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Kinetic and hydrodynamic regimes in multi-particle-collision dynamics
of a one-dimensional fluid with thermal walls
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We study the nonequilibrium steady states of a one-dimensional fluid in a finite-space region of length L.
Particles interact among themselves by multi-particle collisions and are in contact with two thermal-wall heat

reservoirs, located at the boundaries of the region. After an initial ballistic regime, we find a crossover from
a normal (kinetic) transport regime to an anomalous (hydrodynamic) one, above a characteristic size L,. We
argue that L, is proportional to the cube of the collision time among particles. Motivated by the physics of
emissive divertors in fusion plasma, we consider the more general case of thermal walls injecting particles with

given average (nonthermal) velocity. For fast and relatively cold particles, short systems fail to establish local
equilibrium and display non-Maxwellian distributions of velocities.
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I. INTRODUCTION

Statistical systems driven away from equilibrium by exter-
nal agents, such as concentration and/or thermal gradients,
forced flows, etc., are ubiquitous in nature and in technologi-
cal applications. Especially in far-from-equilibrium regimes,
simulation of model systems is a basic tool to gain in-
sight into the fundamental properties of the system under
study. Molecular dynamics is the most natural approach,
but methods based on effective stochastic processes may be
a computationally convenient alternative. In particular, the
multi-particle-collision (MPC) dynamics can be considered
as a mesoscale simulation method where particles undergo
stochastic collisions. The implementation was originally pro-
posed by Malevanets and Kapral [1] and Kapral [2] and
consists of two distinct stages: a free-streaming and a colli-
sion one. Collisions occur at fixed discrete time intervals, and
space is discretized into cells that define the collision range.
The MPC dynamics is a useful tool not only to investigate con-
crete systems such as polymers in solution, colloidal fluids,
etc., but also to address fundamental problems in statistical
physics and, in particular, the effect of external sources.

In this paper, we investigate the transport property of a
one-dimensional gas driven off equilibrium by different reser-
voirs, modeled as thermal walls. This general setup has been
considered very often in the literature [3,4] with several pos-
sible applications [5]. For the discussion that follows, it is
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worth recalling that the prediction of nonlinear fluctuating
hydrodynamics [6,7] for one-dimensional (1D) systems, con-
strained by three global conservation laws, is that transport
is generically anomalous and belongs to the Kardar-Parisi-
Zhang (KPZ) dynamical universality class. This is confirmed
by other approaches including hydrodynamics [8,9], kinetic
theory [10-12], and many numerical simulations [13-15].
However, for finite systems some deviations are found, and
it is thus of interest to clarify which are the different transport
regimes (see, e.g., Refs. [16,17] for an up-to-date account). In
this framework, simple kinetic models are a valuable testbed.

Besides the general theoretical motivations, our interest is
also in application of the technique in plasma physics [18,19].
We wish to investigate the MPC method as a tool to study
nonequilibrium properties of fusion plasma which are subject
to large temperature gradients. This is a relevant issue in the
modeling of plasma transport in the direction parallel to the
magnetic field at the edge of magnetic fusion devices where
hot plasma regions are connected to a wall component. In
this case a significant temperature gradient along the field
line sets in between the hot region, which acts as a heat
source, and the colder plasma region at the wall, which acts
as a sink. Deviations from the classical Fourier law have
been observed (see, for example, Refs. [20,21] and references
therein) together with transitions from strongly collisional
to collisionless regimes, exhibiting different heat conduction
features. We want to point out that accounting for these kinetic
effects by a fluid model of heat transport is of primary impor-
tance for implementing realistic and efficient hydrodynamic
simulations. In this perspective, what is contained in this paper
can be considered as a worthwhile evolution along the line
of simplified 1D fluid models, already adopted for studying
thermal transport in plasmas [22-24]. For the sake of brevity,
we adopt for such a model the label 1D1V used sometimes in
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the literature, meaning that we consider particles constrained
on the line with one velocity component along it.

