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a b s t r a c t 

In this brief work we present a novel approach to the logistic dynamics of populations and epidemic 

spreading that can take into account of the complex nature of such a process in several real situations, 

where due to different agents the dynamics is no longer characterized by a single characteristic timescale, 

but conversely by a distribution of time scales, rendered via a time-dependent growth rate. In detail, a 

differential equation containing a power-law time dependent growth rate is proposed, whose solution, 

named Stretched Logistic Function , provides a modified version of the usual logistic function. The model 

equation is inspired by and applied to the recent spreading on COVID-19 disease in Italy, showing how 

the real dynamics of infection spreading is characterized by a time dependent dynamics. A speculative 

discussion of the Stretched Logistic Function in relation to diffusion processes is attempted. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

The pandemic outbreak of COVID-19, caused by the SARS-COV-

 virus, represents an epochal fact of our age, with all its conse-

uences still unpredictable, in terms of social, economic and en-

ironmental effects. Studying the dynamics of its outbreak, with

he hope to become able to make reliable predictions of its fu-

ure evolution, has represented, and still represents, a powerful

hallenge for a huge interdisciplinary scientific community, ranging

rom Medicine to Social Sciences, from Epidemiology to Economy.

hat of Bio-Mathematics is a discipline of paramount importance

n such a collective study, lavishing generously a fantastic mass of

odels mimicking the epidemic dynamics. 

In this paper we propose a variant of the logistic dynam-

cs/equation by considering the dynamics of the total number of in-

ected people in the case of COVID-19 pandemic spreading in Italy.

he aim of the study is to propose an ordinary differential equa-

ion (ODE) and its solution for the evolution of the total number of

nfected people N in the case of a time-dependent growth rate. The

articular form of proposed ODE is then taken as a starting point

or a future study, in which the microscopic dynamics of contagion

ill be investigated, in forthcoming publications. 

The total number of infections N should solve an ODE coher-

nt with the dynamical theory of the epidemic: it is of use to
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emind a class of “first principle” dynamical models of infection

volution, namely the compartmental models [1] , with the typical

ubdivision of the whole population into S susceptible individu-

ls, I infected ones, R recovered ones, and so on. The fundamental

ypotheses on which such models are based are very simple, es-

entially a combination of rate equations with the mass hypothesis ,

ccording to which individuals of the different com partments may

interact” with all the units [2] . This gives rise to rather simple

oupled ODEs, with at most quadratic non-linearities representing

he encounter of susceptible and infected people, that gives rise to

nfection spreading [3] . 

If the “fundamental”, space implicit, epidemic dynamics under-

oes such a compartmental model, it is possible to show that the

otal number of infections N satisfies a logistic ODE [4–6] , that is

ompletely identical to that of a population growth according to

erhulst’s theory [7] . Verhulst Equation, also referred to as logistic

quation , 

dN 

dt 
= ˆ ρN 

(
1 − N 

N ∞ 

)
, (1) 

here ˆ ρ and N ∞ 

are assumed as constant. This ODE has been

idely used and variously modified, in order to adapt it to the

preading of different diseases [8,9] , included the COVID-19 case

10,11] . 

In [12] the logistic ODE is altered via powers of the N variable

n the right hand side of (1) , fitting the resulting solution with the

OVID-19 outbreak data of China, Korea, Japan, Iran and Italy. In

13] this approach was discussed in terms of the topological prop-

rties of the distribution of infected persons, and of the “inter-

ersonal contact network”. 

