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Abstract
Innovation networks play a key role in advancing knowledge transfer, collaboration, 
and technological progress across sectors and regions. Central to the understanding 
of the mechanisms driving such networks is their dynamic evolution and structure. 
Much of the literature explores spatial and socio-economic drivers of innovation 
networks, focusing on geographic, institutional, and cultural influences. However, 
many of these studies tend to overlook the intricate properties that govern the behav-
ior and dynamics of these networks. This study seeks to address this research gap, 
delving deeper by investigating Chinese intercity innovation networks between 2007 
and 2018. Specifically, we examine: (i) the preferential attachment dynamics within 
intercity innovation networks, (ii) transitivity effects that underscore the intercon-
nectedness of these networks, and (iii) the persistence and recurrence of connec-
tions. We find that cities show indeed a remarkable tendency to form ties with others 
that already have numerous connections. Such transitivity effects are important in 
highlighting the formation of innovation clusters. Moreover, the influence of link 
memory suggests that past collaborations significantly determine future partner-
ships, similar to the persistent nature of relationships in agglomeration theories.
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1 Introduction

The evolution from Exponential Random Graph Models (ERGMs) to Tempo-
ral Exponential Random Graph Models (TERGMs) represents a significant shift 
in inferential social network modeling, moving from capturing static structures to 
incorporating the dynamics of network evolution over time. While ERGMs model 
the probability of observing a static network based on specific structural configura-
tions, TERGMs extend this by integrating the temporal dependencies that character-
ize how networks evolve (Snijders et al. 2010; Broekel and Bednarz 2019; Filippetti 
and Zinilli 2023). However, despite the promise of TERGMs for capturing intricate 
temporal patterns, their empirical application has been somewhat limited. This is 
primarily due to a dearth of suitable longitudinal network data and the challenge 
of identifying compelling use cases where the temporal dynamics offer substantial 
additional insights over and above static models (Leifeld et al. 2018).

Against this background, this study shifts attention to the exploration of a large-
scale, real-world empirical social network from a TERGM perspective, namely inno-
vation networks. The latter are defined as networks of actors or regions interlinked 
in joint R&D activities. The investigation of structures and dynamics within innova-
tion networks has attracted increasing interest in the recent past. This interest stems 
from the notion that participating in collaborative innovation activities is essential 
for knowledge production and diffusion (Grillitsch and Nilsson 2015; Morrison et al. 
2013, among others). Numerous research works have emerged, notably emphasizing 
a geographical and spatial economics perspective, which examines the interaction 
between spatial entities, typically regions, in collaborative innovation endeavors (refer 
to Scherngell 2021 for a comprehensive overview). A growing trend in network sci-
ence is integrating network analysis with spatial and socioeconomic factors, empha-
sizing the need for a better understanding of the specific network structural elements 
driving innovation networks (Lomi et  al. 2016; Kireyev and Leonidov 2018; Wang 
and Yang 2022). Though still in its early stages, network analytic approaches are 
increasingly contributing to regional research on innovation networks, recognizing 
that network structural properties are fundamental to the understanding of the dynam-
ics between interconnected spatial entities that interact in innovation activities.

Aligning with this emerging trend, our research aims to provide a more com-
prehensive understanding of the intricate nature of collaborations  in innovation 
activities. In our empirical analysis, we shift attention to the case of innovation 
networks across Chinese cities. Focusing on aggregated spatial entities rather 
than organizations, our work lies in the research stream that has a strong interest 
in investigating structures and dynamics of such networks from a regional/city 
perspective (Scherngell 2021). This stream takes the distinct perspective offered 
by inter-city analysis, shifting attention to meso-level dynamics of knowledge 
exchange and collaboration, and emphasizing the crucial role of regional charac-
teristics and policy environments. Moreover,  the city-level lens offers a broader 
view of the innovation ecosystem, revealing patterns and trends that cannot be 
captured when focusing solely on individual actors or institutions.
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By focusing on China in our empirical work, we study one of the most dynamic 
countries in terms of innovation over the past two decades. In this time period, 
China has not only enhanced its comprehensive innovation capacity, but also wit-
nessed the remarkable evolution of its innovation network. From a policy perspec-
tive, the implementation of the innovation-driven development strategy has spawned 
diverse cross-region innovation collaboration demands. Particularly in the context 
of China’s highly unequal distribution of innovation resources, peripheral regions 
urgently seek collaborations with other regions to tap into region-external knowl-
edge sources. Inter-regional innovation cooperation is also  increasingly becoming 
a crucial component of national innovation-driven development strategies as gov-
ernments actively promote coordinated development of regional innovation. These 
efforts have shaped China’s cross-regional innovation network in a profound way. 
In spite of the unique context of transformation and development, the Chinese inno-
vation network shares similarities with other countries; that is, they have typical 
non-random network attributes, such as scale-free and small-world characteristics 
(Gay and Dousset 2005; Fleming et al. 2007; Stuck, et al. 2016; Li et al. 2015a, b; 
Pan et al. 2020). This suggests that cross-regional innovation linkages in China are 
not random or independent, but are endogenously shaped by network configuration, 
and exogenously by other factors, as in other countries. Additionally, some studies 
have investigated the typological features of China’s innovation network and found 
clear evidence of preferential attachment and transitivity (Li et al. 2015a, b; Sun and 
Liu 2016; Zhou et al. 2017). Using ERGM models, a few studies further confirmed 
network structural effects as the main driving force in the evolution of China’s inno-
vation networks (Sun and Peng 2021; Dai et al. 2022). 

Against this background, this study explores how specific network structural 
mechanisms influence the dynamics of these joint innovation activities. For our 
empirical foundation, we use an extensive and unique dataset, capturing joint inno-
vation activities through co-patents among applicants spread across Chinese cities 
from 2007 to 2018. The latter reflects—in contrast to academic or project-based net-
works—technological co-development that is more proximate to commercially ori-
ented R&D activities (see, e.g., Lata et al. 2015). By this, we aim to capture more 
market-driven innovation collaborations, offering deeper insights into the dynamics 
and impacts of such networks on regional and global innovation landscapes. In our 
study, we give attention to the connections and knowledge sharing at the micro (or 
individual) level of these networks, even as we examine the larger network dynamics 
at the city level. Recognizing the significance of these interactions across different 
levels, we aim to shed light on the mechanisms that drive innovation and collabora-
tion within these systems. While the macro-level provides an aggregated perspective, 
it often serves as an essential lens through which the intricacies and dynamics of the 
micro-level can be more coherently deciphered and interpreted (Lomi et al. 2016). 
In the study at hand, the interactions and collaborations between applicants (micro-
level) are embedded within the larger trend of co-patenting across cities. The city 
view helps in contextualizing these individual activities because they can be part of 
larger patterns or trends. Looking at the broader context, we are able to spot patterns, 
key areas of innovation, or even repeated themes that are not evident at the micro-
level. Moreover, when we align our analysis with other macroeconomic indicators, it 
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enables us to compare specific innovation contexts with those in other regions or cit-
ies, providing insights for benchmarking and strategic positioning. Accordingly, we 
intend to combine insights from network science with socio-economic discussions at 
the inter-city level in this study.

From a regional innovation perspective, previous works have highlighted the ben-
efits of networks for regional innovation capabilities and efficiency, especially in 
times of rising costs for innovation, increasing uncertainty and risks, and rapidly 
changing global demand patterns (Breschi and Lenzi 2016; Broekel 2012; De Noni 
et  al. 2017; Maggioni et  al. 2007). Therefore, identifying drivers for cross-region 
interactions in innovation activities has become one of the main research issues, 
not only in a scientific context but also in a policy realm. Empirical studies so far 
have typically employed concepts and techniques from spatial interaction theory to 
explore drivers for cross-region innovation networks, often in relation to the proxim-
ity concept (Boschma 2005). Here, special emphasis has been put on how differ-
ent types of proximities – such as geographical proximity, but also technological, 
cultural, or institutional proximities – affect collaborations in innovation activities 
between actors located in different regions (e.g., Vieira et  al. 2022; Lim and Han 
2023). While previous research also emphasizes the importance of network struc-
tural mechanisms that may be at stake in the formation and development of such 
networks, they stay rather vague in their empirical approach to identify such network 
structural mechanisms. This is mainly related to the usage of traditional spatial inter-
action models in this context that are not able to incorporate and estimate consist-
ently endogenous network structural effects. The endogenous structural effects help  
to explain emergent properties of inter-city innovation networks, such as the forma-
tion of clusters, the emergence of influential hubs, and the dynamics of innovation 
flow. In addition, broader empirical insights on drivers for cross-region innovation net-
works are scarce for China, in particular at more detailed geographical levels below 
provinces, although the sustainable development of such cross-region collaboration 
networks is viewed as one of the main levers to increase the innovation capability of 
China as a whole (see, e.g., Yao et al. 2020).