Besides this, in the edge plasma of magnetic fusion de-
vices, several phenomena, such as, for example, neutral beam
injection, are related to the injection of hot and/or cold plasma
particles. We refer, for example, to hot sources caused by ex-
ternal heating or to particular regimes with emissive divertor
targets on the wall due to the high temperatures associated
with steady-state loads, as expected, for example, on next-step
large fusion devices [25,26]. Here, we will thus attempt to
model this situation, by generalizing the usual thermal-wall
method to include the possibility of injecting particles with an
average nonthermal velocity. To our knowledge, this case has
not been treated in the statistical physics literature, and it has
thus an interest by itself.

The outline is as follows. In Sec. II we recall the defini-
tion of the fluid dynamics and the thermal walls. Section III
discusses the crossover from the so-called kinetic (diffusive)
regime to the anomalous, hydrodynamic one. The effect of
general thermal walls is illustrated in Sec. IV with reference to
the specific case of shifted Maxwell-Boltzmann distributions.

II. 1D1V MPC WITH THERMAL WALLS

For a detailed description of the MPC simulation scheme
we refer the reader to Refs. [18,19]. Here, we just summarize
the basic ingredients. We consider an ensemble of N point
particles with equal masses m located in a finite-space region,
[0, L], partitioned into N, (fixed) cells of size a, L = N_a.
The density of particles, d = N/L, is fixed, while all physical
quantities, without prejudice of generality, are set to dimen-
sionless units, namely, a = 1, m = 1, and (for the isolated
system) E,. = 1, the latter denoting the total kinetic energy of
the fluid of particles.

The MPC is performed at regular time steps, separated by
a constant time interval of duration §¢: The velocity of the jth
particle in the ith cell is changed according to the update rule
Vjold —> Vjnew = @jW; + b;, where w; is randomly sampled
by a thermal distribution at the cell temperature 7;, while
a; and b; are cell-dependent parameters, determined by the
condition of total momentum and total energy conservation in
the cell [18]. After the collision, all particles freely propagate,
ie.,

Xt 4 81) = x;(t) + v;(1)ét, (1)

and they may move to a new cell.

The nonequilibrium state is imposed by two thermal walls
[27] acting at the edges of the space region: Any particle
crossing the boundaries of the interval [0, L] is reinjected in
the opposite direction with a random velocity extracted form
the Maxwell-Boltzmann distributions

v o _.»2
ev/ZTU

v o
po(v)=70 o V) =—e VT (2)

L

Reinjected particles propagate with their new velocities for
the remaining time up to the next collision. Since arbitrar-
ily large values of v are admitted, a particle may reach the
opposite boundary during this time, although such a process,
in practice, becomes extremely unlikely, i.e., negligible, for

sufficiently large values of L, considering that in the adopted
dimensionless units the typical value of v is O(1).

The heat fluxes at the two boundaries, Qp and Q;, respec-
tively, are computed as the average kinetic energy exchanged
by particles interacting with the walls [3,4]. The relaxation
of the fluid to a steady state, i.e., Oy ~ —Q; = Q, is mon-
itored by controlling the convergence of the running time
averages of the fluxes. The thermal conductivity is defined
as K = Q/(AT/L), where AT = Ty — T;. Typically, in or-
der to speed up the relaxation to a steady state, the initial
velocities of the particles in cell i are randomly extracted
from a Maxwell-Boltzmann distribution at temperature 7; =
T + (Ty — Tp)i/L, i.e., according to the linear temperature
profile compatible with Fourier’s law.

The relevant kinetic parameters of the MPC protocol are
the particle mean free path ¢, which, in a uniform system,
is proportional to the thermal velocity of the fluid vy = /T,
according to the formula ¢ ~ vr§t , and the thermal conduc-
tivity, which is expected to be proportional to the typical
kinetic energy of the fluid, according to the formula K =
Curt ~ v}8t, C being the specific heat at constant volume.

We conclude this section by making the reader aware of
the main advantage of MPC simulations, with respect to those
typically performed in nonlinear lattice models. The possibil-
ity of observing crossover between different transport regimes
in the latter class of models depends on the fine-tuning of
various simulation parameters, e.g., energy density and cou-
pling with the thermal reservoirs. These features are strongly
model dependent, because the crossover effects are ruled by
the lifetime of typical nonlinear excitations, influencing the
stationary transport process. As we show in what follows, in
MPC simulations one can control different regimes essentially
by a single natural parameter, the collision time §¢, which is
straightforwardly related to the mean free path of the fluid
particles, weak and strong collisional regimes corresponding
to large and small values of §¢, respectively.