https://doi.org/10.1016/j.chaos.2020.110113
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2020.110113&domain=pdf
mailto:giuseppe.consolini@inaf.it
mailto:massimo.materassi@isc.cnr.it
mailto:massimomaterassi27@gmail.com
http://www.materassiphysics.com
https://doi.org/10.1016/j.chaos.2020.110113
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Fig. 1. The trend of the total number of infected people, N ( t ), for the COVID-19 

pandemic in Italy. The solid line is a best-fit using the logistic function [see Eq. (5) ]. 
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Fig. 2. The trend of the daily number of infected people, n ( t ), for the COVID-19 

pandemic in Italy. The solid line is the average trend, obtained by applying the EMD 

method (see Appendix A ) and considering the IMFs whose characteristic timescale 

is longer than 1 week. 
The original logistic Eq. (1) shows constant growth rate ˆ ρ and

carrying capacity N ∞ 

; in this study, the central result presented is

that the growth rate of the logistic equation solved by the total

number of infections depends on time as a decreasing power law:

ˆ ρ( t ) ∝ 

1 

t β
/ β ∈ ( 0 , 1 ) . (2)

This time-dependent growth-rate model is motivated by simple

considerations on the time series N ( t ) and dN ( t )/ dt collected in

Italy during the COVID-19 outbreak, and studying the evolution of

the ratio 

ˆ ρ( t ) 
def = 

dN 
dt ( t ) 

N ( t ) 
(
1 − N ( t ) 

N ∞ 

) (3)

against time. 

Given the relationship (2) , the problem is to explain this result

from a “fundamental” point of view, i.e., from the point of view

of the “microscopic picture” of contagion. The argument here is

that the trend (2) may be justified in terms of the complexity of

the underlying dynamical system: the latter results from the inter-

play of the inter-personal contact network, and the “external forc-

ing” of the Government’s lockdown measures. On the one hand, as

power laws characterize many aspects of the topology of complex

networks [14,15] , one may expect that, suppressing the power-law

distributed links of inter-personal relationships via lockdown mea-

sures, the “network diffusivity” of the spreading decreases with

time as a power-law. On the other hand, a dynamical system the-

ory justification of (2) is possible, interpreting the product ˆ ρ( t ) N

as the part of total infections able to spread the COVID-19 at time

t , according to the probabilistic theory of systems with sticky do-

mains in their phase space [16] . 

The paper is organized as follows. 

In Section 2 the data set studied is presented, and a pre-

analysis of it is described: this pre-analysis is necessary to render

experimentally sensible the data set, that depends strongly on the

day-to-day variability of the population examined (different daily

number of swabs). This variability is accurately removed, in order

to work on more reliable time series. In this Section, the plot of

(3) against time is presented, with the key result (2) . 

Section 3 is devoted to the presentation of the stretched Lo-

gistic function , i.e. the time behaviour best-fitting the time series

of the total number of infected people, and the ODE satisfied by

it, with time-varying growth rate. It is also shown how the best-

fitting curve, analytically determined, satisfies an ODE involving a

conformable fractional derivative. 

Section 4 presents the proper analysis of the fit of the stretched

logistic curve to the data, in which the excellent agreement is

highlighted, and the artifacts of non-constant sampled population

are indicated as a week-periodic component. 

Last Section 5 is dedicated to the theoretical discussion about

the possible justifications of the behaviour (2) , while some future

numerical analysis investigations, deepening the present study, are

sketched. 

2. Dataset and pre-analysis 

The model proposed in this work is motivated by some con-

sideration on the spreading of the COVID-19 pandemic in Italy. In

detail, we start by considering the time series of the total num-

ber of infected people , from the daily numbers provided by Diparti-

mento della Protezione Civile (available on web for the period) from

February 27, 2020 to June 3, 2020. We also considered the time

series of the daily numbers of new infected people, n ( t ), and of

medical swabs, s ( t ). Thus, the time series of the total number of

infected people, N ( t ), registered officially from the beginning of the
pidemic, is calculated as: 

 ( t ) = 

∫ t 

0 

dt ′ n 

(
t ′ 
)
. (4)

Fig. 1 reports the trend in time of the total amount of infected

eople, N ( t ), in comparison with the expected trend according to

he standard logistic function, i.e., 

 ( t ) = 

N ∞ 

1 + 

(
N ∞ 
N 0 

− 1 

)
e −ρt 

, (5)

here N 0 = N(0) is the initial value, N ∞ 

is the maximum value for

 → ∞ , and ρ is the constant infection rate (the growth rate of the

ogistic ODE, satisfied by (5) ). 

