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A graphic syntax for the ISO formal description technique LOTOS is introduced. The
syntax is meant to improve the readability of LOTOS behaviour expressions, and to
highlight aspects such as sequentiality, parallelism, synchronization and choice, without
excessively departing from the structure of the traditional 'textual' syntax. A formal
scheme based on Prolog is adopted to derive pictures from the abstract syntax of the
language. One complete example of a graphic specification is given.

0. INTRODUCTION

The advantages in adopting Formal Description Techniques (FDT's) for the specification of
communication systems have been widely recogrized within the community of system designers
and developers, and also within the standardization institutions of ISO and CCITT. FDT's allow
one to develop unambiguous specifications which serve as a sound basis for the analysis and the
implementation of a system. However, a disadvantage of FDT's is that people are required to learn
and understand them. Thus, in order to achieve a wide-spread acceptance of FDT's, they must be
easy to learn and easy to use. While the suitability of a specification language to express the
relevant features of a system depends essentially on the formal semantics of that language, itis a
fact that the success and 'popularity’ of the latter may be substantially influenced by the adopted
'syntactic sugar'.

The importance of a concrete graphic syntax for an FDT was first recognized within CCITT. In
fact, the original form of SDL (Specification and Description Language, [CCITT87]) was SDL /
GR (Graphic Representation), based on a set of standardized graphic symbols.

LOTOS [ISO—8807])is expected to reach the status of International Standard during 1988.
Furthermore CCITT has recognized the applicability of LOTOS for the specification of
- communication systems, and, based on the experience with SDL / GR, CCITT experts have
suggested to start a cooperation with ISO for defining an alternative, graphical representation for
LOTOS. During the year 1987 an unespectedly large number of preliminary proposals for a
graphical LOTOS have circulated among CCITT and ISO experts, and have been discussed during a
joint megeting between the two organization (see, for instance, ﬁ‘ SZ,LBLMP87; B8 @TKZ;,%@}IQS’Z;
[[AS87] ,) In the meanwhile, a "new Question” has been proposed within ISO to handle this topic

1SO-Q48.4], with the purpose to produce an addendum to the LOTOS standard, and a satisfactory
support to such an activity has been expressed by ISO Member Bodies.

Although our current proposal is somewhat different from the pregv{us proposals mentioned above,
we think we have taken into account the indication implicit in $ome of them, which supports the
simplicity of graphic LOTOS. In particular, as a novel feature, we have conceived the work space
of a LOTOS user as an imaginary desk-top where paper sheets of rounded or rectangular shapes
may be distributed with sufficient freedom, and may partially overlap. Surprisingly enough,
LOTOS gates can speak their offers to each other...




The paper is organized as follows. Section 1 lists a number of general principles for defining a
graphic version for a FDT, and some specific criteria adopted in our proposal. The graphic
representations of the syntactic constructs of LOTOS are informally introduced in Section 2, while
Section 3 presents a complete example. The formalization of our proposal is contained in the three
Appendices.

1. CRITERIA FOR DEFINING A GRAPHICAL LOTOS

It seems desirable to define graphic forms for LOTOS (called GLOTOS hereafter) with the
following principles in mind.

Syntax-oriented. GLOTOS is primarily meant as an alternative concrete syntax for LOTOS. It
should directly represent all and only the information contained in a LOTOS (textual) specification,
in a way which highlights the structure of the latter (sequentiality, parallelism, synchronization...).

Improving readability. An appropriate use of indentation greatly favours the readability of LOTOS;
GLOTOS potentially offers a less constrained use of the dimensions of a paper sheet, and may thus
further improve readability, although it is not obvious that the improvement will be dramatic.

Easy two-way translation between LOTOS and GLOTOS. This translation should appear
immediately to the reader of either form. In general, the translation of a complex construct must be
obtained by combining the translations of its components. .

