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Environmental variables 
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Mediterranean Sea
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Giulia Cipriano 6 & Roberto Carlucci 6

Although the Mediterranean Sea is a crucial hotspot in marine biodiversity, it has been threatened 
by numerous anthropogenic pressures. As flagship species, Cetaceans are exposed to those 
anthropogenic impacts and global changes. Assessing their conservation status becomes strategic 
to set effective management plans. The aim of this paper is to understand the habitat requirements 
of cetaceans, exploiting the advantages of a machine-learning framework. To this end, 28 physical 
and biogeochemical variables were identified as environmental predictors related to the abundance 
of three odontocete species in the Northern Ionian Sea (Central-eastern Mediterranean Sea). In fact, 
habitat models were built using sighting data collected for striped dolphins Stenella coeruleoalba, 
common bottlenose dolphins Tursiops truncatus, and Risso’s dolphins Grampus griseus between July 
2009 and October 2021. Random Forest was a suitable machine learning algorithm for the cetacean 
abundance estimation. Nitrate, phytoplankton carbon biomass, temperature, and salinity were the 
most common influential predictors, followed by latitude, 3D-chlorophyll and density. The habitat 
models proposed here were validated using sighting data acquired during 2022 in the study area, 
confirming the good performance of the strategy. This study provides valuable information to support 
management decisions and conservation measures in the EU marine spatial planning context.

The Marine Strategy Framework Directive (MSFD), Marine Spatial Planning (MSP) and Common Fisheries 
Policy (CFP) constitute the main policies to maintain the productive, resilient, and good health status (GES) 
of marine habitats to provide ecosystem services and limit the loss of biodiversity in EU Member States (EEA, 
2015). This environmental strategy, although different in terms of achievable objectives, is based on the Ecosystem 
Based Management approach (EBM), which is assumed to be a holistic and integrated pathway worldwide. In 
particular, this approach aims to maintain or restore the composition, structure, function, and delivery of services 
of natural and modified ecosystems to achieve sustainability (Millennium Ecosystem Assessment, 2005). In this 
light, knowledge of the spatiotemporal distribution and abundance of target species, as well as the extension 
of their critical habitats and their overlap with highly impacted areas strongly characterized by anthropogenic 
pressures, is essential, especially in aquatic ecosystems.

Although, on a global scale, the Mediterranean Sea is one of the most important hotspots for its richness in 
marine biodiversity1–3, it has been historically threatened by numerous anthropogenic pressures, such as the 
presence of commercial maritime and fishing activities, a growing urbanization mostly along coastal zones, and 
the occurrence of different sources of pollution, from chemical to acoustic4,5. In addition, climate change, the 
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spreading of alien species, and the increasing occurrence of disease outbreaks are considered the most recent 
verified drivers of impact on the basin6–8. The cetaceans of the Mediterranean Sea are among species worthy of 
conservation distributed in a heavily anthropized basin9. In this context, dolphins and whales can be exposed 
to several impacts, such as bycatch, competition of resources due to fishing activities10–14, shipping collisions15, 
chemical pollution from persistent organic pollutants, marine litter, heavy metals16–18 and noise pollution19,20.

To date, several studies21–32 have been conducted to provide information on the estimated abundance and 
distribution of regular species occurring in Mediterranean eco-regions. Moreover, over the last three decades, 
extensive literature describing methodological approaches to assess the abundance of top marine predators 
has rapidly expanded33–36, starting from methodologies requiring basic information (e.g., number of individu-
als, distances, photoidentification data), based on distance sampling37–39 and mark-recapture methods40–42, to 
more advanced techniques requiring a greater amount of data36. The latter brings us face to face one of the big 
challenges in ecology, namely, the identification of environmental predictor variables, which help to forecast 
bioecological responses based on environmental changes43–45. An example of the modeling approaches for an 
abundance assessment are model-based estimation methods, such as density surface modeling46, species dis-
tribution modeling47, and the most powerful machine learning techniques48. Generalized Additive Models49, 
Neural Networks50, Least Squares Boosting51, Random Forest52 and Support Vector Machines53 are some of the 
most popular learning models and have already been successfully applied in several application domains43,54–63. 
Despite this plethora of information, the question regarding cetacean species abundance in the Mediterranean 
Sea is far from being closed. In fact, enormous efforts are required in the continuous updating of the collected 
data, thus covering longer periods of sightings of cetacean populations, as well as larger study areas. Moreover, 
the evolution of the theoretical and computational improvements of the modeling approaches for the estimation 
of abundance and for the identification of environmental predictors require a continuous training of the models 
through the employment of state-of-the-art statistical techniques and strategies.