The agreement between the actual trend and the logistic func-

ion is extremely poor, suggesting that the observed behavior does

ot follow the prediction of Verhulst’s dynamics [7] . The observed

rend seems to be a stretched version of the Logistic one. 

Figs. 2 and 3 show the actual trend of the daily number of in-

ected people, n ( t ), and the corresponding daily number of med-

cal swabs, s ( t ). Apart from the average trend, we can observe a

uasi-periodic oscillation both in n ( t ) and s ( t ) with a characteristic

imescale of about 7 days. This is evident by applying an Empirical

ode Decomposition method [17,18] to both the time series but,

n particular to the time series of the daily medical swabs, which

learly evidences how the short timescales are characterized by a

eriodicity of 7 days (see the inset of Fig. 3 ). A detailed discussion

f this analysis is provided in the Appendix A . We remark that in

he case of the daily medical swabs the ratio between the long

erm variability and the weekly one (as measured by the standard

eviation of the fluctuating part) is approx 16%, i.e., a significant

ercentage. The emergence of a long-time trend and a characteris-

ic timescale in the daily number of medical swabs suggests that

ome possible spurious effects could be contained in the signal of
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Fig. 3. The number of daily medical swabs, s ( t ), as a function of time. The solid 

line is the average trend obtained by the EMD method (see Appendix A ). The inset 

shows the PSD of the fluctuating part of the signal (i.e., the sum of the IMFs). A 

clear periodicity of 7 days (the vertical bar) is observed. 
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Fig. 4. The normalized total number of infected people, N ∗( t ), as a function of time. 

The solid line is the expected trend using a Logistic function. 
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d  
he daily number of infected people, and consequently in the time

eries of the total number of infected people, N ( t ). 

The behaviour of the daily medical swabs suggests that the time

eries of the total number of infected people could be not a reli-

ble quantity to investigate the pandemic spreading in time. In-

eed, the daily number of infected people, n ( t ), is conditioned to

he number of daily medical swabs, s ( t ), i.e., n (t) = n (t| s ) where

 is itself a function of time. In other words, the actual situation

f monitoring pandemic spreading in time is different from what

s generally done in a controlled laboratory experiment where the

heck is done over a quasi-constant number of individuals. 

One possible way to overcome this problem it to consider a dif-

erent time series, the time series of the daily infected people nor-

alized to the number of daily medical swabs, i.e., 

 

∗(t) = 100 

n (t) 

s (t) 
, (6)

nd successively using this time series to define the corresponding

ormalized total number of infected people, N 

∗( t ), defined as 

 

∗(t) = 

∫ t 

t 0 

n 

∗(t ′ ) dt ′ . (7)

his new time series is thus no longer dependent on the number

f daily medical swabs, being not-affected by spurious effects as

he weekly modulation present in the time series of the daily med-

cal swabs, s ( t ), shown in Fig. 3 . Indeed, n ∗( t ) ≡ n ( t |100), i.e., it is

onditioned to a fixed number of medical swabs per day (taken as

eference equal to 100), so that it refers to a similar condition ex-

eriment removing the high variability and periodic modulation of

he medical swabs per day. 