Recent research has looked into what drives innovation networks between Chi-
nese cities, mainly focusing on the effects of geographical proximity, technological 
proximity, and high-speed railways connection (Dong et al. 2021; Tang et al. 2022;  
Yao and Li 2022); only very few studies have considered structural network effects 
(Gao et al. 2024). This study aims to bridge the existing research gaps by exploring 
previously overlooked factors that drive the innovation networks between Chinese cit-
ies. We specifically shift our attention to how network structural mechanisms influ-
ence the dynamics of collaboration in joint innovation activities across Chinese cities. 
We move from the usually employed spatial interaction approach to the perspective 
of network inferential models given that conventional spatial interaction models 
require assumptions of independence between observations, and fail to incorporate 
endogenous structural effects of the observed network. Accordingly, the objective of 
the study is to estimate the role of endogenous network structural effects for shaping 
inter-city innovation networks across China. By network structural mechanisms, we 
refer to network relational drivers shaping the dynamics of a network. Such attributes 
can refer to node and dyad-specific characteristics determining the global structure 
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and dynamics of a network from local configurations. Stochastic approaches capable 
of estimating such effects, in combination with other exogenous factors, are referred 
to as Exponential Random Graph Models (ERGMs) (Robins et al. 2007; Rivera et al. 
2010). Few studies have used ERGMs to analyze the driving mechanisms behind 
inter-city innovation networks, with exceptions like Dai et al. (2022) who focused on 
scientific collaboration networks using two periods of co-publication data. Moving 
away from this, we shift our focus to technological collaboration and use the temporal 
version of ERGMs, namely TERGM, designed to address inter-temporal dependence 
in longitudinally observed networks (Leifeld et al. 2018). The examination of social 
networks is progressively focusing on understanding shifts over time, as longitudi-
nal data analysis typically offers greater insights for interpreting network evolution 
and assessing the influence of its design on individual nodes (Steglich et al. 2010). 
We opt for TERGM to clarify the observed network structure over traditional sta-
tistical models, given its foundation on the premise of node and link (connection) 
interdependence.

The study at hand departs from existing literature in at least two major aspects: 
First, it is pioneering in investigating endogenous network structural effects while 
at the same time controlling for proximity effects at a very detailed geographical 
breakdown for Chinese regions (cities). This dual focus on endogenous and exog-
enous effects not only advances theoretical frameworks but also provides action-
able insights for regional policy-making in China and globally. Second, it takes a 
TERGM perspective to study endogenous drivers for inter-city innovation networks, 
specifically through mechanisms of preferential attachment, transitivity, and link 
memory offering a novel lens to examine how innovation networks evolve and sus-
tain over time.

The remainder of the study is organized as follows. Section 2 discusses the con-
ceptual background, critically summarizing the theoretical debate on how different 
network structural effects drive dynamics of innovation networks. Section 3 formu-
lates the problem for structural determinants and hypotheses, focusing on the role of 
preferential attachment, transitivity, and link memory in Chinese inter-city innova-
tion networks. Section  4 explains in some detail the data and derives the tempo-
ral exponential random graph model as an instrument to capture such endogenous 
network structural effects. Section  5 presents the empirical results, starting with 
some descriptive elements that set the foundation for subsequent model estimations 
and their interpretations. Section 6 concludes the study, offering a summary, final 
remarks, policy recommendations, and suggestions for future research.

2  Conceptual Background: Structural Networks Effects in Inter‑city 
Innovation Networks

The identification and estimation of factors influencing the dynamics of collabora-
tion networks in joint innovation activities have gained increasing interest over the 
past decade. This is due to the growing importance of networks in modern inno-
vation processes in times of rising R&D costs, growing complexity of knowledge 
production, and the related uncertainty of research processes (see OECD 1992, 
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among others). In particular, the rising costs of R&D are often cited as one fun-
damental motivation for innovating actors to engage with and become embedded 
in innovation networks, as these may foster synergies between such actors in the 
network, and the emergence of a critical mass of the new knowledge. Moreover, 
innovating actors well embedded in networks may benefit from mutual learning and 
gain more effective access to complementary knowledge. This becomes increasingly 
vital in complex innovation environments that require a broader set of specialized 
competencies (see Granovetter 1985; Powell et al. 1996; Gulati 1998; Chesbrough 
2006; Provan et al. 2007; Gilsing et al. 2008, among many others). From a regional 
perspective, the embedding in networks, particularly when distinguishing between 
intra- and cross-regional networks, has garnered increased attention in research (see 
Scherngell 2021 for an overview)1and has been intensively explored from angle of 
the proximity framework (Boschma 2005; Balland et al. 2013) shifting attention to 
the role of various types of proximity, especially geographical proximity.

Recently, scholars have emphasized that relying solely on the “traditional” prox-
imity framework is inadequate for comprehending the dynamics of both cross-city 
and cross-regional innovation networks. This approach overlooks the endogenous 
network structural effects frequently discussed in social network analysis (see, e.g., 
Barthélemy 2011). A few recent works have therefore incorporated empirical driv-
ers, referred to as network structural effects, to explain cross-regional innovation 
networks. Among these are the work of Bergé (2017), which focuses on the role 
of network distance in cross-regional networks, and studies by Neuländtner and 
Scherngell (2020) and Gao et al. (2024). The latter two, investigating the European 
and Chinese cases respectively, delve into the effects of simple network structural 
mechanisms, such as the gap in degree centralities (i.e., the number of network 
links) between two regions, on their likelihood to form additional network links. 
Even fewer studies shift attention to explaining endogenous network effects, as 
these are very difficult to be incorporated in classical spatial interaction frameworks 
and related estimation techniques. Broekel and Hartog (2013) employ an exponen-
tial random graph model to estimate determinants of cross-regional chemical R&D 

1 Recognizing the growing significance of networks for innovation, regional innovation capability is 
increasingly seen as a function of its position within webs of cross-region collaborations in innovative 
activities (Wanzenböck et al. 2014). From a geography of innovation perspective, the geographical nature 
of cross-city and cross-regional innovation networks has garnered particular interest (Feldman 1994). 
This emphasizes the geographically localized essence of innovation, which can be broadened by opening 
up network channels to other cities or regions, increasingly independent of close geographical proximity. 
These considerations triggered a whole literature stream investigating drivers for the geography of inno-
vation networks (see Scherngell 2021 for an overview), mostly empirically addressed from a spatial inter-
action perspective. In this stream of literature, the proximity framework holds a central role (Boschma 
2005; Balland et al. 2013). It hypothesizes that various types of proximity, especially geographical prox-
imity in contrast to other forms like cognitive or technological proximity, are conducive to stimulating 
innovation networks between two regions. Furthermore, it examines how these different forms of prox-
imities facilitate the establishment of cross-city network links. The empirical literature in this respect—
by and large—points to an increased networking intensity across geographical space, but the majority of 
links still being geographically localized, and to important technological, cultural and institutional prox-
imity effects shaping cross-regional innovation networks.
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collaboration networks in Germany. A recent work by Dai et al. (2022) explores sci-
entific collaboration networks in China.

In this study, we intend to contribute to this literature stream, shifting much 
greater emphasis on such network structural mechanisms, going beyond existing 
works, both conceptually and methodologically by employing methods from tem-
poral exponential random graph models (TERGM, see Sect.  4.6). Conceptually 
we extend previous literature by stressing the importance of specific endogenous 
network structural mechanisms—derived from social network analysis—largely 
neglected so far. First, we stress the crucial role of preferential attachment mecha-
nisms being at stake in the formation of links in innovation networks across nodes 
(see, e.g., Newman 2003; Leydesdorff and Rafols 2011), i.e., cities in this study. 
Preferential attachment is assumed to reinforce the dominance of established players 
and to contribute to the emergence of innovation hubs where clusters of nodes with 
high connectivity form around specific topics, technologies, or geographical spaces. 
As cities and regions with a high degree of connectivity continue to attract new 
links, they become even more central to the network and can become entrenched in 
their position of influence. Apart from the idea that cities with more collaborations 
attract even more partnerships, there are other factors influencing how cities form 
co-patenting links. Social network theory suggests that homophily is frequently the 
driving factor behind participants in a network choosing their partners (Zinilli et al. 
2023). In simpler terms, actors who are “similar” are preferred when choosing a 
partner. The tendency for similar entities to associate with one another often plays a 
more foundational role in determining network structures than other factors.2 When 
examining cross-city innovation networks, cities with similar technological develop-
ment or those that share similar contexts – such as cities located in the same region 
– often drive collaborations (Gao et al. 2024).