Integrability of LOTOS and GLOTOS in the same specification. It should be possible to combine
graphic and textual forms in the same specification. For instance, the designer may find convenient
to write a simply structured process in LOTOS, within a specification in GLOTOS.

The LOTOS and GLOTOS syntaxes should be both derivable by the same abstract syntax. Itis
widely recognized that the abstract syntax is a central element for the formal definition of a
language, and of its representations/interpretations. At the same time, the abstract syntax is essential
for defining mixed syntax-directed editors for the language. ‘

Easy to draw by hand. It should be easy to draw GLOTOS specifications by hand, on paper.
Although it is likely that many specifications will be directly produced on a computer screen via
CAD tools, the ability to do this by hand is seen as a guarantee that GLOTOS is kept simple.

Minimality. Among the different graphic forms which satisfactorily highlight the structure and
features of a specification, preference should be given to those which minimize the complexity of
~ the figures (number of lines, segments, symbols, icons...) on the paper sheet. A GLOTOS
specification should not be substantially longer than its LOTOS version.

Full exploitation of the dimensions of a paper sheet. While the page of a LOTOS specification
imposes, essentially, a uni-dimensional, top-down reading, GLOTOS should expand in both
dimensions. It seems possible to exploit even the third dimension (z-axis), by partially
overlapping symbols, or drawing some of them in perspective.

Flexibility to "natural” evolution. 1t is fair to recognize that an optimal definition of GLOTOS
cannot be achieved in a single "burst of inspiration”, but requires also a subsequent, evolutionary
phase during which several allowed variants, or styles, are explored and compared, and some of
them emerge over the others. It seems therefore desirable to leave some room, in the early
definition of GLOTOS, for such an evolution, and to frecze some aspects of it only later (if at all).




The graphic syntax proposed here has been inspired by the principles listed in Section 1, and we
- hope that it satisfies them to an acceptable degree. More specific choices which characterize our
proposal are given below. :

Round shapes only for event-related elements. Circles and ovals are used to surround gates in
process definitions, instantiations, synchronizations. An empty circle denotes full synchronization.
Hidden gates are also surrouded by shapes with rounded edges. Value offers are included in cloud-
like shapes with round edges, connected to circled gates. Round shapes are immediately identified
in a GLOTOS complex figure.

Use of arrows. We use arrows only to indicate semantic sequentiality, that is sequentiality of
events, never to indicate synfactic sequentiality, that is the sequentiality assumed of the reading
process. The latter is often represented by partial overlapping of symbols (see next item).

Three-dimensionality. We exploit the third dimension of the paper sheet (z-axis) by partially
overlapping symbols and by suggesting perspective (only in two cases). The partial overlapping of
two or more symbols suggests that reading should proceed from the upper to the Jower symbols in
the ideal paper stack.

Preferred directions. Semantic and syntactic sequentiality imply movements left to right, or upper
to lower, or upper-left to lower-right. Some freedom is allowed here, which can be used to
optimize the layout of the graphic elements on the page.

2. INFORMAL INTRODUCTION TO THE GRAPHIC SYNTAX

We introduce a set of graphic representations for the syntactic constructs of LOTOS. Some
familiarity with the syntax of LOTOS is assumed. The graphic forms are illustrated here in the
quickest, completely informal way, by giving the graphic representation of each construct of the
language, or of small combinations of them. Some graphic variants are also suggested. One
complete example is given in Section 3. A formal definition of the proposed concrete graphic

syntax of LOTOS, including the variants, is found in Appendix C. By convention, the "..
symbol and the iralics text found in the following figures do not belong to the graphic syntax.

