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1 - INTRODUCTION

Designing computing structures for FFT with ever lower response time has been
an attractive goal for several years and many algorithms and architectural solutions have
been introduced. Out of the proposed techniques, the use of residue number systems
(RNS) proved to be profitable to speed up computations, not only for FFT [1, 2], but
for many other problems as well, in the area of digital signal processing (DSP).
Actually, additions and multiplications are mainly involved in DSP, with results
expected within known ranges; on the other hand, RNS-based arithmetic units are
highly efficient just for addition and multiplication, since they are carry-free operations.
Moreover RNS allow to design modular and regular structures and therefore are well
suited for VLSI implementations, to vantage of area saving.

In this work a VLSI structure, based on RNS units, to perform the N point FFT
on a continuous data stream is proposed, and its performance is evaluated in terms of
asymptotic VLSI complexity.

A lower bound on complexity was found for the FFT problem in the form
A(N)Tz(N) = Q(NzlogzN) [3]; such a bound was reached by constructive designs with
a response time T(N) = ﬁ(logZN) [4, 5]. The architecture proposed here is based on a
very hi gh degree of processing parallelism and on a communication parallelism tailored
to the response time of adders and multipliers used in the design; furthermore, under

data pipelining, it works as an optimal design with a pipeline interval
T'(N) = 9(logloglogN).

The FFT Formulation
Let us consider the discrete Fourier transform over N points xok), k=0,1, ..,
N-1
N1
X(n) = EXO(k)Wnk, n=0, 1,...,N-1 (1)
= ‘

where W = exp(-12n/N). When N = 27, v integer valued, and denoting by ky, and ny,
h =0, ..., v-1, the h-th bit of the binary representations of k and n, expression (1) can

be rewritten as [6]:
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Performing the summations in (2) separately, intermediate results Xj, i=1 ..

each consisting in a vector of N components xj(i), i=0, .., N-1, indexed by proper

bits of n and k, can be evaluated by means of the following sets of equations [6], which

were formulated by Cooley and Tukey:
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Each set of equations (3) can be evaluated by means of a set of N processing

elements {PEij} and then a total of NlogN processing elements arranged as an array of

N rows and log N columns is required to compute the Fourier transform.

The VLSI Model

We refer to the following assumptions, generally accepted in the literature, to

model technological constraints:

a) A = O(const) is the minimal wire width and the minimal distance between
parallel wires is O(A);

b) wires run horizontally and vertically and only two wires may cross at any
point;

¢) one bit of stored information requires area 1.‘}(7»2);

d) a transistor of area ¥(const) needs a transit time T = ¥(const) to change its
state;

¢) the propagation of a binary change along a wire requires ¥(t); to meet this
assumption, wires of length 9(L) must be driven by drivers with area

BA)-B(L).




Residue Number Systems (RNS)

In a residue number system an integer 0 £ X < 2"-1 is represented by means of p
residue digits a,, where o, = IXImi = X—LX/mi_]- m;, LX/mi_l denotes the largest integer

not exceeding X/m,, and {m;} is the set of moduli. If moduli m, are pairwise relatively
prime, it can be shown [7] that there is a unique representation for each number X in

P
the range 0 <X < []m,; = M.
i=1

Moreover, for any pair of integers X and Y, the following relations hold:

X£Y!  =|IXl Y] XYl = |IXI Y
m; my my mj

mj I my’ lmi ‘ mj

and, consequently, addition and multiplication can be performed for each modulus
separately.