Fig. 4 shows the trend of the normalized total number of in-

ected people, N 

∗( t ), in comparison with a logistic function. Again

he agreement is very poor. The different trend of actual data in

omparison with logistic behavior suggests that the rate ρ of pan-

emic spreading may acquire a dependence on time. Thus, to un-

eil if this is the case and what could be the functional form of the

ependence on time of the rate ρ , we can try to evaluate it using

he logistic equation, 

˙ 
 (t) = ρN (t) 

(
1 − N (t) 

N ∞ 

)
, (8)

nd defining a time-dependent rate ρ( t ) according to the following

elation, 

(t) = N ∞ 

˙ N (t) 

N (t) ( N ∞ 

− N (t) ) 
. (9) 
Fig. 5 shows the time dependence of the rate ρ( t ) as a func-

ion of time. To evaluate the quantity N ∞ 

we used the asymptotic

alue of N 

∗( t ), obtained by extrapolation from Fig. 4 . The rate ρ( t )

hows a clear dependence on time and the functional form of this

ependence seems to be a power-law, i.e., 

(t) = ρ0 t 
−β, (10) 

here the exponent β is between 0 and 1. 

On the basis of the above pre-analysis we may conjecture that

he time dependence of N 

∗( t ) seems to be that of a logistic equa-

ion with a power-law time dependent rate. We will call this as

tretched Logistic Equation (SLE) and in the following Section 3 we

ill discuss the model emerging from this equation. 

. The stretched logistic model 

The time dependence of the rate of pandemic spreading re-

orted in Fig. 5 suggests that a more appropriate model for the

volution of the pandemic in Italy would be that of a Logistic equa-

ion where the contagion rate follows a power-law as those re-

orted in Eq. (10) . Thus, a best suitable modeling for the observed

preading of the pandemic contagion could be given by the follow-

ng ODE: 

˙ 
 

∗ = ˆ ρ(t) 
(

1 − N 

∗

N ∞ 

)
(11) 

here the time dependent rate ˆ ρ(t) can be written 

ˆ (t) = 

(1 − β) ρ

t β
(12) 

eing thus ρ0 = (1 − β) ρ . In conclusion, the ODE we claim to de-

cribe the pandemic spreading observed takes the form 

˙ 
 

∗(t) = 

(1 − β) ρ

t β

(
1 − N 

∗( t) 
N ∞ 

)
. (13) 

In Eq. (13) the splitting ρ0 = (1 − β) ρ is done in view of how

he ODE will be solved: this integration may proceed rather eas-

ly via separation of variables (see Appendix B ). The solution of

q. (13) can be written as 

 

∗(t) = 

N ∞ 

1 + 

(
N ∞ 
N 0 

− 1 

)
e −ρt (1 −β) 

, β ∈ (0 , 1) , (14)

here N 0 = N 

∗(0) . This equation defines a stretched expression of

he classical logistic function, and thus we named is as Stretched

ogistic Function . 

It is possible to write the Eq. (11) using a different type of time-

erivative, the conformable fractional derivative (CFD), introduced by
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Khalil et al. [19] and defined as 

T β ( ϕ ) ( t ) 
def = lim 

ε→ 0 

ϕ 

(
t + εt β

)
− ϕ ( t ) 

ε
, β ∈ (0 , 1] , t ≥ 0 . (15)

This CFD is a good tool to “reabsorb” the time dependence of ˆ ρ
in Eq. (13) : indeed, considering the definition (15) , the authors of

Ref [19] . show that, provided ϕ is differentiable, and its CFD exists,

the latter is related to the first derivative of ϕ as 

∃ 

dϕ 

dt 
( t ) , T β ( ϕ ) ( t ) ⇒ T β ( ϕ ) ( t ) = t β

dϕ 

dt 
( t ) . (16)

This means that any differentiable function N satisfying (13) can be

also stated to satisfy: 

T βN = (1 − β) ρN 

(
1 − N 

N ∞ 

)
, (17)

being T β the linear operator defined in Eq. (15) . Now, one may say

that, within the interval I = ( 0 , + ∞ ) , the function N 

∗( t ) satisfies

precisely the CFD Eq. (17) , as it is differentiable in I and its first

derivative satisfies, at each t ∈ I, the ODE of Eq. (13) . 

