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The design for an inductive superconducting quantum interference proximity transistor with
enhanced performance, the L-SQUIPT, is presented and analyzed. The interferometer is based on a
double-loop structure, where each ring comprises a superconductor-normal metal-superconductor
mesoscopic Josephson weak-link and the read-out electrode is implemented in the form of a
superconducting tunnel probe. Our design allows both to improve the coupling of the transistor
to the external magnetic field and to increase the characteristic magnetic flux transfer functions,
thereby leading to an improved ultrasensitive quantum limited magnetometer. The L-SQUIPT
behavior is analyzed in both the dissipative and the dissipationless Josephson-like operation modes,
in the latter case by exploiting both an inductive and a dispersive readout scheme. The improved
performance makes the L-SQUIPT promising for magnetic field detection as well as for specific
applications in quantum technology, where a responsive dispersive magnetometry at milliKelvin
temperatures is required.

I. INTRODUCTION

The superconducting quantum interference
device (SQUID) is currently one of the most used
magnetometers on the market [1]. A SQUID consists of
a superconducting ring interrupted by two Josephson
junctions, thus its critical current strongly depends on
the magnetic flux (Φ) piercing the loop [2]. To achieve
sizable sensitivities, SQUIDs typically employ large
pickup loops, yielding a best intrinsic flux noise on the
order of ∼ 1 µΦ0/

√
Hz [1], where Φ0 = 2.067 × 10−15

Wb is the magnetic flux quantum. Differently, scanning
nanoscale SQUIDs showed a flux noise as low as 50
nΦ0/

√
Hz thanks to low inductance loops and the

vicinity to the magnetic moment source [3].
Last decade witnessed the advent of another

sensitive magnetometer: the superconducting quantum
interference proximity transistor (SQUIPT) [4]. It is
realized in the form of a superconducting ring embodying
a normal metal (SNS) [5–10] or superconducting
(SS1S) [11–13] nanowire Josephson junction. Thanks
to the superconducting proximity effect [14, 15], a
phase-dependent minigap (Eg) appears in the density
of states (DoS) of the nanowire [16]. The latter is
modulated by the superconducting phase difference built
across the nanowire generated by the magnetic flux
piercing the superconducting ring. In the SQUIPT, the
read-out operation is typically performed by recording
the Φ-dependent current versus voltage characteristics of
a tunnel probe (normal metal or superconductor) directly
coupled to the proximitized Josephson junction.

The best experimental sensitivity achieved so far in a
SNS-SQUIPT reaches 500 nΦ0/

√
Hz at 240 mK [6], while
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it gets about 260 nΦ0/
√

Hz at 1 K for a SS1S device [12].
These values are a few orders of magnitude larger than
the limiting theoretical flux noise of about 1 nΦ0

√
Hz

[17], because the SQUIPT magnetometer shows different
weaknesses and structural drawbacks. In particular, the
SQUIPT suffers from low coupling between the external
magnetic field and the superconducting loop. Indeed, a
conventional device needs a small loop in order to have a
negligibly small ring inductance compared to the junction
Josephson inductance. Only under this assumption, the
full phase bias occurs across the proximitized junction
thereby allowing an efficient flux-induced modulation of
the DoS of the weak-link. Furthermore, the phase biasing
of the junction is efficient only for an almost-sinusoidal
current-phase-relation (CPR), since in such a case the
Josephson inductance of the weak-link at Φ0/2 is always
finite [18, 19]. By contrast, a sizable sensitivity of
the SQUIPT would be achieved by exploiting nanowire
junctions in the short limit (∆0 ≤ ~D/L2, where ∆0

is the zero-temperature gap of the superconductor, ~
is the reduced Planck constant, while D and L are
the diffusion constant and the physical length of the
nanowire, respectively) [11, 20, 21], since in this regime
the CPR is a non-sinusoidal function of the phase (ϕ)
[18, 19]. Yet, in the short limit and for low temperatures,
the Josephson inductance is effectively vanishing at
Φ → Φ0/2 thus preventing the full phase biasing of the
junction. Therefore, a conventional SQUIPT needs to be
operated at higher temperatures, where the Josephson
inductance is finite, but the sensitivity can be sizeably
reduced. Furthermore, fully superconducting SQUIPTs
in the long-junction limit present CPRs hysteretic with
direction of the external magnetic flux [11, 22], thus
hampering their application as magnetometers.

Here, we propose an inductive superconducting
quantum interference proximity transistor (i.e.,
the L-SQUIPT) that solves the above described
intrinsic limitations typical of conventional SQUIPT
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magnetometers. To this end, the L-SQUIPT takes
advantage of a double loop geometry to efficiently
bias the second SNS Josephson junction assumed to
be in the short limit. Furthermore, by employing
a superconducting tunnel probe, the L-SQUIPT
read-out operation can be realized either through a
dissipative (quasiparticle tunneling) or via dissipationless
(Josephson supercurrent) measurements depending on
the requirements of the specific application. The
L-SQUIPT is predicted to show a best quantum limited
noise as low as a few nΦ0/

√
Hz, thus improving the

sensitivity achievable with conventional SQUIPT and
SQUID magnetometers. This makes the L-SQUIPT
potentially relevant for magnetic field detection as
well as for other applications in the field of quantum
technologies [23].