Second, the specific structural mechanisms related to the creation of “cliques” 
in the network have been widely stressed in the literature, referred to as transitivity 
(Watts and Strogatz 1998; Hilbert et al. 2016). Transitivity describes the tendency 
for nodes to form clusters or groups within a network (Broekel and Bednarz 2019). 
In the context of innovation networks, transitivity is assumed to play a significant 
role in determining how links between nodes form and evolve over time, facilitating 
the spread of ideas and knowledge within clusters or groups of cities or regions (Burt 
2007). As nodes within a cluster become more closely connected, they may develop 
shared or complementary technological priorities or goals, and can collaborate more 
easily on developing new ideas and innovations. However, as a disadvantage, tran-
sitivity may also contribute to the formation of “echo chambers” within innovation 

2 While geographical proximity can influence partnerships, the role a city plays as a hub in the network, 
highlighted by its high number of patents indicative of its vibrant innovative activity, might be even more 
significant. Emerging innovation areas might thus prioritize linking with established patent hubs over 
geographically nearby cities. On one hand, this can create a barrier to entry for new cities or regions 
struggling to establish the necessary connections, but on the other hand, hubs can act as hotspots of inno-
vation and knowledge exchange, facilitating the flow of information and resources between regions in the 
network (Hua et al. 2021). Consequently, it is crucial to consider both homophily and other exogenous 
factors alongside endogenous ones in innovation networks.
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networks, where groups of nodes become isolated from the wider network and may 
become resistant to new ideas or perspectives. This can lead to a lack of diversity 
and technological lock-ins, and can limit the potential for cross-disciplinary collabo-
rations and knowledge exchange (Del Vicario et al. 2017).

Third, we believe that a temporal perspective is essential when investigating driv-
ers for cross-city innovation networks. Prior acquaintance has been described at 
the organizational level as one of the most important drivers for partner choice in 
networks (Paier and Scherngell 2011), but has been largely neglected when investi-
gating drivers for cross-city innovation networks. From a network science perspec-
tive, this is referred to as link memory, i.e., the tendency of nodes in a network to 
form connections with nodes they have interacted with previously, either directly 
or indirectly (Uzzi 1997; Rivera et  al. 2010). This promotes the development of 
long-term collaborations and partnerships between cities, based on trust and shared 
understandings leading to more successful outcomes of the joint innovation activi-
ties. However, like transitivity, link memory can also contribute to the formation 
of “lock-in” effects, where nodes become stuck in existing patterns of collaboration 
and are resistant to change or innovation (Kilduff and Tsai 2003).

In our modeling approach, as described in the subsequent section, we shift atten-
tion to these significant network structural mechanisms as drivers for cross-regional 
innovation networks in China. Undoubtedly, the methodology of social networks 
offers a comprehensive toolkit to investigate these foundational factors. Moreover, 
we juxtapose them with the “traditional” drivers related to proximity, by control-
ling for some spatial and technological proximity dimensions in the model (see 
Sect. 4.5). This not only provides new insights into the role of network structural 
effects but also facilitates the identification of how these structural effects might 
influence the roles of geographical and technological proximity in the formation of 
innovation networks.

3  Problem Formulation for Structural Determinants and Hypotheses

Against these conceptual considerations, our analytical strategy applied to the case 
of Chinese inter-city innovation networks proceeds in two steps. First, we character-
ize our networks in terms of preferential attachment, transitivity, and link memory. 
Second, we use Temporal Exponential Random Graph Models (TERGM) to test 
these three structural statistics along with other exogenous statistics. During the for-
mation of innovation networks, the preferential attachment mechanism and transi-
tivity (or triadic closure) substantially influence the final structural and functional 
features of a network (Glückler 2007; Liu et al. 2015). The work by Barabási and 
Albert (1999) is a seminal study that proposes preferential attachment as the under-
lying mechanism responsible for the formation of scale-free networks. The concept 
of preferential attachment in network science is closely associated with another 
well-known concept, the Matthew effect, which describes the phenomenon where 
“The rich get richer, and the poor get poorer” (Merton 1968). Preferential attach-
ment suggests that the likelihood of forming additional links increases based on the 
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number of links a node already has. As innovation networks result from a continu-
ous growth process due to the addition of new nodes and links, observing preferen-
tial attachment processes in inter-city innovation networks allows us to understand 
the real topology of the network. In undirected inter-city systems related to co- 
patenting, the inclination of cities to form patent collaborations embodies aspects of 
preferential attachment — i.e. the increased probability of central cities (in terms of 
patenting connections) to become even more pivotal. As a result of this attachment 
mechanism, cities that are hubs in the patent network gain new collaborations based 
on the collaborations they have already established. Therefore, in empirical studies 
focused on co-patenting activities between cities, preferential attachment is viewed 
as a mechanism that confers cumulative benefits, leading to varied levels of influ-
ence or significance within the network of cities involved in co-patenting. In several 
real networks (e.g., knowledge and innovation systems), preferential attachment and 
growth coexist. Following the classic linear preferential attachment implemented by 
Barabási and Albert (1999), the preferential attachment is given by:

Fig. 1  Representation of preferential attachment mechanism

�
(ki) =

ki∑
j

kj

Here, the probability that a link of the new node connects to node i, denoted as 
Π(k), depends on the degree, ki. Preferential attachment is a probabilistic mecha-
nism, where the new node will tend to link with the node that already has many 
links in the network. Let G(N, E) be an undirected graph; N is a set of nodes (e.g. 
Chinese cities), E representing the edge between nodes. A new node at time T = 1 
is likely to link with the nodes that have the most edges, given a snapshot taken at 
time t = 0. Similarly, this process continues for the remaining times. As a result of 
this process, some cities become much more central than others. Figure 1 shows the 
representation of the preferential attachment mechanism across four time periods.

In Appendix Table  4, we present the average preferential attachment scores 
(Π(k)) for Chinese cities from 2007 to 2018. Additionally, the appendix delineates 
the number of new links activated for each city across the waves. In the context 
of intercity co-invention patent networks, preferential attachment may arise due 
to agglomerative factors. It is widely recognized that population and economic 
activity are spatially concentrated. Agglomeration refers to the concentration of 
economic activity and resources in specific regions or areas and plays a crucial 



 A. Zinilli et al.

1 3

role in the development of innovation and technology clusters in China (Fan et al. 
2021). In the case of intercity networks, agglomeration may lead to a concentra-
tion of R&D activities in certain regions and clusters, which could result in pref-
erential attachment as firms or researchers (both in the private and public sector) 
seek to collaborate with those who are already well-connected within these clus-
ters. This could further reinforce the network structure, leading to the emergence 
of a scale-free topology, which in turn could attract even more collaborations due 
to the benefits of being part of a dense and well-connected network. As a result, 
cities with high centrality have more developed economies, higher R&D invest-
ments, and higher innovation performance than cities with low centrality. The 
preferential attachment process affords cities with high centrality a greater level 
of importance and influence within the network. This is because these cities have 
more connections or collaborations, making them more attractive to new partners 
seeking to join the network, and reinforcing their position as key players in the 
intercity networks of co-invented patents.

Hypothesis 1 Inter-city innovation networks in China show preferential attachment 
mechanisms.

We argue that the formation of collaborative ties in these networks is influ-
enced by the agglomeration of economic activities and resources, as evidenced by 
previous studies. Empirical evidence supports this notion, suggesting that cities 
with higher centrality exhibit stronger ties and attract more collaborations over 
time. Transitivity (or triadic closure) suggests that if two nodes are connected 
to a common third node, they are likely to connect with each other (Broekel and 
Bednarz 2019). This can be shown by the number of triangles in a network. Such 
triangles are typically interpreted as indicators of social capital in knowledge and 
innovation networks (Coleman 1988), potentially enhancing trust among nodes as 
they work toward common objectives. Ter Wal (2014) confirmed the significance 
of transitivity (or triadic closure) in the evolution of a biotech network based 
on co-invented patents, emphasizing the role of transitivity in forming triads or 
clusters within a network. The study highlights that as the network grows and 
becomes more interconnected, the effects of geographic proximity may decrease, 
and the tendency towards triadic closure may become a more powerful mecha-
nism for generating longer-distance collaboration ties. Consequently, transitiv-
ity mechanisms become a more powerful vehicle for generating new collabora-
tion ties as the network evolves and grows. Additionally, using co-patenting data, 
Filippetti and Zinilli (2023) highlight the significance of transitivity effects in the 
development of innovation networks within European areas.

