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ABSTRACT

Given a linear system A x = b, ¥ith a real square
nonsingular coefficient matrix, the error on the solution x is
studied with respect to data perturbations and rounding errors
of the computation.

Assuming local errors to be independent random variables,
the expected value of the total error is compuied as a function
of x, say e(;) . The mean of e(x) in the unitary ball is then
computed, _obtaining statistical estimates to the errors.
Horeover, the influence of diagonal scaling on the stability of
the computation is studied.

These results are applied to the solution of triangular
systeus, to Gaussian elimination and otthogoualizatidn

techniques.

Subdect Classification: AHS (HOS} 65605, 65F05: CR: G.1.3.
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1. INTRODUC&IOR AND PRELININARIES

Let us consider a linear system A x = b where A = {(a )} is a

ij

real nonsingular nxn matrix. In this work we study the
hehaviour of the error on the solution x taking into account
the perturbations of input data and the rounding errors of the
computation.

In Section 2 statistical estimates of the mean square error,
in presence of data perturbations, are derived. In Section 3
these results are used to estimate the influence of 1local
errors in the solution of a linear system. Section 4 deals
with the scaling of the problem data and the ‘effects of
equilibration on the total error. In Section 5 the algorithmic
errors in the solution of triangular systems are analyzed and
in Sections 6 and 7 Gaussian elimination and orthogonalization
techniques are studied.
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The notation A = Z = (z") is used. The symbol || . {1}
ij P

denotes the Holder p-norm {p real positive number or infinite)

and {}] . }] denotes the Probenius norm of matrices as well as
F

of three—-way arrays {(i.e. the sgquare root of the sum of the
squares of all the entries). Horeover {Y|} denotes the array of
the absolute values of the entries of Y, and the symbol *
denotes the Hadamard product (i.e. componentvise
multiplication}) between twvo arrays of the same size: e(&)

denotes the spectral radius of a square matrix H. All



sumpation indices are intendad to range from 1 to n vwhen not 1) column perturbation,
othervise indicated. ' ) 5
. at = a c 4
E{y) denotes the expected values of the random variable y; id i5
vhen y is an array of random variables, E(y) is the array of where ¢ > 1 is a constant empirically chosen.
the expected values of the single entries. 2) row perturbation
The classical condition number of a nomsingular matrix is i
at = ¢ a ’
KAy = 11210 V1ALt . ij i
p P p

i . . X where ¢ > 1 is a constant empirically chosen.
We will also use the Skeel condition number which is defined as

3) column scaling,

C (A) = {1 121 1A} 11 (121 » a' = a 4, with d chosen to minimize C_(a").
p P ij ij 4 3
Let us now define the domain B and its measure as 4) row scaling,
n
a' = d a , with @ chosen to minimize kw(A').
B o= ({x ! lxil =113, T - ax- ij i g i
n 2 B
n

3 . In the following graphs the abscissas represent the base 10

Then the mean of a vectorial function f({x}, assuming x to be - v
el logarithe of the Skeel comdition number (using the maximum
‘yniformely distributed in the unitary ball, can be written
norm) of the various matrices, and the ordinates, also in

-1
Hean f(xy = T’ /{. £(x) dz. . logaritheic scale, may represent other condition numbers or the
f1xjl =1 B

2 n errors resulting fror the application of an algorithm. Data

points are connected by straight lines to evidentiate the

The theoretical results derived in this paper have been
| behaviour of the matrices in the same class.
extensively tested with numerical experiments. Four classes of ;
) In order to evaluate the mean algorithmic error, =8 linear
matrices have been chosesn, i.e. Vandermonde, BRice [10],
systems are solved with the solution vectors randomly chosen in
Toeplitz and random matrices.  For each class a parameter _

i L. - the wunitary ball with wuniform distribution. The following
generates different matrices. additional classes can be X ;
L A quantity is then computed and plotted
derived by diagonal scaling of the original matrices. FPour

types of scaling have been used:

g

™
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where q = {q. ) is the vector of errors of the solution of

the j-th system, and eps 1is the machine precision related to
the word 1length used to represent the matrices. For t-digit
ﬁ-hase floating point arithmetic with rounding one has

1-t
eps = P /2 see [15, p. 6]

In our experiments m=100.

