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A B S T R A C T

The physiological state and biological characteristics of cells play a crucial role in the study of several biological 
mechanisms that are at the basis of the life. Raman spectroscopy, a powerful non-destructive technique, has 
shown promise in providing unique molecular fingerprints of cells based on their vibrational states. However, the 
high-dimensional and noisy nature of Raman spectra poses significant challenges in precise cell classification. In 
this study, we present a novel deep learning algorithm tailored for human cells fingerprint assignment through 
Raman shift analysis. The proposed deep learning framework harnesses the power of Temporal Convolutional 
Networks (TCN) to efficiently extract and process Raman spectra information. Leveraging a dataset of labeled 
Raman spectra, the model is trained to learn discriminative features that capture the subtle differences in cell 
composition and molecular structures in differential states. Additionally, the proposed model enables real-time 
cell fingerprint prediction, making it highly applicable for high-throughput analysis in large-scale experiments. 
Experimental results demonstrate a peak accuracy of 99 %, showcasing the effectiveness and precision of the 
approach. Overall, the developed deep learning algorithm offers a robust and efficient solution for cell finger-
print assignment through Raman shift analysis, opening new avenues for advancements in physiological and 
biochemical studies.

1. Introduction

In recent years, the growing demand to know in more detail the 
composition and function of cells in a particular status has led to a great 
expansion of physiological studies. Accurate identification and classifi-
cation of different cell types are prominent for understanding cellular 
behavior, disease stage, and drug development. Conventional methods 
for cell analysis, such. as fluorescence-based techniques, often involve 
invasive procedures and may interfere with cellular integrity, limiting 
their applicability in live cell studies. To overcome these limitations, 
Raman spectroscopy [1,2] has emerged as a promising non-invasive and 
label-free technique for cell analysis. Raman spectroscopy relies on the 
inelastic scattering of photons by molecules within a sample, resulting in 
characteristic Raman shifts that correspond to the vibrational modes of 
specific chemical bonds. This unique spectral information can be used as 
a "fingerprint" to differentiate different cell types and to study various 

cellular processes. However, the main challenge in Raman-based cell 
analysis lies

in extracting meaningful and informative features from the noisy 
Raman spectra [1]. With this respect Deep Learning Algorithms (DLA), 
combined with Raman investigation, can be an effective tool to over-
come the limitation of the conventional methods for cellular processes 
investigation.

DLA have revolutionized various fields, including computer vision, 
natural language processing and medicine [3–5,6,7]. These algorithms 
have demonstrated remarkable performance in feature extraction and 
pattern recognition tasks [8–11]. The success of deep learning in various 
domains has inspired researchers to explore its potential in tackling 
challenges within spectroscopy and cell analysis [12]. This paper in-
troduces a state-of-the-art deep learning algorithm specially designed 
for cell classification through Raman shift analysis. This topic has been 
explored in the literature in several applicative fields. In Ref. [13] 
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authors propose a practical convolutional neural network (CNN) model 
to distinguish between the Raman spectra of human and animal blood, 
demonstrating superior classification accuracy compared to PLSDA 
(Partial least squares-discriminant analysis) and SVM (Support Vector 
Machine). In Ref. [14], authors present a machine learning-based clas-
sification model designed to categorize extracellular vehicles (EVs) 
Raman spectra to identify those derived from tumors. The convolutional 
neural network (CNN) was trained using both preprocessed and raw 
Raman data. Authors compared the CNN’s results with those obtained 
from the widely used principal component analysis (PCA) in spectros-
copy. The proposed model achieved over 90 % accuracy in classifying 
EVs. The CNN model proved effective for directly classifying raw Raman 
data, achieving a minimum accuracy of 93 % without preprocessing. In 
Ref. [15], authors introduce Raman spectroscopy, to evaluate endo-
scopic disease severity based on the four-level Mayo subscore. The 
developed predictive model to detect colonic inflammation show a mean 
sensitivity of 78 % and a mean specificity of 93 % for the four Mayo 
endoscopic scores. In Ref. [16], authors introduce a nanoplasmonics 
biosensing chip (NBC) designed to facilitate antibody-free detection 
with simplified analysis for point-of-care testing (POCT). The authors 
developed a direct serological detection platform using this NBC and 
deep neural network (DNN) modeling to automatically identify liver 
cancer in minutes. The developed DNN classification model, trained on 
1140 serum SERS spectra from both hepatocellular carcinoma (HCC) 
patients and healthy individuals, achieved 91 % identification accuracy 
on an external validation set of 100 spectra (50 HCC and 50 healthy). In 
Ref. [17], the authors introduced a new method called DeepCID (Deep 
Learning Component Identification), which uses deep learning for mo-
lecular identification through Raman spectroscopy. In this study, Con-
volutional Neural Network (CNN) models were developed to predict the 
presence of components in mixtures. Comparative analyses showed that 
DeepCID was highly effective at learning spectral features and identi-
fying components in both simulated and real Raman spectral datasets of 
mixtures, resulting in higher accuracy and significantly lower false 
positive rates. Recent advances in pathogen detection and diagnosis of 
bacterial infections were discussed in Ref. [18], with focuses on the 
development of the SERS approaches and its applications in complex 
clinical settings. In Ref. [19] authors describe the basic principles of 
Raman Spectroscopy (RS), emphasizing the label-free SERS approach, 
highlights the latest advancements in SERS technology for detecting 
bacteria, viruses, and fungi in clinical environments. Surface-enhanced 
Raman spectroscopy (SERS) offers a highly effective method for 
detecting small molecular components with exceptional sensitivity and 
selectivity [20].

