
A TinyML-Approach to Detect the Proximity of
People Based on Bluetooth Low Energy Beacons

Michele Girolami
Italian National Council of Research

ISTI-CNR
Pisa, Italy

michele.girolami@isti.cnr.it

Francesco Fattori
Department of Computer Science, Pisa

University of Pisa
Italy, Pisa

f.fattori4@studenti.unipi.it

Stefano Chessa
Department of Computer Science, Pisa

University of Pisa and ISTI-CNR
Italy, Pisa

stefano.chessa@unipi.it

Abstract—Proximity detection is the process of estimating
the closeness between a target and a point of interest, and it
can be estimated with different technologies and techniques.
In this paper we focus on how detecting proximity between
people with a TinyML-based approach. We analyze RSS values
(Received Signal Strength) estimated by a micro-controller and
propagated by Bluetooth’s tags. To this purpose, we collect
a dataset of Bluetooth RSS signals by considering different
postures of the involved people. The dataset is adopted to train
and test two neural networks: a fully-connected and an LSTM
model that we compress to be executed directly on-board of
the micro-controller. Experimental results conducted over the
dataset show an average precision and recall metrics of 0.8
with both of the models, and with an inference time less than
1 ms.

Index Terms—Proximity, TinyML, Deep Learning, Arduino

I. INTRODUCTION

Indoor localization techniques have been dramatically
increasing their accuracy and effectiveness during the last
ten years [1]. The advances of IoT devices combined with
learning-based algorithms have been enabling the possibility
of estimating the position of a target indoor with high
precision. Under this respect, we focus on a specific problem
of indoor localization, namely proximity detection. With
the term proximity we refer to the possibility of detecting
when a target, ie. a person or an object, is close to a point
of interest (POI). Many technologies and can be adopted
to detect proximity [2], ranging from video-based to radio
frequency (RF) technologies. In particular, the family of RF
technologies represents one of the most promising alterna-
tive, as many commercial devices are already equipped with
wireless interfaces exploitable for proximity detection. This
is the case of micro-controllers, such as Arduino boards
which offer a system-on-chip provisioned with a Wi-Fi and
Bluetooth interfaces, and an AI support for machine learning.

Although proximity detection is with Bluetooth signals
is widely studied [3], [4], most of the existing results are
based on high-performing receiving devices, such as smart-
phone (commonly adopted for contact tracing applications)
or general-purpose devices, such as Raspberry PI boards.
Furthermore, only few works address the problem of detect-
ing proximity between people by varying the layout of the

interacting subjects. Indeed, often face-to-face interactions
are studied by simplifying the testing scenario. Under this
respect, we mention the Too Close for Too Long challenge,
organized to test real-world solutions for humans proximity
based on ML models. Such challenge provides a collection
of Bluetooth datasets useful to test the solutions at different
conditions 1.

In this work we propose a solution that exploits a learning-
based approach and based on Bluetooth RSS analysis and
neural networks. In the past, we already tackled the problem
of proximity detection but with a very different approaches:
smartphone-based [5] and Raspberry PI-based [6]. Differ-
ently from the past, we adopt a TinyML approach (Tiny
Machine Learning). Indeed, we argue that detection prox-
imity among two people instead that with POI is further
complicated by the fact that both people may take different
postures and orientations. More specifically, we design and
test two neural network models able to classify proximity
from non-proximity events. Models are based on the analysis
of features extracted from RSS values of the collected bea-
cons. All the computation is executed on board of the micro-
controllers. The implemented models are: a fully-connected
multi-layer neural network and a LSTM (Long short-term
model) model. In both of the cases, we train the models off-
line and then we convert them as TensorFlow Lite models.
To enable this approach, we produce a realistic and annotated
dataset that reproduces proximity and non-proximity events
between two subjects. We reproduce proximity by varying
the orientation of the subjects: 4 orientations (North, East,
West and South) and for each orientation we test 4 rotations
shifted of 90°each. The dataset also comprises the ground
truth annotation, providing the actual start and end time of
each of the events between the subjects. From our exper-
iments, we observe that the LSTM model outperforms the
fully-connected model with an average precision and recall
metric of 0.84. We also test the models on two commercially
available micro-controllers, namely the ExpressIf ESP 32
and Arduino BLE 33 Sense, both supporting the execution
of ML models.