¥hen local errors are produced by the representation of real
nupbers in the computer or by single arithmetic operatioms, the
§uantity eps is related with to the mnean m and the variance s2
of the resulting errors. More in detail, using a floating
point arithmetic with rounding it is common to assume that
local representation and roundoff relative errors are
independent random variables, uniformely distributed between
-eps/2 and eps/2 [7,8,9]). Therefore we can write

] = 03

(1. 1) 2 2
s = eps /12,

As noted by Oppenhein [{9], enmpirical studies have shown that
the distribution is not quite uniform, so that s2 |is

proportional to eps2 with a proportionality constant slightly

R
.

e

less than 1/12.

In performing matrix operations the accuracy of the result
is limited by the finite precision of the arithmetic. The
choice of vord length influences both the amount of Space
required to store the matrices and the time spent in
computations. The trivial choice 1is to use the same word
length both to store the matrices and to perform the
operations. In this case, usually amany digits of the
intermediate matrices involved in the computation and of the
result are less of significance. A classical alternative
consists in using multiple precision arithmetic to perform the
most critical operations ({e.g. the accumulation of scalar
products) {17,2]. Recently some authors proposed a technique
which allows computing arithametic expressions to least
significant bit accuracy at the expense of a little
computational overhead [6,11].

Both these techniques allow a proper use of the computer
storage and a better control of the errors, moreover on the
modern computers, the resulting computational overhead is not
too high,

On the basis of these considerations we will assume in the
following that elementary operations on matrices are performed
in multiple precision or with maximal accuracy arithmetic so
that all the digits in the intermediate matrices representation
are accurate. This implies that relative errors on these
matrices can be considered independent, uniformely distributed

random variables with mean 0 and variance eps2/12.
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2. PROPAGATION ERROR IR SOLVING LINEAR SYSTEHS
Let us recall here some known results about the error
produced in the evaluation of rational functions.

Let £(V ,V 4e0e,V ) be a ratioral function of n variables,
n

computed with the following straight line algorithm

r = v 3
1 1
o = v ;
2 2 input data
r = v 3
n n
r =r (op) r 3
n+1 j! j"
1 1
r =r (op) r 1T € jv,d" < n+i,
n+2 j° 4n i i
- 2 2
- {op) € ["l‘lxl:)l'
f =r =Tt f{op) r
n+p 3 jn
P P

Taking into account the errors on the input data and the
errors in the arithmetic operations, the actual computation can

be described as follows.

rt = v {i+e },
1

rf = v {1+te },
2 2

r?* = v {l+e 3},
o n n

%,‘94

r? = (' {op) £* ) (i*re ),
n+1 v h n+1
1 1

r? = (' (op) £r' ) (1+e ),
n+2 i " n+2
. 2 2
f* = r°¢ = (c® {op) r' )} (l+e ),
n+p t n n+p
p P

vhere e , e ,..., e are the relative errors on input data, and
1 2 n

e , are the local relative errors on r y P=1,2,000,0a
n+i n+i

Expanding the expression of f£' and assuming that nonlinear

terms can be neglected we find the following expression for the

total linearized error Bf ~ £-f+
n+p
T 3 f
(2. 1) Df = 2_ —-——=Tr e
dr i i
i=1 i

The first n terms of the sum give the so called inherent error,
{i.e. the propagation of the data errors on the result); the
remaining terms give the algorithmic error.

If the local errors e are assumed to be random variables,
i

it is possible to derive the mean quadratic deviation

n+k ntk
2 af df
E{(pf )y = EZ? e o= P p Ele e ).
3r ¥ r i3 i
i=1 §=1 i3

Moreover, if the random variables e are independent then
i



2 Q£ 2 2
E{Af ) = z- - T E{e ).
3c i i

i=1 i

Let us consider a perturbation of the system Ax = b. lLet
A* and b* be the perturbed values of & and b, respectively.

Hatrix A' can be expressed as A + AXE' where E'= (e') is
13

the matrix of the relative error terms of the entries of Ao

This representation is not unique, and ve assume that e' = 0 if
ij
a = 0. Analogously we write b' = b + b*e™ with e"= 0 if b.= 0.
ij i i

The perturbed system will be A'y = b', or, eqguivalently,
A (I + Z A¥E') y = b + bke'.

In the following we assune 112 A*EY}] < 1. Under this
2

hypothesis matrix AY is nonsingular and the perturbed systenm

has a unique solution x'.