The goal of this work is to leverage the full potential of Raman 
spectroscopy and deep learning to enhance the accuracy, efficiency, and 
scalability of cell analysis, minimizing the need for laborious sample 
preparation and invasive labeling techniques that are used in the cells 
analysis applications, like histological analysis. The proposed deep 
learning framework builds upon the strength of Temporal Convolutional 
Networks (TCN) [21] in identifying spatial patterns and modeling 
temporal dependencies, effectively capturing the rich information pre-
sent in Raman spectra. TCN are adept at recognizing local patterns in the 
spectral data, exploiting sequential dependencies, making it well-suited 
for analyzing time-dependent or sequential data, as for example in Refs. 
[5,22]. To train the model, a substantial dataset of labeled Raman 
spectra is essential. A dataset of 1384 Raman spectra of a specific human 
cell line (cell not treated and cell treated with peptide-phage) have been 
collected to enable the deep learning model to learn robust and gener-
alizable features for accurate cell fingerprint analysis. Additionally, 
careful preprocessing and normalization techniques are employed to 
handle the inherent noise and fluctuations in Raman measurements, 
ensuring the model’s resilience to experimental variations. Moreover, 
the model exhibits superior performance in real-time analysis, opening 
new avenues for high-throughput screening in large-scale experiments 
and clinical settings. One of the significant advantages of the proposed 

deep learning algorithm is its adaptability to different experimental 
setups and Raman instruments. The integration of Raman spectroscopy 
and deep learning represents a significant advancement in the field of 
cell biology [12]. The proposed deep learning algorithm not only en-
hances the accuracy and efficiency of cell classification but also expands 
the scope of Raman-based cell analysis to a wide range of applications, 
from fundamental research to clinical diagnostics and pharmaceutical 
development. By providing a non-invasive, label-free, and real-time 
solution for cell analysis, this cutting-edge approach promises to drive 
transformative discoveries and breakthroughs in cellular biology and 
medical research. In particular, the results here reported paves the way 
to the development of new method for histological analysis based on 
chemical fingerprint of cells instead of immune-based methodology. 
This will give a relevant improvement in the clinical diagnostic 
providing a clear cell identification in the pre- and post-surgical 
analyses.

The rest of the pages are organized as follows: section 2 introduces 
details at the proposed method, section 3 reports some experimental 
results, and section 4 exploits detailed results with discussions.