The article is organized as follows: Sec. II presents
the structure of the L-SQUIPT and the basic equations
describing the SNS Josephson junctions embedded in the
superconducting rings; Sec. III shows the phase-biasing
of the output SNS Josephson junction by the external
magnetic flux; Sec. IV describes the dissipative
read-out of the L-SQUIPT in both voltage and current
bias operation; Sec. V presents the dissipationless
read-out realized by means of inductive and dispersive
measurement schemes; and Sec. VI resumes the
concluding remarks.

II. STRUCTURE

The L-SQUIPT is composed of two superconducting
loops each of them interrupted by a normal metal
weak-link forming a SNS Josephson junction, as shown in
Fig. 1-a. The first loop (of inductance L1) converts the
external magnetic flux (Φ1) into a superconducting phase
drop (ϕ1) across the Josephson junction (J1, orange),
i.e., it operates a flux-to-phase conversion (Φ1 → ϕ1).
In order to have an efficient coupling to the external
magnetic field, the first superconducting loop needs,
in principle, to be sufficiently large. To optimize the
Φ1 → ϕ1 conversion, the CPR of IJ1 is supposed to be
sinusoidal (long-junction limit), that is [18]

IJ1(T ) = IC1(T ) sin (ϕ1), (1)

where IC1(T ) is the temperature-dependent critical
current of the J1 junction and T is the temperature.
A simplified equation for the critical current of J1 can
be found in the high temperature regime, that is for
kBT > 5ETh where kB is the Boltzmann constant and
Eth = ~D/L2 is the Thouless energy (with ~ the reduced
Planck constant, D the diffusion coefficient of N and L
the physical length of the junction). In this limit it reads

IC1(T ) =
64πkBT

eR1

∞∑
n=0

√
2ωn

ETh
∆2(T ) exp

[
−
√

2ωn

ETh

]
[ωn + Ωn +

√
2(Ω2

n + ωnΩn)]2
,

(2)
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Figure 1. (a) Scheme of the L-SQUIPT. The device is
composed by two superconducting loops of inductance L1

and L2 interrupted by the two SNS Josephson junctions (J1
and J2) of critical current IJ1 and IJ2, respectively. The
second ring is supposed to be screened against the external
magnetic field (Φ2 = 0). Therefore, the phase drop across the
two junctions is equal (ϕ1 = ϕ2). (b) Kulik-Omel’yanchuk
current-to-phase relation (KO-CPR) of J2 calculated in the
short junction limit for different values of temperature.
(c) Normalized Josephson kinetic inductance (LJ2/LJ2,0)
calculated from the KO-CPR. LJ2,0 is the zero-temperature
and zero-phase kinetic inductance of J2.

where e is the electron charge, R1 is the
normal-state resistance of the junction, ∆(T ) is
the temperature-dependent superconducting energy gap
of the ring, ωn(T ) = (2n + 1)πkBT is the Matsubara

frequency, and Ωn(T ) =
√

∆2(T ) + ω2
n(T ).

The second loop (of inductance L2) is supposed
to be fully screened from the external magnetic field
(thus Φ2 = 0), for instance through a superconducting
plate (grey rectangle in Fig. 1-a), and operates as a
phase-to-phase (ϕ1 → ϕ2) transformer. L2 needs to be
sufficiently small in order to limit the phase drop along
the smaller superconducting ring and, thus, to maximize
the efficiency of the ϕ1 → ϕ2 transformation. The
junction J2 (red) is supposed to be in the short limit,
thus obeying to the Kulik-Omel’yanchuk (KO) model
[24]. Therefore, the temperature dependent CPR of a
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J2 takes the form

IJ2(ϕ2, T ) =
π∆(T )

eR2
Ξ(ϕ2, T ), (3)

where R2 is the normal-state resistance of J2. The phase
dependence in the KO model takes the form [24]

Ξ(ϕ2, T ) = cos
(ϕ2

2

)
×

∆(T )∫
∆(T ) cos (ϕ2

2 )

tanh ε
kBT√

ε2 −∆2(T ) cos2
(
ϕ2

2

)dε. (4)

In the zero-temperature limit (T = 0), the KO CPR can
be simplified in [24]

IJ2(ϕ2, T = 0) =
π∆0

eR2
cos
(ϕ2

2

)
arctanh

[
sin
(ϕ2

2

)]
,

(5)
where ∆0 is the zero-temperature superconducting
energy gap of the ring.

Figure 1-b shows the normalized CPR of J2

[IJ2(T )/IC2,0, with IC2,0 = π∆0

eR2
the zero-temperature

junction critical current] as a function of ϕ2 for different
values of temperature (normalized with respect to the
critical temperature TC). By rising T , the CPR evolves
from a skewed to a perfect sinusoidal phase-dependence
[18, 24]. This behavior entails the higher responsivity of
J2 when the L-SQUIPT is operated at low temperature.
Notably, the CPR is almost the same for the T = 0 limit
(black squares) and for T = 0.01TC (cyan line), as shown
in Fig. 1-b.