Prom {2.1) ve can derive the linearized propagation error

8x ~ x-%'

3 x ® x
o r
(2.2) Bx = / v/  mm—— a e? # =--= b e" -
da iy 19 3 b i i
i 5 ij i
® x
[
It is easy to see that = ~---- =z . Horeover froa
3 b ri

4o

az 32
the relation @ ~wow- = - L mmee—— Z. see [5, p. 681, using
da 3 a
rs rs
d x
r
¥ =12 b, it follows wm——— = -z X . Hence equation
3 a ri b]
ij

{2.2) hecomes

Ax = - ZZ: z ? a x et - b e" =
r ri i § i3 i i

In matrix notation

(2.3) bx = - z2 (A * B) x,
vhere E = (e ), e = et =~ ef,
ij ij ij i

From the vectorial expression of the error it is common to
derive some scalar quantities wvhich nmeasure the numerical
difficulties to solve the problen.

The first approach is to bound the absolute value of the
error, using a vectorial norm. Obviously

Hax izt = |1.2 (A*B) ||

Hixit =1 p p
p

This measure can be related to the Skeel condition number.

The following proposition is easy to be proved.

- 10 -



PROPOSITION 2.1
Let |le | <&, 1£i,jJ £ n. Then
ij

{2.4) Hax 11Bxi1 < & C (A).
11 =1 p p
p

Moreover, using the maximum norm, there exists a matrix E for

vhich (2.8) holds with the equality sign. =

We assume errors to be arrays of random variables whose
instances are independent from the values of A and x. 1In this
case the error Ax is a random vector whose distribution depends
on A, x and the distribution of E. The expected value of Ax*fAx

has the following expression

2
2
E{fx ) = E z a x e =
r ri ij j ij

1 3
= § z a z a x x Efe e ).
ri ij rp ps i s ij ps
iqdps
2 2
Let e{x} = E(IIAEIIZ/ llz!lz), then
2
e(x) = z a 4 a E (e e )} xx /Hixit -
ri ij rp ps ij ps i s 2
ridjps

Using the results presented in Appendix A, ve can prove the

folloving proposition.

Y

baw

PROPOSITION 2.2

Hean e(x) = z a z a E(e e Y /n,
!1§llz=1 :5:::::: ri i rp pd ij pd

rijop

Assuming data errors to be independent random perturbations
of A and b, with the same mean a and variance s2, from Lemnma
B.1 of Appendix B we get

2
E (e e ) = s 6. (1+d )y, vwhere 8 is the Kronecker symbol.
ij ps ip js pg

It is useful to introduce now the three way array

A = (a Y, a = z a
igx ijkx ij  jk
which is called the tensor associated to the matrix A. With

this notation it readily follows that

2 2 2 2 2
{2.5) Hean e{x) = (2 s /n) Z a 2s {11RAl] /n.
llgl!2=1 - i b4

[}

It is also easy to prove the relation

2 2
Hax e{x) £ 2s || A&}l ..
fixit =1 F
2
The quantity {1 A1} is called the tensorial condition of A.

F

Tt is worth noting that the quantities CW(K) and {1 /Aj} are

»
h

the maximum and Probenius norms of the same rectangular matrix.
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FIG.1.

VANDERMONDE COLUMN PERTURBED MATRIX

0 CLASSICAL CONDITION

O TENSORIAL CONDITION

et B= (b ), b =1z | ja 1, 1%i,j,r€n, k= 1 ¢# n (j-1) < n,
rk rk ri ij
ve have C (A) = (1B}l and }} A}l = 1IB{i , thus the tensorial —
w © F 14
2 : s 'y C)
and Skeel condition have a similar behaviour. oo}
For many classes of matrices the classical condition number =
too is close to the above guantities and can be used to bound —
the propagation error. On the other hand there exist classes o
o
of matrices for which ‘the ratio between classical and Skeel o
condition number is not bounded (e.g. diagonal matrices).
In the following, in order to evidentiate the dependence of
o
tke algorithmic errors on the various condition numbers, vwe ©
™
will use test matrices for which classical and Skeel condition
nunbers have a different behaviour. —
The numerical experiments suggested to use gg
1) vandermonde column perturbed, i.e. =7
i-1 j-1 a parameter,
a = fa c) . ]
ij c perturbation constant, o
o
2) Vandermonde column scaled, i.e. ; -
; H
i-1 §-1 i 0.00
a = [{a ) d , with @ chosen to minimize C (A). :
i3 3 i
In Pig.1 and Fig.2 you can see the classical condition
kw{A) and the tensorial condition plotted versus the Skeel

condition CW(A) in a logarithmic scale, for these two types of

matrices (with n=5).

