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Variance Analysis of Unbiased Complex-valued ℓp-Norm Minimizer

Yuan Chen1, Hing Cheung So2, EURASIP Member, Ercan Engin Kuruoglu3, EURASIP Member, Xiao Long
Yang1

Abstract

Parameter estimation from noisy complex-valued measurements is a significant topic in various areas of science

and engineering. In this aspect, an important goal is finding an unbiased estimator with minimum variance.

Therefore, variance analysis of an estimator is desirable and of practical interest. In this paper, we concentrate

on analyzing the complex-valued ℓp-norm minimizer with p ≥ 1. Variance formulas for the resultant nonlinear

estimators in the presence of three representative bivariate noise distributions, namely, α-stable, Student’s t and

mixture of generalized Gaussian models, are derived. To guarantee attaining the minimum variance for each

noise process, optimum selection of p is studied. All our results are confirmed by simulations and are compared

with the Cramér-Rao lower bound.

Keywords: Variance analysis, complex-valued signals, fractional lower-order moment, ℓp-norm minimization,

digamma function, Taylor series expansion

1. Introduction

In many areas of science and engineering, such as wireless communications, sensor array signal processing

and biomedical sciences [1]–[3], observations are more conveniently modeled as complex-valued data, which have

a simpler analytical form and is easier to deal with than the real-valued model. Parameter estimation for the

complex-valued observations [4]–[5] is an important research topic and has attracted a great deal of attention.

For numerous estimators developed in the literature, the goal is to find one which on the average yields the

true value and the mean square error (MSE) between the estimate and true value is the smallest. MSE analysis

of unbiased estimators is significant to help searching for one with minimum variance. Since the definition of

variance relates to expectation, calculating by excessive simulations may be nonconclusive and unrealistic. To

obtain the variance elegantly and correctly, approaches such as Taylor series expansion (TSE) on the estimates

[6] and on the error function [7] are proposed, which are verified in [8]. However, they only consider estimators

in the presence of complex Gaussian noise, which cannot describe other types of disturbances, especially those

with impulsive nature, appeared in many fields [9]–[11]. For example, symmetric α-stable (SαS), Student’s t

and mixture of generalized Gaussian (MGG) processes are commonly employed to model the complex-valued

impulsive noise.

Due to the high computational complexity and difficult implementation in case of lacking analytical prob-
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ability density function (PDF), the maximum likelihood (ML) estimator may not be the proper choice in the

presence of non-Gaussian noise models. Alternatively, a robust estimation methodology, namely, M -estimator

is proposed by Huber [12], which generalizes the ML estimator by replacing the logarithm of the likelihood

function by an arbitrary ρ-function. Defining the ρ-function as the ℓp-norm of residual [13], the least ℓp-norm

estimator with p ≥ 1 is widely utilized in the environment with non-Gaussian noise.

In this paper, we investigate the performance of the ℓp-norm minimizer using the complex-valued obser-

vations. The SαS, Student’s t and MGG noise models are considered. To guarantee the unbiasedness of the

least ℓp-norm estimator, we assume all discussed models are symmetric with zero location parameter [14]. For

the ℓp-norm minimizer, since the variance formulas should be a function of p, the selection of optimum p is

required to ensure achieving the minimum variance criterion. In [15], the relationship between kurtosis and

optimum p is investigated, however, the results cannot be used when the kurtosis does not exist such as in

the presence of SαS noise. The optimal selection of p for SαS distribution is discussed in [16], but optimum

estimation performance for other noise models is not addressed. Furthermore, although [14] shows that the

optimum p can be obtained by a polynomial equation with a very large degree of nonlinearity. it suffers a high

computational cost in solving such a high-order polynomial function. To overcome the complexity problem, in

this work we simplify the optimal choice problem into finding root of a low-order function using the property

of gamma function. Although we focus on the the complex-valued estimation problem in this paper, our result

can be extended to the real-valued case.

The rest of this paper is organized as follows. In Section 2, we briefly review the bivariate SαS, Student’s t

and MGG models. The variance formulas of the least ℓp-norm estimator are devised in Section 3. The selection

of p for different noise processes with the minimum variance is also examined. In Section 4, simulations are

provided to validate the derived variance formulas with comparison to the Cramér-Rao lower bound (CRLB).

Finally, conclusions are drawn in Section 5.