2.1 Observable and unobservable action prefix

Let us consider a process which offers to accept any value x of sort t, and to provide the value of
expressions 'y + 1' and 'append(z, zqueue)' at gate 'betal’, provided that the guard '[x IsIn xset] is

- verified; after this, it may synchronize with other processes at gate 'beta?', without exchanging

values; then it performs an internal, unobservable action, and then something else. Such a
behaviour is described in LOTOS by the action prefix construct as follows:

betal ?x:nat,!y+l,!append(z, zqueue) [x IsIn xset];
petaZ;
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The process instantiation 'Data_Phase [g1, g2, g3, g4] (], E2, E3)', which instantiates the

behaviour of a process called 'Data_Phase' with the actual gates gl, ..., g4, and the actual
- parameters E1, By and E3 (again these are LOTOS value expressions), is shown in Figure 2.3.
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Figure 2.3

When a process has no externally visible gates, the oval shall be empty.
2.4 Process definition

The process definition
process Data_Phase [al, a2, a3, b] (x, y : c_sort h, k : d_sort) : exit (sortl, sort2) =
behaviour ,
where

endproc

is shown in Figure 2.4.
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Note that a process definition looks like a process instantiation, except for a further rectangle
containing the graphic description of the process behaviour (denoted by the word behaviour in
figure). At the lower right corner of such a rectangle the indication is found of the process
functionality 'exit (sortl, sort2)'. The functionalities 'exit' (without sort list) and 'noexit' are
represented by using the same symbols used for the 'exit' and 'stop' processes (see Section 2.2).
Note also that currently we do not provide a graphic representation of the 'where' clause found ina
process definition. Similarly to the case of process instantiation, the oval in the definition of a

process with no visible gates is empty.
2.5  Type definition and "library" construct

Currently we do not envisage any graphic representation for type definitions. Therefore we simply
define two frames to surround the textual representations of these constructs; they are shown in
Figure 2.5.

type Integer is
endtype
re Iy . AT e Llusyy Bovdawn, Fhument, Set b !

Figure 2.5
2.6  Hiding

The construct 'hide g1, g2 in behaviour' is shown in Figure 2.6.a. A nice shorthand (suggested .
by G. Scollo) for the unfrequent case when hiding is directly applied to a process instantiation is
shown in Figure 2.6.b.
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Figure 2.6




2.7 Guarding

The construct '[E] = E2] -> behaviour', where [El = E2] is the condition (or 'guard') which
enables the specified behaviour, is shown in Figure 2.7.
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Figure 2.7

E] and E2 in figure denote the textual representations of two LOTOS value expressions. We
deliberately avoid using an arrow symbol in the graphic representation of this construct, since
arrows are preserved for denoting exclusively sequentiality of events and processes.

2.8 Paralle] composition - interleaving

The parallel composition 'Behaviorl |11 Behaviour?' of two behaviours which do not
synchronize with each other is shown in Figure 2.8.
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Figure 2.8

Suitable simplifications can be defined to eliminate some of the internal rectangles, without
eliminating their contents.

2.9 Parallel composition - general case and full synchronization

The parallel composition 'Behaviorl g1, ..., gn] | Behaviour2' of two behaviours which
synchronize at the synchronization gates [g1, ..., gn], and the parallel composition 'Behaviour] ||
Behaviour2' of two behaviours which proceed in full synchronization are shown in Fi gure 2.8.
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Figure 2.8.

Note that our formalization of the LOTOS graphic syntax cannot handle, currently, the syntactic
abbreviation of Figure 2.8 for multiple application of the parallel operator.

2.10 Choice
The choice 'behaviourl [] behaviour?' between two behaviours is shown in Figure 2.10.
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2.11 Local binding construct (let")

~ The binding of variables x and ¥y, Or respective sorts sortl and sort2, to the values of value
expressions £/ and E2, respectively, valid within a given behaviour, is achieved by the construct
letx : sortl = E1, y : sort2 = E2 in behaviour ", Its graphic representation is given in Figure
2.11. :
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Figure 2.11
2.12  Multiple choice on values, multiple choice on gates