This study starts with the identification of the main environmental predictors related to the abundance of three 
cetacean species: the striped dolphin Stenella coeruleoalba, the common bottlenose dolphin Tursiops truncatus, 
and the Risso’s dolphin Grampus griseus, observed in the Gulf of Taranto (Northern Ionian Sea, Central-eastern 
Mediterranean Sea). A group of 28 environmental variables, extracted by the Copernicus Marine Service (https://​
marine.​coper​nicus.​eu/​it) and EMODnet-bathymetry dataset (https://​www.​emodn​et-​bathy​metry.​eu/​data-​produ​
cts), are tested to train three regression models: RF, LSBoost, and NN. Next, estimates of species abundance 
are provided as approach examples of habitat suitability definitions and baselines for these odontocetes in the 
Mediterranean Sea. Habitat models were developed using sighting data collected during marine surveys in 
the study area from July 2009 to October 2021. Finally, the most important variables for building these habitat 
models were identified and examined, and a validation of the proposed strategy for abundance estimation was 
provided using sighting data collected in 2022. All the sighting data and environmental variables, used in this 
study, are freely available.

Results
All data were analyzed using MATLAB (MathWorks, Natick, MA). To build habitat models, dataset D, which 
collected sighting data in the period 2009–2021, was used (see “Data description” section in the “Materials and 
methods”). In particular, abundance data from striped dolphin, common bottlenose dolphin and Risso’s dolphin 
have been analyzed in relation to the following geographical, physical, and biochemical ocean variables: latitude, 
longitude, distance of the sighting from the coastline (Distance_From_Coast), maximum depth of the water 
column in the numerical model (Max_Depth), bathymetry (Emodnet_Depth), primary production*, nitrate*, 
phosphate*, phytoplankton carbon biomass* (PHYC), 3D-chlorophyll* (CHL3D), chlorophyll a (CHLA) at sur-
face (CHLA), temperature*, salinity*, density*, mixed layer depth, thermocline depth (depthOfMaxN2), currents 
speed* (Currents_Intensity) and direction* (Currents_Direction). The three-dimensional variables have been 
labeled with * symbols and contain two values: the top value, which is the value computed at the top of the water 
column. corresponding to the variable mean value in the range [0, 40 m]; the bottom value computed at the bot-
tom of the water column, given by the variable mean value in [50 m, 200 m]. Hence, a total of 28 environmental 
variables were used to train the models.

The performances of three regression models, LSBoost, RF and NN, in terms of Root Mean Square Error 
(RMSE), have been evaluated using a K-fold cross-validation, with K empirically set equal to five. Therefore, 
each model was trained on 80% of the available examples in the dataset D and tested on the remaining 20% at 
each run of the cross-validation procedure, and evaluation metrics were obtained by averaging values in the five 
runs. Parameter tuning for each model was empirically performed (see the “Regression models” section of the 
“Materials and methods”). The first experiment was conducted on the sighting data of striped dolphin (S), com-
mon bottlenose dolphin (T), and Risso’s dolphin (G). The performances of the three models, whose optimized.

hyperparameters are shown in Supplementary material, Table S1, were quite similar (see Table 1).
In particular, RF performances were slightly better than those of NN and LSBoost, with an RMSE of 6 indi-

viduals for the T dataset, 8 for the G dataset and 46 for the S dataset. Very important is that RF required a lower 
training time; hence, in the following, we always refer to this algorithm.

Differences between the results obtained on the T and G datasets with the results on the S dataset are reason-
ably due to multiple factors. Note that comparisons between datasets or models are out of the scope of this study. 
A first consideration is that the influence of the 28 variables on the prediction of cetacean abundance, made by 
RF models, could vary in different ranges of the values of group size, especially when these values vary greatly, 
thus influencing the performance of the regression model. Moreover, a main concern is the relatively minor 
dimension of groups of common bottlenose dolphins and Risso’s dolphins with respect to those of striped dol-
phins. In fact, in the T and G datasets, the maximum number of individuals observed in the groups size during 

https://marine.copernicus.eu/it
https://marine.copernicus.eu/it
https://www.emodnet-bathymetry.eu/data-products
https://www.emodnet-bathymetry.eu/data-products
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the sightings is equal to 30 and 50 individuals, respectively (see the “Data description” section in the “Materials 
and methods”), so marine mammal observers can be obviously more accurate when counting. Instead, striped 
dolphin group size values can reach even hundreds of individuals, making their counting very difficult when 
group size increases. Obviously, the introduced bias increases with the dimension of the group. Therefore, when 
the group size counting is inaccurate, the regression model will be trained on wrong data, affecting the value of 
the RMSE computed. To test this hypothesis, the dataset S has been split into four subsets, according to the size 
of the observed groups during the sightings: S1 contains 585 sightings whose group size ranges from 1 to 30; S2 
counts 362 sightings with group size varying in the interval [31, 60]; S3 contains 135 sightings whose group size 
ranges from 61 to 90; S4 counts 145 sightings with group size in the interval [91, 150] (see Table 2 and Fig. 1).