2. Review of Well-known Distributions

According to the analysis in [14], the variance formula needs the fractional lower-order moment (FLOM) of

the noise. Since a complex random variable corresponds to a bivariate distribution, in this section, we review

the bivariate SαS, Student’s t and MGG distributions.

2.1. SαS Distribution

Let q = ℜ{q}+ jℑ{q} follow a bivariate SαS distribution. Its characteristic function has the form of [17]:

ϕ(t) = exp(j(δrℜ{t}+ δiℑ{t})− γ(ℜ{t}2 + ℑ{t}2)α
2 ), (1)

where α ∈ (1, 2] is the stability parameter, controlling the impulsiveness of the distribution, (δr, δi) ∈ (−∞,∞)×
(−∞,∞) denote the location parameters, and γ > 0 is the dispersion parameter which determines the spread

of the distribution. Note that we set δr = δi = 0 here because the location parameter of noise term is assumed

zero.

The FLOMs of real and imaginary parts of q, denoted by E{|q|l−2ℜ{q}2} and E{|q|l−2ℑ{q}2}, are [18]:

2
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E{|q|l−2ℜ{q}2} = Dα(l, α)γ
l
α , (2)

E{|q|l−2ℑ{q}2} = Dα(l, α)γ
l
α , −2 < l < α, (3)

where E{·} denotes the expectation operator and

Dα(l, α) =
Γ( l+2

2 )Γ(1 − l
α )

Γ(1− l
2 )

2l−1, (4)

with Γ(·) being the gamma function.

2.2. Student’s t Distribution

For a zero-mean complex-valued variable q = ℜ{q}+ jℑ{q}, which follows the bivariate Student’s t distri-

bution, the PDF is [10]:

f(q) =
1

2πη2

(

1 +
1

ν

(ℜ{q}2 + ℑ{q}2
η2

))− ν+2

2

, (5)

where ν > 0 is the number of degrees of freedom, and η > 0 denotes the scaling parameter determining the

spread of the PDF.

The FLOMs of ℜ{q} and ℑ{q} are:

E{|q|l−2ℜ{q}2} = Dt(l, ν)η
l, (6)

E{|q|l−2ℑ{q}2} = Dt(l, ν)η
l, −2 < l < ν, (7)

where

Dt(l, ν) =







0 ν > 2 & l is odd,
Γ( l+2

2
)Γ( ν−l

2
)

Γ(ν/2) ν
l
2 otherwise.

(8)

2.3. MGG Distribution

MGG process [19] can have different combinations, but we only consider the two-component case with the

same shape parameter.

Suppose q = ℜ{q}+ jℑ{q} following the zero-mean symmetric MGG process, its PDF is:

f(q) = (1− ǫ)f1(q;β, σ) + ǫf1(q;β, τσ), (9)

where f1(q;β, σ) =
β

2πσ2Γ(2/β) exp

(

− (ℜ{q}2+ℑ{q}2)
β
2

σβ

)

. The ǫ ∈ (0, 1) is the weight parameter, β > 0 denotes

the shape parameter tuning the decay rate of the density function, σ and τσ with τ > 0 are the scaling

parameters of the two components. Note that when β = 2 or/and ǫ = 0, 1, the MGG processes are reduced to

Gaussian mixture (GM) and generalized Gaussian (GG) models, respectively.

The FLOMs of real and imaginary parts are:

E{|q|l−2ℜ{q}2} = DMGG(l, β, ǫ, τ)σ
l, (10)

E{|q|l−2ℑ{q}2} = DMGG(l, β, ǫ, τ)σ
l, (11)

where

DMGG(l, β, ǫ, τ) =







0 β > 2 & l is odd,
Γ( l+2

β
)(1−ǫ+ǫτ l)
Γ(2/β) otherwise.

(12)
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3. Variance Analysis of Least ℓp-Norm Estimator

Without loss of generality, the complex-valued observed sequence y = [y1 · · · yN ]T is modeled as

yn = gn(x) + qn, (13)

where T is the transpose operator, gn(x) = ℜ{gn(x)} + jℑ{gn(x)} denotes an analytic function of x with

x = [x1 · · · xM ]T being the deterministic parameter vector of interest, and qn is the identically independent

distributed (IID) noise component with zero location parameter. Assume that x is real-valued, our task is to

find x from y in presence of one of the non-Gaussian noise models, namely, SαS, Student’s t and MGG.