2. Proposed method

A Temporal Convolutional Network (TCN) is a type of deep learning 
architecture designed for sequential data processing. It employs one- 
dimensional convolutional layer to capture patterns and dependencies 
in temporal sequences efficiently, making it suitable for tasks such as 
time series forecasting, natural language processing, and audio analysis 
[23]. TCN are a powerful class of neural networks with several note-
worthy features; TCN can efficiently process sequences in parallel, un-
like recurrent neural networks (RNN) [24] that require sequential 
computation, making them faster for training and inference. It allows 
parallel computation on GPU in Nvidia video

Cards as in Ref. [25] or parallel CPU in virtual environments in cloud 
as in Ref. [26]. TCN often use dilated convolutions, allowing them to 
capture both short-term and long-term dependencies in the data effec-
tively. This makes them suitable for tasks requiring context over varying 
time scales. TCN often employs causal convolutions, ensuring that pre-
dictions are not influenced by future inputs, which is essential for tasks 
like time series forecasting. Overall, TCN have become a valuable tool in 
the deep learning toolkit for modeling sequential data, offering advan-
tages in terms of speed, parallelism, and modeling capabilities [21,23,
26].

Causal convolution is calculated as: 

yi =
∑k− 1

j=0
cjxj− 1 (1) 

where: 

• xi – input tensor with shape (input size, 1)
• yi – output tensor with shape (num classes)
• k – convolution kernel
• cj - convolution weights

The proposed TCN method, has been implemented the following 
causal convolution with convolution kernel k = 3 and padding = k − 1 
(Fig. 1).

To perform causal convolution, we incorporate padding (k-1) on the 
left side of the input tensor. Causal convolution embodies a straight-
forward logic; it gathers information and patterns that precede the 
current point in the data sequence. In fact, TCN models equipped with 
causal convolution layers excel at capturing dependencies that prove 
invaluable for predicting future values [21]. The practical application of 
these causal convolution layers is vividly illustrated in the pipeline 
properly showed in Fig. 2. To execute causal convolution, we employ 
classical 1-D convolution with padding and trim elements from the right 
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side. Employing the dilation technique within a causal convolutional 
layer enhances the coverage of the input time series and substantially 
reduces computational costs. In the TCN architecture, it is assumed that 
the sequence of causal convolutional layers has a dilation factor of 2i− 1(i 
= 0,.., n and n = number of hidden layers). The overall configuration of 
our proposed TCN model architecture, is reported in Table 1. Utilizing 
ReLU as the activation function for TCN is recommended [26]. ReLU 
(Rectified Linear Unit) is preferred because it introduces non-linearity 
while being computationally efficient, helping to avoid issues like the 
vanishing gradient problem that can occur with other activation func-
tions. This allows TCN to learn more effectively and converge faster 

during training. The stability of the TCN model was enhanced by 
switching to Binary Cross-Entropy for classification, which led to more 
reliable and accurate results. This adjustment specifically helped in 
improving the model’s performance and robustness during training, 
lowering the learning rate for gradual learning, simplifying the archi-
tecture to reduce complexity, increasing the batch size for stable gra-
dients, and raising the dropout rate to prevent overfitting. However, 
there are two more potential enhancement that can further boost the 
performance of a TCN: the dilated and causal convolution. In the context 
of our proposed TCN model architecture (as depicted in Fig. 2), we have 
applied a specific set of hyperparameters, which are detailed in Table I.

Fig. 1. Causal convolution with padding and kernel k = 3.
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3. Data collection and measurement.

2.1. Cell culture

Human foetal osteoblast cell line (hFOB) 1.19 were obtained from 
the American Type Cul-ture Collection (ATCC, Manassas, VA, United 
States). hFOB 1.19 were cultured in 1:1 mixture of Ham’s F12 Medium – 
Dulbecco’s Modified Eagle’s Medium (Merk Life Science S.r.l., Milan, 
Italy), supplemented with 2.5 mM L-glutamine (Merk Life Science S.r.l., 
Milan, Italy), 10 % Fetal Bovine Serum (FBS, Merk Life Science S.r.l., 
Milan, Italy) and 1 % penicillin/streptomycin/amphotericin (Merk Life 
Science S.r.l., Milan, Italy) and incubated in a humidified atmosphere 
containing 5 % CO2 at 37 ◦C [27]. The medium was replaced twice a 
week and cells were split at about 80 % of confluence.