3,
g

I I ]

I f
4.00 8.00

2.00 6.00 10.00
SKEEL CONDITION NUMBER
Fig. 1. Classical and tensorial condition numbers plotted

versus the Skeel condition number for a 5x5 vVandermonde coluan

perturbed matrix.



FIG.2. -

VANDERMONDE COLUMN SCALED MATRIX

3. TOTAL ERROR IN SOLVING LINEAR SYSTENS
A direct method for solving a linear system A x = b can be

vieved as a sequence of rational transforamations

(0) (D] (1) m {t) (t)
= (A I b ) => (A ib ) =D eee > (R I b ).
o
- : (0y (O
which from the nx{n+1) matrix (A | b) = (A b ) lead to the

_ ? M CLRSSICAL CONDITION (t) {t)

. matrix (& i b ) = {I{x), with the equivalence conditions
< O TENSORIAL CONDITION (1) (i)
w A x=h s 1=0,1,0..,t.

] Applying the considerations of section 2, it is readily seen
o that each transformation contributes to the total linearized
C?_. error with a term
™

N — . dx 2 x

(k) r (k) (k) r (k)
{3.1) Aax = ) | ) - a et 4 —==== b e¥
< r (k) ij ij ) i i
" A a d b
i ] ij i /

7 (k) (k)  (x-1)
3 0, if a is identically 0 or a = a .

. (k) ij ij ij
, i l I n x [ 1 | l ] 1 I vhere e, T )

.00 2-00 4.00 6.00 8.00 10.00 tz.ot the relative ecror on a , otherwise.

SKEEL CONDITION NUMBER ij
(k) (k)
o Analogously e" is the relative error of b - Horeover
i i
{0} (0) (0) (0}
et and e" denote the errors on input data A and b -
ij i

In matrix notation, using (2.3) we get

Pig. 2. Classical and tensorial condition nusbers plotted

versus the Skeel condition number for a 5x5 Vandermonde column

¢

scaled matrix.

Lo

- 14 -



Ax =-2Z (A *EPB )X,
(k) (k} (k) k) {k)
vhere E = (e Y, e = @t -~ @n
ij ij ij i

Therefore the inherent, algorithmic and total errors becone

t t
(0) k) S (k) .
Ax Ax and 2 by , respectively.
k=1 k=0
(k)
Let je 1 <&, 1<1i,j <n, 0 £k <¢, then the

total error Ax can be related to the Skeel condition numbers of
the intermediate matrices of the solving process, i.e.

t

N {x)
Max 118x11 < 2 & C (A ).
11zl =1 k p

p k=0

¥Mow let us assume errors to be matrices of random variables
whose instances are independent from the valaes of A and X. In
this case the total error is a random vector vhose distribution

depends on A, x and the distribution of local errors.

ky 2 2
Let e {(x) = E{1i{ix 11 / {1xil ), then, assuming that the
k 2 2 .

errors of different steps of the solving process are mutually

independent, ve obtain

b
A9t

- 15 -

t
oS

e(x) = Z_ e {X)-
k
k=1
and analogously

t

Hean e({x) = 2 ean e (x)

Hxtt =1 Iixit =1 k

2 k=0

4. INPLUENCE OP DIAGONAL SCALING ON THE ERPOR
Scaling is one of the most commonly used preconditioning
technigques. It consists in mpultiplying rows and columns of the
matrix A by suitable factors before solving the systen.
Let U, V be diagonal positive nxn matrices. The systen

A x = b can be written U A x = U b and solved in tvo steps

Row scaling
{B.a%) compute z = U b and F = U A;

(4.b%) solve F X = Za

Analgously vwe can write A Vy =b and solve with the

following algorithnm.

Column scaling
{8.a%) compute P = & V:
{4.b") solve F y=b;

{4.c"y compute

#

1
-2
K



Pinally the two forms of scaling can be combined

Complete scaling
{8.a) conpute z = U h and F = 0 A V;
{4.b) solve P y= 2z

(8.c) compute x = V y.

These processes obviously do not affect the inherent error.
Some questions naturally arise about the numerical behaviour of
the scaling. ‘

i} How condition numbers of F and A differ ?

ii) How the algorithm used to solve the system changes due to
the scaling? (e.g. scaling affects the choice of pivots in
Gaussian elimination).

iii) when the algorithm does not change, how nuch is the
error on the solation of the problem sensitive to the scaling
itself?