The resulting temperature-dependent Josephson
inductance (LJ2) of J2 can be written as

LJ2(ϕ2, T ) =
~
2e

dϕ2

dIJ2(ϕ2, T )
. (6)

In the zero-temperature limit, the kinetic inductance
can be obtained by substituting Eq. 5 in the above
expression. The resulting closed form is therefore

LJ2(ϕ2, T = 0) =
IC2,0

2e
/[

−1

2
sin
(ϕ2

2

)
artanh

[
sin
(ϕ2

2

)]
+

cos2
(
ϕ2

2

)
2− 2 sin2

(
ϕ2

2

)] .(7)

Figure 1-c shows the normalized Josephson inductance
LJ2/LJ2,0 (with LJ2,0 its zero-temperature and
zero-phase value) as a function of ϕ2 calculated for
different temperatures. At low temperature (T ≤ 0.3TC)
and for ϕ2 → π, the Josephson inductance drops
of about one order of magnitude with respect to
LJ2,0. Furthermore, in the limit of ϕ2 → π, the
zero-temperature kinetic inductance (see Eq. 7) goes
to zero. As a matter of fact, the vanishing of LJ2
would not allow to efficiently phase-bias the Josephson
junction in a conventional SQUIPT, since its inductance
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Figure 2. (a) Phase drop (ϕ2) across J2 as a function of
the external flux Φ1 calculated assuming T = 0.01TC and
L = R = 0.1 for different values of β. Inset: blow up of the
ϕ2 versus Φ1 characteristics calculated around Φ1 = 0.5Φ0.
(b) Minigap induced in J2 (Eg) as a function of Φ1 calculated
at L = R = 0.1 and T = 0.01TC for different values of β.

becomes smaller than that of the ring (L2). As we
shall show below, the L-SQUIPT allows to exploit the
full phase bias of J2 yielding largely enhanced transfer
functions even at the lowest temperatures, where
the magnetometer is expected to show its maximum
magnetic flux sensitivity.

To perform the read-out operation, the weak-link J2 is
equipped with a superconducting readout tunnel-probe
(P , green electrode in Fig. 1-a), as in conventional
SQUIPTs [17]. On the one hand, this geometry allows to
operate the magnetometer by conventional quasiparticle
transport measurements in both voltage and current bias.
On the other hand, the Φ1-dependent Josephson coupling
between J2 and P can be employed to design different
dissipationless read-out schemes for the L-SQUIPT.
In particular, the variation of the Josephson output
tunnel junction inductance (Lout) can be detected by
an inductively coupled SQUID read-out or by dispersive
microwave measurements.

III. PHASE-BIASING J2

The dependence of the phase drop ϕ2 across J2

on the external magnetic flux Φ1 can be calculated
by considering three conditions typical of Josephson
interferometers: (i) the quantization of the magnetic flux
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piercing the first loop; (ii) the phase-locking between J1

and J2; (iii) the circulating supercurrent conservation in
the L-SQUIPT double-loop.

Thanks to the flux quantization, the phase drop across
J1 is related to Φ1 through

ϕ1 +
2πL1

Φ0
IR =

2πΦ1

Φ0
, (8)

where IR is the total supercurrent circulating in the
L-SQUIPT, and Φ0 = 2.067 × 10−15 Wb is the flux
quantum. Equation 8 describes the Φ1 → ϕ1 conversion
by taking into account the finite inductance L1 of the first
superconducting ring necessary to efficiently couple the
L-SQUIPT to the external magnetic field. Furthermore,
the phase drop ϕ2 across J2 is locked to ϕ1 by the
equation

ϕ2 − ϕ1 +
2πL2

Φ0
IJ2 = 0, (9)

since the magnetic flux through the second ring is
assumed to be zero (Φ2 = 0). Equation 9 illustrates
the ϕ1 → ϕ2 conversion, which is strongly influenced by
the finite inductance of the second ring (L2).

Finally, to calculate the ϕ2(Φ1) characteristics, we
need to consider the conservation of the circulating
current in the L-SQUIPT. This implies that IR is
distributed between the two Josephson junctions J1 and
J2, that is

IR = IJ1 + IJ2 . (10)

As a result, the phase drop across J2 as a function of
the external flux piercing the first loop reads

ϕ2 =
2πΦ1

Φ0
−β
{

sin [ϕ2 + βLRΞ(ϕ2)]+RΞ(ϕ2)(1+L)
}
,

(11)
where β = (2πL1IC1)/Φ0 is the screening parameter
accounting for the finite inductance L1 of the first
loop, L = L2/L1 describes the difference between the
inductance of the two loops, and R = IC2,0/IC1,0 takes
into account the asymmetry in the critical current of J1

and J2. We note that to have an efficient Φ1 → ϕ2

transduction, the ring inductance of the two loops need
to satisfy L1 � L2, that is β � 1 is required in Eq. 11.

Figure 2-a shows the ϕ2(Φ1) characteristics calculated
by solving Eq. 11 for different values of β at L = R = 0.1
and T = 0.01TC . When the inductance of the first
loop is large, the phase bias shows a strong non-linearity
with Φ1. In particular, ϕ2 shows multiple solutions for
β & 0.8 in the flux range Φ1 → Φ0 thereby preventing
to fully phase-bias J2. By contrast, for lower values
of β, the phase drop is a continuous function of the
external magnetic flux, thus J2 is sensitive to each value
of Φ1. In the following, we will use β = 0.8 to optimize
the phase-bias of J2 and, therefore, to maximize the
sensitivity of the L-SQUIPT magnetometer. We note
that J2 shows a vanishing inductance in these conditions,

since it operates in the short-junction limit and at low
temperatures (see Fig. 1-b). Therefore, an efficient
phase-bias of the junction would be impossible in a
conventional SQUIPT.