To solve the problem, we concentrate on the complex-valued ℓp-norm with p ≥ 1:

J(x) =

N
∑

n=1

|yn − gn(x)|p =

N
∑

n=1

(

(ℜ{yn} − ℜ{gn(x)})2 + (ℑ{yn} − ℑ{gn(x)})2
)

p

2

. (14)

3.1. Variance Formula Derivation

For the symmetric noise model, the ℓp-norm minimizer is always unbiased and the covariance matrix for x̂,

denoted by C(x̂), is [8]:

C(x̂) = (E {H(J(x))})−1
E
{

∇(J(x))∇H (J(x))
}

(E {H(J(x))})−1
, (15)

where H(J(x)) and ∇(J(x)) are the Hessian matrix and gradient vector at the true value of x, −1 and H denote

the matrix inverse and conjugate transpose operator, respectively. The variances of the estimates in x̂ are the

diagonal elements of C(x̂).

Utilizing (14), the expected values of the required derivatives in (15) are:

E
{

∇(J(x))∇T (J(x))
}

=
p2

2

{

∇T (ℜ{g(x)})E{ℜ{V}}∇(ℜ{g(x)}) +∇T (ℑ{g(x)}E{ℑ{V}}∇(ℑ{g(x)})
}

,

(16)

E {H(J(x))} =
p2

2

{

∇T (ℜ{g(x)})E{ℜ{W}}∇(ℜ{g(x)}) +∇T (ℑ{g(x)}E{ℑ{W}}∇(ℑ{g(x)})
}

, (17)

where ℜ{V}, ℑ{V}, ℜ{W} and ℑ{w} areN×N diagonal matrices with n-th elements ℜ{Vn} = E{|qn|
p−2

2 ℜ{qn}2},
ℑ{Vn} = E{|qn|

p−2

2 ℑ{qn}2}, ℜ{Wn} = E{|qn|
p−4

4 ℜ{qn}2} and ℑ{Wn} = E{|qn|
p−4

4 ℑ{qn}2}, respectively.
Employing (15)–(17) as well as FLOM expressions in Section 2, the covariance matrix expression of the

ℓp-norm minimizer in presence of three distributions, namely, SαS, Student’s t and MGG processes, can be

derived as:

Cα(x̂) =
2Γ2(2− p

2 )Γ(p)Γ(1−
2p−2
α )γ

2
α

Γ2(p2 + 1)Γ(2− p)Γ2(1− p−2
α )

G−1, 1 ≤ p < α, (18)

Ct(x̂) =
νΓ(ν2 )Γ(p)Γ(

ν−2p+2
2 )η2

Γ2(1 + p
2 )Γ

2(ν−p+2
2 )

G−1, p ≥ 1 (19)

CMGG(x̂) =
Γ
(

2p
β

)

Γ
(

2
β

)

(

(1− ǫ) + ǫτ2p−2
)

σ2

β2Γ2(1 + p
β ) ((1− ǫ) + ǫτp−2)2

G−1, p ≥ 1. (20)

where G = ∇T (ℜ{g(x)})∇(ℜ{g(x)}) +∇T (ℑ{g(x)})∇(ℑ{g(x)}) with ℜ{g(x)} = [ℜ{g1(x)} · · · ℜ{gN(x)}]T

and ℑ{g(x)} = [ℑ{g1(x)} · · · ℑ{gN(x)}]T . Notice that when ν and β are larger than 2, (19) and (20) are

invalid for odd p.

4
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In the following, two illustrations including the linear and nonlinear models are provided to elaborate the

covariance expression.

Linear estimation

Here we consider the linear estimation problem with the observed signal:

yn = A exp(j(ωn+ θ)) + qn, n = 1, 2, · · · , N, (21)

where A > 0, ω ∈ (−π, π) and θ ∈ [0, 2π] denote the amplitude, frequency and phase, respectively. Assuming

that ω is known, our task is to estimate A and θ.

Let x = A exp(jθ). We easily get:

G = N. (22)

According to [20], the variances of Â and θ̂ are:

var(Â) ≈ C(x̂), (23)

var(θ̂) ≈ A2C(x̂), (24)

where C(x̂) is calculated using (18)–(20) according to the respective noise model.