About the CFD definition in Eq. (15) and its property in

Eq. (16) on differentiable functions, some debate in the literature

must be reported: the CFD is an operation presenting much more

affinities with the ordinary first derivative than the other defini-

tions of fractional derivatives, as the operator D 

α
t defined in Ref.

[20] : for instance, in [21] the CFD is proved to have all the “classi-

cal properties” that the integer order calculus attributes to differ-

entiation. However, according to what proven in [22] , the defini-

tion Eq. (15) introduces an operator that is basically a first order

derivative with a local coefficients, because it shows, for instance,

the Leibniz property [23] : no true difference exists between stat-

ing that N 

∗ is a solution of the proper ODE of Eq. (13) , and its CFD

counterpart of Eq. (17) , because all in all the operation T β is a local

linear differential operator, not adding, for instance, any “memory

effect” to the dynamics of the phenomenon studied, as the “tradi-

tional” fractional differential operator D 

α
t quoted before. 

Although the approach in terms of CFD is analogous to the pre-

vious standard ODE with time-dependent parameters, it can better

describe the temporal locality of the contagion spreading rate, pro-

viding a different framework to interpret the obtained results. 
. Analysis and results 

We, now, move to the comparison between the SLF model and

he actual data for the pandemic spreading of COVID-19 in Italy, as

escribed using the normalized total number of infected people,

 

∗( t ). 

Fig. 6 reports the nonlinear best fit of the normalized total

umber of infected people, N 

∗( t ), using the SLF of Eq. (14) in com-

arison with the standard logistic behavior. We also plot in the

nset the deviation from the expected SLF, defined as �N 

∗(t) =
 

∗(t) − ˜ N 

∗(t ) , where ˜ N 

∗(t ) is the result of the fit. The agreement

s excellent, supporting that a SLF can describe very well the be-

avior of the spreading of the COVID-19 in Italy. Furthermore, we

et a value for the β exponent of the SLF β = [0 . 63 ± 0 . 03] . This

alue is consistent with the exponent of the power-law of the time

ependent rate ˆ ρ(t) reported in Fig. 5 . 

To better evaluate the agreement between the actual data of

 

∗( t ) and the proposed SLF model we perform a Chi-squared test .

he test returns a value of χ2 ~ 13 against a critical value χ2 
c ∼ 120

or a confidence limit of αχ = 0 . 05 , thus, confirming the validity of

he fit. Indeed, we are 95% confident that data support our model. 

As a final check of the agreement between the proposed

odel for COVID-19 spreading and actual data, we have plotted
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g  
n Fig. 7 the comparison between the daily dependence of ˙ N 

∗(t) =
 N 

∗(t) /d t on N 

∗( t ) and the expected one based on Eq. (13) . The

greement in terms of mean trend is good, although large fluctua-

ion are observed in the first period. In particular, the large fluctu-

tion observed around N 

∗ ~ 220 is due to a problem in the correct

ssignment of the daily value of new infected people, as reported

y the official data of the Dipartimento della Protezione Civile . 

Within the limits of our statistical analysis, according to which

he SLF is the best fit of the normalized total amount of infected

eople dependence on time N 

∗( t ), the ODE of Eq. (13) describes

orrectly the dynamics of COVID-19 infection in Italy, once we have

orrected the spurious effects due to the high daily variability of

he number of medical swabs. We will now try to give an interpre-

ation to this result in terms of inter-personal relationship network

nd Governmental measure effects. 

. Discussion and conclusions 

Let us now discuss a possible interpretation of the results pre-

ented in the previous Section. The main result of our study is to

ave found that, when appropriately normalized, the number of

otal infected people N 

∗( t ) in Italy has undergone a modified logis-

ic equation, the Stretched Logistic Equation , that is characterized by

 time-dependent growth rate, which follows a power-law on time.

his SLF can be also found as the solution of an equation involving

 CFD, according to which the power-law dependence of the rate

s the consequence of a local dependence on time of the derivative

perator. Furthermore, the comparison between the model and the

ata is exceptionally excellent, supporting all the previous theoret-

cal scenario. 