Assuming we refer to the same network mentioned earlier, nodes exhibit a ten-
dency to form links with nodes with whom they share at least one mutual connec-
tion. Figure 2 illustrates transitive ties across four time periods.

Hypothesis 2 Transitivity mechanisms promote the formation of co-invented patent 
activity in the intercity networks.
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By investigating the impact of transitivity mechanisms on the formation of co-
invented patent activity within intercity networks, we seek to contribute to a deeper 
understanding of the dynamics driving innovation collaboration across geographi-
cal boundaries. Proving Hypothesis 2 will not only advance theoretical knowledge 
in the field of network science but also provide practical insights for policymakers 
and stakeholders aiming to foster innovation and economic development in intercity 
contexts.

Link memory denotes the propensity of network ties to form or persist based on 
the network’s past tie history. This concept captures the idea that the creation of new 
ties in a network is influenced by both its current structure and the historical forma-
tion of ties. Link memory, in the context of cities’ co-patenting activities, empha-
sizes the inclination of patenting ties between cities to continue over time. It suggests 
that co-patenting collaborations between cities are more probable if such collabora-
tions have taken place previously. The consistent nature of these co-patenting ties, 
or in the patterns of recurrent collaborations, is a fundamental characteristic of such 
patenting networks and, more broadly, of relational systems. Bauer et  al. (2022) 
investigated patent collaboration in a specific technological domain. They found that 
if an inventor pair has previously shared patents, they are more inclined to continue 
collaborating. These jointly obtained patents from the past signify a track record of 
effective collaboration, potentially enhancing the odds of their sustained partnership 
in subsequent innovations. In the context of co-patenting in Europe, Filippetti and 
Zinilli (2023) show that edge memory plays a significant role. This phenomenon 
indicates that co-patent linkages between cities persist over time, reflecting enduring 
collaborative relationships between entities across diverse geographical areas. Such 
past successes establish a foundation of trust, experience, and synergy between the 
inventor pair, fostering continued joint efforts in future ventures.

Hypothesis 3 Previous collaborations will positively influence the likelihood of 
future collaborations in co-invented patent activity within intercity networks.

By hypothesizing that previous collaborations positively influence the likelihood 
of future collaborations in co-invented patent activity within intercity networks, we 
aim to shed light on the mechanisms driving collaboration dynamics and network 
evolution. Proving H3 will contribute to a deeper understanding of how historical 

Fig. 2  Representation of transitive ties
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collaboration patterns shape the formation and persistence of collaborative ties 
ultimately informing strategies to foster innovation and collaboration in intercity 
contexts.

In co-patenting networks, the dynamics of cumulative advantages, network clo-
sure, and persistent collaboration have had little empirical representation in models 
like ERGMs. Few studies have so far delved into examining the temporal consist-
ency of these approaches, especially in the context of patent collaboration dynamics. 
Both empirical evidence and theoretical perspectives highlight the importance of 
understanding that the effects of network dynamics are functions of the co-patenting 
process.

4  Data and Method

4.1  Data

In order to trace inter-city innovation networks in China, we make use of data on 
co-patent activities reflecting technological co-development and more proximate to 
market R&D activities, in contrast to project-based R&D or scientific collaborations 
(see, e.g. Lata et al. 2015; Scherngell 2021). The patents dataset we use is sourced 
from the Chinese State Intellectual Property Office (SIPO), which covers all inven-
tion patent application information from 2007 to 2018. Given the insufficient detail 
about the inventors in the dataset, we are not able to find the addresses of inventors. 
Thus, we investigated the address of each non-individual applicant. Using the co-
applicant relationships, we constructed the innovation network. Specifically, if a pat-
ent has three applicants from cities A, B and C, then there exist three co-patenting 
collaborations between city-pair A-B, A-C and B-C.

4.2  Dependent Variable

The dependent variable represents the presence or absence of a co-patent linkage 
between two Chinese cities (n = 257) spanning the years 2007 to 2018. A linkage 
between two cities is established when at least two entities, be they companies or 
institutes from different cities, jointly apply for a patent. Thus, our primary unit of 
analysis is the dyad. We constructed an undirected network to describe inter-city 
patent relationships based on applicant regions. In this network, the cities are rep-
resented as vertices, while links denote relationships between them. Given the 257 
cities, Vi represents the ith city. An adjacency matrix A = [aij] indicates patent col-
laboration between cities, where aij = 1 indicates collaboration between two cities 
and aij = 0 means no collaboration. Self-loops (i.e., links where a city connects to 
itself) are excluded. This binary approach captures the activation of links, reveal-
ing dynamics such as preferential attachment and triadic closure. By observing 
these transitions, we assess whether nodes with existing connections attract new 
links or participate in forming closed loops. To represent the dynamic mechanism 
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of innovation collaboration and to mitigate the influence of patent application data 
fluctuations, we divided the entire period into four sub-periods. 

4.3  Structural Network Level Variables

We consider preferential attachment, transitivity, and link memory as the endoge-
nous structural features. The term GWDegree is used to model the degree distribu-
tion and capture the skewed degree distribution (network concentration or preferen-
tial attachment) in ERGMs (Young et al. 2023). For the transitivity effect, we use 
the GWESP statistic, and for link memory, we use the memory statistic. We include 
four variables at the structural network level:

– Edge statistic (edges) represents the number of edges in the network. This meas-
ure captures the network density effect and can be treated as a “base rate” analo-
gous to the intercept term in OLS.

   

– Geometrically weighted degree statistic (GWDegree), this comes with gk(α) indi-
cating the exponential weight function and helps to model the observed network’s 
degree distribution.

  Broadly, GWDegree enables the modeling of preferential-attachment pro-
cesses. Specifically, a negative coefficient for this statistic indicates the presence 
of preferential attachment, while a positive coefficient suggests anti-preferen-
tial attachment (Hunter 2007). In our study, the decay parameter is consistently 
fixed, first at 0.1 and then at 0.5 (following Wang et al. 2023); in both instances, 
the parameters remain unchanged.

– Geometrically weighted edgewise shared partner statistic (GWESP) is a function 
of the edgewise shared partner statistics  ESPk(y), which represents the number 
of unordered connected pairs (i, j) (partners) that are both connected to exactly d 
other nodes:

  Here, ESPk(y) refers to the number of edges with exactly k shared partners, and 
α is a decay parameter. A larger decay parameter indicates slower decay (Hunter 
2007). A positive coefficient for this statistic points to a tendency towards triadic 
closure in the network. For computational ease, the decay parameter for GWESP 
was first set to 0.1 and then to 0.5 (following Leifeld et  al. 2018; Wang et  al. 
2023). In both scenarios, the parameters remain unchanged.

∑
i<j

yij

∑
k
gk(�)Dk(y)

e�
n−2∑

k=1

{
1 − (1 − e−�)

k
}
ESPk(y)
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– Link Memory captures the temporal processes specified in the model with-
out reflecting other network structures. Essentially, it denotes a dyadic stability 
memory term—indicating whether ties and non-ties at a certain time persist in 
the subsequent time frame. This captures the consistency (or inconsistency) of 
the links over time (Leifeld et al. 2018).

4.4  Node Level Variables (Control Variables)

The node level variables capture the effects of some relevant city characteristics on 
cross-city joint innovation activities. Referring to the common practice in existing 
literature, we select the following variables from the “China Urban Statistical Year-
book” to describe the characteristics of cities (e.g. Sun and Peng 2021).

– Capital is a dummy variable to capture the impact of administrative hierarchy on 
collaborative innovation among cities. If the city is a provincial city, the value 
equals 1, otherwise is 0.

– Education represents the number of college students per 100 urban residents. It 
measures the impact of urban education development on urban innovation capac-
ity.

– Gdp is per capita GDP and deflated to constant 2010 levels using the consumer 
price index. This variable captures the potential impact of comprehensive eco-
nomic factors on urban innovation capacity.

– Population is the number of residents in a city. This variable is used to control 
the population size effects on urban innovation capacity.

4.5  Dyad Level Variables

Apart from the generally used variables in related literature, we also consider other 
variables that reflect the characteristics of China, including the rapid development 
of urban agglomerations and high-speed railways (Yang et al. 2022). The variables 
we have chosen are as follows:

– Same province equals 1 if two cities belong to the same province, and 0 other-
wise. Cities belonging to the same province share similar institutional environ-
ments and have lower transaction costs in the process of innovation collabora-
tion.