The Φ1-dependent values of ϕ2 strongly influence the
DoS (NJ2) of the normal metal element forming the
output Josephson junction. Since J2 is assumed to be in
the short-junction limit, its DoS takes the form [21, 25]

NJ2(x, ε, ϕ2) = Re

√
(ε+ iΓ)2

(ε+ iΓ)2 −∆2(T ) cos2(ϕ2/2)
×

cosh

(
2x− L
L

arccosh

√
(ε+ iΓ)2 −∆2(T ) cos2(ϕ2/2)

(ε+ iΓ)2 −∆2(T )

)
,

(12)

where ε is the energy relative to the chemical potential
of the superconductors, Γ is the Dynes broadening
parameter [26] and x ∈ [0, L] is the spatial coordinate
along the J2 length. Equation 12 highlights that
the density of states is strongly tuned by ϕ2. In
particular, the superconducting minigap induced in N by
the proximity to S [14] takes the form

Eg(T, ϕ2) = ∆(T ) cos
(ϕ2

2

)
. (13)

We note that the value of Eg is constant along the
nanowire length. For ϕ2 = 0 the induced minigap is
maximum [Eg(T, 0) = ∆(T )], while for ϕ2 = π the
nanowire shows the normal metal DoS [Eg(T, π) = 0].

In the L-SQUIPT, the dependence of the minigap on
the external magnetic flux [Eg(T,Φ1)] can be calculated
by combining Eqs. 11 and 13. Figure 2-b presents the
dependence of Eg(T ) on Φ1 calculated at T = 0.01TC
and L = R = 0.1 for different values of β. By enhancing
the screening parameter, the minigap shows a stronger
variation with external magnetic flux at Φ1 → 0.5Φ0. On
the contrary, the minigap is more sensitive at Φ1 → Φ0

for low values of β, but its maximum steepness is limited.
Therefore, the L-SQUIPT magnetometer is expected to
show higher sensitivity for large values of β at Φ1 →
0.5Φ0.

IV. DISSIPATIVE READ-OUT

Here, we discuss the magnetic flux dependent
quasiparticle transport between J2 and P . This will
allow us to evaluate the sensitivity of the L-SQUIPT
magnetometer both in the voltage-bias and current-bias
configurations.
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Figure 3. Quasiparticle current as a function of voltage
calculated at β = 0.8 and L = R = 0.1, T = 0.01TC for
several values of Φ1. All the curves assume Γ = 10−4∆0.

A. Quasiparticle transport

The quasiparticle current flowing through the J2-P
tunnel junction can be written as [17]

Iqp =
1

ewRT

L+w
2∫

L−w
2

dx

∞∫
−∞

dεNJ2(x, ε, ϕ2)Np(ε, V )F(ε, V ),

(14)
where RT and w are the normal-state resistance and
the width of the junction, respectively. Furthermore,
F(ε, V ) = [f0(ε − eV ) − f0(ε)] is the difference between
the Fermi-Dirac distribution functions (f0) of the two
electrodes. The normalized Bardeen-Cooper-Schrieffer
(BCS) DoS of the superconducting tunnel probe can be
written as

Np(ε, V ) =

∣∣∣∣∣Re

[
(ε− eV + iΓ)√

(ε− eV + iΓ)2 −∆2(T )

]∣∣∣∣∣ . (15)

For simplicity, we assume the P to be made of the same
superconductor of the L-SQUIPT ring.

The typical quasiparticle current (Iqp) versus voltage
(V ) characteristics of the L-SQUIPT calculated assuming
β = 0.8, L = R = 0.1 and T = 0.01TC are shown in Fig.
3 for several values of the external magnetic flux. The
quasiparticle current tunnels through the barrier when
the voltage bias is larger than the sum of the energy
gaps of J2 and P , that is for eV ≥ ∆(T ) + Eg(T,Φ1)
[27]. Indeed, the threshold voltage is maximal for Φ1 = 0
(black curve), since the minigap in N acquires the same
value of the energy gap of the superconducting ring
[Eg(T, 0) = ∆(T )]. By rising the external magnetic flux,
large quasiparticle tunneling occurs at lower values of
voltage bias until reaching its minimum value eV = ∆(T )
for Φ1 = 0.5Φ0 [red curve, since Eg(T, 0.5Φ0) = 0]. The
variation of the Iqp(V ) characteristics with the magnetic
flux is stronger in the interval 0.4Φ0 ≤ Φ1 ≤ 0.5Φ0, since
Eg shows a stark dependence on Φ1 in this range (see Fig.
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Figure 4. Voltage bias operation. (a) Quasiparticle
current as a function of the external magnetic flux calculated
for several values of V . (b) Flux-to-current transfer function
versus Φ1 calculated for different values of bias voltage. (c)
Flux sensitivity per unit bandwidth as a function of Φ1 for
different values of V . In the calculations we set RT = 50 kΩ
and ∆0 = 200 µeV. (d) Top: Magnetic flux corresponding to
best sensitivity versus V . Bottom: best flux sensitivity per
unit bandwidth (blue) and quantum noise (gold) versus V .
The total sensitivity is shown in green. All the panels assume
β = 0.8, L = R = 0.1, T = 0.01TC and Γ = 10−4∆0.