Nonlinear estimation

We now consider the nonlinear estimation problem. The data model is identical to (21). However, here the

unknown parameters are ω and φ while A is known. In this case, we have x = [ω φ]T . Then we obtain [21]

G = A2





N(N+1)(2N+1)
6

N(N+1)
2

N(N+1)
2

N(N+1)(2N+1)
6



 . (25)

The corresponding covariance expressions for SαS, Student’s t and MGG noise models are computed by (18)–

(20), respectively.

3.2. Minimum Variance Analysis

We investigate the minimum achievable variance for each studied noise model using the ℓp-norm minimizer,

via selection of optimum p. This is achieved by minimizing the scalar terms in (18)–(20) because the matrix

components are independent of p.

3.2.1. SαS

We first investigate the ℓp-norm minimizer under SαS noise. For (18), the scalar term related to p, denoted

by Hα(p), is:

Hα(p) =
Γ2(2− p

2 )Γ(p)Γ(1−
2p−2
α )

Γ2(p2 + 1)Γ(2− p)Γ2(1− p−2
α )

. (26)

To find the optimal value of p, denoted by p⋆, we set the derivative of log (Hα(p)), denoted by hα(p), to zero.

Then hα(p) has the form of

hα(p) =ψ (2− p)− ψ
(

2− p

2

)

+ ψ (p)− ψ
(p

2

)

+
2

α

(

ψ

(

1− p− 2

α

)

− ψ

(

1− 2p− 2

α

))

− 2

p
(27)

where ψ(·) denotes the digamma function [22].

5
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Let u = p− 1 ∈ [0, 1). Employing the property that ψ(x+ 1) = ψ(x) + 1
x , (27) is reduced to

hα(u) =ψ(1− u)− ψ

(

1− u

2

)

+ ψ (1 + u)− ψ

(

u+ 1

2

)

+
2

α

(

ψ

(

1− u

α

)

− ψ

(

1− 2u

α

))

− 2

u+ 1
. (28)

Utilizing 2ψ(2x) = 2 log(2) + ψ(x) + ψ(x+ 1
2 ), we further simplify (28) as

hα(u) = h1(u) + h2(u) + h3(u) + 4 log(2), (29)

where

h1(u) = −ψ(1− u)− ψ(u+ 1) + ψ
(

1− u

2

)

+ ψ
(

1 +
u

2

)

, (30)

h2(u) =
2

α

(

ψ

(

1− u

α

)

− ψ

(

1− 2u

α

))

, (31)

h3(u) = − 2

u+ 1
. (32)

Taking the rational zeta series [21] on h1(u) yields

h1(u) =

∞
∑

k=1

ζ(k + 1)

{

(−1)k + 1−
(

−1

2

)k

−
(

1

2

)k
}

uk, (33)

where ζ(·) is the Riemann zeta function. Furthermore, based on the fact that ψ(x) = −a+
∑∞

k=0

(

1
k+1 − 1

k+x

)

where a is the Euler-Mascheroni constant, as well as TSE at u = 0, h2(u) is rewritten as

h2(u) =
2

α

(

ψ

(

1

α

)

− ψ(1)

)

+

∞
∑

k=1

2uk

αk+1

{

2kζ(k + 1, 1)− ζ

(

k + 1,
1

α

)}

. (34)

where ζ(·, ·) denotes the Hurwitz zeta function. Utilizing the TSE at u = 0, h3(u) is

h3(u) = −2− 2

∞
∑

k=1

(−u)k, (35)

Combining (29)–(35), hα(u) has the form of

hα(u) = b(0) +
∞
∑

k=1

b(k)uk, (36)

where b(0) = 4 log(2)− 2 + 2
α

(

ψ
(

1
α

)

− ψ(1)
)

and

b(k) =

(

(−1)k + 1−
(

1

2

)k

−
(

−1

2

)k
)

ζ(k + 1)− 2(−1)k +

(

1

α

)k (

2kζ(k + 1, 1)− ζ

(

k + 1,
1

α

))

. (37)

According to extensive simulations, we find that the third-order polynomial in (36) can describe hα(u) well.

Therefore, we can obtain u⋆ by finding the real-valued root of the cubic function (k = 3) [23], which is

u⋆ =
3

√

−y
2
+

√

(y

2

)2

+
(z

3

)3

− 3

√

y

2
+

√

(y

2

)2

+
(z

3

)3

, (38)

with y = −2
(

b(2)
3b(3)

)3

− b(1)b(2)
3(b(3))2 + b(0)

b(3) and z = − 1
3

(

b(2)
b(3)

)2

+ b(1)
b(3) .