The construct 'choice x : sortl, y i sort 2 [] behaviour' expresses the choice of any instance of
behaviour obtained by binding its variables x and y to values of sorts sort] and sort2, respectively.
Its graphic representation conveniently resembles that of the local binding construct, and is given in
Figure 2.12. The analogous construct 'choice gin[gl, ..., gn], hin [h1, -, hm] [] behaviour',
where the alternatives are generated by different instantiations of gates g and h, is illustrated in
Figure 2.12.b.
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Figure 2.12

Note that dashed lines were used also for the (binary) choice construct.
2.13  Multiple parallelism (‘par’)

The construct
'par gin [gl, ..., gn], hin [h1, ..., hm] 11| behaviour

expresses the parallel composition, without synchronization, of several instances of a specified
behaviour, generated as for the multiple choice on gates of Section 2.12. In fact, any one of the




three cases of LOTOS parallel composition (interleaving,
Section 2.9) can be applied here, and the corresponding g
2.13, are obvious adaptations of the graphical representatio
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2.14 Enabling

In the sequential composition

Figure 2.13

behaviourl >> accept x:sortl, y:sort2 in behaviour2

of two behaviours, at termination of
bound to variables x and y, respectively,
This construct is represented as shown i

the first behaviour two values of sorts sortl and sort2 are
and used via these variables in the subsequentbehaviour?.
n Figure 2.14.
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2.15 Disabling

In expression:
behaviourl [> behaviour2

the first behaviour can be disabled by the second one. This is represented as in Figure 2.15.
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3. A COMPLETE SPECIFICATION

'
b

We give here the graphic version of the LOTOS specification of the Daemon_Game; its textual
specification can be found in [BB88]. The original LOTOS specification of the Daemon_Game is
due to Chan and Turner ([CT86]). :
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4. Conclusions




We have introduced a graphic syntax for LOTOS. A formal scheme based on Prolog has been
adopted in order to derive pictures from the abstract syntax of the language. One complete examiple
of a graphic specification was given. Our current proposal does not deal with the nesting of process
and type definitions (and associated scoping rules). Moreover, it does not provide graphical
representations of type definitions and value expressions. We feel that the logic programming style
adopted for the definition of graphical LOTOS offers a satisfactory level of formality and
abstraction, and at the same time it provides a good basis for the implementation of graphic tools.
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APPENDIX A - AN ABSTRACT SYNTAX FOR LOTOS

The importance of defining an abstract syntax, in dealing with a programming or specification
language, is today widely recognized, and its use is a consolidated practice. Such a practice has
steamed from the consideration that a program (or specification, but in the sequel we shall speak of
"programs" in a rough sense) must not be considered simply as a string of characters or lines of
text. Instead, it must be considered as a structured object, constituted by constructs which are
meaningful from the point of view of the semantics of the language. The rules which define the
structure of programs constitute the abstract syntax of the language. It is important to point out that
such a syntactic description of the language doesn't deal with :

* the actual concrete representation of the various constructs when they are printed on paper or
displayed on a screen;

* issues like precedence rules and/or associativity of operators of the language;

* ambiguities which my arise when "parsing" a particular representation of a program.

Issues like those mentioned above are left to other, more concrete representations. The interesting
point is that any such representation, as well as any other interpretation, including semantic ones,
can be defined as a mapping from the elements of the abstract syntax into the domains of interest.
Actually, the abstract syntax management is the kernel activity of any integrated environment for
software development ([DOD80,T81, GRAS6, HT86, K85]).

The simplest and most intuitive way for describing the abstract syntax of a language consists of:

. . b . . . R
*  grouping omogeneous constructs into classes (i.e. defining the set of syntactic categories of the
language), and .

¢ defining the structure of each structured construct in terms of component sub-constructs (i.e.
stating what are the syntactic categories to which such sub-constructs belon £).