– Same region is another dummy variable to indicate institutional proximity. Cities 
within the same urban agglomeration tend to have more frequent and closer eco-
nomic ties spontaneously. Besides, the Chinese government has largely promoted 
innovation coordination in the inner urban agglomeration regions in recent years 
(Ma et al. 2023). The scope of the region is defined according to Fang (2020).

– Geographic Distance is measured by the Euclidean distance between the geo-
metric centers of two cities.

– Technological Distance represents the technological distance between two cit-
ies, determined by the differences in their technological domain distributions. 
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This variable serves as a common proxy for cognitive distance, reflecting the 
costs associated with bridging different technological fields to innovate. A 
detailed calculation method can be found in Gao et al. (2024).

– HSR is set to 1 if two cities are directly connected by a high-speed railway 
without any transfers required, and 0 otherwise.

4.6  The Temporal Exponential Random Graph Model

To account for inter-temporal dependence in longitudinally observed networks, 
we use the Temporal Exponential Random Graph Model (TERGM), an extension 
of the Exponential Random Graph Model (ERGM) (Hanneke et al. 2010; Leifeld 
et  al. 2018). The TERGM is especially well-suited for the study of knowledge 
and innovation networks. It employs a Markov structure, allowing us to estimate 
a network’s transition between two consecutive time periods using various struc-
tural network configurations (e.g., GWDegree and GWESP) and network exog-
enous characteristics (Zinilli 2016; Zinilli and Cerulli 2023). TERGM allows us 
to observe the networks at discrete and equidistant time points. The SAOM model 
(Stochastic Actor-Oriented Model) has also been applied to longitudinal networks 
(Balland 2012; Balland et al. 2013). For an in-depth understanding of the empiri-
cal comparison of the two models, we refer to Leifeld and Cranmer (2019). We 
selected the TERGM over the SAOM, which is based on actor-based behavioral 
assumptions, as we are modeling an inter-city network (Block et al. 2018; Park and 
Newman 2004). TERGM offers statistical inference procedures that account for the 
non-independence of network ties and the potential for network autocorrelation. 
This approach provides more robust estimation and hypothesis testing compared to 
traditional models, which might not address the unique challenges of network data 
analysis adequately. Moreover, TERGM is designed explicitly to model the dynam-
ics of network data over time, taking into account dependencies and interrelation-
ships between network ties. Traditional models, such as generalized linear mod-
els, typically do not consider the complex dependencies inherent in network data, 
potentially leading to biased or misleading results. As a result, we use the TERGM 
to describe observed network structures because it operates on the assumption of 
node and link dependence (through the so-called Markov dependence).

In the typical ERGM, the likelihood of seeing a specific network is determined 
by a set of statistics ℎ from the network N (for instance, counts of transitive triads 
or attributes linked to pairs). The factor c(θ) takes into account the chances of 
other possible networks that could form with the given nodes.

The TERGM expands upon the ERGM. Instead of determining the probability 
of a network at a specific time, t, based just on counts of its current subgraphs, it 
also incorporates data from previous networks up to t-K:

P(N, �) =
exp

(
�
Th(N)

)

c(�)
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The assumption here is that the statistics derived from networks between t − K 
and t capture all the relationships evident in the network at time t. Assuming that 
earlier networks in a time sequence do not influence later ones, the likelihood of 
seeing the networks within a specific timeframe can be deduced by multiplying 
the probabilities for each specific time:

The equation describes the joint probability as the product of conditional 
probabilities for the network at each time step t, given the networks from t − K 
up to t − 1. The TERGM undertakes that the transition from Yt-1 to Yt is gen-
erated according to an exponential random graph distribution with the specific 
parameter θ (Leifeld and Cranmer 2019). When estimating the ERGMs, or its 
extension such as the TERGM, the normalization constant c(�) in the case of 
ERGM or c

(
�,Nt−K , ...,Nt−1

)
 in the case of TERGM is frequently an impedi-

ment (except for very small networks) since an analytical calculation is not pos-
sible. This is because it requires summation over all possible  networks. Usually, 
to address this issue a Monte Carlo-Markov maximum likelihood estimation 
(MCMC-MLE) is used. For TERGMs, maximum pseudolikelihood with boot-
strap confidence intervals (Desmarais and Cranmer 2012) and Markov chain 
MCMC-MLE can be used. MCMC-MLE serves as an alternative to the boot-
strapped pseudolikelihood inference method. Here, we used both methods. In 
TERGM, a significant positive parameter indicates that the associated configu-
rations occur more frequently than expected by chance. Conversely, a significant 
negative parameter suggests less frequent occurrence than expected.

Degeneracy, which occurs when the majority of the probability mass is 
assigned to network realizations that result in either complete or empty net-
works, is a problem that frequently arises when fitting ERGM (or its generali-
zations) with endogenous network statistics (Schweinberger 2011). Because we 
use structural network configurations such as Geometrically-weighted degree 
(GWDegree) and Geometrically-weighted edgewise shared partner statis-
tic (GWESP), the model might not converge. It may be unable to find a better 
model, thus degenerating. The quality of a non-degenerated model in simulating 
the observed network must be further tested. For this reason, we compare the 
average statistical values of the observed network with the simulated networks to 
determine goodness-of-fit. The Goodness-of-Fit plots for the Temporal ERGM 
of the four networks from 2007 to 2018 is in the Appendix Fig. 4. The similar-
ity of the two distributions indicates that our TERGM adequately describes the 
observed network.

P
(
Nt|Nt−K , ...,Nt−1, �

)
=

exp
(
�
Th
(
Nt,Nt−1, ...,Nt−K

))

c
(
�,Nt−K , ...,Nt−1

)

P(NK + 1,...,NT| N1,...,NK,�) =

T∏

t = K + 1

P
(
Nt|Nt - K,..., Nt - 1, �

)
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5  Results

5.1  Descriptive Analysis

As a complement to the TERGM exercise, we examined the evolution of network 
metrics over four distinct periods, spanning from 2007 to 2018. Table 1 below pro-
vides a comprehensive overview of the network statistics for each period. Specifi-
cally, it counts the number of nodes (cities) and edges, the average distance between 
nodes, network density, degree centralization, and the number of triangles. The 
average distance is  the average shortest path between two nodes. Density refers to 
the ratio of actual links in the network to the maximum possible number of links. 
Degree centralization measures how much the connections in the network are con-
centrated around a single node or a select few (Valente et al. 2015). A triangle con-
sists of three nodes that are interconnected with each other. This data sheds light on 
the temporal dynamics of the network, revealing patterns of growth, connectivity, 
and clustering.

Table 1 provides insights into the evolution of co-patenting relationships among 
Chinese cities from 2007 to 2018. Over this period, there are some interesting 
dynamics in the evolution of the collaborative patenting landscape. We observe an 
increasing number of connections between cities, as evidenced by the growing num-
ber of edges. As shown by the average edges per node, we can see how the relation-
ships grow relative to the number of cities (nodes). Starting with 1.543 unique con-
nections in the 2007–2009 period, the collaborations nearly tripled by 2016–2018. 
This increase suggests that cities were indeed actively generating more partnerships. 
In this co-patenting network, the average distance between two cities, which meas-
ures how closely they are connected, has decreased over time. By 2016–2018, the 
average distance has reduced to 1,87, suggesting that cities became more intercon-
nected. Also, network density, which measures the level of interconnectivity of the 
network, increased from 0,05 in 2007–2009 to 0,13 in 2016–2018. This shift under-
scores the fact that over time, the network of cities became much denser, highlight-
ing a more conducive environment of shared patenting activities. Degree centraliza-
tion remained relatively high and consistent, particularly from 2010 onwards. This 
could imply that the co-patenting activities might be concentrated around certain 
key cities or hubs, possibly acting as innovation centers in patenting endeavors. 
Lastly, the rise in the number of triangles from 5.493 to 42.295 shows that the net-
work is not just expanding randomly. Instead, cities seemed to form more clustered 

Table 1  Network Statistics from 2007 to 2018

Period Nodes Edges Average distance Density Degree 
centralization

Number of 
triangles

2007–2009 257 1.543 2,27 0,05 0,64 5.493
2010–2012 257 2.570 1.99 0,08 0,84 13.380
2013–2015 257 3.617 1,91 0,11 0,86 26.504
2016–2018 257 4.627 1,87 0,13 0,84 42.295
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groups where, if two cities were collaborating, they were likely sharing a common 
partner, adding another layer of connectivity.