For which concerns question (i), it is remarkable that the
Skeel condition pumber is invariant under row scaling.
Horeover, vwhen the maximum norm is used, the problem is
completely solved, namely

Hin kK (UA) = C_(2),
ueD w f

where D denotes the class of positive diagonal matrices. If &
is irreducible it is easy to prove that
5

Hin k (UAV) = ®in C {(aVv) = p{l1A | 1Al), [1,18].
u,veD " vep W € ‘

Answering to gquestion (ii) need the knowledge of the

-
g

properties of the algorithe used to solve {4.b). The
discussion will be made in the following, according to the
particular situations arising.

We want nov to answer questior (iii). First ve consider the
error introduced by the scaling process. ¥hen the diagonal
entries of U and V are integer powers of b (the base of the
arithmetic) no error 1is introduced by the scaling process.
Othervise, the relative error induced by steps ({(#.c) and (4,c™)
is bounded by the machine precision eps; the mean of the error
is 0 and the variance is eps2/12, nmoreover steps (4.a') and
(4.a™) introduce a perturbation on the matrix which also can be
bounded by eps. The propagation of the errors in the scaling
process can be estimated with the techniques of Section 2.

Let us consider an algorithmic process which solves linear
sfstems with a sequence of tranformations as in Section 3.
¥hen no error is introduced in the scaling process or the error
itself is disregarded, the Ffollowing sufficient conditions for
the invariance of the error under diagonal scaling can be
stated. (A sipilar theorem has been proved by Bawer [1] for

the Gaussian elimination algorithm).

PROPOSITION 4.1
Given a diagonal scaling A -> U A V, if +the folloving
conditions are satisfied

{x) {x)

a) the intermediate matrices (A& I b } are transforned



(k) (k)
into (U A vViob y s
(k) (k)
b) the statistical distribution of et , en does not
ij i

change,

then the error Dx remains unchanged.

Proof

gnder the above hypoteses, we can write

(k) zz— (ky =1 -1 zzr {k} (k) (k) (k)
Ay = -z v u u a v y e' =-u b en
r ri rr ii ii i§ 33 3 id ii i i

i 3
-1 (k) (k) (k) k) (k)
= - v Z a v y et - b e?
rr ri ij 44 3 i3 i i
i b
Since x = ¥ y and Ax =v Av ., the thesis follovs.
i ii i r rr r

Note that the cases of row and column scaling can be treated by
restricting the hypotheses of proposition 4.1 with the
insertion of the comditions V=I or U=I, respectively.

From these facts wve can draw the following conclusions about
the opportunity of diagonal scaling.

a) Scaling is useless when the algorithmic error grovs as the
skeel or tensorial condition unless integer powers of P are
used. In fact the perturbation of the matrix, produced by the
scaling, induces a propagation error of order not lover than

the algorithmic error which the scaling would reduce.

v

Y

$e

- 19 -

by Complete, row or ‘coluan scaling are not useful when
proposition 4.1 can be applied.

c) ¥hen the scaling is used to modify the algorithm (like in
Gaussian elimination), the values of the entries of the matrix
should be preserved e.g. by using integer povers of P or a

veighted pivoting strategy (see section 6).

S. ALGORITHMIC ERROR 1IN SOLVING TRIANGULAR SYSTEHMS
Let A be lower triangular. The classical algorithm to solve
the system is structured as follows

x :=b /a ;

1 11
i-1
x = (b - E 1 x) /1 , i=2,0e.,n.
i i ij 3 ii
5o

The computed solution x' car be interpreted as the exact

solution of perturbed system (R + A%G}) x = b [3], with

0, if i<i,
g 4 if j=1,
i1
2i=-1
G ={g 1}, g =
ij ig l l (1¢e } - 1, if i=4,
k=i ik
i+f=2

{1+e ) l i {1¢e } - 1, otherwise.
i k=i i

- 20 -



The e are the relative errors of the single arithmetic
ij
operations and are assumed to be independent random variables

of mean 0 and variance s2.