The simple hierarchical relationship between a construct and its components may be easily
represented by trees. So, for example, the fact that the LOTOS parallel composition construct is
composed by :

¢ the two behaviour expression components o '
* the list of the gates at which synchronization occurs (i.e. a list of identifiers)

may be suitably represented by the tree shown in Figure A.1.
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Each node of the tree is labelled either with the name of the construct it represents (e.g. 'parallel’,
'id_list', 'id"), in which case there will be a child for each subcomponent of the construct, or with
the name of a meta-syntactic variable (e.g. 'Behaviourl', 'Behaviour2"), ranging in some syntactc
category (e.g.'behaviour expressions’). The tree in Figure A.1 does not represent a completely
defined element of the language, because of the presence of variables; actually, only trees without
variables represent completely defined instances of constructs. On the other hand the presence of
variables in the abstract syntax trees is very useful when defining mappings of the abstract syntax
into other domains. Indeed, in Appendix C we shall describe our graphic representation of LOTOS
as a mapping of LOTOS abstract syntax into an abstract "world of pictures".

Let us now give an abstract syntax for LOTOS. It is defined as the language generated by a
grammar, whose generic production rule looks like the following:

Synctactic_category  ->
costruct_1
( variable_for subconstruct 11 : Synctactic_category,
variable_for subconstruct In : Synctactic_category
)
costruct_m
( variable_for subconstruct ml : Synctactic_category,
variable_for subconstruct mn : Synctactic_category
) .

In the above rule, Syntactic_category is a word starting with an upper case letter ‘which represents a
syntactic category; construct_i is a word composed by lower case letters only and construct_1, ...,
construct_m represent the alternative constructs of the syntactic category defined by the rule. The
metasymbol 'I' has the usual "alternative" meaning. For each construct, the list of syntactic
categories of its components is given; each element of the list is associated with a variable (in
italics) which ranges in that category. In order to produce both completely defined and partially
defined instances of the constructs, the variable for subconstruct and the Syntactic_category must
be considered as disjoint alternatives (so, the metasymbol "' is equivalent to ). Finally, some
meta-syntactic abbreviation are used, for expressing optionality and for lists, whose meanings are
obvious.

In the following we give a (partial) abstract syntax for LOTOS. Essentially, this grammar defines a
language of linearized trees. For instance, 'parallel (Behaviourl, Behaviour2, id_list (id, id, ...,
id)' is an element of this language, and represents the linearization of the tree in Figure A.1. Itis
worth noting that such a language is a subset of the language of Prolog terms [SS86].

- Specification ->

specification
(Spec_id: Id,
Gates: Optional_Nonempty_Id_List,

Parameters:  Optional_Nonempty_Id_Decl_List,
Functionality: Optional_Id_List,

Global_types: Optional Nonempty_Type_Def List,
Behaviour: Beh_Expr,

Local Defs:  Optional Nonempty_Local_Def Iist)

Optional_<item> ->
void | <item>
Local_Def ->

type_def (...)




proc_def :
(Proc Id: Id,

Gates: Optional_Nonempty_Id_List,
Parameters:  Optional_Nonempty_Id_Decl_List,
Functionality: Optional_Id_List,

Behaviour: Beh_Expr,

Local Defs:  Optional_Nonempty_Local_Def List)

Beh_Expr ->
stop
I exit  (Parameters: Exit_Parameter_List)
| proc_inst
(Proc 1d: 1d,
Gates: Optional_Nonempty_Id_List,
Parameters:  Nonempty_Value_Expression_List)
I guarded
(Guardl : Guard,
Behaviour: Beh_Expr)
choice

(Behaviourl: Beh_Expr,

Behaviour2: Beh_Expr)
parallel

(Behaviourl: Beh_Expr,

Behaviour2: Beh_Expr,

Synchr_Gates: Id_List)
full_synchronization

(Behaviourl: Beh_Expr,

Behaviour2: Beh_Expr)
unobs_prefix

(Behaviour:  Beh_Expr)

obs_prefix
(Gate: 1d,
Offers: Offer 1ist,
Guard: Optional_Guard,
Behaviour: Beh_Expr)

hide
(Gates: Nonempty_Id_List,
Behaviour: Beh_Expr)

enable

(Behaviourl: Beh_Expr,

Behaviour2: Beh_Expr,

Parameters: ~ Optional_Nonempty_Id_Decl_List)
disable

(Behaviourl: Beh_Expr,

Behaviour2:  Beh_Expr)
local_binding

(Assignements: Nonempty_Assignement_List,

Behaviour: Beh_Expr)
multiple_choice_on_values

(Generator:  Id_Decl_List,

Behaviour: Beh_Expr)
multiple_choice_on_gates

(Generator:  Gate_Decl List,

Behaviour: Beh_Expr)