Table 2 presents the count of new links formed between each wave and its pre-
ceding one. For each pair of consecutive waves, the value in the table represents the 
number of new links formed between them, illustrating the growing trend of col-
laborations over time.

Both Tables 1 and 2 show that the innovation network in China has been growing 
over time. More cities are joining in, and they are making more connections with 
each other. What we observe is that cities do not simply strengthen ties with their 
previous partners; they also form connections with new ones. This suggests that, 
within the Chinese landscape, the innovation network is not only growing in scale 
but is also evolving dynamically in terms of its structural features.

To further illustrate the evolutionary development of China’s innovation net-
work, Fig. 3 shows the correlation between the degree (ND) and the average nearest-
neighbor degree (ANND) of a city at different time periods.3 As shown in Fig. 3, 

Table 2  Evolution of new links 
activated across successive 
waves

Wave 3—> Wave 4 Wave 4—> Wave 5 Wave 5—> Wave 6

2.988 3.600 4.144

Notes: ND and ANND are both taken as logarithmic values

Fig. 3  The correlation between ND and ANND

3 The degree of a city refers to the number of cities with which it has innovation links, while the ANND 
refers to the average degree of other cities with which it has innovative links.
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innovation networks at different periods all present significant heterogeneous char-
acteristics, and this becomes more pronounced over time, suggesting that cities with 
fewer innovation partners are more likely to collaborate with cities with extensive 
innovation links. This result is consistent with experiences on the Chinese inno-
vation landscape. Constrained by the extremely uneven distribution of innovation 
resources in China, cities with weak innovation resources encounter challenges in 
accessing adequate innovation support from peers of similar capacity. Thus, they 
are more willing to cooperate with these advantaged cities, which are more easily 
engaged in innovation activities. During the period spanning from 2007 to 2009, 
Beijing forged partnerships with 178 cities, whereas nearly 70% of cities managed 
to connect with fewer than 10 counterparts. As time progressed, the unequal distri-
bution of innovation resources has intensified, leading to a growing heterogeneity 
within the innovation network. Between 2016 and 2018, Beijing further solidified its 
dominant position by collaborating with nearly 97% of cities.

5.2  Model Results: the TERGM

In this section, we present the results of the TERGM estimation, using both Maxi-
mum pseudolikelihood with bootstrap confidence intervals (MPLE) and Markov 
chain Monte Carlo maximum likelihood estimation (MCMC-MLE). The fitting of 
the models is converged for both the models; the MPLE model was estimated with 
1,000 bootstrap replications to infer valid confidence intervals (a 95% confidence 
interval is shown around the estimates) as described by  Desmarais and Cranmer 
(2012). The coefficients in the MPLE model are considered significant when zero is 
outside the confidence interval.

For Model 2 (Table 3), the goodness-of-fit plot (including the ROC curve) has 
been generated and can be found in the Appendix, Fig. 4. Goodness of fit analysis 
allows us to assess how well our model captures the observed network structure. By 
comparing simulated network statistics with those observed in the real data, we can 
verify the validity of our model. The ROC curve (in the Appendix Fig. 4.) provides 
an assessment of the predictive performance of our model. By plotting the trade-
off between sensitivity and specificity across different threshold values, ROC curves 
offer insights into the model’s ability to discriminate between different outcomes 
(presence or absence of network links). Finally, the use of both MPLE and MCMC-
MLE enhances the validity of our results by evaluating the consistency and stability 
of our outcomes under different conditions (as a robustness check).

Small variations in the coefficient values are evident between Model 2 and Model  
3 when using both the MPLE and MCMC-MLE estimation techniques. The dispari-
ties in coefficient values between the models can be attributed to the intrinsic differ-
ences between the two estimation methods. However, despite these variations, the sig-
nificance and direction (sign) of the coefficients remain consistent across both models.

Model 1 focuses exclusively on endogenous variables, providing a window into 
the inherent dynamics of the network without exogenous variables. The Edges 
parameter quantifies the total number of connections present within the network in 
relation to all potential links that could be formed. Consistently across all models, 
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this term exhibits a statistically significant negative coefficient. The negative and 
significant coefficient of GWDegree suggests a centralizing force. It seems there is  
a propensity to distribute ties disproportionately, amplifying the significance of cer-
tain cities over others. This can be seen as evidence of the central role some cit-
ies play in fostering connections. The concept of Triadic Closure is captured by the 
geometrically weighted edgewise shared partner (GWESP). This term evaluates the 
network’s closure effect, essentially capturing the phenomenon of transitivity where 
nodes are inclined to form connections if they share mutual neighbors. With its posi-
tive coefficient, it indicates that if two cities share a common connection, they are 
more likely to connect themselves. This emphasizes the network’s tendency for clus-
tering, where cities are inclined to form interconnected groups. Furthermore, the 
positive coefficient for Dyadic stability (edge memory) is revealing, indicating that 
once cities form ties, they tend to maintain them over time, attesting to the resilience 
and stability of these connections.

When we delve into the coefficients associated with node attributes and pairwise 
relationships in Model 2 (the complete model), we observe that while the direction 
(sign) of the endogenous coefficients remains consistent, the magnitude or weight 
of each parameter changes. The introduction of exogenous variables modulates the 
relationships established by endogenous ones, potentially diminishing the initially 
observed effects. The significant and positive coefficient for the Capital variable 
underscores that capital cities, with their inherent advantages, are more inclined 
to foster connections. The Education variable also bears a positive and significant 
coefficient. Its estimate in the MPLE model suggests that cities with higher educa-
tion levels are more likely to form links. GDP and Population, both with positive 
coefficients, suggest that cities with strong economic outputs and larger populations 
have a higher tendency to establish links. The formation of links in our network 
is also influenced by geographic proximity. The significant coefficients for Same 
province and Same region variables indicate that cities within the same provinces 
or regions are more likely to collaborate. The Same province variable has a higher 
log-odds, suggesting that cities within a shared province exhibit an even stronger 
tendency to form connections compared to cities in the same broader region. This 
could be due to more localized cultural, economic, or administrative synergies that 
make inter-city collaboration within a province more seamless and productive. The 
coefficient for Geographical Distance variable is negative, indicating that as the 
distance between two cities increases, the likelihood of collaboration between them 
decreases. Similarly, the Technological Distance coefficient suggests that differences 
in technological capabilities between cities can reduce the chances of collaboration. 
Lastly, the introduction of infrastructure such as High-Speed Rail (HSR) appears to 
have a strong impact on innovation networks. With its positive coefficient, the pres-
ence of a high-speed rail connecting two cities indicates an increased likelihood of  
those cities forming ties, likely serving as a conduit for enhanced collaborations.

Cross-city innovation networks in China are shaped by a dynamic interplay 
of various forces, both endogenous and exogenous. The network structure, repre-
sented by factors such as preferential attachment and triadic closure tendencies, 
provides the foundational dynamics for these networks. Central cities emerge as 
key nodes, amplifying the network’s connectivity and acting as primary hubs for 
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innovation. Preferential attachment (as represented by the GWDegree term) with 
a coefficient of -3.05 plays a significant role in the network dynamics. This sug-
gests that certain cities draw in more connections, potentially due to their existing 
network strength. Meanwhile, external variables, from economic strengths to geo-
graphical and technological proximities, further shape the nature of connections. 
Additionally, infrastructural advancements, such as the introduction of High-
Speed Rail, facilitate and deepen these inter-city collaborations, reinforcing the 
idea that connectivity, both in terms of knowledge and physical infrastructure, is 
important. This suggests that while the formation of ties between cities in innova-
tion contexts is influenced by their intrinsic assets, such as infrastructural advan-
tages or economic capability, the mechanism of preferential attachment is clearly 
evident. Its role appears to be more dominant among the endogenous factors.