It is easy to show that previous notation can be extended to signed arithmetic. In
fact, assuming M even for simplicity, an implicit sign representation can be taken by
associating to any relative integer X, with -2 <X <2"'-1, an integer Y in the range
[0, M) defined by the relation:

_ 1 X ifX=20
T MIXI if X <0

Y

Thus signed arithmetic operations can be carried out in the residue form without

needing sign knowledge, which is difficult to obtain rapidly in RNS's. Moreover, after

the RNS-to-positional conversion, the resulting non-negative number N, with 0 £ Y <

M, carries an implicit representation of the sign of the actual result X, which can be
obtained in its range [-M/2, M/2) as follows:

X = Y ifY<M2
TIY-M ifY=2M2

In this article we assume m; = %(logM), 1 £i < p, and, consequently,

p
M= Y m; = 0((log M)P)-d(const)

i=1

logM = S(ploglogM), p =V(logM/loglogM)

This assumption simply states that all moduli are of the same order; it can be noted
that the number of bits necessary to represent all residue digits of X, adding up to




V(ploglogM), is of the same order as the number of bits necessary to represent X in the
weighted number system.

Finally, we assume, as in [3], that M > N, logM = O(logN), that is
logM = ¥ (logN).

2 - THE STRUCTURE OF PROCESSING ELEMENTS

Each processing element PEij of the array introduced in previous section can

perform the following computations:
x{(0) = x;.1(8)+x;.1OW”

where

P 2 S T R
s =14,;2"7, t=1+(1-,)2", T |N|2J2

and iy_j is the (y-j)th bit in the binary representation of 0 < i < N-1. Note that the

computation consists of the sum of one input with the other input multiplied by a
constant. Denoting input data by x and y and the output by z and recalling that operands
are complex numbers, previous equation can be rewritten as

Re(z) = Re(x)+Re(y)Re(WH)-Im(y)Im(W7) 4)

Im(z) = Im(x)+Re(y)Im(W)+Im(y)Re(W") (5)

where all operands may assume non-integer values.
Nevertheless, integer values are to be provided to these equations to perform
residue arithmetic. To this purpose, let S be a positive integer, then we can write:

Re(z) = Sl (Re(x)S+Re(y)Re(WHS-Im(y)Re(WHS) 4"

Im(z) = —Sl— (Im(x)S+Re(y)Im(WH)S+Im(y)Re(WHS) (59

Assuming that input data are integer valued and substituting Re'(W') =
LRe(WHS ], Im'(W") = LIm(W")S | for Re(W")S and Im(W")S respectively we obtain:

Re(z) =|4 (Re(x)s+Re(y)Re'(w’)-Im(y)Im'(wf))J ~ [Reé@ | (4"



Im(z) = [-é () S+Re (y)Im'(W+Im(y)Re (W) J - [Im—S@J (5™

Let [[-M/2], LM/2]) be the range necessary to represent system inputs and
outputs. Then Re(z) and Im(z) can be considered mod M:

IRe(o) |, - “Reé(z) J|M= %Re'(zHSRe'(z)\s‘M

= H'SL‘M(IRC'(Z) l M'l |Re'(z) | SI M)‘M (4™

Similarly,

|Im(2) | ;= “-Sl—{Mq Im' @y~ | @) ] M)\M (5"

It must be observed that previous expressions are defined provided that the multi-
plicative inverse 11/l exists, i.e., GCD(S, M) = 1. Moreover, from equalities (4™)
and (5") it results that IRe'(z)lg and IIm'(z)ls must be evaluated. As
IRe'(2)lg = IIRe'(z)IMSIs and Im'(z)lg = llIm'(z)lMSIS, it is sufficient to perform

111

computations (4") and (5
P+ : : i

32 S such that J] m; =S, to the residue representation system of data; in this way a
i=p+1

) in the range MS, by adding p' moduli M qs M, 0s e

base extension is carried out. In the following we assume that S = 9(M).

The organization of any PE;, consists of three parts, as shown in Fig. 1. The
base extension structure generates residue digits of input data for moduli from m,,; to
my, The second structure computes IRe'(2)lyg and IIm'(z)ly;g as defined in equations
(4") and (5"). The scaling structure is necessary to represent results produced by the
computation structure in the range M.

The computation structure is shown in Fig. 2 and consists of 2(p+p’)
computation units, each evaluating IRe'(z)l  orlIm'(z)l ., and of a permutation
1 1

network which allows feeding signals IRe(x)l my Im(x)! my IRe(y)lmi and lIm(y)lmi,
1 <1< p+p' to proper computation units.

