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Underwater Vision-Based Gesture Recognition
A Robustness Validation for Safe Human-Robot Interaction

Arturo Gomez Chavez, Andrea Ranieri, Davide Chiarella, and Andreas Birk

Underwater robotics requires very reliable and safe oper-
ations. This holds especially for missions in cooperation

with divers who are - despite the significant advancements of
marine robotics in recent years - still essential for many un-
derwater operations. Possible application cases of underwater
human-robot collaboration include marine science, archeology,
oil- and gas production (OGP), handling of unexploded ord-
nance (UXO), e.g., from WWII ammunition dumped in the
seas, or inspection and maintenance of marine infrastructure
like pipelines, harbors, or renewable energy installations - to
name just a few examples.

Figure 1: The CADDY system for assistance in diver missions. (Right) The Buddy-AUV
is equipped with a Blueprint Subsea X150 USBL, a Underwater Tablet, a BumbleBeeXB3
Stereo Camera, and an ARIS 3000 Imaging Sonar for diver tracking, monitoring and
communication. (Top) Diver gesturing a command. (Bottom) Aerial view of the system
with a PladyPos surface vehicle for global positioning.

We present a fully integrated approach to Underwater Hu-
man Robot Interaction (U-HRI) in form of a front-end for
gesture recognition combined with a back-end with a full lan-
guage interpreter. The gesture-based language is derived from
the existing standard gestures for communication between
human divers. It enables a diver to issue single commands
as well as complex mission specifications to an Autonomous
Underwater Vehicle (AUV) as demonstrated in several field
trials.

The gesture recognition is an essential component of the

overall approach. It requires high reliability under the chal-
lenging conditions of the underwater domain. There is es-
pecially a high amount of variation in visual data due to
various effects in the underwater image formation. We hence
investigate in this article different Machine Learning (ML)
methods for robust diver gesture recognition. This includes a
classical ML approach and four state-of-the-art Deep Learning
(DL) methods. Furthermore, we introduce a physically realistic
way to use range information for adding underwater haze to
produce meaningful additional data from existing real-world
data. This can be of interest for creating evaluation data for
underwater perception in general or to produce additional
training data for ML-based approaches.

I. RELATED WORK

Given the importance of cameras for underwater systems,
especially for near-field perception, computer vision is pre-
dominantly used for U-HRI. Alternatives are acoustic ap-
proaches with pingers or sonars as well as the use of dedicated
devices like underwater tablets [1], [2]. The first step towards
U-HRI is the detection and tracking of one or multiple divers
[3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13]. Given
relative localization, different protocols for interaction can be
studied and trained, among others also in computer simulation
[14].

Relative motions between divers and robots can already be
used for a basic, non-verbal form of communication [15],
but more capable forms of communication - in terms of
expressiveness and reliability - are needed to enable real
U-HRI for collaborative missions. Work in that direction is
described in [16], where artificial fiducial markers are used
that are then interpreted by the robot using grammatical rules.
While cards with artificial markers ease the challenges of
underwater vision, there are disadvantages like the number of
cards that the diver must carry and the effort to handle them.

Gestures are a more natural basis for underwater commu-
nication: (a) they are already extensively used by divers and
(b) there are among others limitations of water as a medium,
e.g., it is impossible to use voice recognition.

Early research on the use of gestures for U-HRI is described
in [17], where waving gestures are recognized by differential
imaging with a spectral registration method in form of the
improved Fourier Mellin Invariant (iFMI). Based on that,
trajectories of hand motions are recognized with a Finite State
Machine (FSM). The experiments in [17] are done in a pool.

An imaging sonar, also known as acoustic camera, is used
in [18] for gesture recognition. Preprocessing stages with
cascade classifiers and shape processing are combined with
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three different classification approaches, namely a convex hull
method, Support Vector Machines (SVM), and the fusion of
both. Experiments are conducted in a pool and during field
trials with divers in the context of the EU-project ”Cognitive
autonomous diving buddy (CADDY)”. The selection of device
parameters within a mission is a known challenge for this type
of sensor, which is also reported in [18].

The main type of sensor for U-HRI in CADDY is therefore
a (stereo-)camera. To process the visual data, a modification
of Nearest Class Mean Forests (NCMF) in form of a Multi-
Descriptor extension (MD-NCMF) is introduced. MD-NCMF
is used both for diver detection and tracking [8] as well as for
the classification of diver gestures [19]. As the name suggests,
MD-NCMF is designed to exploit different types of descriptors
to achieve high robustness under the challenging conditions
of underwater visibility. To this end, MD-NCMF builds on
NCMF, which partitions the sample space by comparing the
distances between class means instead of comparing values at
each feature dimension as in more traditional Random Forests
approaches. Therefore, MD-NCMF can treat each feature-
object pair as a new class, e.g., SURF-object1, SIFTobject2,
SURF-object2, SIFT-background, etc., and MD-NCMF can
examine which one provides the best partition of the sample
set.