Dataset S contains only 37 sightings with group sizes greater than 150, whose values fall into very few bins 
(see Supplementary material, Fig. S1); hence, these samples were discarded in the following analysis. The four 
subsets and relative cutoffs were selected considering the max group size values observed in the T and G datasets, 
which were 30 and 50 individuals, respectively. Moreover, some empirical considerations were made to ensure 
enough examples in each subset to train the models. Finally, RF models were trained on the four subsets, and 
their performances in terms of RMSE are shown in Table 2, while their optimized hyperparameters are shown 
in Supplementary material, Table S2. Experimental results highlight good performances of RF on subsets S1, S2, 
and S3, showing RMSE values varying from 6 to 9 individuals. Instead, the RMSE of RF on S4 increases up to 19. 
Figure 1 shows the distribution of the examples in the different group sizes for the S1, S2, S3, S4, G and T datasets. 
The main difference between S4 and the other datasets is that few examples in a few bins of the S4 histogram are 
available. It is reasonable that the shape of this histogram affects the RF regression performance, which becomes 
worse than others. The appearance of the S4 histogram can be imputable to inaccurate observations when indi-
viduals are greater than approximately one hundred, while the frequency of sighting striped dolphin groups with 
this number or greater number of individuals becomes low. The tested hypothesis is confirmed by these results, 
and the proposed strategy based on RF and the 28 environmental variables for the abundance estimation for these 
odontocetes is effective, mostly when the group size is lower than 90 individuals. In addition, the identification 
of the most common influential predictors, among the 28 environmental variables considered here, was assessed 
by ranking their importance given by the RF models (see Table 3 and Supplementary material, Figs. S2:S7) and 
analyzing the first ten positions of the ranked lists.

Feature importance measures how variables influence the model when predicting the response. The influ-
ence of a predictor variable increases with the value of this measure. The idea underlying the feature importance 
computed by RF models is that if a variable is influential in prediction, then permuting its values should affect 
the model error; if a variable is not influential, then permuting its values should have little to no effect on the 
model error. Overall, nitrate, phytoplankton carbon biomass, temperature, and salinity, at the top of the water 
column, were included in 83% of the models, followed by latitude, top 3D-chlorophyll and top density in 67% of 
the models. Note that temperature at the bottom of the water column was also important in half of the models. 
Globally, the less influential variables (i.e., variables with zero frequency in the first ten positions of the ranked 
lists) resulted in the maximum depth, chlorophyll a at the surface, thermocline depth and bottom current direc-
tion and bottom phosphate.

In particular, the group size of striped dolphin seems to be positively influenced by the concentration of 
nitrate, especially for datasets S1 and S4, which is contrary to what was observed for T and G, for which this 
parameter seems negatively affects their group size although in a slight way (Supplementary material, Fig. S9). 
However, it is currently difficult to hypothesize about the meaning of these relationships, which need to be further 

Table 1.   Results of regression models LSBoost, RF, and NN. The performances of the models were evaluated 
in terms of RMSE trained on striped dolphin S, common bottlenose dolphin T, and Risso’s dolphin G datasets 
using five runs of the cross-validation procedure. Bold characters indicate the best performance among all the 
models.

Dataset LSBoost RF NN

S 47 46 47

T 6 6 6

G 9 8 10

Table 2.   Results of RF analysis in terms of RMSE obtained on the subsets of S. The performances of the RF 
models were evaluated in terms of RMSE trained on the S1, S2, S3, and S4 datasets using five runs of the cross-
validation procedure.

Subset Group size Number of examples RMSE

S1 [1, 30] 585 9

S2 [31, 60] 362 7

S3 [61, 90] 135 6

S4 [91, 150] 145 19
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investigated, also using larger sighting datasets. Additionally, the salinity and the temperature at the top layer 
positively affected the group size of this species, especially for dataset S4 and datasets S1 and S2, respectively (Sup-
plementary material, Figs. S10 and S11). Similarly, the temperature at the top layer positively affected the group 
size of Risso’s dolphin, while the phytoplankton carbon biomass was negatively correlated with its group size 
(Supplementary material, Figs. S11 and S12). For the common bottlenose dolphin, in addition to the concentra-
tion of nitrates, which were found to negatively influence the size of the groups (Supplementary material, Fig. 
S9), other environmental features that were important for the prediction of abundance were primary production, 
3D-chlorophyll and Emodnet_depth (Supplementary material, Fig. S7).