1Datasets are available at this link: https://www.nist.gov/document/nist-
pilot-tc4tl-challenge-evaluation-plan



II. LEARNING MODELS FOR PROXIMITY DETECTION

To the purpose of detecting proximity between people,
we exploit the Bluetooth’s RSS values estimated by a re-
ceiving device and emitted by Bluetooth tags. RSS indicates
the power level that the receiving device estimates for
a wireless message. It is regulated by the IEEE 802.11
standard, but each vendor can adjust the range, making
comparison between different receiver’s chipsets a complex
task. RSS varies according to the power transmission of
the emitter, the sensitivity of the receiving antenna, and
also with the environment in which the emitter and receiver
are located. A Bluetooth tag propagates beacon messages,
while the receiver collects and analyzes the corresponding
RSS values. At static conditions, the closer an emitter to
a receiver, the higher the RSS estimated at the receiver
side. Such relationship has been widely investigated with
several propagation models. The path loss model represents
a reference model for wireless propagation[7], according to
which the relationship between RSS and distance is given
by: RSS = RSS0 − 10nlog10(d/d0), d > d0, where
d0 is the reference distance, such that the emitter and the
receiver are always in line of sight (typically 1 m), RSS0

is the RSS at a reference distance d0, and n is the path
loss exponent that regulates how severe is the attenuation
in a given environment. Figure 1 shows RSSI (Received
Signal Strength Indicator) fluctuations during a proximity
event. The red line reports the proximity’s ground truth,
while the blue dots denote the RSS values estimated by
the receiving device. The figure shows a realistic scenario
in which RSS values vary in a considerable range (e.g.,
−100dBm to −70dBm).

Fig. 1: RSSI fluctuations during a real-world proximity
event.

A. The Neural Network Models

The first neural network we design is based on Tensor-
flow’s Dense layers. We create a feed-forward fully con-
nected network. We decide to analyze time windows Tk of
k seconds, and we extract some RSS’s features as input for
our network, as reported in the following:

• AVG: average RSSI value of n samples: 1
n

∑n
i=i xi

• STD: standard deviation of the n values:√
1
n

∑n
i=i (xi − x̄)2

• MAX: maximum observed RSSI value;

• MIN: minimum observed RSSI value;
• SKW: Skewness of the RSSI values: 1

n

∑n
i=1

(xi−x)3

σ3 ;
• KURT: Kurtosis of the RSSI values: 1

n

∑n
i=1

(xi−x)4

σ4 ;
Standard Deviation measures the dispersion of RSS values,
Skewness measures the symmetry of our distribution of
them, while Kurtosis measures if values are heavy-tailed
or light-tailed in respect of a normal distribution. These
three metrics are important for feeding to our network a
representation of the RSSI pattern during a time window
Tk. All the values are in dBm unit normalized in the
range [0, 1]. Observed RSS values lower than 120dBm can
be considered outliers samples. The normalization process
is very important to allow the neural network to quickly
terminate, and to avoid triggering large gradient updates
that sparse and double digit numbers. The design of the
neural network consists of 3 Dense layers connected with
2 Dropout layers, to avoid overfitting, and an L2 regularizer
applied with a coefficient of 0.001. The first 2 Dense layers
have ReLU as activation function, with 128 and 64 neurons,
respectively. The last Dense layer implements a sigmoid
activation function, with a single neuron in order to classify
the two relevant events: proximity and non-proximity. The
network has been compiled with adam optimizer and the
loss function is calculated based on the Mean Square Error
(mse), while monitoring also the accuracy metric.