Each computation unit is arranged as shown in Fig. 3 and computes IRe'(z)! miand
IIm'(z)!_,. according to equations (4") and (5"). Three mod m; multipliers, as the

1

optimal multipliers defined in [8], are used, which require inputs and produce outputs
divided into substrings. Three register files store substrings of constants lIm'(Wr)lmi,
lRe'(W’r)}mi , lSJmi. Moreover, two mod m; adders, accepting input data substrings, are

cascaded and a FIFO register allows proper pairing of substrings for the second adder
inputs. A mod m, adder is sketched in Fig.4; it consists of two binary adders as



described in [9], the first computing IxI_ +lyl_ , and the second subtracting m; to test
m; Y 'my gmy

for overflow. A multiplexer controlled by the sign of the result selects the proper
sequence of substrings.

The base extension structure is formed by four substructures computing
IRe(x)lmk, lIm(x)lmk, lRe(y)|mk and !Im(y)lmk, p+1l < k < p+p' in parallel; in the

following only the substructure concerning the evaluation of lRe(x)lmk is described for

simplicity and it is outlined in Fig. 5. This structure is replicated in four copies allowing
to extend real and imaginary parts of input operands in parallel. It implements the base
extension procedure described in [7] which is arranged as a sequence of p modular
subtractions and multiplications by proper constants. Other authors recently proposed a
more efficient technique [10], which could be used alternatively, however the
complexity of the whole FFT structure would not be affected by such a choice. In our
system the implementation consists of a cascade of p arrays of modular addition and
multiplication blocks. The j-th array, 1 < j < p contains p-j+p' blocks; each block Cj’h,
j+1 < h < p+p', uses modular adders and multipliers like those described for the
computation unit. Thus each block requires inputs and produces outputs divided into
substrings and its outputs can directly feed the computation unit inputs.

Computations involved in (4™) and (5") are performed by the structure shown
in Fig. 6. A preliminary base extension of the quantities IRe'(z)lg and Im'(z)lg to the
range M, so providing [IRe'(z)lgl,, and Ilim'(z)lg, > is required. At this purpose the
same structure shown in Fig. 5 can be repeated, except that the extension from p'
moduli to p moduli is now to be performed. Once lIRe'(z)ISIM and lIlm'(2)lgl, are
obtained, subtraction and scaling by S can be carried out on the residue digits
separately, by means of two arrays of p blocks like those of Fig. 5; consequently the
structure of Fig. 6 can use substrings produced by computation units, as inputs.

3. - COMPLEXITY EVALUATION

3.1 - Area complexity
The overall system is depicted in Fig. 7, from which one can immediately deduce
that the vertical dimension is determined by the largest among the vertical extent of N
processing elements rows and the vertical extent of the 2! connection networks used at
stage j, 1 £j £y = logN. Similarly, the horizontal size depends on the horizontal
extents of the logN processing elements plus the logN connection stages.
To derive the complexity of the dimensions of processing elements, refer again to
Fig. 1. In this figure, complexity measures are reported for each structure. Moreover

we refer to the VLSI mod m multiplier proposed in [8] in which each operand is
considered as divided into sy; substrings of w/sy, bits, where w is the length of




operands, sequentially fed to the inputs. This multiplier can be designed optimally for
any value of s,,(w) within the range [3(logw), B(/w)]. In such hypothesis, it exhibits
multiply time Ty, (w) = ¥(sy) and requires area Ay = ﬁ((w/sM)z) = ﬁ((W/TM)z).
Adding and subtracting blocks can be designed using for the structure of Fig. 4 the
adder proposed in [9], such blocks also consider operands of length w divided into s,
substrings and exhibit computation time T,=0(s,+log(w/s,)), and area A, =
B(w/s (s, +Hlog(w/s,))). Assuming s, = sy, still ranging in [O(logw), S (Ww)], the
expression for T, reduces to T, =0( sp) = 0(Ty) and, as for area, A, =
OW/ Ty (TyrHlog (W/Ty))) = B(w).