Once the experimental curve N 

∗( t ) is shown to follow the dy-

amics in Eq. (13) , one would like to give some explanation of

why” the time-dependence of the ˆ ρ( t ) growth rate should be that

n Eq. (12) or, put otherwise, guess what that expression suggests

n terms of contagion dynamics. 

Eq. (13) may be regarded as the balance, or competition, be-

ween two terms, a growth term 

(
dN 
dt 

)
growth 

and a limiting term

dN 
dt 

)
lim 

, such that: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dN 

dt 
= 

(
dN 

dt 

)
growth 

+ 

(
dN 

dt 

)
lim 

, (
dN 

dt 

)
growth 

= 

( 1 − β) r 

t β
N, (

dN 

dt 

)
lim 

= −
(

dN 

dt 

)
growth 

N 

N ∞ 

, 

β ∈ ( 0 , 1 ) . 

(18) 
The mathematical form of the accretion term may be inter-

reted in two ways, that should be proven to be equivalent in a fu-

ure study of the microscopic mechanism of the COVID-19 spread-

ng. 

A first interpretation is that the N individuals infected-so-far at

ime t are all contributing to spreading the contagion, according to

he time dependent rate ˆ ρ( t ) = 

( 1 −β) ρ

t β
, so that 

dN 

dt 

)
growth 

= 

( 1 − β) ρ

t β
· N. (19) 

his first interpretation, that is the simplest one, states that the

ontagion rate pro capite decreases with time as a negative power

aw O 

(
t −β

)
, with β ∈ (0, 1). This rate decrease could be attributed

o the efficiency of the lockdown measures taken by the Gov-

rnment, that are equivalent to a random suppression of inter-

ersonal links in the network of social relationships and, hence,

ontagion events. This is a network theoretical interpretation, and

oints towards future studies of numerical experiments on net-

orks. 

The other explanation we suggest is that the form of 
(

dN 
dt 

)
growth 

s just the product between the constant rate ρ and a time decreas-

ng portion N act of the infected-so-far population N , that is “active

n spreading” the epidemic: 

dN 

dt 

)
growth 

= ρN act , 
N act 

N 

= 

1 − β

t β
. (20)

his interpretation argues about a shrink with time of the percent

f infected people acting as spreaders, of course again as O 

(
t −β

)
. 

In order to explain such alternative interpretation, one may

urn to the theory of subdiffusive regime of chaotic systems, as ex-

lained in [16] . Complex dynamical systems may be characterized

y “sticky domains” in their phase space 	, i.e. finite regions B ⊂ 	

ithin which the trajectory may remain for a certain waiting time

t , and then suddenly exit. These waiting times are not uniquely

etermined for each domain B , but may vary from trajectory to

rajectory: in general, it is sensible to treat this exit process proba-

ilistically, and it is possible to see that the probability that a tra-

ectory leaves a domain B after a time �t reads [24] : 

p B ( �t ) = 

A ( B ) 

( �t ) 
1+ β( B ) 

, β( B ) ∈ ( 0 , 1 ) , ∀ B . (21)

n Eq. (21) the scripts A ( B ) and β( B ) mean that those numbers are

omain-dependent. 

It is possible to argue that the portion 
B ( t ) of trajectories that

ave left B at a certain time t is given by the sum of all trajec-

ories entering B at times τ ≤ t , each in the corresponding por-

ion p B ( �t ) ≡ p B ( t − τ ) ; so, according to Eq. (21) , the total portion

B ( t ) reads: 

B ( t ) = 

∫ t 

−∞ 

p B ( t − τ ) d τ = 

∫ t 

−∞ 

A ( B ) d τ

( t − τ ) 
1+ β( B ) 

= 

A ( B ) 

β( B ) t β( B ) 
. 

