same number of spikes as the
rate. However, the values will scale with the recording length. This
is very important, since a rate requirement of 1.5 Hz for a spike train
of unit length 1 s will translate to 15 Hz for a 100 ms recording. Also
the analysis performed here can be used to estimate window or
bin sizes for methods that need to split a spike train into smaller
segments. For this, assuming a steady rate over a recording, one
can obtain a very good rate estimate via a better sampling of the
process, since the original non-divided spike train is less likely to
suffer from the floor effect.

It is important to note that from a statistical point of view the
rate of the process and the length of the recording are inversely
proportional. Recording a 10 Hz process for 0.1 s gives exactly the
same amount of information about the distribution of the process
as recording a 1 Hz process for 1 s. Thus it is possible to obtain the
statistical significance of the rate of a steady rate process either by
taking one long recording or averaging over multiple short ones.
Taking multiple short samples of a process may be more laborious
than using one longer recording. On the other hand, it is harder to
ensure stationary of the process over longer time than over multiple
repetitions. Another problem with neurons is to ensure that the rate
of the process does not change faster than it is sampled. However,
assessing change in the rate of the process in relation to sampling
is outside the scope of this paper.
In this study random spike trains were simulated as steady rate
Poisson processes. While this approach is often used, it does not
match many experimental ISI-distributions (e.g. Softky and Koch,
1993; Baddeley et al., 1997). It is important to use a meaningful
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urrogate when evaluating whether the distance could have been
btained by chance. While there have been some studies on spike
rain surrogates (Rapp et al., 1994; Schreiber and Schmitz, 2000;
ouis et al., 2010), there is yet no simple answer as to which null
ypothesis to test for and how to adapt the surrogates to the specific
ull hypothesis that is tested.

Here we compared four established spike train distance mea-
ures and one recently proposed measure. The same study could be
onducted on other measures, e.g. on SPIKE-synchronization (Kreuz
t al., 2015) or on other new classes of measures (Rusu and Florian,
014), to see how these approaches perform under the same con-
itions. It would also be interesting to see if spike-resolved and
ime-resolved distances all share some common characteristics.
lso different kinds of normalizations and integrations in the mea-
ure descriptions may  share common features. If one were able
o construct a theoretical framework for the distances, perhaps
y combining desired properties from complementary measures

t could be possible to construct a measure that works universally
n all cases. In the meantime, we suggest referring to Table 1 when
eciding which of these measures to use for which kind of data.

The implementations for the ISI-distance, the SPIKE-distance
nd the RI-SPIKE-distance are provided online in three separate
reely available code packages called SPIKY2 (Matlab graphical user
nterface, Kreuz et al., 2015), PySpike3 (Python library, Mulansky
nd Kreuz, 2016) and, most recently, cSPIKE4 (Matlab command
ine with MEX-files). Source codes for the Victor-Purpura distance
nd the van Rossum distance are available as well.5
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ppendix A.

pike-resolved spike train distances

In this paper we evaluate two spike-resolved distances, the
ictor-Purpura distance (Victor and Purpura, 1996, 1997) and the
an Rossum distance (van Rossum, 2001).

.1 Victor-Purpura distance

The Victor-Purpura distance DV (Victor and Purpura, 1996, 1997)
s calculated by finding the smallest path to convert one spike train
nto the other using three elementary steps:

. Deleting a spike with a cost of 1.

. Inserting a spike with a cost of 1.

. Shifting a spike to coincide with another spike in the other spike
train with a cost of q|�t|.

The time scale parameter q determines how far away two spikes

an be in order for it to cost less than achieving the same by using
teps 1 and 2. This parameter is thus considered as an indicator of
he relative importance between time and rate coding.