To compute the mean error using proposition 3.2 we have to

evaluate E(g g ). ¥We get

ij pi
E(g g )=0, if i#p,
ij pj
2 4 2
E{(g g ) =(1+s5) -1 o~ js.
i3 id

Finally the mean algorithmic error in solving trianqgular

systens car be expressed as follows

A

r

2 2 2 2 2
< s z a = s 11/,
ri ij o P

i r 3

It is readily seen that if A is upper triangular, the error

2 ST 2 2 '
Hean e(x) = (s /n) ;Z- 4 j a
11x11 =1 ri ij
2 i 3j .

anaiysis leads to the same result.
If a multiple precision arithmetic with machine precision
eps' is used, the algorithmic error is bounded by
2 2
eps® {t /ALl /12
¥
On the other hand, the error due to the representation of A in

the machine word is given by

".,:?l

‘e

2 2
eps  11/All /6 n.
P
Therefore, if n eps* << 2 eps then the algorithmic error can

be ignored.

6. ALGORITHMIC ERROR IN GAUSSIAN ELIMINATION
Consider a linear system A& x = b and assume the pivoting
strategy to have been already applied in the form of a suitable
permutation.b The Gaussian elimination algorithm can be

interpreted as a sequence of n-1 rational transformations

0y (0 (N M (n-1) (n-1
{a §:] )} => (& ib ) =P eee => (A {b ).
{0y (0)
vhich lead the nx{n+1) matrix {A | b) = (& b }  to the
{n=1) {(n-1) {n-1)
matrix (A ib ), with & upper triangular.

Each transformation has the fornm

(k=1
a . if i=x,
ij
{k) {k=1) (k=1 (k-1) (k=-1}
a = a - a a / a A if k <i,3d < n,
ij ij ik k3 kk
0e otherwvise,
(k- 1)
’ if i=k,
(k) i
H -
i {k-1) (k=1 (k=1) {(x-1)
b - a b / a . if k < i <n,
i ik k kk
- 22 -



The total error of the algorithmic process becomes
n-1 n n
Z‘ 5 (k} (k) {k) (k)
(6.1) Bx = Zl :ET -z a x (e°® - e ).
r ri ij 3 ij i
k=1 i=k#1 j=ke1

{x) {k-1)
Note that Z differs from 2 in the k-th column only.

This implies that in (6.1} the elements of Z can be used, i.e.

n-1 n n
ST < (k) (k) (k)
(6.2) bdx = ZL 21 -z a x (e! -LA
r ri ij 3 ij i
k=1 i=k+1 j=ke1
The error analysis can be considerably simplified by using
multiple precision or maximal accuracy techniques for the
érithmetic operations.
e assume that the errors due to computations are negligible
vhen comrpared ¢to the errors due to the representation of the

intermediate matrices. Thus we can consider the entries

(k) k)
e¥ , em , 1<k €¢t, k+1 € i,3 € »n
ij i

to be independent random variables with mean 0 and variance s2.
{(As noted in the introduction s2 = eps2/12, where eps 1is the
related to the 1length of the memory word). #ith this
assumption also the error due to the solution of the triangular
systen can be ignored. Using lemma B.1 we obtain the following

result.

¥
Mo

2

n-1 n n n
2 o 2 k
{6.3) Hean e{x) = {2 s /n) z 2- Z Z z a() .
ri i

1zl =1 3
2 k=1 r=1 i=k+1 j=k+1

Upper bounds to (6.2) and (6.3) can be derived by using the

(k)
bound to the grow of ]a_' ], which in turn derive from the
1]
chosen pivoting strategy. Namely, let & = Hax {a | and let
ij ij
(k) k) (k)
la‘. I £ & g(n) (163}, and et { , te" | < &. Then
ij ij ij
Max [IDXIl € &a g(n) n(n-1)/2 11214 ,
1ixit =1
and

n-1 n n
2 2 2 < — 2
MYean e(x) = (2 s & g{r) /n) Z. (n~k) 2_ Z z <
Tixli =1 ci
2 k=1 i=k+1 r=1
2 2 2
< s & g(n (n=-7) 1211 .
F
It is readily seen that Proposition 4.1 hold for Gaussian
elimination when the scaling does not affect the pivoting
strategy, therefore, as proved also in [1,3] for Gaussian
elimination, scaling is not useful. The influence of scaling
on the pivoting strategy and the overall error has been studied
extensively in [ 12,131
We have tested three pivoting strategies, namely

Gauss total pivot;

Gauss column pivot;
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Gauss column weighted.
The last one is a column pivoting technique where in the k-th

step the pivot a is chosen according to the relation
ik

n n
2 2 2 o 2
a Yaé j{j a ) = Hax a /1 2_ a ), see [15].
ik ip k<j<n jk jq

p=k q=k

The results of this test aTe presented in Figures 3 and B.