2.1.1. Sample preparation
hFOB cells were collected after reaching 70 % with trypsin-EDTA 

solution. The pellet has been resuspended in culture medium and 
transferred onto CaF2 slides, previously cleaned with a mixture of water 

and ethanol, at a concentration of 60000 cells per milliliter. We have 
been chosen CaF2 slides as substrate that, for its optical features is 
suitable for spectroscopical investigation avoiding any spurious fluo-
rescence signals coming from the support, which could significantly 
interfere with the Raman signals of the cells. The pellet has been 
resuspended in culture medium containing the peptide-phage suspen-
sion at 1011 TU/mL (TU = transducing unit). The peptide-phage, 
selected by phage display technology [28], exposed the peptide 
QRRAGPVPP that is mimotope of the growth factors and proteins 
involved in bone development. Untreated cells have been used as a 
control. In order to obtain hFOB cells in a prolonged growth state, the 
medium was discarded after 72 h of incubation. Then we have been 
washed the cells with phosphate buffered saline (PBS) without Ca and 
Mg and then fixed with 4 % formalin for 20 min. The sample has been 
finally washed in ultrapure water in order to perform Raman spectros-
copy measurements.

2.2. Raman measurements

Raman measurements of the hFOB cell line were performed by using 
a 1 × 1 cm2 of a CaF2 commercial slide as a support substrate. Raman 
spectra were acquired focusing 1 μW of the 473 nm laser line (solid-state 
COBOLT) by a 100X objective (N.A. 0.9) mounted on an Olympus mi-
croscope. The backscattered Raman signals were captured over 40 s and 
collected using a Horiba iHR550 Spectrometer, equipped with a 600 
lines/mm diffraction grating and coupled to a CCD detector (Syncerity 
Horiba). To acquire signals at regular intervals and spatial paths, the 
spectra were collected in the mapping mode of the Horiba software. The 
map was optimized to encompass the target cell, in order to facilitate the 
analysis of all cellular components, ranging from the nucleus to the 
outside of the cell. Within each map, we obtained 121 spectra, corre-
sponding to an 11x11 point matrix.

3. Results

All methods have been implemented on a Python environment on a 

Fig. 2. Implemented Temporal Convolutional Network Model, and the proposed pipeline to extract cell classification (treated or not treated).

Table 1 
TCN model setup.

TCN Model Parameter Values

Training set 70 %
Validation set 15 %
Test set 15 %
Shuffle (random split) True
Loss function Binary_crossentropy
Optimizer Adam
Learning rate 0.00001
Epochs 100
Input size 121
Hidden layers 3
Batch size 256
Num classes (output) 1
Kernel size 3
Dropout 0.2
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PC with Intel(R) Core(TM) i7 CPU, 16 GB memory and NVIDIA RTX 
2050 GPU. The dataset has been split in training (70 % of the total 
dataset), validation (15 %) and test (15 %) subsets and processed during 
training and evaluation of the TCN model. This ratio provides a balanced 
approach, offering enough data for training while reserving a sufficient 
portion for validation and testing. This 70/30 split is commonly used to 
ensure that the model can generalize well to new data, without over-
fitting, while still allowing for effective evaluation. Using other ratios 
like 6:2:2 or 8:2 might either reduce the data available for testing/ 
validation or leave too little for training, potentially impacting model 
performance. Finally, TCN return the cell fingerprint.

The implemented pipeline for the TCN model includes the following 
steps: 

• Data preprocessing: This step involves preparing the dataset for use 
with the TCN model. This may include cleaning and formatting the 
data, as well as splitting it into training, validation, and test sets.

• Building the model: This step involves designing and instantiating the 
TCN model. This may include specifying the number of layers, the 
number of filters, the kernel size, and the type of activation function 
to use.

• Training the model: This step involves using the training data to train 
the model. The model is typically trained using a variant of stochastic 
gradient descent (SGD) algorithm.