! multiple_parallel
(Generator:  Gate_Decl_List,

Behaviour: Beh_Expr,
Synchr_Gates: Id_List)

I multiple_full_synchronization
(Generator: Gate_Decl_List,

Behaviour: Beh_Expr)




APPENDIX B - FORMAL SPECIFICATION OF GLOTOS - basic definitions

In this appendix we shall characterize the pictures we have informally introduced in Section 2. First
of all we need some preliminary definitions.

Picture instance: a picture instance is a triple (S, Back, Front), where

S is a set of points on the cartesian plane, and
Back and Front are two distinguished points of S.

For convenience we will ambiguously use the word "picture (intance)" to refer both to the triple and
to the set S (the intended meaning should be clear from the context).

Picture: a picture is a set of picture instances. We will define complex pictures in terms of a set of
basic pictures and of a set of predicates which establish relations between pictures. Among basic
pictures we distinguish between constant-size and variable-size pictures.

Constant-size basic picture: a constant-size basic picture is one whose instances can all be obtained
by simply translating on the plane a unique picture instance.

Variable-size basic picture: any basic picture which is not a constant-size one.

The unique instance (modulo translation) of basic picture unit-cross-in-circle', of constant size, and
three instances of basic picture 'oval', of variable size, are shown, respectively, in Figures B.1 (a)

) QQO

a) unit-crogs-in-circle b) oval
Figure B.1 - Constant and variable-size basic pictures.

Without getting involved into cumbersome geometric and topologic notions, we assume the
existence of a number of unary, primitive predicates, named as the basic pictures, which may be
satisfied by picture instances. Thus, picture P can now be defined as the set of picture instances
which satisfy the associated predicate:

P = {(S, Back, Front) | (S, Back, Front) is a picture instance, and P(S, Back, Front)}.

Predicates are useful since they allow one to characterize pictures at a convenient level of
abstraction. Namely, by using predicates, we do not care about the absolute positions of picture
instances in the cartesian space, or about their actual sizes. On the other hand, we shall i impose
precise constraints on p1ctures stated in terms of relative positions as well as relative sizes.
Moreover, our "predicate” approach will allow us to express picture relations in a PROLOG-like
style. The possibility offered by logic programming to define relations, which are a simple and way
to express nondeterminism, proves quite useful also in order to include the notion of variant in the
formal specification of GLOTOS. A further obvious advantage of using a PROLOG-like style is
connected with rapid prototyping.

Figure B.2 lists our constant size picture predicates, and some picture instances which satisfy them.
The distinguished points Back and Front are abbreviated 'b' and 'f': when they are not shown, their
location is to be considered immaterial; 's' is the actual set of points of the picture instance.




Some instances of basic, variable size pictures are shown in Figure B.3. In the case of the
partitioned_rectangle, n must be an integer and determines the number of component rectangles of
the partitioned rectangle; h must be either the constant 'dashed' or the constant 'invisible'; in the
first case the components of the partitioned rectangle will be separated by dashed lines as in the
figure; in the second case, separation lines will be not visible. The predicate component (pr, n, s,
b, /) is true if pr is a partitioned rectangle and s is the n-th component rectangle, whose back and
front points are b and f.
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Further predicates are introduced below. Together with the basic picture predicates listed above,
these primitive predicates form the kernel our graphic system. In order to handle pictures
conveniently, each one of them is associated with two invisible reference rectangles and eigthteen
invisible reference points (besides the Front and Back). The two reference rectan gles are identified
by the two reference rectangle identifiers 'outrect’ and 'inrect’.