The second neural network is based on the LSTM model.
LSTM stands for Long Short-Term Memory and it belongs
to the family of Recurrent Neural Networks (RNNs). In this
case, nodes of a layer can be connected with them self by
creating a cycle, so that their outputs can affect the next
input received. The peculiarity of this type of RNN is that it
carries information across multiple timestamps. This model
is created to solve the problem of vanishing gradients, a
common problem of simple RNNs models. The problem
consists of forgetting the time dependency across a long
time sequence adding complexity to the training, giving rise
to low performance results. To solve this problem, LSTM
models implement Gates, managing the recurrent signal and
giving the possibility to change the focus between present
and past dynamically, by changing the weight on them. We
decide to analyze time windows Tk of k seconds and to feed
them the corresponding values as input to the LSTM. Our
neural network has 1 LSTM layer made of by 32 neurons
followed by 2 Dense layers. The first Dense layer consists
of 128 neurons with a ReLU activation function, while the
second Dense layer implements a single neuron with the
sigmoid activation function, to output a binary classifica-
tion: proximity and non-proximity. The neural network has
been compiled with adam optimizer and the loss function is
calculated based on the Mean Square Error while monitoring
also the accuracy metric.

III. EXPERIMENTAL SETTINGS

We adopt two of the most popular and inexpensive micro-
controllers supporting the BLE network interface and ML



models: Arduino 33 Sense and the ExpressIf ESP32. The
Arduino 33 Sense is the first embedded device from Arduino
to be AI enabled out of the box. It is an evolution of
the standard Arduino Nano, but with a newer 32-bit ARM
Cortex M4 CPU that runs at 64MHz, 256 KB of RAM
and 1MB of program memory that are capable of running
heavier and bigger firmware. It also has a built-in modem
that supports both Wi-Fi, Bluetooth and NFC. The board also
includes various environment sensors. The ESP32 is a low-
cost system on a chip developed by the company ExpressIf,
equipped with a 32-bit Xtensa LX6 processor with two cores
that run at 240MHz, a built-in Wi-Fi and a Bluetooth module
and antennas. Concerning the Bluetooth tags, we adopt the
GlobalTag Bluetooth tags. They have a reduce dimension and
reduced power consumption. Tags can be configured to emit
beacons with different advertisement rates and with different
power of emissions, as shown in Figure 2.

Fig. 2: The adopted hardware: left: Arduino BLE Sense,
center: ExpressIf ESP32, right: Bluetooth tags.

A. Data Collection Process

To test the models described in Section II, we organize
a data collection campaign. The dataset is collected with
the ESP32 micro-controllers, with following information: the
tag’s identifier (Bluetooth MAC address), the RSS value, the
timestamp and the ground truth label: proximity (0)
and non-proximity (1). To this purpose, we recruit
two subjects reproducing a number of proximity and non-
proximity events. We vary the orientation of subjects (North,
East, West and South) and their relative rotations (0°, 90°,
270°and 360°). In particular, for each of the 4 orientations we
test 4 rotations for a total of 16 layouts as reported in Figure
3. Each layout has been repeated 4 times, so that to have
a balanced number of proximity and non-proximity events.
Subjects start with a non-proximity event at 5m distance for
2 minutes, then they move in proximity at 1.5m distance for
2 minutes.

Fig. 3: The testing layouts used for the data collection
campaign.

B. Performance Evaluation

In order to test our models, we compute precision and re-
call metrics to measure the classification task. The precision
corresponds to the number of true correct answers in a given
class, divided by the number observations of that class. The
recall metric measures the number of correct answers of each
class divided by the actual number of object in that class.
With the precision, we can make sure that what we identify
as proximity event, is actually a proximity event., Differently,
with the recall metric we can make sure to not miss out other
positive observations. Concerning the fully-connected neural
network (see Section II), we shuffle and split the dataset in
three parts: Train Set, Validation Set and Test Set. The first
two sets are given as input to the train command, while
the last dataset is used for measuring the performance of
the models. Having three distinct and shuffled sets is very
important for the training of a neural network, as we can
avoid that the network learns the pattern we used to create the
dataset and we can perform a final test to evaluate the neural
network performances with never seen-before samples. We
proceed to the training the model with 500 epochs, and we
report in Figure 4a the the Loss and the Accuracy values,
both for the training and validation sets. As expected, by
increasing the number of epochs, the loss function decreases,
while the accuracy score increases. We execute the model
with the test set, the results are reported in Table I. We
measure an average Precision of 0.8 and Recall metric of
0.8. Concerning the LSTM model, we do not shuffle the
training set to preserve the temporal correlation of samples.
Similarly to the fully-connected model, we split the dataset
in three parts: Train Set, Validation Set and Test Set. We
train the model with 400 epochs and the results of the Loss
and Accuracy values are reported in Figure 4b, while results
with the test set are reported in Table I, with an average
Precision and Recall metric of 0.84.