• Evaluating the model: This step involves using the validation and test 
data to evaluate the performance of the model. This may include 
metrics such as accuracy, precision, and MSE loss score, plotting the 
prediction and target data, verifying that it correctly calculates the 
cell fingerprint.

• Deployment: After the model has been trained and fine-tuned, it can 
be deployed in a production environment.

As loss function in the training, test and validation phase, has been 
exploited the Binary Cross Entropy function which measures the dif-
ference between predicted probabilities and actual binary outcomes for 
classification tasks. After 100 epochs, results shows that training and 
validation MSE and MAE converge to 0 as is showed in Fig. 4. It looks as 
though the line plot for the training set is dropping to converge with the 
line for the validation set. It means that prediction and target converge 
with a minimum loss error.

In Fig. 5 has been measured inference which refers to the process of 
using a trained model to make predictions or draw conclusions on new, 
unseen data. Once a deep learning model is trained on a labeled dataset, 
it learns patterns, relationships, and representations from the training 
data, enabling make predictions on previously unseen data points during 
the inference phase. Data showed in Fig. 5 shows a good inference plot 
with a clear overlap between the predicted and target curves, indicating 

accurate predictions and a strong alignment between model outputs and 
actual data. In particular Fig. 5 shows the accuracy of the applied TCN 
model, with a peak accuracy of 99 % and the TCN inference on a single 
subset of 25 points of a Raman spectra between not treated cell and all 
dataset (treated cell and not treated cell).

In Table 2 it has been reported a benchmark of the presented ar-
chitecture model with other models for the same dataset with treated 
and untreated cells. Experimental results demonstrate Temporal Con-
volutional Networks (TCN) offer a captivating twist in the realm of 
sequence modeling, blending the ingenuity of dilated and causal con-
volutions. Imagine TCN as master detectives of neural networks, adept 
at deducing

Patterns and dependencies across time without missing a beat. 
Dilated convolutions in TCN widen the field of view over the input 
sequence exponentially, zooming in on crucial details. This unique 
feature allows TCN to capture long-range dependencies efficiently, ideal 
for tasks where context across extensive temporal spans matter. Enter 
causal convolutions, ensuring that each output at time step t depends 
only on past or current inputs, but not future ones a crucial twist in 
sequence tasks where predicting the future isn’t straightforward. In 
essence, TCN excel in processing sequential data with long-term de-
pendencies, maintaining order and coherence through causality, and 
elegantly handling variable length inputs with their flexible architec-
ture. For tasks demanding a keen sense of temporal nuances, TCN step 
up as the go-to solution, unraveling patterns with precision and reli-
ability. In essence, TCN excel in processing sequential data with long- 
term dependencies, maintain order and coherence through causality, 
and can elegantly handle variable-length inputs with their flexible ar-
chitecture. So, when faced with tasks demanding a keen sense of tem-
poral nuances, TCN step up as the detective of choice unraveling 
patterns with the precision and reliability.

4. Discussion

We developed a computational tool capable of determining and 
predicting differences between two cells typology by the analysis of their 
relative Raman. To this aim, hFOB cells were analyzed by Raman 
spectroscopy as showed in Fig. 3. Here, the Raman spectra of hFOB 1.19 
cells bare (a) and treated with phages (b) are reported. In every spec-
trum, 3a and 3b discern the vibrational contributions of the cellular 
protein pattern, even without the subtraction of the fluorescence back-
ground. In particular, we can distinguish the peak related to the 
phenylalanine aromatic ring symmetric stretching (breathing mode) 
centered at 1005 cm− 1, the band of the —CH2 deformations at 1450 
cm− 1 and the bands of amide I at 1660 cm− 1 [29]. The most intense peak 
at 2936 cm− 1 is ascribed to the different vibration modes of the C—H 
groups. Finally, the band between 3200 and 3500 cm− 1 is attributable to 