Finally, the proposed strategy for the cetacean abundance estimation was validated using 5 sighting data of 
striped dolphin and 2 of bottlenose dolphin collected in the study area during 2022, obtaining good performances 
with an average RMSE equal to 6 individuals.

Discussion
Assessing the abundance of top marine predators and identifying the relationship between their abundance 
and environmental variables are primary goals in the framework of EU policies aimed to protect and preserve 
biodiversity and ecosystems9,64–66 for the adequate understanding of habitat suitability for different species and 
the implementation of correct conservation measures.

Here, we propose a modeling strategy that uses RF and a robust statistical methodology to estimate cetacean 
abundance and to identify the most influential environmental predictors. We tested and validated it using sighting 
data on three different cetacean species collected in the Gulf of Taranto over a span of over ten years. Although 
previous studies were conducted in the same area to predict the distribution and abundance of striped and com-
mon bottlenose dolphins as a function of environmental and anthropogenic drivers22,24, this study tested a high 
number of features that go beyond the “classic” physiographic or environmental variables, such as depth, distance 
from coast, slope, sea surface temperature and chlorophyll a content. This approach allowed us to verify the most 
powerful statistical method among the most innovative techniques of artificial intelligence to predict the group 

Figure 1.   Sample distribution for datasets S1 (a), S2 (b), S3 (c), S4 (d), G (e) and T (f).
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size of dolphin species according to several predictors and to investigate the importance of other environmental 
variables less used in the modeling.

The concentration of nitrate, phytoplankton carbon biomass, temperature and salinity, especially in the top 
layer of the water column, were frequently the most relevant features for the prediction of the group size of the 
three cetacean species investigated here. This result is somewhat expected because these variables are strongly 
linked to primary production and to the occurrence of prey (i.e.,36,67,68). The positive influence of the concentra-
tion of nitrate and salinity on the group size of striped dolphins is similar to those reported in the eastern tropical 
Pacific Ocean69, and a positive correlation between the temperature and the group size of striped dolphins was 
already reported in the Northern Ionian Sea30.

Similarly, the higher abundance of Risso’s dolphin in warmer waters converges with observations reported for 
the same species off the California coast70,71. Regarding the features that were significant in predicting the group 
size abundance of common bottlenose dolphins, such as primary production, the concentration of chlorophyll 
a and depth; these are commonly used features in several studies (i.e.,72–74) were positively correlated with the 
abundance and distribution of species except for depth. In particular, outcomes included in this study converge 
with results reported by Chavez-Rosales et al. in36, whose scope was to identify the main environmental covariates 
tied to the abundance of 17 cetacean species in the Western North Atlantic Ocean by using Generalized Additive 
Models (GAM). Top temperature was highly relevant in the habitat models for Risso’s striped dolphins. In addi-
tion, primary production was important for bottlenose dolphins, as already found in the Western North Atlantic 
Ocean. In contrast, distance from the cost is one of the most common covariates in36, while it was influential only 
for small groups of striped dolphins, of less than 60 individuals, in the present study (see Supplementary material, 
Figs. S2 and S3). Considering the statistical approaches, to the best of our knowledge, GAM and RF are among 
the most powerful machine learning algorithms used to predict species abundance. There is an extensive body of 
literature confirming the predictive ability of GAMs for cetacean abundance estimation75–77, as well as an increas-
ing interest in machine-learning techniques, such as RF24,78. A future aim will be to evaluate the most effective 
method for predicting cetacean species abundance. In machine learning framework it is a common practice to 
develop studies on the performance comparison of algorithms79–82, because these can provide meaningful insights 

Table 3.   Features importance given by the RF model on the S1, S2, S3, S4, G and T datasets. The importance 
scores of the top ten features, evaluated by RF models, are reported. The frequency is computed as the number 
of datasets in which the feature is among the top ten ranked ones over the total number of datasets analyzed 
(equal to 6). Bold characters correspond to the highest value of frequency.

Features S1 S2 S3 S4 G T Frequency (%)