7. ALGORITHHIC ERROR IN ORTHOGONALIZATION KRTHODS
The solution of 1linear systems using orthogonalization
techniques consists in reducing the system to triangular fora
by multiplying the matrix of coefficients by appropriate

orthogonal matrices.

He have
(0 (1) 1)y (i-1n {(n-1)
A = A, A =P A 1€i<n, A = R upper triangular,
T .
(i) (i) T {n-1) (2) .y T
p P =X, Q =P ewae P P . Qg 0 =1,
)] {1) (i) (i-1m (n-1) T
b =b Lt =P b 1€i<n, b =Q b,

and finally Q A =R, i.e. A = Q Ra

1)
The matrices P can be elementary Householder matrices or
a product of n+l1-i plane rotations in the Givens method [U].

The algorithm, denoted as QR alqgorithm, is structured as

follows

A V

e

- 25 -

FIG.3.

VANDERMONDE COLUMN PERTURBED MATRIX

[an]
O
e
_ M  GAUSS TGTAL PIVOT
[an]
e ® GRUSS COLUMN PIVOT
[Sp)
_ A GRUSS COLUMN WEIGHTED
[am]
& X CLASSICAL CONDITION
oy
[an}
{an]
/A
]
Q
[wn}
) i T I I T I ] ] ] [ ] 1
0.00 2.00 4.00 6.00 8.00 10.00 12

SKEEL CONDITICN NUMBER

Fig. 3. Classical condition nuzber and mean algorithmic errors
of different Gaussian elimination techniques plotted versus the
Skeel condition nusber for a 5x5 Vanderamonde column~perturbed

matrix.
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X
e

FIG.4. |

Steps (1...n-1): Reduce A to upper triangular form;

MN SCRALED MATRIX r
VANDERMONDE COLU S sten (o)s sotve B ee s
= . (i)
S Both in Householder and Givens method the matrix P vill
= (i)

m CAUSS TGTAL PIVOT nodify only the last n+1-i rows and columns of 1 . Thus the

7 total error has the expression
g ™ CAUSS COLUMN PIVOT n-1 n n
0] — = o (k) (K (x)
7.1 bx = z_ 2 Z -z a x e .
A GAUSS COLUMN WEIGHTED L k=1 i=x =k 1 13 j 1]

#ith the same assumptions made in the previous section the
X CLASSICAL CONBITICN

value of the mean error is

n-1 n n n 2 2
2 - (k) (k)
Mean e(x} = (2 s /n) z a <
1xly =1 2‘ 2‘ Z z ri ij
2 k=1 r=1 i=k j=k
n
2 N (k) 2 (k) 2
< (2 s /n) :l_ iiz i1 114 L
F F
f I l ! ! j { i Fhence ko
6.00 8.60 10.00 12.00
) 2 2 2
L CONDITION NUMBER (7-2) Mean e (x) < 2's 11Z11 11A11
xil =1 P F
2

Proposition 8.1 can be applied to QR algorithm if V=Y. This
means that only row scaling can be useful for QB algorithnm.

ical dition nusber and mean algoritheic errors It is wvorth noting that applying the OR algorithm to the
Pig. 4. Classical con

< . the transpose of A we «can derive a similar deconposition which
i i jpination techniques plotted versus
of different Gaussian elirmina
Skeel condition number for a 5¢%5 vandermonde coluan scaled i ¢ill reduce A to lover triangular form. HNamely ve have
matrix.



(0} {i) (i-1) (i) (n-1)
A = A, & = & P 1€i<n, & = L lover triangular;
T
(i) (i) T {1 {2) {n—-1}) T
P )24 =1, Q =7p P cwe P s Q Q= 13
T T
and A Q =1 , A =190 and A Q0 Q0 x = h.