III. FROM KINETIC TO HYDRODYNAMIC REGIMES

The kind of stationary heat transport phenomenon one is
dealing with is characterized by the scaling of Q with the
system size L. Diffusive transport, i.e., Fourier’s law, yields
O « L~'. For the 1D1V MPC, based on general theoretical
arguments [6,7] we expect that transport would be anomalous
and belonging to the KPZ universality class, as indicated by
equilibrium correlation functions [18]. In the nonequilibrium
setup used in this paper this would imply that

QO(L’ZB, L — oc. 3)

However, this asymptotic anomalous regime may be even-
tually attained going through a crossover from a standard
kinetic, i.e., diffusive, regime [17,28,29]. This scenario can
be rationalized by assuming that the flux is made of two
contributions

Q= 0n+ 0, “

where Qp is the “normal” part of the flux that can be written
as
q

O =T

&)
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(with g and r being suitable parameters), while Q4 is the
anomalous part that, for large enough values of L, should scale
as

2

b\3
QA ~ <Z> ) (6)

where b ~ O(1) is a characteristic length [17]. Formula (5)
is suggested by kinetic theory to account for the crossover
from the initial ballistic regime to a diffusive one (see, e.g.,
Ref. [30] and Sec. 3.4 in Ref. [3]). It implies that up to system
lengths of the order of the mean free path L ~ ¢, transport is
essentially ballistic, with a flux independent of L, while for
L> 0,0y~ +.

According to the above formulas, for large enough L one
can define a crossover length L, from the normal to the
anomalous regime when Qy & Oy, i.e.,

63
Ly~ (ﬁ) ~ 3. 813, (7

Altogether, upon increasing L at fixed ¢, one should see a
first ballistic regime followed by a kinetic (diffusive) one until
eventually the asymptotic hydrodynamic regime is attained.
It should be, however, remarked that the different regimes
are observable only provided that the relevant length scales
are widely separated, in such a way that the range of scales
between the ballistic and anomalous regimes is large enough,
ie.,l K L,.

The numerical results reported in Fig. 1(a) provide a clear
confirmation of this scenario. The energy flux Q(L) displays a
crossover from diffusive to anomalous scaling upon decreas-
ing the collision time 4¢. In Fig. 1(b) we also show that for
low collisionality and small L, the thermal conductivity K,
obtained for different values of &z, tends to collapse onto a
single curve after rescaling K and L by é¢, or, equivalently,
by £. This confirms that in the kinetic regime, ¢ is the only
relevant scale as expected.

A more refined analysis of the data, supporting ansatz (4),
can be obtained by estimating the two contributions in Eq. (4).
This is accomplished by fitting rescaled conductivity data with
the largest &t via the functional form % suggested by Eq. (5),
with A and B being fitting parameters.

As seen in Fig. 1(b) (dot-dashed line) the fitting is very
accurate, meaning that the anomalous contribution to the con-
ductivity is negligible over the considered length range. From
the fitting function, one can obtain straightforwardly the best
estimate of Qy and thus the anomalous part as Q4 = Q — QOy.
As shown in Fig. 2, a power-law fit of Q4 indicates excellent
agreement with the expected scaling [Eq. (3)] on a remark-
ably large range of about 3 decades in L. To our knowledge,
this is one of the most solid numerical confirmations of the
predictions of fluctuating hydrodynamics. We also note that
the characteristic length b is found to be independent of the
collision parameter.