Lat 0.13 0.01 0.09 0.14 67

Lon 0.10 0.09 33

Distance_From_Coast 0.11 0.03 33

Max_Depth 0

Emodnet_Depth 0.08 0.15 33

Primary_Production_top 0.11 0.14 33

Primary_Production_bottom 0.17 17

Nitrate_top 0.13 0.01 9.94 0.88 0.21 83

Nitrate_bottom 4.48 0.77 33

Phosphate_top 0.08 0.91 33

Phosphate_bottom 0

PHYC_top 0.04 0.08 6.49 0.95 0.15 83

PHYC_bottom 0.15 17

CHL3D_top 0.08 4.80 0.77 0.16 67

CHL3D_bottom 0.03 0.13 33

CHLA 0

Temperature_top 0.12 0.02 0.09 4.65 1.36 83

Temperature_bottom 0.01 5.08 1.03 50

Salinity_top 0.11 0.02 0.11 8.95 0.97 83

Salinity_bottom 0.10 4.98 33

Density_top 0.10 0.04 0.11 1.08 67

Density_bottom 2.69 0.84 33

Mixed_Layer_Depth 0.10 17

Depth_of_max_N2 0

Currents_Intensity_top 0.03 17

Currents_Intensity_bottom 3.81 0.13 33

Currents_Direction_top 0.17 17

Currents_Direction_bottom 0
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into the research topic and can highlight direction to any future studies on that topic. In the modern literature, 
there are only a few previous studies on this matter83, and the subject is just as intriguing when considering other 
species; in fact, in84, the authors performed a comparison study between GAM and RF for the density estimation 
of two different bird species. However, despite this interest, the question needs to be further studied.

Sighting data used in our analysis covered an extended period, from 2009 to 2022. However, a limitation of 
this paper is that, unfortunately, despite the research effort, the number of available samples remains relatively 
small; in fact, only 129 sightings for Risso’s dolphins and 225 for bottlenose dolphins are available. Instead, 1264 
sightings of striped dolphins have been collected; however, in the present study we pointed out that it is conveni-
ent to divide this dataset into 4 smaller subsets (S1, S2, S3, and S4), according to the size of the observed groups 
during the sightings. The number of sightings collected in these four datasets varies from 135 to 585, and also 
in this case more samples are desirable for the further machine learning analysis. Moreover, the occurrence of 
group sizes in each dataset varies, with various elements with zero or very low number of available samples.

Another issue raised in this paper concerns the limitations in manually counting the number of individuals 
encountered by marine mammal observers. Developing innovative strategies based on Unmanned Aerial Vehicle 
or drones to support them in this task is strongly desirable and should be of great avail85. In addition, a great effort 
is needed when organizing and labeling data; this task can be time consuming and critical in the present field of 
application. A standardization of the expert labelling process of complex data, exploiting innovative approaches, 
is desirable and should be investigated in the future86.

Moreover, the proposed abundance estimation strategy shows good performance on sighting data collected 
in 2022, never seen before during model training. However, the validation set used here contains only 7 records. 
A future goal will be the further validation of the proposed strategy using a larger collection of data that will be 
acquired in the near future.

Last, the proposed strategy is general and could be effectively tested and applied to different geographical 
areas.

Materials and methods
Study area.  The Gulf of Taranto is in the North-western Ionian Sea (Fig. 2). It is a semienclosed ocean 
area, covering approximately 14,000 km2,22 and includes the coasts of the Italian regions of Apulia, Basilicata, 
and Calabria. It is connected to the Northern Ionian Sea and the eastern Mediterranean Sea over an extended 
section (from Santa Maria di Leuca to Punta Alice), which includes a narrow trench deeper than 2000 m. The 
Gulf shows a very complex seabed topography characterized by descending terraces on the eastern side and by a 
narrow continental shelf with a steep slope and several channels on the western side. Centrally, the basin is char-
acterized by the submarine canyon system of Taranto Valley with no clear bathymetric connection to a major 

Figure 2.   Map of the Gulf of Taranto (Northern Ionian Sea, Central-eastern Mediterranean Sea) with 
indication of the sightings and survey area investigated from 2009 to 2022.
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river system87–90 (Fig. 2). The continental shelves—area shallower than 200 m—cover 10% of the total Gulf area. 
Wider shelves are present on the eastern side (Apulia), and five main rivers (Bradano, Basento, Agri, Sinni, and 
Crati) discharge from the western coastline with a relatively low annual mean runoff91. The morphology involves 
a complex distribution of water masses with a mixing of surface and dense bottom waters with the occurrence 
of high seasonal variability in upwelling currents92–95. From the oceanographic point of view, the basin-scale 
circulation of the Gulf is dominated by cyclonic gyres, with reversals in anti-cyclonic patterns occurring only 
10–15 times for the period 1993–201891. The ecosystem variabilities and changes (e.g., anomalous chlorophyll 
a bloom96) could be affected by the formation of downwelling/upwelling in the case of cyclonic/anti-cyclonic 
patterns. Possible coastal rim currents undergoing instabilities and forming submesoscale structures have been 
highlighted97. Furthermore, in95 authors described a mixed layer thickness extending down to 30  m during 
late summer, with an intermediate water salinity maximum—indicative of Modified Levantine Intermediate 
Waters—in the deep part of the Gulf. Authors in98 and in99 simulated the basin-scale and costal-scale circulation 
of the Gulf of Taranto using high-resolution models, highlighting the role of the Western Adriatic Coastal Cur-
rent (WACC) position and strength96,100–102 in modulating the circulation patterns in the Gulf.