6  Conclusions

Networks of innovating actors are nowadays considered essential for the success-
ful generation of innovations. The capability of cities and their embeddedness in  
such networks has therefore attracted increasing attention in the recent past, 
not only in a scientific context but also by policy makers, in particular regional 
innovation policies. A central contemporary debate within the research stream 
investigating the structures and dynamics of such networks concerns the identi-
fication of drivers for collaboration in innovation activities between cities. While  
geographical and technological determinants have already been studied by the 
pioneering works in this field, more recently, emphasis has been shifted to the role  
of more intangible drivers for innovation networks. In this context, and inspired 
by network science, network structural mechanisms have gained increasing atten-
tion, but robust empirical insights are yet scarce. Against this background, this 
study has focused on the exploration of such network structural drivers for cross-
city innovation networks in China. The study employed novel and highly detailed 
empirical data on cross-city innovation activities, as captured by co-patenting 
between applicants located in different cities. In order to capture dynamics of the 
network under consideration, we advance previous research that uses standard 
spatial interaction models (see Gao et al. 2024) by developing a temporal version 
of Exponential Random Graph Models (TERGM). Such models are highly suit-
able to incorporate endogenous network structural characteristics in predicting 
the innovation collaboration intensity between city pairs, controlling for stand-
ard drivers included in previous works, such as geographical or technological 
distance. In particular, we shift attention to preferential attachment, transitivity 
and network stability as potentially highly important drivers for the dynamics of 
cross-city innovation networks.

The results are very promising and suggest that endogenous network effects 
indeed play an important role for the evolution of innovation networks between cit-
ies in China. In essence, there is recognition of three important driving forces:
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• First, the positive effect of preferential attachment indicates that well-connected 
cities attract more collaborations, reinforcing their centrality in the network. 
Cities that already have a large number of co-patents with other cities are more 
likely to attract new co-patents, compared to cities with a smaller number of 
co-patents. This could be due to a variety of factors, such as a concentration of 
resources or expertise in certain cities, or a tendency for researchers or compa-
nies to establish collaborations with existing partners rather than seeking out 
new ones. Another possibility is that cities with a higher number of co-patents 
may have better access to funding, resources, and expertise, which could make 
them more attractive collaborators for other cities. These cities may also have a 
higher level of visibility and reputation in the field of research or industry, which 
could make them more appealing partners. Moreover, researchers or companies 
may have a tendency to collaborate with existing partners rather than seeking out 
new ones. Over time, this could lead to a network in which a few cities have a 
much higher number of co-patents than the rest of the network.

• Second, transitivity emerges as an important driver, reflecting the tendency for 
cities within the same regional clusters to form tightly knit groups, enhancing 
local innovation ecosystems by representing regional hubs of innovation or cent-
ers of excellence in particular fields or industries.

• Third, link memory is crucial, highlighting the persistence of collaborations over 
time, which stabilizes the network structure. This suggests enduring and reliable 
partnerships that contribute significantly to innovation. Stable connections imply 
consistent interaction and trust among innovators, leading to sustained knowl-
edge exchange and joint innovation efforts over time. This stability can foster 
the development of long-term collaborative relationships, which are crucial for 
achieving impactful and sustained innovation outcomes. Additionally, stable col-
laborations may indicate consortia within specific industries or technological 
domains, providing a solid foundation for future collaborative endeavors and pro-
moting regional innovation ecosystems.

The results show that endogenous network effects significantly drive inter-city 
innovation networks but do not replace exogenous proximity effects, such as geo-
graphical and technological factors. Geographical distance still decreases the likeli-
hood of collaboration between cities, as also does technological distance. Infrastruc-
ture increasing connectivity between cities, such as High-Speed Rail (HSR), also 
appears to have a strong impact. Overall, the main outcome and contribution of the 
study lies in the original estimation of structural network effects in innovation net-
works, specifically through the mechanisms of preferential attachment, transitivity, 
and link memory. While these mechanisms offer not only a novel lens to examine 
how innovation networks evolve and sustain over time, the study underscores the 
enduring relevance of geographical and relational proximities in network formation. 
This dual focus not only advances theoretical frameworks but also provides action-
able insights for regional policymaking in China and globally. In a Chinese policy 
context, enabling lagging regions to participate in such networks, and to get attached 
to other well connected other regions becomes even more important in view of 
the empirical results. At the same time, the results can be an important input for 
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regional policy makers in order to align regional policies initiated locally with the 
relative positioning of the region to other regions, not only in geographical and tech-
nological, but also in network space. Strategic linking with other central cities may 
increase the centrality of the region in the mid- to long-term.

Clearly, this study produces some interesting results, but also has some limita-
tions that suggest directions for future research. First, the study is limited to tech-
nological innovation networks by focusing on inter-city co-patenting. Given that 
this is only one form of joint R&D activities, a comparison to other forms, such as 
project-based R&D collaboration, would be interesting, both in a scientific and a 
policy context. Second, the study does not control for technological or sectorial het-
erogeneities that have recently been increasingly discussed as an important property 
of innovation networks (see Neuländnter and Scherngell 2020). This would be an 
important complementary element in future research. Third, comparisons with other 
geographical areas, such as the US or Europe, are of great interest, in order to delin-
eate the more China-specific from general results obtained in this study.

Appendix A

Table 4  Preferential attachment score (mean 2007-2018) and new links activated by city

City Π(k) 2007-2018 Wave 3 -> Wave 
4

Wave 4 -> Wave 
5

Wave 5 
-> Wave 
6

Beijing 0,0409 63 18 6
Tianjin 0,0188 52 48 39
Shijiazhuang 0,0093 29 29 29
Tangshan 0,0042 10 17 26
Qinhuangdao 0,0044 10 13 16
Handan 0,0031 11 22 17
Xingtai 0,0025 7 8 7
Baoding 0,0077 21 32 28
Zhangjiakou 0,0027 7 23 11
Chengde 0,0010 4 5 9
Cangzhou 0,0030 16 9 16
Langfang 0,0049 15 19 31
Hengshui 0,0025 8 5 17
Taiyuan 0,0098 22 37 34
Datong 0,0017 6 6 23
Yangquan 0,0008 4 1 12
Changzhi 0,0031 20 14 17
Jincheng 0,0012 3 6 11
Shuozhou 0,0006 1 6 4
Jinzhong 0,0019 9 7 11
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City Π(k) 2007-2018 Wave 3 -> Wave 
4

Wave 4 -> Wave 
5

Wave 5 
-> Wave 
6

Yuncheng 0,0018 5 7 12
Xinzhou 0,0007 4 3 7
Linfen 0,0015 3 9 7
Lvliang 0,0012 3 4 6
Hohhot 0,0044 23 13 25
Baotou 0,0026 10 12 17
Wuhai 0,0011 8 3 8
Chifeng 0,0010 2 10 4
Tongliao 0,0014 2 8 10
Erdos 0,0022 5 21 16
Bayannur 0,0011 4 3 14
Shenyang 0,0137 36 39 39
Dalian 0,0118 32 33 34
Anshan 0,0044 12 30 22
Fushun 0,0026 14 13 9
Benxi 0,0011 6 7 3
Dandong 0,0019 5 9 17
Jinzhou 0,0022 3 14 15
Yingkou 0,0014 3 7 11
Fuxin 0,0018 11 9 11
Panjin 0,0013 2 6 7
Tieling 0,0012 6 5 10
Chaoyang 0,0008 2 2 2
Huludao 0,0015 9 6 13
Changchun 0,0100 26 26 39
Jilin 0,0033 10 21 20
Siping 0,0012 5 3 6
Liaoyuan 0,0005 3 0 5
Tonghua 0,0010 3 4 7
Baishan 0,0008 1 5 4
Songyuan 0,0010 4 6 2
Harbin 0,0099 27 38 45
Qiqihar 0,0014 6 3 6
Jixi 0,0006 1 2 3
Shuangyashan 0,0004 2 1 3
Daqing 0,0019 9 10 13
Jiamusi 0,0015 6 10 6
Mudanjiang 0,0010 3 6 5
Suihua 0,0009 5 4 5
Shanghai 0,0291 48 45 38
Nanjing 0,0230 50 56 39
Wuxi 0,0131 41 33 48
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City Π(k) 2007-2018 Wave 3 -> Wave 
4