Area occupancies of the base extension, computation and scaling structures are
then mainly determined by modular multipliers, which exhibit Ay, = ¢((logm/T M)z),
and by the number of moduli p+p' = O(p). In fact also the permutation network of Fig.
2 occupies a similar area O((plogm/T M)Z), so this is the overall area occupancy of each
processing element. Choosing Ty, = ¥(loglogm), which is the lower extreme of the

range of optimality and corresponds to the fastest design, and recalling assumptions on
p, m, M and N, we can write:

log? N

APE= 73

2

(log log log N
As for the networks in Fig. 7 connecting processing elements in adjacent

columns, they have the same structure, except the number of inputs and outputs.

Denoting the number of inputs of any network by I = 2108N*1 " each network connects

input in position h, 0 < h < I-1, to processing elements in positions h and |h+I/2l;.
According to the VLSI model rules, each network can be implemented in a squared area
S(DxO). Assume that each connection consists of @ wires, ® depending on the
parallelism degree of communications, ¥(const) < @ < 9(plogm) = B(logN), the total
area per network is S(wI)x9(wl). It can be observed that, at each stage the total number
of network inputs is N and then the vertical size of the area dedicated to
communications is 9(®wN). However, the width of each network at stage i is
(208N 1) = 9(wN/2™), and therefore the total network horizontal size is

log N log N
N\_ 1_
i=1 i=1




As inputs and ouputs of any PE are subdivided into Ty; = 0(loglogm) strings, ©
plogm ) = B( logN
oglogm logloglogN

L . NlogN
communication area is ﬁ(logloogglogN) (logloglogN )-

Then the total area of the FFT architecture is

can be given the value ® = ﬁ(l ) and the complexity of the

NzlogzN
(log log log N)2

Nlog N «
log loglog N

NlogN | _
loglog log N|

3.2 - Time complexity

To evaluate time complexity it is convenient to recall that all modular multipliers
and modular adders used in our structure are suited for pipeline operation, that is Ty,

strings cross 9(logm/T,,) = O(logm/loglogm) stages, each with a constant delay.

The whole structure can operate in a similar way: as the time complexity is
expressed in this case as the stage delay times the sum of the number of strings and the
number of stages, the total time is
1og2N

T=0(ogloglog N + log log log N

)

In fact there are logN columns, each containing §(p) = 0(logN/loglogN)
multipliers with 9(loglogN/logloglogN) stages and ¥(p) adders of negligible
complexity.

It can be observed that the proposed system is very suited to compute the FET on
a stream of sets of N points as it is encountered in several real time applications. Let k
be the number of FFT instances to be computed. Total time can be now written as

logZN

= ﬁ(k 10g log log N+ W

)

Ifk = Q(loglelogloglogZN), total time expression reduces to T' =
B(klogloglogN), that is the system works as though time necessary to compute an
FFT on N points were O(logloglogN).

4 - CONCLUDING REMARKS

The problem of computing FFT in VLSI systems has been considered in [3] with

the aim of evaluating the complexity of the problem. In pamcular a lower bound on
VLSI complexity has been obtained in the form A To = QN log N) which holds




independently of the adopted data representation system; such a bound is related to the
solution of a single instance of the FFT problem.

In this paper a VLSI system based on RNS to compute the FFT has been
presented: under the constraint of pipeline operation with a stream of at least one
instance every O(logloglogN) time units, for a total of Q(lo glelogloglogzN)
instances, the presented system works as an optimal design, that is AT? =
Q(N*1og?N).

In the literature optimal designs of VLSI systems to compute the FFT have been
presented [4, 5, 11, 12]; the major advantage of the solution proposed in this work is
the lower computation time (ﬁ(logZN/logloglogN) versus ﬁ(logzN)), which moreover
reduces to 9(logloglogN) under pipeline operation. On the other hand the main
drawback is a larger area A = G(NzlogzN/Iogloglog?‘N) to be supplied even for a single
FFT computation.
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