Fig. 3. Raman spectra acquired in mapping mode on untreated (a) and phage-treated (b) hFOB cells. The images of the target cells are shown in the insets; the area of 
the cell analyzed is highlighted by the RGB intensity map.
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O—H stretching, typical of targets composed by an aqueous matrix. The 
insets within the graphs display images of the examined cells. The RGB 
map overlaid on these images effectively emphasizes the variations in 
Raman intensity across different regions of the cell within the frequency 
shift range of 800–1800 cm− 1. The regions in blue correspond to low 
Raman signal intensity, whereas the red regions exhibit high Raman 
signal intensity. It’s evident that the red regions are primarily localized 
within the cell nucleus areas, which contain the highest concentration of 
proteins and genetic material (DNA, RNA, and nucleotides, in general). 
Therefore, even if the spectra reported in 3a and 3b figures could appear 
very similar, the analytical methods here reported is able to discern the 
right difference to be distinguished in terms of spectroscopical features. 
Therefore, it can be used for future further investigations.

5. Conclusions and future works

In this study, we have presented a novel deep learning algorithm for 
cell fingerprint analysis through Raman spectroscopy. The proposed 

approach leverages the power of convolutional neural networks (CNNs) 
and recurrent neural networks (RNNs) to extract and process Raman 
spectra information efficiently. Our findings demonstrate that the deep 
learning model achieves superior performance in accurately prediction 
of diverse cell types based on their Raman fingerprints. The results from 
our extensive evaluations indicate that the model’s predictions align 
well with the ground truth data, with a significant overlap between the 
predicted and target curves in the inference plot. This overlap serves as a 
compelling indicator of the model’s capability and ability to handle 
various experimental conditions, ultimately enhancing the utility of 
Raman spectroscopy for cell analysis. One of the significant strengths of 
our approach is its adaptability to different experimental setups and 
Raman instruments. The introduction of a transfer learning strategy 
enables the model to maintain high accuracy when applied to datasets 
acquired from different instruments or laboratories. This transfer 
learning approach reduces the need for extensive data labeling and 
collection, making the algorithm more cost-effective and widely appli-
cable. This represents a preliminary study for future development in the 
field of chemical histology. Actually, despite the promising results 
achieved in this study, there are several avenues for further improve-
ment and future research. Investigating more advanced transfer learning 
techniques, such as domain adaptation and fine-tuning, may lead to 
even better model performance across different Raman instruments and 
experimental conditions. Exploring the integration of multi-modal data, 
such as incorporating fluorescence or hyperspectral imaging alongside 
Raman spectra, could provide complementary information, potentially 
leading to more comprehensive and accurate cell classification. 
Expanding the size and diversity of the training dataset can further boost 
the model’s generalization capacity and improve its performance on rare 
or less-studied cell types. In conclusion, the presented deep learning 
algorithm represents a significant advancement in the field of cell 
fingerprint assignment through Raman shift analysis. By addressing the 
outlined future research directions, this work opens new avenues for 
unlocking the full potential of Raman spectroscopy in advancing 
biochemical and physiological studies, paving the way for future 
development of new approach for cells histology based on chemical data 

Fig. 4. MSE, MAE, Loss for training and validation for 100 epochs.

Fig. 5. Loss and Accuracy of the TCN model. The ground truth (target) is not treated cell dataset and prediction is calculated on all dataset with treated and not 
treated cell.

Table 2 
Model comparation benchmark on the same input dataset of treated and un-
treated cells.

Model Accuracy AUC Recall Prec. F1

TCN 0.92 0.9 0.9 0.9 0.9
MLP 0.5 0.49 1 0.5 0.66
Extra Trees 0.5 0.5 1 0.5 0.66
SVM 0.49 0.5 0.1 0.04 0.06
Log. Regr. 0.49 0.5 0.7 0.34 0.46
K Neighbors 0.49 0.5 0.3 0.14 0.19
Naïve Bayes 0.49 0.5 0.3 0.14 0.19
Decis. Tree 0.49 0.5 0.3 0.14 0.19
Rand. Forest 0.49 0.5 0.3 0.14 0.19
Ada Boost 0.49 0.5 0.3 0.14 0.19
LGBM 0.49 0.5 0.3 0.14 0.19
Ridge 0.49 0.5 0.3 0.14 0.19
QDA 0.49 0.35 0.7 0.34 0.46
LDA 0.49 0.5 0.7 0.34 0.46
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(chemical group vibrations).
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