(22) 

he functional form 
B ( t ) = 

A ( B ) 

β( B ) t β( B ) 
, with β( B ) ∈ ( 0 , 1 ) , is pre-

isely the same as the ratio N act 
N in Eq. (20) . 

Now, we argue that, out of the total N people infected-so-far, at

ime t the fraction N act spreading the COVID-19 amounts to 

 act ( t ) = 
B 0 ( t ) N = 

A 

βt β
· N, 

.e., they are as many as those trajectories leaving some suitable

ticky domain B 0 of some suitable complex system describing the mi-

roscopic contagion dynamics. This would correspond to the fact

hat an exposed person, after incubating the illness and under-

oing the lockdown, starts infecting other people with the same
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tempo of the trajectory of a complex system leaving a sticky

domain. We may imagine as some domain B 0 the condition of

locked down, isolated infective people : the portion of them who has

left this condition at time t is calculated taking inspiration from

Eq. (22) to write: 

N act ( t ) = 

ν

t β
N, β ∈ ( 0 , 1 ) . (23)

The factor ν is some dimensionalization factor, with [ ν] = t β in

order for Eq. (23) to be correct. Assuming that only N act units

take part to further spreading the contagion, and that the conta-

giousness of each of them is given by the basic rate ρ0 , so that

[ ρ0 ] = t −1 , one may re-write Eq. (18) as: 

dN 

dt 

Eq. (23) = 

ρ0 ν

t β
N 

(
1 − N 

K 

)
. (24)

This is a time explicit ODE of the same form of Eq. (13) , once the

identification 

ρ = 

ν

1 − β
ρ0 . (25)

is done. 

In conclusion, we have proposed a very simple upgrading of the

logistic dynamics for a pandemic spreading (as the COVID-19 dis-

ease in Italy) which takes into account a power-law dependence

on time of the infection growth-rate. This dependence can be the

effect of at least two different mechanisms: a simple reduction of

the inter-personal links, and/or the effect of isolation of infected

people. Moreover, it is not excluded that the time-local depen-

dence of the infection rate on t may represent an approximation

of more complicated, non-time-local expressions, possibly leading

to integro-differential equations [25] . 

Clearly, our results call for further analysis on both theoretical

and numerical sides, not to mention the need to try the same anal-

ysis on the COVID-19 spreading in other Countries. 
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Fig. A1. EMD of the daily medical swabs time series, s ( t ). From top to bottom: the actu

state that this res ( t ) quantifies the policy to increase the number of swabs taken. 
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ppendix A. Empirical Mode Decomposition of medical swabs 

The Empirical Mode Decomposition (EMD), introduced by

uang et al. [17] , is a fully data-adaptive analysis method capable

f decomposing nonstationary and/or nonlinear signals into a finite

et of oscillatory components, the Intrinsic Mode Functions (IMFs),

ithout any a priori assumption, so to reduce mathematical hy-

otheses and artifacts. The EMD method, originally developed as a

reconditioning for Hilbert transform, has become widely used to

nvestigate signals coming from complex systems and nonstation-

ry dynamics, being applied in several different frameworks, from

pace physics to geophysics [26–28] , and so on. 

The IMFs, into which a signal is decomposed via EMD, are os-

illatory modes obtained via an iterative approach, named sifting

rocess [17,18] , and characterized by two main features: 

• IMFs have an equal number of zero crossings and local extrema

(or they differ at most by one); 
21/04/2020 11/05/2020 31/05/2020

ate

al time series s ( t ), the IMFs c k ( t ) with k = 1 , 2 , ., 4 and the residue res ( t ). We may 

http://opendatadpc.maps.arcgis.com/apps/opsdashboard/index.html#/b0c68bce2cce478eaac82fe38d4138b1
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Table A1 

Average periodicities and vari- 

ances of the IMFs of daily medi- 

cal swabs times series. 