Utilizing the definition of u, p⋆ is computed by u⋆ + 1. Note that for α ∈ [1, 2), the term
(

y
2

)2
+
(

z
3

)3
is

larger than 0 and u⋆ is the only real root of (36). Since hα(p) is monotonic, p⋆ is in the global optimum.

3.2.2. Student’s t

From (19), the scalar term corresponding to Student’s t noise, denoted by Ht(p), is

6
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Ht(p) =
Γ(p)Γ(ν−2p+2

2 )

Γ2(1 + p
2 )Γ

2(ν−p+2
2 )

. (39)

In a similar manner, the derivative of log(Ht(p)) can be expressed as

ht(p) =ψ (p)− ψ
(

1 +
p

2

)

− ψ

(

ν − 2p

2
+ 1

)

+ ψ

(

ν − p

2
+ 1

)

. (40)

Here we consider two cases: ν < 2 and ν ≥ 2. In the scenario of ν < 2, we have

h
′

t(p) =ψ
(1) (p)− 1

2
ψ(1)

(

1 +
p

2

)

+ ψ(1)

(

ν − 2p

2
+ 1

)

− 1

2
ψ(1)

(

ν − p

2
+ 1

)

. (41)

where ψ(1)(·) is the trigamma function. Based on the multiplication theorem of trigamma function, (41) is

rewritten as

h
′

t(p) =
1

4

(

ψ(1)
(p

2

)

+ ψ(1)

(

1

2
+
p

2

))

− 1

2
ψ(1)

(

1 +
p

2

)

− 1

2
ψ(1)

(ν

2
+ 1− p

2

)

+
1

4

(

ψ(1)

(

ν

4
+

1

2
− p

2

)

+ ψ(1)
(ν

4
+ 1− p

2

)

)

(42)

which is greater than 0. Therefore, we can deduce that ht(p) > ht(1) > 0. In this case, the optimum p is 1.

In the case of ν ≥ 2, assigning u = p− 1 ∈ [0, 1), (40) is

ht(u) =ψ (u+ 1)− ψ

(

1 +
u+ 1

2

)

− ψ

(

ν − 2u

2

)

+ ψ

(

ν − u− 1

2
+ 1

)

. (43)

Similarly to the SαS distribution, (43) can be written as the same expression as in (36) except that

b(0) =2 log(2)− 2− 2

ν
, (44)

b(k) =ζ(k + 1)

(

(−1)k −
(

−1

2

)k
)

− 2(−1)k +

{

ζ
(

k,
ν

2

)

(

(

1

2

)k

− 1

)

− 2

νk+1

}

. (45)

It can be also easily shown that the series in Student’s t process converges when k ≥ 3. The optimum value

is p⋆ = u⋆ + 1 with u⋆ being calculated by (38).

3.2.3. MGG

For MGG noise, the corresponding scalar term, which is extracted from (20), has the form of

HMGG(p) =
Γ
(

2p
β

)

(

(1− ǫ) + ǫτ2p−2
)

Γ2(1 + p
β ) ((1− ǫ) + ǫτp−2)

2 . (46)

Let u = p
β − 1

2 ∈ (−1/2, 1/2), the derivative of log (HMGG(p)) is factorized as:

hMGG(u) =
1

β

{

ψ (2u+ 1)− ψ

(

3

2
+ u

)}

+ ln(τ)

{

1

1 + ǫ
1−ǫτ

βu+β/2−2
− 1

1 + ǫ
1−ǫτ

2βu+β−2

}

. (47)

To solve hMGG(u) = 0, we express (47) as (36), where b(0) and b(k) are now

b(0) =
2 log(2)− 2

β
(48)

b(k) =
1

β

{

ζ(k + 1)
(

(−2)k − (−1)k
)

+ (−2)k+1
}

− ln(τ)

{

I(k)
(

ǫτβ/2−2

(1− ǫ)
, τβ
)

− I(k)
(

ǫτβ−2

(1− ǫ)
, τ2β

)}

(49)

where I(k)(c, x) denotes kth-order derivative of 1
1+cxu with respect to u when u = 0.