The LSTM model is structurally more complex with
respect to the fully-connected model, but this complexity
does not penalize the inference time, that also with the



(a) Loss and accuracy values of the fully-connected model.

(b) Loss and accuracy values of the LSTM model.

Fig. 4: Performance results of the two tested models

TABLE I: Performance evaluation of the fully-connected and
LSTM models executed with the ESP32 micro-controller.

Precision Recall F1

Fully-connected proximity 0.8 0.89 0.77
non-proximity 0.8 0.72 0.77

LSTM proximity 0.84 0.86 0.85
non-proximity 0.85 0.82 0.83

ESP32 micro-controllers requires less than 1 ms. Moreover,
as reported in Table I, the overall performance of the LSTM
network are slightly higher than that of the fully-connected
model. Another consideration refers to the complexity re-
quired to feed the models. More specifically, the fully-
connected model requires more computation before starting
the inference, as it is required to extract the list of features
previously described (average, standard deviation, Kurtosis,
etc). Differently, the LSTM model only requires to provide
as input the raw list of RSSI values.

IV. CONCLUSIONS

The increasing computational resources available with
micro-controllers allows moving part of the computation
directly on board. This is the case of micro-controllers
supporting the execution of ML models based on TensorFlow
Lite specification. In this work, we exploit a TinyML devices
to design and implement two neural networks models. They
are designed to detect when people are in proximity. We
also collect a representative datases which reproduces prox-
imity and non-proximity events. The dataset is obtainbed by
testing 16 different layouts (4 orientations and 4 rotations).

Experimental results for both of the tested models, report
a Precision and Recall metric of at least 0.8. This work
represents a first step towards the potentialities of micro-
controllers suitable for intelligent environments. We plan to
refine the neural network models so that to estimate not only
the proximity, but also the relative orientation of the subjects
both at static and moving conditions.

REFERENCES

[1] F. Potortı̀, A. Crivello, F. Palumbo, M. Girolami, and P. Barsocchi,
“Trends in smartphone-based indoor localisation,” in 2021 International
Conference on Indoor Positioning and Indoor Navigation (IPIN).
IEEE, 2021, pp. 1–7.

[2] F. Zafari, A. Gkelias, and K. K. Leung, “A survey of indoor localization
systems and technologies,” IEEE Communications Surveys & Tutorials,
vol. 21, no. 3, pp. 2568–2599, 2019.

[3] C. Martella, A. Miraglia, J. Frost, M. Cattani, and M. van Steen, “Vi-
sualizing, clustering, and predicting the behavior of museum visitors,”
Pervasive and Mobile Computing, vol. 38, pp. 430–443, 2017.

[4] N. Allurwar, B. Nawale, and S. Patel, “Beacon for proximity target
marketing,” Int. J. Eng. Comput. Sci, vol. 15, no. 5, pp. 16 359–16 364,
2016.

[5] M. Girolami, F. Mavilia, and F. Delmastro, “Sensing social interactions
through ble beacons and commercial mobile devices,” Pervasive and
Mobile Computing, vol. 67, p. 101198, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1574119220300675

[6] P. Baronti, P. Barsocchi, S. Chessa, A. Crivello, M. Girolami,
F. Mavilia, and F. Palumbo, “Remote detection of social interactions in
indoor environments through bluetooth low energy beacons,” Journal
of Ambient Intelligence and Smart Environments, vol. 12, pp. 203–217,
2020, 3. [Online]. Available: https://doi.org/10.3233/AIS-200560

[7] P. Barsocchi, S. Lenzi, S. Chessa, and G. Giunta, “Virtual calibration
for rssi-based indoor localization with ieee 802.15.4,” in 2009 IEEE
International Conference on Communications, 2009, pp. 1–5.