2-b). As a consequence, the L-SQUIPT can be operated
as a sensitive magnetometer by simple measurements of
the output junction voltage in current bias mode or the
tunneling quasiparticle current in voltage bias.

B. Voltage bias operation

The voltage bias operation of the L-SQUIPT
magnetometer takes advantage of the strong Φ1

dependence of Iqp for specific values of V , as shown in
Fig. 4-a. In particular, the current is almost independent
of the magnetic flux for V = 2∆0/e, since the output
junction is always biased in the normal-state. For lower
values of the bias voltage, the modulation of Eg with Φ1

results in the strong variation of Iqp with the magnetic
flux. Indeed, by decreasing V the maximum steepness of
the curves moves towards Φ1 = 0.5Φ0, that is reached for
V = ∆0/e thus corresponding to Eg(Φ1) = 0 (see Fig.
2-b). As a consequence, the voltage bias operation of the
L-SQUIPT requires ∆0 < eV < 2∆0.
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The Φ1 dependence of Iqp is completely reflected in the
flux-to-current transfer function, which is defined as

τI =
dIqp
dΦ1

. (16)

Figure 4-b shows τI versus Φ1 calculated for the same
parameters of Iqp (panel a). At a given V , the maximum
value of the transfer function corresponds to the strongest
variation of Iqp with Φ1, while τI = 0 for Φ1 = 0.5Φ0

(where Iqp shows its maximum, see Fig. 4-a).
The most common figure of merit for a magnetometer

is the the flux noise, i.e., the flux sensitivity per unit
bandwidth. In voltage bias operation, this can be written
as

SΦ,I =

√
SI
|τI |

, (17)

where SI is the current-noise spectral density. The latter
reads

SI = 2eIqp(V ) coth
eV

2kBT
. (18)

Figure 4-c shows the Φ1 dependence of SΦ,I for the
L-SQUIPT calculated at different values of bias voltage.
For these simulations we assume a geometry and
materials feasible by standard fabrication techniques.
Indeed, we set ∆0 = 200 µeV (aluminum) for the
superconducting ring and the output tunnel probe while
considering a tunnel resistance RT = 50 kΩ. The flux
sensitivity strongly depends on both Φ1 and V . Indeed,
depending on the magnetic flux of interest, the best
operating point (ΦB) can be chosen by tuning the bias
voltage (see the top panel of Fig. 4-d). The flux noise

corresponding to ΦB is SΦ,Ibest < 10 nΦ0/
√

Hz for a bias
voltage in the range 1.25∆0 ≤ eV < 2∆0. We note
that, in a superconducting interferometer, the ultimate
flux sensitivity is limited by the quantum noise (SΦ,q)
defined as [28]

SΦ,q =
√
~L1. (19)

By substituting IC1 = 100 µA in the screening parameter
equation, we obtain L1 = 2.6 pH. The resulting quantum
noise due to the inductance of the superconducting ring
is SΦ,q = 8 nΦ0/

√
Hz. Therefore, the L-SQUIPT

magnetometer operated in voltage bias shows a quantum
limited flux sensitivity for most values of V . In fact, SΦ,q

dominates the total flux noise of the device, defined as

SΦ,t =
√
s2

Φ,I + S2
Φ,q, in almost the full voltage range

(see bottom panel of Fig. 4-d).

C. Current bias operation

The current bias operation of the L-SQUIPT
magnetometer exploits the dependence of V on Φ1 while
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Figure 5. Current bias operation. (a) Output voltage as
a function of the external magnetic flux calculated for several
values of Iqp. (b) Flux-to-voltage transfer function versus
Φ1 calculated for different values of bias current. (c) Flux
sensitivity per unit bandwidth as a function of Iqp for different
values of Φ1. In the calculations we employed RT = 50 kΩ
and ∆0 = 200 µeV. (d) Flux sensitivity per unit bandwidth
(blue) and quantum noise (gold) versus Iqp calculated for
Φ1 = 0.45Φ0. The total sensitivity is shown in green. All
the panels assume β = 0.8, L = R = 0.1, T = 0.01TC and
Γ = 10−4∆0.

a constant Iqp is injected in the device, as shown in Fig.
5-a. For Iqp = ∆0/(eRT ), the modulation of V with
the external magnetic flux is limited, while by decreasing
the bias current the voltage span and the steepness of
the curves increase. This behavior is highlighted by the
flux-to-voltage transfer function

τV =
dV

dΦ1
. (20)

Indeed, the maximum value of the transfer function
rises while moving towards 0.5Φ0 by increasing the bias
current (see Fig. 5-b). In particular, the L-SQUIPT
shows τV ' 26∆0/(eΦ0) at Φ1 = 0.498Φ0 for Iqp =
0.1∆0/(eRT ).