2 http://www.fi.isc.cnr.it/users/thomas.kreuz/Source-Code/SPIKY.html.
3 http://mariomulansky.github.io/PySpike/.
4 http://www.fi.isc.cnr.it/users/thomas.kreuz/Source-Code/cSPIKE.html.
5 http://www.fi.isc.cnr.it/users/thomas.kreuz/sourcecode.html.
cience Methods 299 (2018) 22–33 31

A.2 van Rossum distance

The van Rossum distance DR (van Rossum, 2001) first transforms
discrete spikes into continuous functions by convolving each spike
with an exponential kernel

H(t) exp
(

− t
�

)
, (A.1)

where H(t) is the Heaviside step function, t is time and � the time
constant. Using the resulting waveforms x̃(t) and ỹ(t) the distance
can then be calculated as

DR(�) = 1
�

∫ ∞

0

|x̃(t) − ỹ(t)|2dt. (A.2)

Quite recently a markage trick has been presented which sig-
nificantly reduces the computational cost of calculating the van
Rossum distance (Houghton and Kreuz, 2012).

Appendix B.

Time-resolved spike train distances

In this paper we  also investigate three time-resolved spike train
distances, the ISI-distance (Kreuz et al., 2007, 2009), the SPIKE-
distance (Kreuz et al., 2011, 2013), and the very recently proposed
RI-SPIKE-distance (Satuvuori et al., 2017). Note that in Satuvuori
et al. (2017) all of these distances have been adapted for data with
multiple time scales. To see how these adaptive versions behave
please refer to Appendix B.4.

B.1 ISI-distance

The ISI-distance DI (Kreuz et al., 2007, 2009) measures the
instantaneous rate difference between spike trains. It relies on a
time-resolved profile, meaning that a dissimilarity value is defined
for each time instant. To obtain this profile, we assign to each time
instant t the time of the previous spike

t(n)
P (t) = max{t(n)

i
|t(n)
i

≤ t} for t(n)
1 � t � t(n)

Mn
(B.1)

and the time of the following spike

t(n)
F (t) = min{t(n)

i
|t(n)
i
> t} for t(n)

1 � t � t(n)
Mn
. (B.2)

From this for each spike train n an instantaneous interspike
interval (ISI) can be calculated as

x(n)
ISI (t) = t(n)

F (t) − t(n)
P (t). (B.3)

The pairwise ISI-profile is then defined as

In,m(t) = |x(n)
ISI (t) − x(m)

ISI (t)|
max{x(n)

ISI (t), x(m)
ISI (t)}

. (B.4)

The multivariate ISI-profile is obtained by averaging over all
pairwise ISI-profiles:

I(t) = 2
N(N − 1)

N−1∑
n=1

N∑
m=n+1

In,m(t). (B.5)

Finally, integration over time gives the distance value

1
∫ te
DI =
te − ts ts

I(t)dt. (B.6)

Here, ts and te denote the start and the end of the recording,
respectively.
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Fig. B.6. Adaptive spike train distances A-SPIKE-distance and RIA-SPIKE-distance
with fixed parameters T.  In each case we present two different surface projections.
(A)  A-SPIKE-distance with T = 0.1 applied to two Poisson spike trains of unit length.
When both spike trains exhibit high rates compared to the global parameter T the
spike trains are considered more similar. (B) A-SPIKE-distance with T = 0.01. With
smaller details still considered important the drop moves to higher frequencies. (C)
RIA-SPIKE distance with T = 0.01. The RIA-SPIKE distance does not take into account
2 E. Satuvuori, T. Kreuz / Journal of N

.2 SPIKE-distance

The SPIKE-distance DS (Kreuz et al., 2011, 2013) measures the
elative spike timing between spike trains normalized to local firing
ates. In order to assess the accuracy of spike events, each spike is
ssigned the distance to its nearest neighbor in the other spike train

t(n)
i

= min
j

(∣∣∣t(n)
i

− t(m)
j

∣∣∣
)
. (B.7)

These distances are then interpolated between spikes using for
ll times t the time differences to the previous spike