According to extensive simulations, the series here approximates hMGG(u) well when k ≥ 3. Therefore, we

derive the optimum p⋆ as p⋆ = β (u⋆ + 1/2) with u⋆ having the same form in (38).
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4. Simulation Results

To verify the derived variance formulas in the case of three symmetric impulsive noise distributions, computer

simulations have been conducted. The signal is generated according to (21) and the corresponding parameters

are A = 1, ω = 1.25 and θ = 0.5. For SαS, Student’s t and MGG models, the corresponding density parameters

are chosen as α = 1.6 [24], ν = 5 [25], and β = 5, ǫ = 0.01, τ =
√
5 [11]. The special case of MGG distribution,

referred to as GM process, is also shown here with β = 2, ǫ = 0.01 and τ =
√
5. The GG model is not considered

here because the optimal ℓp-norm minimizer is the ML estimator [14]. According to (38), the optimal value

p⋆ for these four settings, are 1.16, 1.31, 2.75 and 1.86, respectively. To provide a comparison, the empirical

optimum results in [14], referring to as p = (1 + α)/2, p = (ν + 4)/5, and p = 1 + 2
100ǫ+3 , are investigated

here. Furthermore, comparisons with the least ℓ1-norm estimator and the CRLB are also included. Since the

second-order power diverges for the SαS model, we utilize the geometric signal-to-noise ratio (GSNR) to produce

different noise conditions [26]. All results are based on 5000 Monte Carlo simulation trials with a data length

of N = 50.

First of all, to investigate the correctness of cubic polynomial, we study the value of optimum p obtained

by (36) and (38). According to [14], we choose degree 100 replacing the infinity order in (36). Figure 1 shows

the comparison of p⋆ calculation between the cubic function and polynomial (36) with degree 100 versus α, ν,

β, respectively. Other density parameters align with the previous set. It is experimentally observed in SαS,

Student’s t and MGG models that results by cubic function attain the true values well, which corroborates our

claim in Section 3.

Secondly, we address linear estimation , namely, studying the amplitude and phase estimation performance

using the complex-valued observations in (21). Figure 2 and 3 show MSE performance of amplitude and phase

versus SNR/GSNR, respectively. In these figures, we see the near optimality of the least ℓp-norm estimator in

the Student’s t and GM noise models and its suboptimal performance in the SαS and MGG disturbance. Most

importantly, in Figure 2 and 3, the gap between the optimal value and result in [14] indicates that our method

is more accurate. Note that the gap between our proposal and [14] becomes bigger as β increases, verifying the

importance of our method.

Thirdly, nonlinear estimation of exponential signal frequency and phase is studied. The MSE results are

plotted in Figures 4 and 5. We again see that the variance formulas are validated and the other findings are

similar to those of Figures 2 and 3. Furthermore, when SNR/GSNR ≥ 5 dB, our proposals perform better than

the ℓ1-norm minimizer and results in [14].

In summary, in the presence of SαS, Student’s t and MGG noises, our proposed method is superior to that

in [14]. It has also been discussed in [14] that in the real applications that the density parameters of noise are

unknown, the least ℓ1-norm estimator is a good choice. However, according to the simulations on the MGG

distribution, the gap between the p = 1 and p⋆ is ≥ 3 dB, indicating the inferiority of the ℓ1-norm minimizer.

In this case, the shape parameter should be estimated firstly.
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5. Conclusion

In this work, we focus on the variance expression deviation of the least ℓp-norm technique with p ≥ 1, where

three representative bivariate symmetric disturbances has been studied. The optimal choice of p, corresponding

to the minimum variance, is discussed, which can be obtained by solving a specific cubic equation. It is

worth pointing out that for the bivariate Student’s t process with ν < 2, the optimum p should be chosen

as 1. Simulation results validate the accuracy of the derived variance formulas using linear and nonlinear

estimation examples with complex-valued observations. It is also demonstrated that variances of the least

ℓp-norm estimator for SαS and Student’s t noise models are very close to corresponding CRLB. This result

indicates that this estimator can provide optimum or nearly-optimum performance for these three noise models

if an appropriate value of p is chosen. Note that all results in this paper can be applied to the real-valued

scenario.
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Figure 1: Optimum p
⋆ calculated by cubic and 100-th degree polynomials versus density parameters
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Figure 2: MSE of sinusoidal amplitude in complex-valued observations
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Figure 3: MSE of sinusoidal phase in complex-valued observations
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Figure 4: MSE of sinusoidal frequency in complex-valued observations
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Figure 5: MSE of sinusoidal phase in complex-valued observations
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