The difference between the two regimes can be further
appreciated also in the temperature and density profiles com-
puted as averages of v} and of the number of particles in
each one of the N, cells. In order to deal properly with the
large-L limit, we plot the temperature and the density profiles,
T (x) and n(x), respectively, as a function of rescaled variable
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FIG. 1. Simulations of MPC fluid with density d =5, Ty = 4,
and 7T; = 2. (a) Scaling of the energy fluxes Q as a function of the size
L for increasing collision times §t = 0.1, 0.5, 1.0, 2.0, 5.0, and 10
(bottom to top); the upper and the lower dashed lines correspond to
the scaling of normal and anomalous transport, respectively. (b) Scal-
ing of the heat conductivity K = QL/AT with the system size L;
the dot-dashed blue line is a fit of the data with 8¢ = 10 with the
functional form 34.2x/(12.2 + x); see Eq. (56) in Ref. [3].

x = i/L, where i is the cell index. This representation allows
one to conclude also that local equilibrium is attained, since
the product T (x)n(x) is x independent, as expected for an ideal
gas (data not shown).
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FIG. 2. Scaling of the anomalous component of the energy cur-
rents Q4 ford =5, Ty = 4, and T; = 2 and different collision times.
The flux Q, is computed subtracting the normal component Q4 as
detailed in the text. The dashed line is a best fit of the data with
8t =2, yielding a decay Q4 o< L=0-603)
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FIG. 3. Simulations of MPC fluid with density d =5, T) = 4,
and 7; = 2. Kinetic regime (6¢ = 10): temperature (a) and density
(b) profiles for L = 160, 320, 1280 (bottom to top); dashed lines are
fits with the function in Eq. (8) yielding 7Ty = 3.9, T, = 2.0. Hydro-
dynamic (6t = 0.5) regime: temperature (c) and density (d) profiles
for L = 640, 1280, 2560; the inset in (c) shows the singularity at the
right edge of the temperature profile, the dashed line corresponding
to a power-law behavior T'(x) ~ (1 — x)** (see text for details).

In Fig. 3 we report these profiles for two different values of
the collision time and different sizes L. For L < L, the tem-
perature profiles are in good agreement with the prediction of
Fourier’s law, with thermal conductivity given by the kinetic
theory, namely, K(7T') o< T. In fact, solving the stationary heat
equation [K(T)T'] = 0 on the domain [0, L] with imposed
boundary temperature 7'(0) = Ty and 7' (1) = T, one obtains

T(x) = [T + (17 — T2)x]"*. ®)

As shown in Fig. 3(a) this functional form accounts for the
measured shapes for large enough L, apart from the temper-
ature jumps at the edges, that are a typical manifestation of
boundary impedance effects. A similar situation was found
also for the hard-point-gas (HPG) model [31,32]. Also, con-
siderations of the same type apply to the density profiles in
Fig. 3(b), in view of the relation T (x)n(x) & const.

In the hydrodynamic regime, i.e., L > L,, the temperature
profiles exhibit instead the typical signatures of anomalous
transport, signaled by singularities at the boundaries [see
Figs. 3(c) and 3(d)]. For instance, the inset in Fig. 3(c) shows
that 7'(x) ~ (1 — x)* for x — 1. This property is traced back
to the fact that steady-state profiles should satisfy a fractional
heat equation [33]. The parameter u has been termed the
meniscus exponent u, as it described the characteristic cur-
vature close to the edges. In the simulations here, u© ~ 3/4, a
value already found for other models with reflecting boundary
conditions [33,34].

IV. GENERAL THERMAL WALLS

Having in mind the possibility of simulating the injection
of hot and/or cold particles into a fusion plasma by the MPC
protocol, in this section we describe how one can cope with
this task by introducing suitable and more general boundary
conditions. Within the adopted thermal-wall scheme this can
be achieved by changing the distributions of reinjected parti-
cles at one boundary of the space region. For instance, it can
be assumed that the distribution py on the left boundary is
replaced by a function of the general form [35]

po = vH(v).

By imposing the condition fooo vH(v)dv = 1, we ensure that
the net flux of particles vanishes [35]. This distribution can be
characterized by two parameters, namely, the typical average
velocity of the injected particles

oo
v0=/ vzH(v)dv
0

and the typical velocity variance

o.¢]
(Av)2 = /0 v3H(v)dv — v%,

which measures the source spread [36].
As a specific example, here we consider a shifted
Maxwellian distribution

H(w) = Ho(V)e ™"/, ©

parametrized by the velocity V, where Hj is a suitable
normalization factor. Shifted Maxwellian sources are
implemented in kinetic models to account for drift speed
of plasmas [37]. Manifestly, both vy and Av are functions
of V and Tj. In the following simulations, we generate
random velocities drawn from (9) and use V and Tj as control
parameters, reporting also the corresponding values of vy and
Av for comparison [38].