Data description.  Sighting data for striped dolphin, common bottlenose dolphin and Risso’s dolphin were 
collected from July 2009 to April 2022 during standardized vessel-based surveys carried out onboard a 12 m 
catamaran investigating an area of 960 km2. The sampling effort was set to approximately 5  h/day along 35 
nautical miles (nm). Speed was maintained between 7 and 8 knots, and trips only occurred in favorable weather 
conditions (Douglas scale ≤ 3 and Beaufort scale ≤ 4). The scientific team onboard included three observers. The 
first was engaged in searching activity for targets at approximately 180°, while the others supported the activi-
ties of the former, searching in a sector from the track line to 90° on the starboard and port sides, respectively.

Once a target had been sighted, the dolphin group was switched to off-effort38, maintaining a minimum dis-
tance of approximately 50 m to avoid alteration in its behavioral activity. When the dolphins approached closer, 
the speed of the research vessel was reduced gradually until the engine was switched off. Sighting date, time of 
first contact, GPS position, group size and depth (m) were all recorded.

All sighting data are freely available (see Data Availability section) and have been divided into two parts: a 
dataset, named D, which collected data acquired in the period 2009–2021 and was devoted to training and test-
ing regression models; and a validation set, which collected data from 2022 and was used to validate the models.

Dataset D contains 1618 records of cetacean sightings, with the following attributes: id, date, and position 
of sighting (latitude and longitude), number of sighted individuals and species (see Table 5). Among the 1618 
records, 1264 are sightings of striped dolphin (denoted as S), 225 are sightings of common bottlenose dolphins 
(denoted ad T), and 129 records are sightings of Risso’s dolphins (denoted as G) (see Table 4).

Figure 3 illustrates the distribution of the number of observations among different group sizes in the S, G and 
T datasets. The different trends of the data in S compared with that of data collected in T and G are immediately 
evident; in fact, the group size in S reached higher values, up to 500 individuals, while in G and T, the maximum 
group size was equal to 50 and 30, respectively. The distribution of observations of S, T and G sightings in the 
period 2009–2021 is shown in Fig. 4.

Details on the seasonal distribution of these sightings data are shown in Supplementary material, Table S3.
The 1618 entries of the dataset D were enriched by:

•	 physical variables: ocean temperature, salinity, density, mixed layer depth, Brunt–Väisälä frequency, currents 
speed and direction;

•	 biogeochemical variables: primary production, nitrate, phosphate, phytoplankton carbon biomass, chloro-
phyll;

•	 auxiliary variables: max depth of the water column of the numerical model, high-resolution bathymetry, and 
distance of the sighting location from the coastline.

Table 5 shows a detailed description of the features used in this work. The physical features are provided by 
the Mediterranean Sea Physics reanalysis, produced by CMCC (IT)103,104 and delivered by Copernicus Marine 
Service. The product is generated by a numerical system composed of a hydrodynamic model, the Nucleus for 
European Modeling of the Ocean (NEMO,105), and a variational data assimilation scheme (OceanVAR,106). 
OceanVAR assimilates temperature and salinity vertical profiles and Sea Level Anomaly along satellite track 
data. The model horizontal grid resolution is 1/24° (ca. 4–5 km), and the unevenly spaced vertical levels are 141. 

Table 4.   Dataset description. N represents the number of sightings for each dataset; the minimum, maximum, 
mean, and standard deviation of the number of individuals recorded for each species are reported. S represents 
striped dolphin, T refers to common bottlenose dolphin and G to Risso’s dolphin.

Dataset N Min individuals Max individuals Mean individuals Standard deviation of individuals

S 1264 1 500 50 48

T 225 1 30 9 6

G 129 2 50 19 10

Total 1618 – – – –
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In addition, the water density was computed according to107. The computation of the Brunt–Väisälä frequency 
(N2) was conducted using Copernicus Marine Service temperature and salinity, according to108.

The simulated biogeochemical features are provided by the Mediterranean Sea biogeochemical reanalysis, 
produced by OGS (IT) and delivered by Copernicus Marine Service109. The product at 1/24° horizontal resolution 
(ca. 4–5 km) is produced using the MedBFM3 model system. MedBFM3 includes the transport model OGSTM 
v4.0 coupled with the biogeochemical flux model BFM v5 and the variational data assimilation module 3DVAR-
BIO v2.1 for surface chlorophyll. MedBFM3 is coupled offline with the physical reanalysis103, which provides daily 
forcing fields (i.e., currents, temperature, salinity, diffusivities, wind, and solar radiation). The ESA-CCI database 
of surface chlorophyll concentration (CMEMS-OCTAC REP product) is assimilated with a weekly frequency.