In current bias operation, the flux sensitivity per unit
bandwidth can be written as

SΦ,V =

√
SV
|τV |

, (21)
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Figure 6. Temperature dependence of the flux
sensitivity. (a) Flux sensitivity per unit bandwidth as a
function of Φ1 for different values of temperature calculated
at V = 1.25∆0/e. (b) Flux sensitivity per unit bandwidth as
a function of Iqp calculated for different values of temperature
at Φ1 = 0.45Φ0. All the panels assume β = 0.8, L = R = 0.1,
Γ = 10−4∆0, RT = 50 kΩ and ∆0 = 200 µeV.

where the voltage-noise spectral density takes the form

SV = R2
dSI =

(
dV

dI

)2

SI . (22)

In the above equation, Rd = dV/dI is the differential
resistance of the output Josephson junction. Figure 5-c
shows SΦ,V as a function of Iqp for several values of Φ1.
For the simulations we considered the same structure of
the voltage bias configuration, that is ∆0 = 200 µeV
for both the superconducting ring and the output tunnel
electrode (RT = 50 kΩ). The L-SQUIPT sensitivity is
maximum for high value of magnetic flux, as a result of
the increased flux-to-voltage transfer function (see Fig.

5-b). In particular, a flux sensitivity of ∼ 2 nΦ0/
√

Hz
can be reached for Φ = 0.45Φ0 at Iqp ' 1.3 nA.

Also in the current bias mode, the L-SQUIPT
magnetometer shows a quantum limited flux sensitivity.
Indeed, SΦ,q = 8 nΦ0/

√
Hz dominates the total flux noise

of the device in a wide range of bias currents, as shown
in Fig. 5-d for Φ = 0.45Φ0.

D. Temperature dependence

Here, we investigate the temperature dependence of
the L-SQUIPT performance both in voltage and in
current bias. To this end, we set the same device
parameters of previous sections, that is L = R = 0.1,
Γ = 10−4∆0, RT = 50 kΩ and ∆0 = 200 µeV. Since
β is a temperature dependent parameter, we consider
β(T = 0.01TC) = 0.8 taking into account the exponential
damping of IC1 with T [18]. Indeed, Eq 2 can be
employed for T ≥ 0.05TC in an aluminum/copper SNS
junction of length L = 2 µm (with D = 6 × 10−3m2s−1

the diffusion coefficient of copper).

Figure 6-a shows the flux sensitivity in the voltage
bias operation (at V = 1.25∆0/e) as a function of Φ1

calculated for different values of T . By increasing the
temperature, the best value of SΦ,I rises substantially,
while ΦB is only slightly affected from T . On the
contrary, the sensitivity far way from the best operating
point improves by increasing temperature, since the
flux-to-current transfer function shows a smoother
dependence in Φ1. Indeed, at high temperature, the
CPR of J2 shows a lower slope around ϕ2 = π (see Fig.
1-b), thus causing a smaller variation of Iqp with Φ1.
This degrades the best performance of the L-SQUIPT,
but it provides a more constant sensitivity in the whole
magnetic flux range (see the red curve in Fig. 6-a).

Figure 6-b shows the temperature dependence of the
flux sensitivity of the L-SQUIPT operated in current
bias at Φ1 = 0.45Φ0. By rising the temperature,
the magnetometer best sensitivity is slightly affected by
temperature, but the range fo bias current showing high
sensitivity narrows. For T = 0.5TC , a flux sensitivity
SΦ,V ∼ 10 nΦ0/

√
Hz is obtained for Iqp ∼ 1 nA. Thus,

the L-SQUIPT is a quantum limited magnetometer both
in voltage and current bias operations only for T <
0.5TC .

V. DISSIPATIONLESS READ-OUT

Here, we discuss the magnetic flux dependent
Josephson transport between J2 and P . This
will allow us to evaluate the sensitivity of the
L-SQUIPT magnetometer in different dissipationless
read-out geometries.

A. Josephson current and inductance

Since we assume a superconducting tunnel read-out
probe, a dissipationless zero-bias current (Iout) can
flow thanks to Josephson coupling. The latter can
be calculated by means of the Ambegaokar-Baratoff
equation for a point-like junction [17, 29]

Iout(T, ϕ2) =
πEg(T, ϕ2)∆(T )kBT

eRT
×∑

l=0,±1,...

1√
[ω2
l + E2

g(T, ϕ2)][ω2
l + ∆2(T )]

,
(23)

where ωl = πkbT (2l + 1).
Figure 7-a shows Iout versus Φ1 calculated for a

L-SQUIPT at T = 0.01 TC and L = R = 0.1 for
different values of β. We consider the same structure
of the previous calculations, that is ∆0 = 200 µeV and
RT = 50 kΩ. At Φ1 = 0, all the curves collapse to
the same maximum value, that is the output junction
critical current (IC,out ' 6.2 nA). By rising the external
magnetic flux, Iout lowers until reaching its minimum at
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Φ1 = 0.5Φ0, because the superconducting energy gap of
J2 closes. The energy gap shows a steeper dependence
on Φ1 for large values of β (see Fig. 2-b). This behavior
is transferred to the Josephson current. Indeed, the
variation of Iout around Φ1 = 0.5 Φ0 is less sharp for
low values of the screening parameter (see Fig. 7-a).