(n)
P (t) = t − t(n)

i
for t(n)

i
� t � t(n)

i+1, (B.8)

and to the following spike

(n)
F (t) = t(n)

i+1 − t for t(n)
i

� t � t(n)
i+1. (B.9)

This defines a time-resolved dissimilarity profile from discrete
alues the same way as Eqs. (B.1) and (B.2) did for the ISI-distance.
he instantaneous weighted spike time difference for a spike train
an then be calculated as the interpolation from one difference to
he next

n(t) =
�t(n)

i
(t)x(n)

F (t) + �t(n)
i+1(t)x(n)

P (t)

x(n)
ISI (t)

, t(n)
i

� t � t(n)
i+1. (B.10)

This function is analogous to the term x(n)
ISI for the ISI-distance,

ith the only difference that it is piecewise linear instead of piece-
ise constant. It is also continuous.

The pairwise SPIKE-distance profile is then obtained by aver-
ging the weighted spike time differences, normalizing to the local
ring rate average and, finally, weighting each profile by the instan-

aneous firing rates of the two spike trains

m,n(t) = SnxmISI(t) + SmxnISI(t)

2〈xn,mISI (t)〉2
. (B.11)

From this the multivariate profile and the distance value can be
alculated similar to Eqs. (B.5) and (B.6).

.3 RI-SPIKE-distance

The rate-independent SPIKE-distance (RI-SPIKE-distance) DRIS
Satuvuori et al., 2017) is similar to the SPIKE-distance, but leaves
ut the weighting by rate difference by substituting Eq. (B.11) with

RI
m,n(t) = Sn(t) + Sm(t)

2〈xn,mISI (t)〉 . (B.12)

The RI-SPIKE-distance shares all the properties of the SPIKE-
istance, but it only evaluates normalized spike timing differences,
hereas the SPIKE-distance additionally uses differences in rate to

etermine similarity.
Again, the multivariate profile and the distance value can be

btained analogous to Eqs. (B.5) and (B.6).

.4 Adaptive spike train distances

In Satuvuori et al. (2017) all three of the time-resolved distances
escribed in Sections B.1–B.3 have been adapted for data containing
ultiple time scales by adding a notion of the relative importance

f local differences compared to the global time scales. The adaptive
ersions start to gradually ignore differences between spike trains
or ISIs that are smaller than a minimum relevant time scale (MRTS).

he MRTS is implemented by an additional parameter T which can
ither be set by the user or estimated directly from the data.

In the present study we basically evaluated these adaptive ver-
ions with the threshold parameter T set to zero, which is equivalent
rate, but starts ignoring differences in spike times once both rates become high. (For
interpretation of the references to color in this figure legend, the reader is referred
to  the web version of the article.)

to using the original distances. This makes sense since the gen-
eralizations are primarily designed to reduce the importance of
small time scales in datasets containing multiple time scales, but
the steady rate Poissonians analyzed here contain only one time
scale.

The only reasonable comparison using the adaptive versions
is when the threshold is fixed to a constant value. This causes
higher rates to be considered as less significant for dissimilarity
(once the spike trains get very dense, relative differences in ISIs
or spike times hardly matter). So for completeness, in Fig. B.6 we
provide the results for the adaptive distance to be compared with
Fig. 4. Higher rates with a rate ratio close to 1 are considered as
more similar because the differences are small in comparison to the
threshold. For a smaller threshold (Fig. B.6B) the area where similar-
ity is enforced moves to higher frequencies. The adaptive versions
are designed to work with datasets containing multiple time scales
such as regular spiking and bursts and for a fixed threshold the
spike trains with a higher rate are considered as long bursts.

We also looked at the results for an automated threshold. Here
the graphs look almost identical to the T = 0 case (results not
shown). However, and more importantly, the results can not really
be compared in a meaningful way, since the threshold is different
for different spike train pairs (see Satuvuori et al., 2017, for details).
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