Wave 4 -> Wave 
5

Wave 5 
-> Wave 
6

Xuzhou 0,0074 26 31 27
Changzhou 0,0094 30 18 29
Suzhou 0,0136 28 42 37
Nantong 0,0070 26 17 33
Lianyungang 0,0040 16 20 19
Huaian 0,0034 13 15 20
Yancheng 0,0053 25 14 14
Yangzhou 0,0065 24 15 21
Zhenjiang 0,0082 23 31 21
Taizhou 0,0047 13 19 23
Suqian 0,0025 17 11 13
Hangzhou 0,0166 38 38 45
Ningbo 0,0088 32 31 22
Wenzhou 0,0062 22 22 20
Jiaxing 0,0069 24 28 14
Huzhou 0,0047 18 15 22
Shaoxing 0,0077 25 23 31
Jinhua 0,0055 17 16 17
Quzhou 0,0028 5 12 18
Zhoushan 0,0021 9 15 11
Taizhou 0,0060 14 15 24
Lishui 0,0021 10 4 8
Hefei 0,0127 36 30 38
Wuhu 0,0033 13 16 21
Bengbu 0,0028 11 19 16
Huainan 0,0033 7 14 18
Maanshan 0,0029 8 13 20
Huaibei 0,0015 11 3 11
Tongling 0,0015 9 8 9
Anqing 0,0019 6 6 9
Huangshan 0,0017 6 4 17
Chuzhou 0,0025 12 11 9
Fuyang 0,0012 7 3 17
Suzhou 0,0016 3 4 19
Lu’an 0,0015 8 7 15
Chizhou 0,0009 5 4 6
Xuancheng 0,0020 6 8 12
Fuzhou 0,0070 14 30 23
Xiamen 0,0085 21 38 26
Putian 0,0010 1 4 10
Sanming 0,0024 11 7 16
Quanzhou 0,0043 13 13 15
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City Π(k) 2007-2018 Wave 3 -> Wave 
4

Wave 4 -> Wave 
5

Wave 5 
-> Wave 
6

Zhangzhou 0,0033 16 17 22
Nanping 0,0019 3 15 11
Longyan 0,0017 5 2 14
Ningde 0,0019 4 12 14
Nanchang 0,0074 14 35 39
Jingdezhen 0,0010 5 5 9
Pingxiang 0,0007 1 4 10
Jiujiang 0,0025 8 13 16
Xinyu 0,0007 3 4 9
Yingtan 0,0010 2 3 5
Ganzhou 0,0034 15 18 21
Ji’an 0,0019 10 15 9
Yichun 0,0025 8 16 7
Shangrao 0,0015 5 9 11
Jinan 0,0125 28 48 33
Qingdao 0,0151 49 35 41
Zibo 0,0063 15 26 29
Zaozhuang 0,0019 7 4 16
Dongying 0,0041 13 20 24
Yantai 0,0069 24 26 32
Weifang 0,0044 13 15 25
Jining 0,0046 12 17 25
Tai’an 0,0042 12 24 26
Weihai 0,0042 5 28 18
Rizhao 0,0011 4 8 5
Linyi 0,0034 5 24 22
Dezhou 0,0034 14 12 26
Liaocheng 0,0020 8 10 17
Binzhou 0,0026 9 16 28
Heze 0,0022 10 13 13
Zhengzhou 0,0133 33 34 45
Kaifeng 0,0018 9 9 10
Luoyang 0,0058 20 23 23
Pingdingshan 0,0029 5 19 21
Anyang 0,0020 5 4 19
Hebi 0,0013 5 6 5
Xinxiang 0,0034 10 15 30
Jiaozuo 0,0026 8 20 20
Puyang 0,0018 10 11 13
Xuchang 0,0045 18 24 29
Luohe 0,0008 2 4 9
Sanmenxia 0,0013 2 9 5
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City Π(k) 2007-2018 Wave 3 -> Wave 
4

Wave 4 -> Wave 
5

Wave 5 
-> Wave 
6

Nanyang 0,0023 4 8 20
Shangqiu 0,0010 1 3 9
Zhoukou 0,0012 2 9 8
Zhumadian 0,0008 2 0 6
Wuhan 0,0234 64 45 52
Huangshi 0,0015 6 9 12
Shiyan 0,0019 6 13 6
Yichang 0,0041 10 29 13
Xiangyang 0,0027 6 15 21
Ezhou 0,0009 5 3 7
Jingmen 0,0014 7 2 14
Xiaogan 0,0024 7 15 16
Jingzhou 0,0030 7 19 14
Huanggang 0,0025 10 10 12
Xianning 0,0012 6 5 12
Suizhou 0,0007 3 8 1
Changsha 0,0168 43 52 38
Zhuzhou 0,0042 18 22 22
Xiangtan 0,0038 16 15 22
Hengyang 0,0020 5 11 8
Yueyang 0,0016 3 7 12
Changde 0,0020 15 11 10
Zhangjiajie 0,0004 2 1 3
Yiyang 0,0011 5 1 8
Chenzhou 0,0015 4 5 9
Yongzhou 0,0008 5 5 5
Huaihua 0,0009 4 3 4
Loudi 0,0009 1 2 9
Guangzhou 0,0199 52 37 45
Shaoguan 0,0022 8 15 11
Shenzhen 0,0185 37 49 46
Zhuhai 0,0066 30 20 27
Shantou 0,0030 11 8 14
Foshan 0,0083 29 32 31
Jiangmen 0,0044 17 11 13
Zhanjiang 0,0038 16 9 22
Maoming 0,0023 18 9 9
Zhaoqing 0,0024 11 8 18
Huizhou 0,0029 10 14 21
Meizhou 0,0014 7 6 10
Shanwei 0,0003 0 2 4
Heyuan 0,0012 2 12 12
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City Π(k) 2007-2018 Wave 3 -> Wave 
4

Wave 4 -> Wave 
5

Wave 5 
-> Wave 
6

Qingyuan 0,0025 9 13 22
Dongguan 0,0077 28 29 37
Zhongshan 0,0045 17 16 23
Chaozhou 0,0009 4 3 4
Jieyang 0,0014 1 6 7
Yunfu 0,0010 5 4 5
Nanning 0,0054 17 25 25
Liuzhou 0,0036 12 16 11
Guilin 0,0028 6 16 14
Wuzhou 0,0009 4 3 9
Beihai 0,0022 10 11 11
Qinzhou 0,0008 4 6 7
Yulin 0,0005 2 0 5
Hechi 0,0010 4 3 2
Laibin 0,0006 3 1 3
Chongzuo 0,0008 3 9 3
Haikou 0,0051 15 24 16
Danzhou 0,0007 4 5 1
Chongqing 0,0123 27 50 38
Chengdu 0,0192 35 54 44
Zigong 0,0023 8 11 19
Panzhihua 0,0021 7 5 13
Luzhou 0,0017 9 6 14
Deyang 0,0022 10 11 12
Mianyang 0,0035 18 13 25
Suining 0,0007 2 3 7
Neijiang 0,0010 3 8 4
Leshan 0,0009 2 4 12
Nanchong 0,0012 3 12 6
Meishan 0,0009 3 5 9
Yibin 0,0018 7 5 18
Dazhou 0,0007 2 4 5
Yaan 0,0021 4 13 16
Ziyang 0,0007 2 3 9
Guiyang 0,0078 20 34 23
Zunyi 0,0019 6 7 9
Anshun 0,0011 1 4 6
Bijie 0,0010 4 7 7
Kunming 0,0091 25 38 37
Qujing 0,0016 1 13 15
Yuxi 0,0016 8 9 4
Baoshan 0,0005 1 1 7
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City Π(k) 2007-2018 Wave 3 -> Wave 
4

Wave 4 -> Wave 
5

Wave 5 
-> Wave 
6

Lijiang 0,0003 0 2 0
Puer 0,0008 5 3 7
Lincang 0,0005 1 2 7
Lasa 0,0020 2 12 16
Xi’an 0,0187 52 49 41
Tongchuan 0,0006 1 2 5
Baoji 0,0017 6 12 13
Xianyang 0,0031 10 11 23
Weinan 0,0013 8 5 14
Yan’an 0,0011 4 4 7
Hanzhong 0,0017 8 16 7
Yulin 0,0023 9 5 17
Ankang 0,0008 4 7 3
Shangluo 0,0010 5 2 2
Lanzhou 0,0077 19 39 28
Jinchang 0,0013 8 7 4
Baiyin 0,0017 6 4 11
Pingliang 0,0005 3 4 2
Jiuquan 0,0013 7 5 10
Dingxi 0,0006 2 7 4
Xining 0,0042 15 23 28
Yinchuan 0,0043 12 22 12
Shizuishan 0,0016 2 9 10
Wuzhong 0,0008 4 1 9
Zhongwei 0,0013 3 7 6
Urumqi 0,0055 24 26 30
Karamay 0,0017 2 7 9
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Appendix B

Fig. 4  Model goodness of fit for the TERGM (Model 2)
The validity of the results is determined using a goodness-of-fit analysis. In our 
case, the goal of the goodness-of-fit is to compare simulated and observed net-
work matrices along a vector of values, which include edge-wise shared partners, 
dyad-wise shared partners, degree distribution, geodesic distances, and the ROC 
curve. The black thick line represents the observed network’s distribution of sta-
tistics, while the gray area represents the matching confidence intervals from the 
simulated networks. The goodness-of-fit results indicate that our TERGM accu-
rately describes the observed network.
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