Based on the MD-NCMF gesture recognition [19], a ma-
chine interpreter [20] with a phrase parser, syntax checker,
and command dispatcher linked to the mission control allows
the use of a very expressive language for U-HRI [21]. This
Caddian language is based on a context-free grammar, that
allows the diver to specify missions with a sequence of
tasks. The syntax checker is implemented as a FSM that
gives constant feedback to the diver and that allows in situ
corrections. The gesture recognition front-end and the machine
interpreter back-end are reported in field tests to not only be
robust but also useful in complex missions with professional
divers [22], [23].

A full language for U-HRI is also presented in [24]. It is
syntactically a bit simpler than Caddian as the FSM in its
interpreter is restricted to only one possible transition from
state to state, i.e., gesture to gesture, to avoid ambiguities. The
gesture recognition front-end in [24] is based on deep learning
models. More precisely, Single Shot Detector (SSD) [25] and
Faster Region-based Convolutional Neural Networks (Faster
R-CNN) [26] are investigated, which achieve above 90%
accuracy when being trained with a 50K dataset.

It is assumed in [24] that the diver wears no gloves; this
enables the use of skin detection and image contour estimation.
In practice, professional divers tend to always wear gloves
- both for protection and to avoid heat loss. For the MD-
NCMF gesture recognition [19] mentioned above, regular
diving gloves are augmented with colored stripes to provide
some detectable contrast. First results towards a classification
under a wide range of conditions including divers with and
without gloves are presented in [27]. Building upon a DL-
based approach dubbed SCUBANet to recognize diver body
parts [28], MobileNetV2 [29] is trained to recognize 25 image
classes using finger count and palm direction - though the
authors also state that a significant portion of these classes are

unused in most gestures [27].

II. UNDERWATER HUMAN-ROBOT INTERACTION WITH
GESTURE BASED COMMUNICATION

Our gesture based communication for U-HRI consists of
a gesture recognition front-end and an interpreter back-end.
In this article, different options for the front-end are investi-
gated, which are described in the following Sec.II-A. A short
overview of the actual language and the interpreter back-end
is then given below in Sec.II-B. An example from a field
trial in Sec.II-C illustrates the use of the complete system
and the challenges that occur in practice and that motivate
the investigation of different DL-methods.

ML in general and DL in particular typically require high
amounts of data for training and evaluation. A physically
realistic way to use range information for adding underwater
haze is hence introduced in Sec.III. This is used to add artificial
degradations to existing real-world images from field trials
to produce additional data, which is useful to cover the high
amount of variability in the underwater domain without the
need of many costly field campaigns.

A. Gesture Detection and Classification

1) MD-NCMF as Classical ML Approach: MD-NCMF
is a Multi-Descriptor (MD) extension of Nearest Class
Mean Forests (NCMF), which is used for both diver de-
tection/tracking as well as for the classification of diver
gestures [8], [19] (Fig. 2). This variant of Random Forests
aggregates multiple descriptors (SIFT, SURF, ORB, HoG, etc.)
that encode different representations of the objects of interest
as we observed that each of these descriptors is robust to
different types of underwater image degradations. MD-NCMF
can be considered to be a classical ML approach, which forms
a comparison basis for the different DL methods described
below.

For the hand detection as first step, both 2D monocular
images and 2.5D stereo disparity are used. The 2.5D disparity
maps are segmented based on distance and density. This
provides a reliable hand detection in many cases. However, it
fails on texture-rich interferences close to the stereo-camera,
e.g., due to air bubbles. Therefore, 2D cascade classifiers are
used in a second process running in parallel to filter out the
false positive regions. The resulting region proposals, i.e.,
object candidates, serve as input to the actual classifier. MD-
NCMF then filters out further false positives that may still exist
and it maps the hand regions to the gestures of the Caddian
language described below.