The chlorophyll a at the surface (CHL_A) observed from satellite is provided by the product Mediterranean 
Sea Reprocessed Surface Chlorophyll Concentration from Multi Satellite observations, produced by the Global 
Ocean Satellite monitoring and marine ecosystem study group (GOS) of the Italian National Research Council 
(CNR, IT110), within the Copernicus Marine Service. The Level-4 product includes the daily interpolated chloro-
phyll field with no data voids starting from the multi-sensor (MODIS-Aqua, NOAA-20-VIIRS, NPP-VIIRS, and 
Sentinel3A-OLCI) and the monthly averaged chlorophyll concentration for the multi-sensor and climatological 
fields, all at a 1 km resolution. Chlorophyll fields are obtained by means of the Mediterranean regional algorithms: 
an updated version of the MedOC4 (Case 1 waters,111, with new coefficients) and AD4 (Case 2 waters,112).

Among the auxiliary variables, high-resolution bathymetry was derived from the EMODnet-bathymetry data-
set (2020-DTM (https://​www.​emodn​et-​bathy​metry.​eu/); the maximum depth of the water column (Max_Depth) 
was derived by the Mediterranean Sea Physics reanalysis; and the distance of the sighting location from the 
coastline (Distance_From_Coast) was computed using the geographical coordinates (lat, lon).

The features described above have been preliminarily processed before feeding the machine learning algo-
rithms. First, the three-dimensional variables were extracted at the surface and at 10 m, 20 m, 30 m, 40 m, 50 m, 
100 m, and 200 m. The variables have been limited up to 200 m of depth because of the stability and low variability 

Figure 3.   Distribution of the number of observations for different ranges of group sizes. The mark S refers to 
striped dolphin sightings, T to common bottlenose dolphin sightings and G refers to Risso’s dolphin sightings.

Figure 4.   Distribution of the number of observations for the different species in the period 2009–2021: the 
mark S refers to striped dolphin sightings, T to common bottlenose dolphin sightings and G refers to Risso’s 
dolphin sightings.

https://www.emodnet-bathymetry.eu/
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of the water column below. Then, a sea-overland extrapolation procedure99,113 was used to prevent the presence of 
missing values interpolating the oceanic fields over each cetacean sightings record. This procedure uses a diffusive 
boundary layer approach that extrapolates the field values on the areas near the coastline where the Copernicus 
Marine Service solutions are not defined. The procedure iteratively computes the ocean quantities on the land 
grid points so that these quantities can be interpolated on the sighting records that are very close to the coast.

From the Brunt–Väisälä frequency N2, only one variable was derived, corresponding to the thermocline 
depth (i.e., depth of the max value of the N2 vector), entitled “depthOfMaxN2”, for each CMEMS grid point.

Following the temperature climatology in the study area during 2009–2021 (see Supplementary material, Fig. 
S8), primary production, nitrate, phosphate, phytoplankton carbon biomass, 3D-chlorophyll, temperature, salin-
ity, density, current intensity and direction features were averaged in the intervals of [0–40 m] and [50–200 m]. 
Therefore, for each variable, two features were considered, named top when mean values are computed in the 
interval [0, 40 m] and bottom in [50–200 m].

Finally, the dataset, prescribed to the analysis with machine learning algorithms, included 1618 records of 
sightings, each enriched with the 28 variables (N’) previously described. The labels used to train the models were 
the number of individuals counted in each sighting.

Last, the validation set contains 7 records of cetacean sightings, of which 5 are of sightings of striped dolphins 
and 2 are of common bottlenose dolphins. For each record, the same 28 variables, already used for dataset D, 
were measured and used for models validation.

Regression models.  Random Forest52 is an ensemble method that uses multiple decorrelated decision trees 
that are merged to perform regression or classification tasks: each tree is built using a random subset of features 
and examples, while the results on the test set are obtained by computing the average of the results of each tree. 
LSBoost51 a variant of the Adaboost algorithm58,114, was used for the regression. Through a weighted combination 
of the outputs produced by a set of weak classifiers, LSBoost defines a function able to estimate the abundance 
of the dolphin groups. More specifically, at each step, the algorithm fits a new classifier to the difference between 
the observed response and the aggregated prediction of all classifiers grown previously. The aim is to minimize 
the mean-squared error. All new classifiers are fitted to yn − ηF(xn) , where yn is the observed response, F(xn) 
is the aggregated prediction from all weak classifiers grown thus far for observation xn , and η is the learning rate.

