Article

Asymmetrical Diketopyrrolopyrrole Derivatives with Improved Solubility and Balanced Charge Transport Properties

Antonio Carella ^{1,*}, Alessandro Landi ², Matteo Bonomo ^{3,4}, Fabio Chiarella ⁵, Roberto Centore ¹, Andrea Peluso ², Stefano Nejrotti ^{3,4} and Mario Barra ⁵

- ¹ Dipartimento di Scienze Chimiche, Università degli Studi di Napoli 'Federico II', Complesso Universitario Monte Sant'Angelo, Via Cintia 21, 80126 Napoli, Italy; roberto.centore@unina.it
- ² Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy; alelandi1@unisa.it (A.L.); apeluso@unisa.it (A.P.)
- ³ Department of Chemistry, University of Torino, Via Pietro Giuria 7, 10125 Torino, Italy; matteo.bonomo@unito.it (M.B.); stefano.nejrotti@unito.it (S.N.)
- ⁴ Nanomaterials for Industry and Sustainability (NIS) Interdepartmental Centre, Via G. Quarello 15A, 10135 Torino, Italy
- ⁵ CNR-Institute for Superconductors, Innovative Materials, and Devices, Dipartimento di Fisica "Ettore Pancini", P. le Tecchio, 80, 80125 Napoli, Italy; fabio.chiarella@spin.cnr.it (F.C.); mario.barra@spin.cnr.it (M.B.)
- * Correspondence: antonio.carella@unina.it

Supplementary Materials

Figure S1. 1H NMR of compound 1 in CD_2Cl_2 . Signals relative to solvents are starred.

Figure S2. 13C NMR of compound 1 in CD_2Cl_2 . Signals relative to solvents are starred.

Figure S3. MALDI-TOF mass spectrum of compound 1

Figure S4. FTIR spectrum of compound 1.

Figure S5. 1H NMR spectrum of **A-CHO** in CDCl₃. Signals relative to solvent are starred.

Figure S6. 13C NMR spectrum of A-CHO in CD₂Cl₂. Signals relative to solvent are starred.

Figure S7. MALDI-TOF mass spectrum of compound **A-CHO**.

Figure S8. FTIR spectrum of compound **A-CHO**.

Figure S9. 1H NMR spectrum of **A-DCV** in CD₂Cl₂. Signals relative to solvent are starred.

Figure S10. 13C NMR spectrum of **A-DCV** in CD₂Cl₂. Signals relative to solvent are starred.

Figure S11. MALDI-TOF mass spectrum of compound **A-DCV**.

Figure S12. FTIR spectrum of compound **A-DCV**.

Figure S13. 1H NMR spectrum of A-TB in CDCl₃. Signals relative to solvent are starred.

Figure S14. 13C NMR spectrum of **A-TB** in CDCl₃. Signals relative to solvent are starred.

Figure S15. MALDI-TOF mass spectrum of compound A-TB.

Figure S16. FTIR spectrum of compound **A-TB**.

Figure S17. 1H NMR spectrum of **A-ID** in CDCl₃. Signals relative to solvent are starred.

Figure S18. 13C NMR spectrum of **A-ID** in CDCl₃. Signals relative to solvent are starred.

Figure S19. MALDI-TOF mass spectrum of compound **A-ID**.

Figure S20. FTIR spectrum of compound A-ID.

Figure S21. 1H NMR spectrum of **A-IDM** in CDCl₃. Signals relative to solvent are starred.

Figure S22. 13C NMR spectrum of A-IDM in CDCl₃. Signals relative to solvent are starred.

Figure S23. MALDI-TOF mass spectrum of compound A-IDM.

Figure S24. FTIR spectrum of compound A-IDM.

Figure S25. DSC trace of compound **A-DCV**.

Figure S26. DSC trace of compound **A-TB**.

Figure S27. DSC trace of compound A-ID.

Figure S28. DSC trace of compound A-IDM.

Figure S29. TGA graph of compound **A-DCV**.

Figure S30. TGA graph of compound **A-TB**.

Figure S31. TGA graph of compound A-ID.

Figure S32. TGA graph of compound **A-IDM**.

Figure S33. XRD spectra on drop-casted films of the dyes.

Figure S34. a) Optical absorption spectra of the dyes in THF solution $(1 \cdot 10^{-5} \text{ M})$; b) thin films of the dyes spin coated by THF solution (b).

Figure S35. Effect of annealing on optical spectra of a) A-DCV, B) A-TB, c) A-ID and d) A-IDM.

Figure S36. Extrapolation of optical bandgap for **A-DCV** using Tauc plot methodology.

Figure S37. Extrapolation of optical bandgap for **A-TB** using Tauc plot methodology.

Figure S38. Extrapolation of optical bandgap for **A-ID** using Tauc plot methodology.

Figure S39. Extrapolation of optical bandgap for **A-IDM** using Tauc plot methodology.

Figure S40. Predicted UV spectrum of A-DCV.

Figure S41. Predicted UV spectrum of A-TB.

Figure S42. Predicted UV spectrum of A-ID.

Figure S43. Predicted UV spectrum of A-IDM.

Figure S44. Output curves recorded for **A-DCV** (a) and **A-TB** (b) transistors under negative (on the left) or positive (on the right) V_{GS} and V_{DS} voltages.

Table S1: Thermal Properties of the A-series dyes

Dyes	T _m (°C) ^a	T _d (°C) ^b
A-DCV	155	348
A-TB	195	333
A-ID	212	366
A-IDM	227	340

a) Determined by DSC analysis run in N₂ atmosphere at 10 °C/min; b) determined by TGA analysis run in air at 10 °C/min; decomposition temperature is set as the temperature corresponding to 5 % weight loss.

Table S2. Optical properties in THF solution

Dye	THF	THF
	I _{max}	e (dm³ · mol ⁻¹ · cm ⁻¹)
	(nm)	
A-DCV	592/445	$4.51 \cdot 10^4 / 2.87 \cdot 10^4$
A-TB	616/473	4.88 · 10 ⁴ /3.12 · 10 ⁴
A-ID	599/459	4.46 · 10 ⁴ /2.66 · 10 ⁴
A-IDM	631/495	$4.85 \cdot 10^4 / 2.19 \cdot 10^4$

Table S3. Computed main optical transitions in the synthesized dye. Only transitions with Oscillator strength > 0.1 have been reported

Dye	Lambda_abs (nm) Osc.strength	
A-DCV	682.1688749	1.2716
	488.18440372	0.18020
	431.92542418	0.56550
	335.70030328	0.15980
А-ТВ	697.40236816	1.5668
	501.02720849	0.23110
	452.91029411	0.64280
A-ID	674.81735706	1.5968
	496.15508028	0.1574
	445.76182143	0.6102
A-IDM	744.33687346	1.4601
	546.30620406	0.2604
	498.18858445	0.3073
	470.88565519	0.2942
	361.36459636	0.1395