Figure B.4.a shows the nine invisible reference-points associated to an invisible reference-
rectangle. They are identified by the reference point identifiers’ n', 'ne', '¢', 'se', 's', 'sw', 'w',
nw', 'c’ (n for north, e for east..., ¢ for center). Any subset of the reference points of either

reference rectangle associated to a picture can be identified by the primitive predicate 'ref_point':

ref_point (Picture, Ref rect_id, Ref_pids, Ref_points) if
Ref points is a list of points of the reference rectangle Ref rect_id (‘inrect’ or ‘outrect’)
associated with Picture, these points are identified by the reference point identifiers in list
Ref-pids.

Reference rectangles can be obtained by the primitive predicate 'ref_rect":

ref_rect (Picture, Ref rect_id, Ref _rect) if
Rectangle Ref rect is the minimum rectangle which delimits Picture or a maximal rectangle
included in the area delimited by Picture, when Ref rect id is, respectively, ‘outrect’ or
‘inrect’.

The invisible reference rectangles of some basic pictures are shown in Figure B.4.b, which covers
the most peculiar cases; in all other cases the two rectangles are the obvious ones (most times they
coincide).
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Figure B.4 - Reference rectangles and points.

A special class of pictures is represented by texts, which can be obtained by the predicate ‘text'




text ([Terml, ..., Termn], Pict) if
Pict is a picture representing the concatenation of the texts denoted by the terms
[Terml, ..., Termn]. The null rectangle represents the empty list.

Of course the 'outrect’ rectangle is defined also for text-pictures. Four more primitive predicates are
useful for building complex pictures: they are listed below.

union ([Pictl, ..., Pictn], Pict) if
(the set of points of) picture Pict is the union of (the sets of points of) pictures
Pictl, ..., Pictn.

disjoint ([Pictl, ..., Pictn]) if
the intersection of the areas delimited by the ‘outrect’ rectangles of pictures
Pictl, ..., Pictn is empty, or is a null area.

difference (Pictl, Pict2, Picl") if
Pictl’ is the set of points of picture Pictl not included in the area delimited by the ‘outrect’
of picture Pict2.

rect_contains (Rectl, Rect2) if
the area delimited by rectangle Rect2 is included in the area delimited by rectangle Rectl.

Finally, we will use the two derived predicates:

contains (Pictl, Pict2) if
ref_rect (Pictl, inrect, Rectl),
ref_rect (Pict2, outrect, Rect2), i
rect_contains (Rectl, Rect2)
refpoint (Pictl, [c], P1), refpoint (Pict2, [c], P2), common_points (P1, P2).
common_points (Point_list1, Point_list2) if
on (X, Point_list1), on (X, Point_list2).

where on (X, L) if X is an element of the list L.




APPENDIX C - FORMAL SPECIFICATION OF GLOTOS - Unparsing mapping

The concrete graphic syntax for LOTOS proposed in this paper is defined formally by providing a
mapping from abstract syntax terms (see Appendix A) into pictures (built as discussed in Appendix
B). More precisely, the unparsing is given as a Prolog program which defines predicate 'picture’,
Informally: ‘

picture (Term, Pict, Back, Front) if
the set of points Pict, with distinguished points Back and Front, is the picture associated
with the abstract syntax term Term.