Thus, this algorithm, denoted as LQ algorithm, is structured

as follovws

Steps (l...n-1): Reduce A to lower trianqular form;
Step {n): Solve L y = bh;

T

Step (n+1): Solve Y, i.e. compute x = @ Y-

1=
i

The error analysis of the LQ algorithm is simple and leads
:to better results. Since the transformation matrices do not
change the length of both the rows of & and the columns of Z,

¥e can write

n~1
2 (k) 2 2 2
(7.3) Hean e(z) = (ZS/n)E 1tin it € 2s {11 .
Ixly =1 F F

2 k=1

The error due to step (n¢1) has to be considered. Tt should
be noted that Q is orthogonal and its tensorial condition is
not greater than n. Thus the square of the mean error due to
the representation of Q in the machine word is not greater than
eps? /6 and, by using multiple precision arithmetic the
algorithmic error too can be arbitrarily small. Therefore the
error of step (n+1) does not depend on the condition of A ana

is of the order of the machine precision eps.

v

L

s
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Proposition 4.1 can be applied to LQ algorithm if U=I. Then
only column scaling would be wuseful for LQ algoritham, but,
because the error has the same behaviour of the tensorial
condition, LQ is not improved by any scaling.

Comparing (7.2) with (7.3) ve note that the bound for LQ
algorithe is better because the classical condition can be
arbitrarily larger than the tensorial one. The question arises
vhether the bound for the QR algorithm is tigth. Figures 5,6
and 7 shovw that, for some Rice (n=10) and Vandermonde {n=5)
matrices, the QR algorithm presents larger errors than LQ and
the behavior of QR errors is similar to the classical condition
as suggested by (7.2) (both algorithms were inplemented using
Householder transforpations).

It is worth noting that, if the row scaling which is optimal
with respect to maximum norm, is performed for QR algoritha,

he classical condition of the scaled matrix becomes equal to

o

the Skeel condition and the resulting algorithm has the same

error behaviour than LQ.

8. CONCLOUSION

The statistical error analysis of the solution of a linear
system has led to introduce the three way array fA. The
tensorial and Skeel condition numbers are noras of a matri;
with the sanme entries of A and measure the condition of the

problem.

The stability of the problem under diagonal scaling has been

- 28 =



FIG.6. - FIG.S.
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Fig. 6. Classical condition nusber and mean algorithaic errors
of different orthogonalization techniques plotted versus the Pig. 5. Classical condition number and mean algorithsic errors
Skeel condition namber for a Sx5 Vandermonde column perturbed . of different orthogonalization technigues plotted versus the

Batrix. Skeel condition number for a 10x10 Pice row perturbed patriz.
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FIG.7-

VANDERMONDE COLUMN SCALED MATRIX
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studied and some criteria have been found to determine whether

the scaling is useful.

FPor Gaussian elimination bounds sipilar to the classical
ones have been found. Moreover the scaling resulted bkas no
influence on the final error {as pointed out also by Bauer)

nevertheless weigthed pivoting tecniques are useful to improve

the stability of algorithas.

For orthogonalization algorithms an essential asymmetry

between QR and LQ error hehaviour has been found. Frrors of QR

seer to be related to the classical condition vhereas errors of

X CLASSICAL CONDITION

LQ can be bounded using the tensorial condition. Finally row

scaling is useful vhen applied to QR algorithm.

T ] ] i I
4.00 6.00 g8 .00 10.

SKEEL CONBITION NUMBER

Fig.

of different orthogonalization techniques plotted vetrsus

‘Skeel condition number for a 5x5 Vandermonde coluan

patrix.
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APPENDIX A

Let ve prove some elementary lemmas.

LEMEA A.1

IR x

h=1,c0e,0.

The proof follows from the symmetry of the integration field.
u

LE®KA A.2

1t

T. X dz = 1/n, h

1) eeepna

The proof follows from the relation

2 2 2
T = fixyi dx = EE‘ x d8x = n o x dx.
B 2 B B h
n i n

o

LEMHA A.3

r‘ X x dx = § /e

B h k hk

The proof follows from lemma A.1 and AR.2.

APPENDIX B

Y. € = @' = %, i=ls0e0,0, j=1,;...,0 be a
ij ij ij i

Let E (e

matrix of random variables, where e? and e® are independent
ij i

random variables with mean m and variance sZ2. The following

B,
- 30 - L3

lenma holds.

LEHHMA B.1
2
Ete e )=s (§ & + & .
hk  pg hp kq  hp
Proof
He have
E (e e ) = E(e' e' ) + E{e"™ e") - E(e' e") - El(e!
hk pq hk pg h p hk p Pq
Hence
2 2 2
E(e' ) =mn + s if h=p and k=q;

]

E{e' e' )

hk pq 2
E{e' YE(e' ) =n othervise.
hk pq
2 2 2
E{e" ) =m + s if h=p;
E {e" e} =
h p 2
E(e") E(e") = =m othervise.
h P
And the thesis easily follows. =
- 3‘[ -

ey .
h
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