The suppression of the critical current causes the
variation of the Josephson inductance of the read-out
junction (LJout

). The latter can be calculated through
Eq. 6 by considering the phase of the tunnel probe
equal to 0. Consequently, LJout

is proportional to the
derivative of ϕ2 with respect to Iout. Figure 7-b shows
LJout

versus Φ1 calculated starting from the Josephson
currents shown in panel a. For all values of β, the
inductance spans over several orders of magnitude. By
increasing β, the overall variation of LJout

with the
magnetic flux increase and its maximum steepness moves
from Φ1 → 0 to Φ1 → 0.5Φ0.

For the implementation of dissipationless read-out
schemes, we need to consider the total inductance of the
L-SQUIPT (LTOT ) represented in Fig. 7c. The small
ring inductance L2 and the second junction inductance
LJ2 are in series. This block is in parallel with the
inductance (LJ1) of the junction J1. The resulting
inductance is in series with the large loop inductance L1.
All these are in series with the Josephson output tunnel
junction inductance Lout. Thus, the total inductance is

LTOT (Φ1) = L1 +
LJ1(Φ1)[L2 + LJ2(Φ1)]

L2 + LJ1(Φ1) + LJ2(Φ1)
+LJout

(Φ1).

(24)
The variation of Josephson inductance, and thus

LTOT , can be revealed through different dissipationless
read-out schemes. Indeed, the L-SQUIPT can
be inductively coupled to a SQUID amplifier, as
routinely realized for kinetic inductance detectors
(KIDs). Alternatively, the device can be integrated in a
RLC resonant circuit, whose resonance frequency varies
with Φ1.

B. Inductive read-out

The scheme for the inductive read-out of the
L-SQUIPT is shown in Fig. 8-a. The parallel connection
of the L-SQUIPT (of inductance LTOT ) and a load
inductor (L) is biased by means of a dc current current
generator (Ib). Indeed, the variation of LTOT generates
a change of the current flowing through the L-SQUIPT
(Iout) and the load resistor (IL). The latter is detected
by a dc SQUID inductively coupled to the circuit through
the mutual inductance M , where the magnetic flux
piercing the SQUID is Φs = MIL. For small variations of
ΦS (linear response regime, LIL � Φ0) [30], the current
flowing through the load inductor reads

IL = Ib
Φ0

Φ0 + 2πLIout
. (25)
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c

Figure 7. Josephson transport through the read-out
junction. (a) Josephson current flowing through the output
tunnel junction as a function of Φ1 calculated for different
values of β. (b) Kinetic inductance of the output tunnel
junction as a function of Φ1 calculated for different values of β.
Both panels assume L = R = 0.1, Γ = 10−4∆0, T = 0.01TC ,
RT = 50 kΩ and ∆0 = 200 µeV. (c) Schematic representing
all the components of the total inductance (LTOT ) of the
L-SQUIPT. We represented all the inductance contributions
that directly or indirectly depend on Φ1.

In this configuration, the L-SQUIPT operates as a
magnetic-flux-to-magnetic-flux transducer or magnetic
flux amplifier, where the efficiency can be quantify by

dΦS
dΦ1

=
dIout
dΦ1

M
dIL

dIout
. (26)

The ratio dIout/dΦ1 can be calculated through the
derivative of Eq. 23 with respect of the input magnetic
flux. Accordingly, the term dIL/dIout can be calculated
by performing the dIout derivative of Eq. 25, thus
obtaining the following expression

dIL
dIout

= 2πLIb
Φ0

(Φ0 + 2πLIout)
2 . (27)

C. Dispersive measurement

The scheme for the dispersive read-out of the
L-SQUIPT is shown in Fig. 8-b, where the Φ1-dependent
variation of the Josephson inductance LJout

is determined
by measuring the resonance frequency of a suited RLC
circuit. To this end, a load inductance LL is added
in parallel to the total inductance of the L-SQUIPT
(LTOT ). This circuit is coupled by a mutual inductance
(M) with a tank circuit characterized by inductance
LT , capacitance CT and resistance RT . The resulting
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Figure 8. Dissipationless read-outs for the L-SQUIPT.
(a) Inductive read-out scheme, where the changes of the
L-SQUIPT inductance (LTOT ) are recorded by dc SQUID
magnetometer coupled to the device by a mutual inductance
M . (b) Dispersive read-out scheme, where the changes of
LTOT are recorded thanks to the changes of the characteristic
frequency of a resonant circuit inductively coupled to the
L-SQUIPT.

effective inductance of the tank circuit is [31, 32]

L̃T = LT

(
1− M2

LT

1

LTOT (Φ1) + LL

)
. (28)

As a consequence, the resonance frequency of the tank

circuit f̃T = 1/2π
√
L̃TCT strongly depends on the flux

Φ1.

D. L-SQUIPT noise in dissipationless read-out
operation

We assume that the read-out circuit in Fig. 8
has negligible noise so that the overall sensitivity of
L-SQUIPTis determined by its intrinsic noise associated
to each element of the device and their correlations.

From Fig. 8 we can see that noise is essentially
determined by the fluctuations of the current across the
load inductance LL that is then coupled my mutual
inductance with the read-out circuit. The current of
interest is the tunnel junction one Iout in Eq. 23. This
is composed by a Johnson thermal contribution (related
to the resistances of Josephson junctions) and a phase
contribution.