2) Deep Learning (DL) Approaches: State-of-the-art deep
models for visual object detection and classification often fol-
low three meta-architectures: Single Shot Detector (SSD) [25],
Faster Region-based Convolutional Neural Network (Faster
R-CNN) [26], and Region-based Fully Convolutional Neural
Network (R-FCN). SSD models offer fast computation speeds
since they perform object detection and classification in one
single pass of the network. They are hence often preferred for
embedded systems. Faster R-CNN has two stages, which are
conceptually similar to the described classical ML approach
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Figure 2: Hand detection. Possible regions are detected by two processes running in
parallel: (I.a) a Haar cascade model, and (II.b) a disparity map that is thresholded by
distance and morphologically transformed to reduce noise. (I.c) A cross-check between
the two methods generates the final hand image candidates. Gesture classification using
a Multi-Descriptor NCM tree (MD-NCM): Each class centroid - marked by a colored
dot - traverses a path through the decision tree (II.a). The image is encoded into different
types of feature vectors ~x ~y ~z (II.b). The sample passes down the tree following the
closest centroid as aggregated similarity measure (II.c).

(Sec. II-A1): a region proposal network generates candidates
for object regions and a classifier then verifies and refines the
proposals. The R-FCN architecture is a mixture between the
previous two meta-architectures. It shares features learned in
the initial layers between the region proposal and the actual
classifier network.

Visual model Feature
extractor

Software
Library

References

FCN-CNN ResNet-50 Fast.ai/Pytorch [30]
SSD MobileNets Tensorflow [25], [31]
Faster R-CNN ResNet-101 Tensorflow [26], [30]
Deformable Faster R-CNN [32] MXNet [26], [32]

Table I: Overview of the four Deep Learning models and the pre-trained feature
extractors.

The DL models are used with pre-trained feature extractors
(Table I). A Fully Connected Network like ResNet [30] can
be consider the most straightforward approach since it only
requires a label per image, no region candidate, which ulti-
mately satisfies our system’s requirements. The SSD [25] and
Faster R-CNN [26] differ mostly in their architectures among
the considered DL methods; the former is tailored towards fast
computation when using the MobileNet feature extractor [31].
A Deformable ConvNet [32] allows region proposals with non-
uniform boundaries by using a flexible sampling grid on the
image. Thus, it is no longer assumed that the object geometry
is fixed, which can be beneficial for detecting 6-DoF hands of
a free floating diver.

B. The Caddian Language and its Interpretation

The gestures form a language for U-HRI called Caddian
[20], which is derived from the routine communication of

(a)

(b) (c) (d) (e)

Figure 3: (a) Mission aggregation from single gestures/commands. (b–e) Types of
feedback given to the diver through an underwater tablet on the AUV.

divers. The Caddian syntax defines boundaries to understand
complex commands, i.e., sequences of gestures, which can
also be aggregated to form missions composed of several tasks.
Two gestures to start a command and to end a communication,
denoted as A and ∀, are used for this purpose. Commands
are sequences of individual gestures delimited by (A,A) that
represent a single task. A practical example from field trials
dealing is the command “Take a photo at 3 meters altitude”.
Missions consist of aggregated commands that are delimited
by (A,∀). An example for a mission used in practice is “Take
a photo, go to the boat and carry the equipment back”.

To handle very frequent tasks or emergencies, there is the
special Slang group of gestures. They have higher priority
and a simpler syntax. Examples include a gesture to instruct
the AUV to take a photo at the current location, i.e., without
specifying any parameters, or a gesture to signal that the diver
is out of air, which triggers emergency response protocols on
the AUV and the surface vehicle it is connected to.

As illustrated in Fig. 3(a), the Phrase Parser constantly
saves the recognized gestures until it detects one of delimiter
pairs (A,A), (A,∀). It then sends the gesture set to the Syntax
Checker for validation. If the command is syntactically correct,
it is passed to the Command Dispatcher where it is saved until
a complete mission is received. After the diver confirms, the
commands are passed to the Mission Controller for execution.

Despite the syntax validation, gestures can be misclassified,
i.e., a message can have the correct structure but it represents
an infeasible or undesired action. Therefore, the system inte-
grates the diver in a human-in-the-loop approach to identify
and correct possible errors as quickly as possible. Five types
of feedback are provided to the diver at different times during
the communication process through an underwater tablet on
the AUV (see Fig. 3):

1) Single gesture – Every time a gesture is recognized,
the tablet displays the classification label given to that
gesture.
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2) Syntax error – Whenever a phrase/command is de-
tected and analysed by the Syntax Checker, an error
is displayed if the Caddian grammatical rules are not
followed. The received message is shown to the diver
for his/her analysis and the communication is reset.

3) Mission confirmation request – When the diver ends
communication, the system displays the complete mis-
sion and it waits for a confirmation gesture or a gesture
to abort.