In Fig. 4 we present the results of MPC simulations for
different values of 8 and V. We first of all note that, even
setting equal temperatures at the thermal walls, i.e., To = Ty,
the system is out of equilibrium and there is a net flux of
energy and particles. For what concerns the scaling of the
flux with the size L, the effect of these thermostats is pretty
similar to the standard case discussed in the previous sec-
tion. As shown in Fig. 4(a), in the case of relatively large
collisionality the anomalous scaling [Eq. (3)] is attained. For
weak collisionality [Fig. 4(b)] the diffusive scaling is found
in the considered range. Although not observed in the data,
we expect the same crossover described above beyond the
hydrodynamic scale. In both cases, as expected, one observes
that the magnitude of the current increases upon increasing
the speed of the injected particles. The above results are not
obvious and indicate that regardless of the nature of the baths
the overall scenario is mostly dictated by bulk properties.

To better appreciate the effect of this kind of thermal wall,
we measured the position-dependent steady-state distributions
f(x,v) in phase space for a moderate collisional parameter
8t = 10 (see Fig. 5). We consider two cases:

(1) The typical entry speed vy is of the same order of
the thermal velocity vy ~ Av = /Ty [Figs. 5(a) and 5(c)]. In
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FIG. 4. Simulations with thermal wall given by Eq. (9) on the
left-hand boundary for different values of the parameter V, with 7 =
T, =3,d=5,and (a) 6t =0.1 or (b) 6t =5.V =1,2,4, and 8
from bottom to top. The dashed lines denote the asymptotic decay
corresponding to normal and anomalous transport.

this case the situation is very similar to the standard thermal
bath: Temperature and density gradients are formed, while
velocity distributions are Maxwellian even relatively close to

-10 -5 0 5 10

the left boundary, thus indicating that local equilibrium has
been achieved pretty fast.

(2) Fast, i.e., “cold,” particles are injected; that is, the
typical entry speed vy is larger than Av [Figs. 5(b) and 5(d)].
In this case one observes that the beam of particles entering
from the left wall propagates, while experiencing the effect of
the interactions with the cloud of almost-thermalized particles
only in the center of the space region. As a result, the velocity
distributions are strongly non-Maxwellian and remain double
humped in the first half of the space region.

Adopting a kinetic point of view, we expect that the typical
size of the region in which the fluid is not in local equilibrium
would be of the order of mean free path £. For the simula-
tions above, we checked that upon increasing L such a region
remains indeed finite. On the other hand, in anomalously
conducting systems, a lack of thermal equilibrium close to the
sources is found [39], and we cannot exclude that the same
occurs here for larger systems.

To conclude this section, we briefly discuss the dependence
of fluxes and profiles on the thermal-wall parameters. In
Fig. 6(a) we plot the contour levels of the energy flux Q as a
function of V and Tj keeping the other parameters fixed. As
remarked above, Q increases with V as intuitively expected.
However, there is an interesting feature occurring for small
enough Ty and V. For Ty < T, and small V, injected particles
are still relatively slow and thermalize quickly, so energy
mostly flows from right to left, O < 0. The corresponding dis-
tributions and profiles 7' (x) and n(x) are shown in Figs. 6(b)
and 6(d), where it is seen that T is decreasing. However,
increasing the speed of the injected particles leads to a sign
reversal of the current, Q > 0, and of the associated gradients