The first one is dominated by the tunnel resistance RT
that is much larger than RJ1 and RJ2 . For a frequency
bandwidth δω/(2π), it generates a noise voltage of means
square value [31]

〈δV 2
Jout
〉 = 4kBTRT

δω

2π
. (29)

The tunnel junction can be e represented by an
RLC parallel circuit with resistance RT , a Josephson
inductance LJout and a small capacitance Cout. Passing
to the frequency dependent impedances, i.e., ZRT

= RT ,
ZLJout

= iωLJout , and ZCJout
= 1/(iωCout), for the

junction Jout we have an impedance

1

ZJout

=
1

ZRT

+
1

ZLJout

+
1

ZCJout

. (30)

As a consequence, the mean square of the current noise
due to the resistance can be written [31, 33]

〈δI2
out,R〉 =

〈δV 2
Jout
〉

|ZJout
|2

=
4kBTRT
|ZJout

|2
δω

2π
. (31)

The phase noise contribution to Iout is due to the fact
that, as seen in Eq. 23, Iout depends on the phase ϕ2. To
calculate it, we first consider the Johnson noise generated
by the two separate junctions J1 and J2 at temperature
T . Analogously, to what done for the tunnel junction,
we have that the noise is

〈δI2
Ji〉 =

〈δV 2
Ji
〉

|ZJi |2
=

4kBTRJi
|ZJi |2

δω

2π
. (32)

with i = 1, 2 and ZJi is obtained by Eq. 30 with the
index exchanges.

These uncorrelated noise sources are conbined in the
following way. The small loop can be treated as a SQUID
with two Josephson junctions in parallel. Following Ref.
[31], we consider the circulating current Icirc as a function
of the current flowing through the junction J1 and J2:
Icirc = IJ1 − IJ2 .

The fluctuations of the circular current coupled with
the loop impedance L2 and determines the phase
fluctuations δϕ2. They can be written as 〈δI2

circ〉 =
〈δI2

J1
〉 + 〈δI2

J2
〉. By multiplying this expression by

4π2L2
2/Φ

2
0 and using Eq. 32, we obtain the mean square

of the phase noise

〈δϕ2
2〉 =

16π2kBTL
2
2

Φ2
0

( RJ1
|ZJ1 |2

+
RJ2
|ZJ2 |2

)δω
2π
. (33)

The noise current of the tunnel junction is sum of the
square of the thermal and phase noise (Eqs. 31 and 33,
respectively)

〈δI2
out〉 =

4kBTRT
|ZJout |2

δω

2π
+ cϕ2〈δϕ2

2〉. (34)

The coefficient cϕ2 is obtained from Eqs. 13 and 23 taking
a small variation of Iout a a function of ϕ2

cϕ2
=

1

4

(
π∆2(T )kBT

eRT

)2

sin2 ϕ2

2[∑
l

1√
[ω2
l + E2

g(T, ϕ2)][ω2
l + ∆2(T )]

]2
. (35)

Finally, the current fluctuations across LL induce flux
fluctuations

〈δΦ2
L〉 = 〈δI2

out〉L2
L. (36)

This is the intrinsic magnetic flux noise of the L-SQUIPT
that is the ultimate limit the sensitivity of the
measurement through the read-out circuit in Fig. 8.

We note that the performance for the dissipationless
read-out of a L-SQUIPT depend non-trivially on RT , δω
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and Φ1. On the one hand, increase of RT and δω increase
both contributions of 〈δI2

out〉 (see Eq. 34). On the other
hand, large values of RT and δω increase ZJout

(see Eq.
30) thus suppressing the current noise. Similarly, Φ1

acts on several quantities in Eq. 34 with unexpected
consequences. In particular, the noise is minimum for
Φ1 → 0 (ϕ2 → 0), since phase noise contribution
becomes negligibly small, as shown by Eq. 35. The
best magnetic flux fluctuation for a L-SQUIPT operated
in dissipationless mode is 〈δΦL〉 ∼ 4 µΦ0 obtained at
Φ1 = 0 for L = R = 0.1, Γ = 10−4∆0, T = 20
mK, RT = 50 kΩ, ∆0 = 200 µeV, δω/2π = 100 MHz,
CJout

= 1 fF and LL = 10 pH.

VI. CONCLUSIONS

In conclusion, we have proposed and theoretically
investigated an innovative highly sensitive
magnetometer: the inductive superconducting quantum
interference proximity transistor (L-SQUIPT). The

L-SQUIPT promises enhanced performance with respect
to widespread SQUID and SQUIPT magnetometers.
Indeed, an L-SQUIPTs made of conventional materials
(such as aluminum and copper) would show a quantum

limited intrinsic noise down to ∼ 8 nΦ0/
√

Hz, both
in current and voltage bias operations. Furthermore,
the superconducting output probe allows to design two
different dissipationless read-out schemes based on the
variation of the Josephson inductance of the tunnel
junction, such as inductive and dispersive read-out
setups. In these configurations, the best flux fluctuation
is 〈δΦL〉 ∼ 4 µΦ0 for a bandwidth of 100 MHz.
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