4) Mission status – When the AUV is executing a mission,
the current status of the mission is displayed, e.g.,
CARRYING EQUIPMENT , MISSION COMPLETED .

C. Example Use-Case and Challenges

(a) Mission layout and archaeological item to be retrieved.

(b) Gesture boat recognized (c) Gesture photo not recognized

Figure 4: A field trial emulating an archaeological underwater mission in Biograd na
Moru, Croatia. One task includes the transport of an object found by the diver, here a
mock-up amphora, by the AUV to a boat.

Figure 5: Trials at the the Brodarski Institute in Zagreb, Croatia.

The following example shortly illustrates a typical use-
case and the challenges. The related field trial emulates an
archaeological mission. It was designed in cooperation with
the Diver Alert Network Europe (DAN Europe) to take safety

and ergonomic aspects in the evaluation into account. The
test was done in Biograd na Moru, Croatia in 2016. Fig. 4
depicts the overall mission. The field trial tested many system
functionalities and not only the gesture-based communication.
Therefore, only the photo and boat command happened to
be used, along with the gestures for the start and the end of
communication. More commands and also full missions were
tested in other trials, among others in 2017 at the Brodarski
Institute in Zagreb, Croatia (Fig.5). But the Biograd field trial
nicely illustrates the challenges: there is for example reduced
visibility compared to experiments in a pool, and the sea was
rough on several days causing motion blur as neither the divers
nor the AUV could keep still on the spot.

Fig. 4(c) shows an example where the photo command
is incorrectly classified by the gesture recognition front-end.
Note that due to the interpreter back-end, the error was cap-
tured and remedied, which indicates the importance of a com-
plete human-robot interaction and collaboration framework
to ensure correct operation and diver safety. Also, accuracy
is boosted in the real system by fusing the classification
results of multiple consecutive frames. Nonetheless, the higher
the accuracy in the gesture recognition, the more convenient
is the system to use. Even more importantly, it is of high
interest to check that the recognition does not fail in previously
untested environment conditions, i.e., that the accuracy does
not suddenly drop to unexpectedly low rates. This evaluation
across a wide range of environment conditions is a non-trivial
chore for underwater vision in general.

III. PHYSICALLY REALISTIC UNDERWATER IMAGE
DEGRADATION

Underwater image formation is influenced by many factors
[33]. Given in addition the complexity of underwater field
trials, it can be challenging to provide sufficient data for the
evaluation of underwater vision methods. This holds especially
when ML and in particular when DL is employed. There,
clear and immutable design assumptions can not be assumed.
In addition, there is the need for large amounts of training
data for ML and especially DL algorithms. One option is to
produce synthetic images in simulations [34], [35]. An other
option is the use of Generative Adversarial Networks (GAN)
as successfully demonstrated in the context of underwater
image enhancement [36], [37], [38].

We use here insights from underwater image formation
for artificial image degradation to produce additional data
from real-world data. The existing real-world data covers the
relevant scenarios, i.e., underwater scenes with divers carrying
out realistic tasks including situations with the use of hand
gestures. The artificial degeneration allows to evaluate the
different options for the gesture recognition under a very
wide range of possible environment conditions, which are
unfeasible to cover in this broadness with real field trials.
In addition, the artificial degeneration allows an evaluation
under controllable conditions. Among others, we introduce in
Sec.III-B a method based on depth information that allows
a physically very realistic reduction of visibility conditions.
The image degradation can also be used in other applications
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of underwater vision. This also includes the production of
additional training data for ML methods including especially
DL methods.

Several different image degradation methods are considered.
The first group of transformations, named pixel-based pertur-
bations, only requires information from a single monocular
image and it transforms only pixel values, i.e., all operations
are constrained to the image domain. The second group of
geometry-contextual perturbations uses the 3D scene geometry
information obtained from stereo imagery [39] to compute
the depth relative to the camera and, in turn, to render a
more detailed simulation of underwater light backscattering
effects. Fig. 6 shows examples of each type of distortion. The
code for the degradations is available at https://github.com/
arturokkboss33/caddy-underwater-diver-classification.

A. Pixel-Based Perturbations

1) Gaussian blur: The image is blurred to approximate
effects caused by moving objects, sediment clouds, material on
the lens/housing, misalignment of the camera with respect to
the housing window, or a wrong focus caused by light forward-
scattering. This is done using a Gaussian kernel with standard
deviation σ and size ks pairs: {(1.5, 9)(3, 17)}.