-10 -5 0 5 10

FIG. 5. Simulations with thermal wall defined by Eq. (9). (a) and (b) Particle distributions f(x, v) in the steady state, and (c) and (d) their
cuts at different positions. The arrows indicate the typical injection velocity vy; Ty = 2, T, = 2, L = 160, density d = 5, and 67 = 10. (a) and
(c) Injection of slow particles (V = 0.5), with vy = 1.87 and Av = 1.0. (b) and (d) Injection of fast and cold particles (V = 4), with vy = 5.81
and Av = 1.24. Note that even close to the right bath, x = L, the velocity distribution significantly deviates from a Maxwellian.
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FIG. 6. Energy current reversal. (a) Contour plot of the flux Q as a function of the thermal-wall parameters V and 7p; simulations with
other parameters fixed at 7, = 2, L = 160, d = 5, and 6 = 10. The dashed red line is the curve Tp = 2 — V2, and the energy flux is negative
on the left side of it (see text for details). (b) and (c) The velocity distribution functions f(x, v), and (d) and (e) temperature and density profiles
(lower and upper curves, respectively). (b) and (d) are for the parameter values corresponding to 7o = 1.6 and V = 0.2, and (c) and (e) are for
those corresponding to 7, = 1.6 and V = 1 [see the two white dots in (a)], showing change in the sign of the gradients.

[Figs. 6(c) and 6(e)]. A rough estimate of the conditions where
this inversion takes place can be obtained by equating the
kinetic temperature 7}, of the rightmost reservoir with (twice)
the kinetic energies of the injected particle, which roughly
gives T ~ Ty + V2. As seen in Fig. 6(a) this is in agreement
with the numerical data. The above estimate (dashed red
line) indeed separates the two regions of the parameter plane
having different signs of the energy current. On the basis of
this observation, one may argue that the velocity V can be
used as a further control parameter of the flux direction.

V. CONCLUSIONS

In this paper, we have considered properties of nonequilib-
rium steady states and transport in a one-dimensional (1D1V)
fluid in a finite-space region of length L undergoing MPC
dynamics and interacting with thermal walls.

For Maxwellian walls we demonstrated a crossover from
a normal (kinetic) transport regime to an anomalous (hydro-
dynamic) one, above a characteristic size L,. Since L, grows
cubically with the collision time §¢, the anomalous regime
may hardly be detected with the sizes typically used in simu-
lations. So we argue that a standard diffusive description will
account for the observation for short enough systems. Alto-
gether, the results nicely fit in the general framework observed
for other models [17,28,29]. They call for a critical consider-
ation of the usual assumptions made in kinetic theory, since
memory effects and a long-time tail may play a major role in
predicting heat and particle transport in low dimensions.

A natural question is whether the same scenario occurs in
two-dimensional fluids. Here, the expectation is that in the hy-
drodynamic regime, anomalous transport would be associated
with a logarithmic divergence of the conductivity with size.
For the 2D MPC dynamics this is confirmed by equilibrium
simulations [19]. Thus in principle a similar crossover sce-
nario should occur, although it may be hard to observe in view
of such a weak logarithmic dependence.

In the second part, we considered the more general case of
thermal walls injecting particles with given average (nonther-
mal) velocity. We showed that the kinetic and hydrodynamic
regimes are observed confirming that transport is dominated
by bulk correlations in both cases. For injection of fast and
relatively cold particles, short systems fail to establish local
equilibrium and display non-Maxwellian distributions of ve-
locities. We also showed that the injection velocity may be
used to control current reversal.

To conclude, let us comment on the perspective of applying
the model to confined plasma [40]. This requires considering
the effect of the self-consistent electrostatic field, the solu-
tion of the associated Poisson equation. As already noticed
in Refs. [41,42], the case of equal masses and charges in
one dimension can be mapped in the so-called ding-dong
model [43]. The latter consists of a one-dimensional array
of identical harmonic oscillators (each one with frequency
w,, the plasma frequency) undergoing hard-core collisions
[43]. Nonequilibrium and transport properties of such a model
have been investigated in detail [41-43], and normal diffusive
transport has been demonstrated, as expected since energy
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remains the only conserved quantity. One may thus argue
that adding MPC dynamics will not affect significantly such
a property and that the hydrodynamic regime will not be
present. However, for finite systems the situation may be more
subtle. Actually, the field introduces another relevant time
scale in the dynamics, i.e., the inverse of the plasma frequency
w,, associated with the collective oscillations and Langmuir
waves. This timescale should be compared with the colli-
sion frequency 1/8t. Generally speaking, if w,6t < 1, energy
transport will be driven mostly by collisions, and it is not a pri-
ori excluded that hydrodynamic effects may play a role over a
relevant range of scales. Those issues deserve investigation.
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