Finally, to compare the traditional regression models with modern deep learning techniques, a feedforward 
fully connected NN was developed (see Fig. 5). This class of networks consists of multiple layers of computational 
units, usually interconnected in a feed-forward way50. Each neuron in one layer has directed connections to the 

Table 5.   List of the 97 features used in this study. The header specifies the variable Name and its long 
description header. The variable class distinguishes physical (phy), biogeochemical (bio) and auxiliary features. 
The source header describes the origin of the data (satellite, model, or computed from model data). The level 
header represents the depth at which data are provided. The column units contain the units of measurement. 
The Column N refers to the number of features available, while N’ refers to the number of variables used to 
train machine learning algorithms. The * symbol refers to three-dimensional variables.

Name Description Class Source Levels Units N N’

Id Id number of sighting / / / / 1 –

Data Data of sighting / / / / 1 –

Specie Sighted specie / / / / 1 –

Lat Latitude / / / degree 1 1

Lon Longitude / / / degree 1 1

Temperature* Temperature phy Model Surface, 10, 20, 30, 40, 50, 100, 200 °C 8 2

Salinity* Salinity phy Model Surface, 10, 20, 30, 40, 50, 100, 200 PSU 8 2

Density* Density phy Computed- model Surface, 10, 20, 30, 40, 50, 100, 200 kg/m3 8 2

Mixed_Layer_Depth Mixed layer depth phy Model / m 1 1

N2* Squared Brunt–Väisälä frequency phy Computed- model Surface-10, 10–20, 20–30, 30–40, 40–50, 50–100, 
100–200 cycle/h 7 1

Currents_Intensity* Currents speed phy Model Surface, 10, 20, 30, 40, 50, 100, 200 m/s 8 2

Currents_Direction* Currents direction phy Model Surface, 10, 20, 30, 40, 50, 100, 200 degree 8 2

Primary_Production Primary production bio Model Surface, 10, 20, 30, 40, 50, 100, 200 mg/m3/day 8 2

Nitrate* Nitrate bio Model Surface, 10, 20, 30, 40, 50, 100, 200 mmol/m3 8 2

Phosphate* Phosphate bio Model Surface, 10, 20, 30, 40, 50, 100, 200 mmol/m3 8 2

PHYC* Phytoplankton carbon biomass bio Model Surface, 10, 20, 30, 40, 50, 100, 200 mmol/m3 8 2

CHL3D* 3D-chlorophyll bio Model Surface, 10, 20, 30, 40, 50, 100, 200 mg/m3 8 2

CHLA Chlorophyll a at surface bio Satellite Surface mg/m3 1 1

Distance_From_Coast Distance sighting-coastline aux Computed / km 1 1

Max_Depth Maximum depth aux Model / m 1 1

Emodnet_Depth Depth from EMODnet dataset aux EMODnet 2020 bathymetry / m 1 1

Total 97 28
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neurons of the subsequent layer. RF, LSBoost and NN models have been trained with automatic parameter tuning 
using Bayesian optimization115. This means that the model settings are initialized as default; after a first full cross 
validation on the available dataset, these settings are updated according to the just obtained performance and 
the current learning rate; this process is iterated for a certain number of times or until the model converges. Of 
course, in the end, the settings that provided the best performance were considered. Bayesian optimization uses 
a surrogate for the objective function, which is much easier to optimize than the objective function. It works by 
finding the next set of hyperparameters to evaluate the actual objective function by selecting hyperparameters 
that perform best on the surrogate function. In our case, the optimizable parameters of the RF models are the 
maximum number of splits, minimum leaf size, numbers of predictors to sample and number of ensembles 
learning cycles116, while the optimizable parameters of the LSBoost models are the minimum leaf size, number 
of ensembles learning cycles, maximum number of splits and learning rate. Last, the optimizable parameters 
for the neural network models are the number of hidden layers, the size of each hidden layer, the activation 
function, and the regularization term strength. In our application, the number of hidden layers of the networks 
varied from 1 to 5, and for each layer, the number of neurons was in the range [1, 100]. The activation functions 
used in our analysis were ReLu, tanh, sigmoid and the identity function. The regularization term strength is 
optimized over continuous values in the range [1e−5,1e5]/(number of observations), where the value is chosen 
uniformly in the log transformed range.

Root mean square error (RMSE).  The performance of a regression model is evaluated in terms of Root 
Mean Square Error (RMSE), a measure of the residuals between values predicted by a model and the values 
observed. It is defined as follows:

where N is the number of samples, yi is the real estimation of the pod abundance and ŷi is the pod abundance 
predicted by the regression model.

Data availability
The datasets generated and analyzed during the current study are available on GitHub datarepository1/Environ-
mental-variables-and-machine-learning-models-to-predict-cetacean-abundance repository at https://​github.​
com/​datar​eposi​tory1/​Envir​onmen​tal-​varia​bles-​and-​machi​ne-​learn​ing-​models-​to-​predi​ct-​cetac​ean-​abund​ance. 
Further inquiries can be directed to the corresponding author.
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