2) Brightness shift: For shallow water operations (depth<
15m), the ambient light can drastically change the brightness
of the image depending on weather conditions and on the time
of the day. To simulate this, a scaling factor b is applied to each
image channel, respecting saturation values, with b = {0.5, 2}.

3) White Balance: White balance is considered as it can
lead to unexpected image artifacts. White balancing methods
are typically based on the assumption that there is a minimum
range of colors in the scene including neutral (white) colors.
But when there are large regions with uniform color in the
scene (water medium), this can shift the color correction to
more blueish or reddish colors. Thus, if the white balance
is not properly configured, respectively if a standard in-air
method is used, it can degrade the quality of the image. To
reflect this, a gray-world (GW) white balance is applied that
assumes that the average of all channels should result in a
gray image. It requires a saturation threshold tGW = 0.7. All
normalized pixels above this value are not used during the
color correction process. Another method, denoted as simple
white balance (SWB), just stretches each input channel to
generate similar ranges for each channel. It uses a threshold
tSWB = 5% to ignore the according top and bottom percent
of pixels.

4) Underwater Alpha Blend: The image I is blended with
a background image of uniform color H that represents simple
underwater haze effects. This image operation known as alpha
blend is defined as A = H × α + I × (1− α). The blending
coefficients used here are α = {0.25, 0.5}. Typically, a gray
color for H is used based on the color of fog on land. However,
to emulate underwater haze with higher fidelity, the Jerlov
water types [33] are used with their associated light down-
welling and back-scattering attenuation factors to tune H to
a more realistic color. For our experiments, ambient light at
depth d of 10m is assumed. Jerlov water types w = II, 1C

are considered, i.e., murky oceanic water and coastal water
with low amounts of sediments. Based on our experience, they
offer challenging visibility conditions but they are within the
operational range for divers. With these values of α,w and d,
values for H are computed based on the Jerlov classification.

5) Image/Video Compression: Underwater robots are em-
ployed in practice in a wide-range of applications, respectively
for a wide range of different tasks even within a particular ap-
plication. Hence, different bandwidth values or CPU resources
are typically allocated to each system component depending
on the mission, respectively a task within the mission. It
is hence common practice that compression algorithms are
applied to the images, respectively video frames during real
missions to free resources for other processes as well as for
data storage, respectively for data transmission in the case of
Remotely Operated Vehicles (ROV). Often, motion JPEG is
used to optimize for coding speed and frame-by-frame quality
over bitrate. To study image degradation effects, compression
quality values of q = {60, 20} are used here.

B. Geometry-Contextual Perturbations

In underwater environments, ambient light attenuates expo-
nentially with depth d and even further with the distance z
between the target object (here, the diver) and the observer
(here, the camera on the AUV). However, the attenuation
factor K(d) due to the depth can typically be ignored because
the attenuation factor β(λ, z) due to the distance z and the
wavelength λ is 2 to 5 times greater [33]. Note that we
can typically assume an observer-object viewing direction of
approximately θ = 90◦ (Fig. 1).

To obtain z or the “depth” relative to the image, Disp-
netC [40] is used. It is a 100% dense disparity estimator
with ≈ 4% error in the KITTI Stereo 2015 benchmark.This
accuracy is more than enough for our purposes, and the method
has proven to perform well in underwater scenarios [41].
Nonetheless, the estimated z is refined through a bilateral
filter to keep the image edge consistency (Fig. 6(g)). Based
on this value, the geometry-contextual image transformations
presented in the following sections can be applied.

1) Underwater Haze: A popular haze model used in ter-
restrial robotics is based on the following equation:

I(x) = J(x)t(x) +B(1− t(x)) (1)

t(x) = e−β(λ)z(x) (2)

where I(x) is the image received by the camera sensor, J(x)
is the original image (scene radiance), which is exponentially
attenuated by the transmission matrix t(x) at every pixel x
as range (distance to object) increases and depending on the
wavelength λ. B is the ambient light. As mentioned, z(x) is
computed here by DispnetC. It is refined with a bilateral and a
Gaussian filter to avoid discontinuity effects. But a physically
realistic haze model is more complex in the underwater case
[33]. In summary, a different transmission matrix is needed
for each J(x) and B.
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(a) Original image (b) Gaussian blur, σ = 3 (c) Brightness shift, b = 0.5 (d) GW white balance, t = 0.7

(e) JPEG compression, q = 20% (f) Alpha blend, w = 1C,α = 0.25 (g) Depth map from stereo (h) Underwater haze

Figure 6: Examples of underwater image perturbations: (a) Original image (b–f) Pixel-based (g–h) Geometry-contextual.