k 〈 T k 〉 σ 2 
k 

( day ) 

1 3.5 ± 1.0 2.5 × 10 7 

2 7.0 ± 0.4 5.4 × 10 7 

3 13 ± 2 0.7 × 10 7 

4 28 ± 6 0.8 × 10 7 

-3 x10
4

-2
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2

3

s*
(t

)

12/03/2020 01/04/2020 21/04/2020 11/05/2020 31/05/2020

Date

Fig. A2. EMD of the daily medical swabs time series, s ( t ). From top to bottom: the 

actual time series s ( t ), the IMFs c k ( t ) with k = 1 , 2 , ., 4 and the residue res ( t ). 
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• the local average of the local maxima envelope must be equal

to the absolute average value of the local minima one. 

As a result of the EMD a signal x ( t ) can be written as 

 (t) = 

n ∑ 

k =1 

c k (t) + res (t) , (A.1)

here c k ( t ) are the IMFs and res ( t ) is a monotonic function which

epresents the final residue of the decomposition. In other words,

he method is a data-adaptive filter bank [29,30] . 

In our analysis we have applied EMD method to identify os-

illatory modes in the medical swabs time series s ( t ) in order to

emove the long term trend before applying usual Fourier analysis.

Fig. A.1 shows the IMFs of s ( t ) time series obtained by applying

he EMD. The s ( t ) time series has been decomposed into 4 IMFs

 k ( t ), plus a residue res ( t ). Each IMF is characterized by a charac-

eristic mean oscillatory periodicity that can be evaluated by mea-

uring the average time distance between two successive maxima

nd/or minima. To each of these oscillatory modes we can also as-

ign a sort of energy by computing the corrresponding variance
2 
k 

. 

Table A.1 reports the average periodicities 〈 T k 〉 and the corre-

ponding variances σ 2 
k 

. A clear periodicity of ~ 7 days is present

long with its harmonics and sub-harmonics confirming the emer-

ence of this modulation in the medical checks. 

Fig. A.2 reports the detrended time series s ∗( t ) of the daily med-

cal swabs used to compute the Power Spectral Density (PSD) re-

orted in the inset of Fig. 3 . The 7-day modulation of medical

wabs is very evident especially from April 1, on. 

ppendix B. Solution of the Stretched Logistic ODE 

In this Appendix we report the solution of the stretched logistic

DE (13) . 

Let us write Eq. (13) in the following form, 

dN 

N 

(
1 − N 

N 

) = ( 1 − β) ρt −βdt, (B.1) 
∞ 
nd integrate it, 

 N(t) 

N 0 

dν

ν
(
1 − ν

N ∞ 

) = ( 1 − β) ρ

∫ t 

0 

τ−βdτ. (B.2) 

The integral on left-hand side can be written also in the form,

 N(t) 

N 0 

dν

ν
(
1 − ν

N ∞ 

) = 

∫ N(t) 

N 0 

[ 

A 

ν
− B 

ν
(

ν
N ∞ 

− 1 

)
] 

dν (B.3) 

here the quantities A and B have to be computed by solving the

dentity 

A 

ν
− B 

ν
(

ν
N ∞ 

− 1 

) = 

1 

ν
(
1 − ν

N ∞ 

) ∀ ν. (B.4) 

his identity returns 

 = 1 B = 

1 

N ∞ 

. (B.5)

hus, by solving the integration of Eq. (B.2) after having applied

he separation given in Eq. (B.3) one gets, 

n 

(
N(t) 

N 0 

)
− ln 

(
N(t) − N ∞ 

N 0 − N ∞ 

)
= ρt 1 −β, (B.6) 

hat with simple algebraic manipulations returns 

(t) = 

N ∞ 

1 + 

(
N ∞ 
N 0 

− 1 

)
e −ρt 1 −β

. (B.7) 

his is exactly the expression given in Eq. (14) . �
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