Pictures are defined by induction on the structure of the terms, thus the clauses of predicate Picture
will be, in general, recursive. As usual, variables names start with upper-case. The unparsing
given here does not cover the whole abstract syntax of Appendix A, but is sufficient to illustrate the
technique.

picture (proc_def (Proc_Id, Gates, Parameters, Functionality, Behaviour, Local_Defs), Pict, _, )
if

oval (O, _, ), rectangle (R1, _, _), rectangle (R2, _, ),

text ([Gates], O_text), contains (O, O_text),

text ([Proc_Id, Parameters], R1_text), contains (R1, R1_text)
picture (Behaviour, B, _, ), contains (R2, B),

func_symbol (Functionality, F_sym),

func_cloud (Functionality, F_cloud, F_front),

func_sorts (Functionality, F_sorts), contains (F_cloud, F_sorts),
ref_points (O, outrect, [c], O_center), ¢
ref_points (R1, outrect, [w,n,nw], R1_points),

ref_points (R1, outrect, [c], R1_center),

ref_points (R2, outrect, [w,n,nw], R2_points),

ref_points (R2, [sw], R2_sw),

ref_points (F_sym, outrect, [c], F_center)

ref_points (F_sym, outrect, [e,s], F_points),

common_points (O_center, R1_points),

common_points (R1_center, R2_points),

common_points ( R2_sw, F_center),

common_points ( F_points, F_front),

disjoint ([ O, R1_text, R1, B, F_cloud]),

difference (R1, O, R1_m_0),

difference (R2, R1, R2_m_R1),

difference (R2_m_R1, F_symbol, R2_m_R1_F),

union ([O_text, O, R1_m_O, R1_text, R2_m_RI_F, B, F_sym, F_cloud,
. F_sorts,Pict)

picture _(stop, Pict, Back, Front)

! unit_cross_in_circle (Pict, Back,\Front‘).
picture gexit ([D, Pict, Back, _)

! unit_arrow_in_circle (Pict, Back, _).

picture (exit (Parameters), Pict, Back, )
if

Parameters # [],
unit_arrow_in_circle (Ci, Back, _), cloud (Cl, _, Cl front), text([Parametrs],

Cl_text),




contains (Cl, Cl_text),

ref_points (Ci, outrect, [n, s, e, w], Ci_points),
common_points ([Cl_front], Ci_points),
disjoint (Ci, CI)

union ([Ci, Cl, CI_text], Pict).

picture (unobs_prefix (Behaviour), Pict, Back, Front)
if

black_unit_circle (C, Back, X), arrow (A, X, Y), picture (Behaviour, B, Y, Front),
disjoint (A, B, O), ,
union ([A, B, C], Pict).

picture (obs_prefix (Gate, Offers, Guard, Behaviour), Pict, Back, Front) ‘
if

oval (O, Back, X), arrow (A, X, Y), picture (Behaviour, B, Y, Fronit),
cloud (Cl, Cl_front)

ref_points (O, outrect, [n, s, e, w], O_points),

common_points ([Cl_front], O_points)

text ([Gate], O_text), text ([Offers, Guard], CL_text),

contains (O, O_text), contains (Cl, CL_text),

disjoint (O, A, Cl),

union ([0, O_text, Cl, Cl_text, Al, Pict).

picture (proc_inst(Proc_Id, Gates, Parameters), Pict, Back, Front)
if

oval (O, Back, _), rectangle (R, _, Front),

text ([Gates], O_text), contains (O, O_text), 2
text ([Proc_ld, Parameters], R_text), contains (R, R_text),

ref_points (R, outrect, [w, nw, n], R_points], ref_points (O, outrect, [c], O-points)
common_points (R_points, O_points), i
disjoint (O, R_text),

difference (R, O, R"),

union ([O, O_text, R', R_text], Pict).

funcmsymboi ( void, FS)

! unit_cross_in_circle (FS).
func_symbol ( Fuctionality, FS)

i Functionality # void, unit_arrow_in_circle FS, _, ).
func_sqrts (void, F_sorts)

! null_rect (F_sorts, _, ).
func_so_rts (Functionality, F_sorts)

! Functionality # void, text (Functionality, F_sorts).
func_clpud (void, F_cloud,F_front)
§ null_rectangle (F_cloud, __; F_front).

func_cloud (Functionality, F_cloud,F_front)
it .

Functionality # void, cloud(F_cloud, _, F_front).
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