I(x) = J(x)tJ(x) +B(1− tB(x)) (3)

tJ(x) = e−β(λ)z(x) (4)

tB(x) = e−β(w,d)z(x) (5)

The underwater haze model from Eq. 3 is hence combined
with the range map z(x). This allows to apply systematic and
controlled image degradations to the real world data in form
of physically realistic underwater haze.

For the values of B and its corresponding tB(x), the same
values as for the underwater alpha blend α = 0.25 are
used (Sec. III-A). For tJ(x), attenuation coefficients β(λ) are
chosen to allow visibility in a distance of approximately 10m,
which can be considered to be a reasonable maximum opera-
tional distance in underwater human-robot interaction. In terms
of Jerlov water types, this corresponds to β = [0.5, 0.15, 0.90]
for the red, green and blue channel respectively.

IV. EXPERIMENTS AND RESULTS

A. Dataset and Setup

The presented approach to U-HRI originated within the
EU-project ”Cognitive autonomous diving buddy (CADDY)”.
Major efforts were devoted in this project to the collection of
data including experiments on the use of underwater gestures.
Concretely, data was recorded in open sea as well as in
indoor and outdoor pools in three different locations, namely
in Biograd na Moru (Croatia), at the Brodarski Institute in
Zagreb (Croatia), and in Genova (Italy). The data is divided
into 8 scenarios representing different diver missions and field
experiments. The scenarios named Biograd-A, Biograd-B, and
Genova-A represent trials that were mainly organized for data
collection; they hence feature a high number of samples. The
other scenarios Biograd-C, Brodarski-A to D cover experi-
mental or real diver missions. A detailed discussion of the
number of samples and of the environmental conditions of

each scenario is provided in [39]. For the evaluation of the
different ML-methods here, they are trained according to the
partition of the data shown in Table II.

Model A Model B Model C Model F

Training Sets Biograd
A,B

Genova A Brodarski
A,C

All
scenarios

Samples mean 338 415 222 1156
Samples median 151 294 206 792

Table II: Partioning of the data for training (samples mean and median are provided per
class).

Each method described in Sec. II-A has four Model X
versions. The partition is made to gather samples with similar
environmental conditions (location, light, etc.) and to observe
how the methods perform against unseen types of data. Sam-
ples from Biograd C, Brodarski B & D are only used as test
sets.

The complete dataset contains 18,478 images (9,239 stereo
pairs) that represent 16 gesture classes. A split of 80%-20%
for training and validation sets is used for each model, except
for Model F. This splitting criterion is applied to each gesture
class. The test sets comprise all scenarios that are not included
in the training. All classifiers with the exception of Model C
have samples of all gestures. Model C, being trained only on
the Brodarski A and C scenarios, is trained and tested only
on 9 gestures. Then, Model F (F stands for “full”) is trained
with samples from all scenarios according to a standard split of
70%-20%-10% following the data distribution per scenario. As
mentioned, the data and its distribution is described in detail
in [39].

B. Setup of the ML-Methods

Following settings are used for the ML-methods that are
evaluated here as possible approaches for underwater gesture
recognition.
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For the classical machine learning approach, i.e., MD-
NCMF [42], 15 trees are used for the ensemble forest. The
tree branches stop splitting when the number of samples is 20
or less to avoid overfitting. Each node has a subset of feature
centroids of 3. The engineered features used are ORB, Harris
Corners, Edge Based Regions (EBR), Difference of Gaussians
(DoG), Harris Affine Laplace and DAISY.

For the FC-CNN w/ ResNet-50, the default parameters
of [30] are not strictly followed. The reason is to train the
network using a cyclic learning rate implemented in the
Fast.ai library, which has been found in the literature to
yield better results. The other parameters are set as follows:
epochs = 10, maximum learning rate m lr = 10e−2, and
batch size bs = 32.

For SSD w/ MobileNets, Faster R-CNN w/ ResNet-101 and
Deformable Faster R-CNN, the default parameters of their
respective publications and of the related source code are used.
Only the training convergence is monitored in order to choose
the training iteration with the best validation performance.
Likewise, a minimum Intersection over Union IoU of 0.5 is
set.

All methods are real-time capable. Their run-times are
so small that the differences among them are completely
negligible compared to the computation needs of all the other
processes running on the system during a mission.

C. Baseline Performance with Only Real-World Data Training

In this experiment, the models trained according to Table II
are evaluated using the original data without artificial image
perturbations. The results with respect to accuracy are shown
in Table III. Deformable Faster R-CNN and Faster R-CNN
have the lead when the complete dataset is used (Model-F),
followed by FC-CNN with an accuracy of 95%. This is an
indication that if the amount and the variance of data is high,
direct classifiers offer top performance, which can save efforts
and time dedicated to manually segmenting object regions on
the images. SSD MobileNet still has a better performance than
the MD-NCMF as a classical ML approach, but it drops below
90%. Note that SSD is mainly known for its superior speed
and suitedness for embedded systems. MD-NCMF ranks last
with an accuracy below 80%.

For the Models A to C, which are trained with specific
scenario data, it can be seen that the performance drastically
changes. More precisely, following observations can be made.

Deformable and standard Faster R-CNN still have the
lead (except Model B), but MD-NCMF as classical method
offers competitive results and it outperforms FC-CNN and
SSD MobileNets. Thus, deep visual models suffer a great
performance drop, namely ≈ 40%, while MD-NCMF drops
only ≈ 20%. This strongly indicates that DL techniques are
highly dependent on the amount of data and how representative
it is of the real-world class distribution.

For Model B versions, MD-NCMF performs better than
the rest. A reasonable explanation for this cannot be done
without a close examination of the data and a visualization of
the learned features by the deep models. It can be assumed
that data used to train Model B, i.e., from Genova-A, is not

sufficient for the deep models to learn strong features despite
providing more samples per class than Model A and B (see
Table II), and that the human-engineered features used for
MD-NCMF are simply more representative.

The classical visual model provides a more stable perfor-
mance across the test sets. The most representative example
is when Model-C versions are benchmarked against Genova-
A samples, then accuracy goes down for all methods but
especially for the deep learning based ones. So, deep models
have strong performance drops for particular tests; this holds
especially for FC-CNN. Our hypothesis is that this is the case
as FC-CNN is the only method without a region proposal
step within its architecture that helps refining the classification
process.

D. Robustness under Artificial Image Perturbations

Table IV shows the performance of all visual models tested
with samples on which the image perturbations described in
Sec. III are applied. Only Model F versions are evaluated, i.e.,
visual models trained with the complete dataset. Their baseline
accuracy from the previous experiment in Sec. IV-C is shown
for comparison. Based on this, Table IV shows the numerical
values of the absolute accuracies as well as the normalized
accuracies with respect to the baseline performance in form
of a color code.

Note that the models are trained with the original sensor
images and none of the image degradations is used to augment
the training data. Deformable and standard Faster R-CNN
show good robustness against the majority of the degradations,
except high levels of Gaussian blur, which affects all other
models as well. They also both exhibit similar performance
drops for every image degradation.

The performance of the rest of the models degrades more
substantially, especially from haze effects, which are emulated
by alpha blend and our proposed method for producing artifi-
cial underwater haze using range information. MD-NCMF is
completely ineffective at high levels of alpha blend. We can
conclude that haze effects, which are the most typical natural
underwater phenomena, are really important to consider when
designing an underwater object detector.

For the deep visual models, JPEG compression has almost
no effect. This holds even at a very low quality level of
10%. Grayworld white balance especially affects FC-CNN
and SSD, indicating that the grayworld assumption is tailored
towards terrestrial robotics and users have to pay attention
to camera presets for underwater applications. Increasing
brightness has a bigger effect than lowering it, as saturation
levels may be reached quicker. As mentioned, significant blur
affects all models. MD-NCMF is affected by almost all image
perturbations, which supports the idea that DL approaches
learn important strong features given enough data that may
be hard for a human to mathematically and algorithmically
conceptualize.

V. CONCLUSIONS

A fully integrated approach to Underwater Human Robot
Interaction (U-HRI) was presented. It features a front-end
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MD-NCMF FC-CNN w/ ResNet-50
Mod-A Mod-B Mod-C Mod-F Mod-A Mod-B Mod-C Mod-F

Biograd-A 0 0 0.72 0.52 0.81 0 0 0.42 0.5 0.99
Biograd-B 0 0 0.71 0.51 0.84 0 0 0.21 0.51 0.99
Biograd-C 0.74 0.75 0.68 0.85 0.53 0.45 0.51 0.97

Brodarski-A 0.76 0.76 0 0 0.78 0.52 0.24 0 0 0.95
Brodarski-B 0.81 0.79 0.71 0.73 0.63 0.12 0.68 0.86
Brodarski-C 0.7 0.65 0 0 0.77 0.57 0.48 0 0 0.98
Brodarski-D 0.69 0.61 0.55 0.71 0.71 0.48 0.53 1

Genova-A 0.52 0 0 0.48 0.69 0.34 0 0 0.24 0.89
All scenarios 0.56 0.64 0.46 0.77 0.45 0.36 0.43 0.95

SSD w/ MobileNets Faster R-CNN w/ Resnet 101 Deformable Faster R-CNN
Mod-A Mod-B Mod-C Mod-F Mod-A Mod-B Mod-C Mod-F Mod-A Mod-B Mod-C Mod-F

Biograd-A 0 0 0.35 0.38 0.84 0 0 0.63 0.65 0.99 0 0 0.65 0.64 0.99
Biograd-B 0 0 0.29 0.44 0.88 0 0 0.51 0.71 0.99 0 0 0.54 0.7 1
Biograd-C 0.36 0.31 0.4 0.82 0.74 0.58 0.67 0.98 0.74 0.57 0.67 0.98

Brodarski-A 0.38 0.3 0 0 0.87 0.72 0.48 0 0 0.97 0.73 0.49 0 0 0.97
Brodarski-B 0.33 0.29 0.48 0.84 0.72 0.52 0.85 0.96 0.74 0.5 0.87 0.97
Brodarski-C 0.32 0.28 0 0 0.86 0.79 0.56 0 0 0.99 0.78 0.6 0 0 0.99
Brodarski-D 0.29 0.26 0.36 0.79 0.82 0.55 0.68 0.99 0.84 0.54 0.72 0.99

Genova-A 0.25 0 0 0.23 0.75 0.69 0 0 0.44 0.94 0.66 0 0 0.41 0.96
All scenarios 0.28 0.361 0.29 0.85 0.59 0.49 0.52 0.98 0.61 0.5 0.53 0.98

Table III: The accuracy (0 1) of the visual models in all scenarios according to Table II.

MD-NCMF FC-CNN w/
ResNet-50

SSD w/ MobileNets Faster R-CNN w/
Resnet 101

Deformable Faster
R-CNN

Baseline 0.77 0.95 0.85 0.98 0.98

Blur (σ = 1.5) 0.61 0.8 0.63 0.85 0.95
Blur (σ = 3) 0.19 0.61 0.28 0.65 0.7

Brightness (b = 0.5) 0.63 0.76 0.69 0.93 0.95
Brightness (b = 2) 0.49 0.47 0.4 0.77 0.88

White balance (GW,t = 0.7) 0.11 0.48 0.46 0.79 0.82
White balance (SB,t = .05) 0.73 0.86 0.79 0.94 0.96
JPEG compression (q = 60) 0.7 0.92 0.81 0.96 0.98
JPEG compression (q = 20) 0.4 0.83 0.73 0.87 0.91

UW alpha blend
(w = II, d = 10, α = 0.5)

0.29 0.38 0.31 0.91 0.96

UW alpha blend
(w = II, d = 10, α = 0.25)

0.07 0.3 0.28 0.82 0.89

UW alpha blend
(w = 1C, d = 10, α = 0.5)

0.24 0.33 0.26 0.85 0.95

UW alpha blend
(w = 1C, d = 10, α = 0.25)

0.03 0.17 0.17 0.76 0.87

Haze (w = II, βR,G,B =
[0.5, 0.15, 0.90])

0.42 0.49 0.4 0.85 0.95

Haze (w = 1C, βR,G,B =
[0.5, 0.15, 0.90])

0.15 0.33 0.26 0.79 0.89

Table IV: The accuracy of each visual model under all image perturbations. In addition to the numerical value of accuracy shown in each cell, the cell color (0 1) illustrates
the normalized value relative to the baseline accuracy to highlight performance variations and robustness.

for gesture recognition combined with a back-end with an
interpreter for a language derived from the existing standard
gestures for communication between human divers. The ap-
proach enables a diver to communicate commands as well as
complex mission specifications via gestures to an underwater
robot.

The wide range of environment conditions, especially with
respect to visibility conditions, pose a severe challenge for
underwater vision in general and the gesture recognition in
particular. Hence, different Machine Learning (ML) methods
in form of four Deep Learning (DL) approaches and a more
classical ML method are investigated with respect to their
robustness for the gesture recognition. In addition to the
exhaustive test with real-world data from different tests in
pools and during field trials, artificially degraded image data
is used. To this end, we presented among others a physically
realistic way to use range information for adding underwater

haze in controlled ways.
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