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Abstract

Global derivative-free deterministic algorithms are particularly suitable for simulation-based optimization,
where often the existence of multiple local optima cannot be excluded a priori, the derivatives of the objec-
tive functions are not available, and the evaluation of the objectives is computationally expensive, thus a
statistical analysis of the optimization outcomes is not practicable. Among these algorithms, particle swarm
optimization (PSO) is advantageous for the ease of implementation and the capability of providing good
approximate solutions to the optimization problem at a reasonable computational cost. PSO has been intro-
duced for single-objective problems and several extension to multi-objective optimization are available in the
literature. The objective of the present work is the systematic assessment and selection of the most promising
formulation and setup parameters of multi-objective deterministic particle swarm optimization (MODPSO)
for simulation-based problems. A comparative study of six formulations (varying the definition of cognitive
and social attractors) and three setting parameters (number of particles, initialization method, and coeffi-
cient set) is performed using 66 analytical test problems. The number of objective functions range from two
to three and the number of variables from two to eight, as often encountered in simulation-based engineering
problems. The desired Pareto fronts are convex, concave, continuous, and discontinuous. A full-factorial
combination of formulations and parameters is investigated, leading to more than 60,000 optimization runs,
and assessed by two performance metrics. The most promising MODPSO formulation/parameter is identi-
fied and applied to the hull-form optimization of a high-speed catamaran in realistic ocean conditions. Its
performance is finally compared with four stochastic algorithms, namely three versions of multi-objective
PSO and the genetic algorithm NSGA-II.

Keywords: Multi-objective optimization; derivative-free optimization; global optimization; deterministic
particle swarm optimization; simulation-based optimization

1. Introduction

Simulation-based optimization has a peculiar set of features that brings unique challenges to the prac-
ticability of the optimization process and the identification of the optimization solutions. The objectives
usually derive from complex simulations, which solve partial differential equations, and are computationally
very expensive. Therefore, the optimization process needs to rely on a relatively small number of objective5

evaluations. In most applications, black box tools are used for the simulations and the objective derivatives
are not available. Their evaluation through finite differences is often very critical due to the residuals associ-
ated to the simulation solutions, which introduce noise in the simulation output. Additionally, the existence
of local minima cannot be excluded a priori. For these reasons, global derivative-free algorithms represent
an advantageous option for the solution of simulation-based optimization problems.10
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A large number of global derivative-free algorithms available in the literature are formulated as stochas-
tic optimization methods and make use of random coefficients. In the context of simulation-based applica-
tions (with high-fidelity simulation tools), the computational cost of the optimization makes the statistical
analysis of the optimization outcomes (required by stochastic algorithms and involving a large number of
optimization runs) not practicable, suggesting the adoption of deterministic methods (e.g., [1]). Generally,15

this consideration holds also in the area of metamodel (or surrogate) based optimization [2, 3], where an
approximate representation of the objective function is interposed between the simulation tool and the opti-
mizer. Developing and testing efficient metamodels for optimization require benchmark solutions, provided
by the optimzer connected directly to the simulation tool. These solutions are attainable only if efficient
and possibly deterministic optimizers are available.20

Particle swarm optimization (PSO) was originally introduced by Kennedy and Eberhart [4], based on the
social-behavior metaphor of a flock of birds or a swarm of bees searching for food, and belongs to the class of
global derivative-free metaheuristic algorithms for single-objective optimization. The algorithm makes use
of cognitive and social attractors based on individual and population optima, in order to steer the particle
swarm dynamics. For its ease of implementation and capability of providing good approximate solutions to25

the optimization problem at a reasonable computational cost, PSO has been studied and further developed
by a number of authors [5, 6, 7, 8, 9] and successfully applied in engineering optimization [10, 11, 12]. PSO has
been extended to multi-objective optimization (MOPSO) by Moore and Chapman [13]. Generally, MOPSO
extends the concept of cognitive and social attractors to the multi-objective context, using individual and
population non-dominated solution sets (Pareto solutions), sub-swarms, or aggregate objective functions.30

Pareto-dominance approaches select cognitive and social attractors from individual and population non-
dominated solution sets. Coello et al. [14] randomly select the cognitive attractor among the individual
non-dominated solutions. The social attractor is randomly selected from the most isolated regions of the
population non-dominated solution set. Fieldsend et al. [15] select the cognitive attractor among the particle
non-dominated solutions, whereas the social attractor is selected from an archive structure. Mostaghim and35

Teich [16] select the cognitive attractor as the particle latest non-dominated solution, whereas the social
attractor is defined by the introduction of the Sigma method. Raquel and Naval [17] select the cognitive
attractor as the particle oldest non-dominated solution. The social attractor is randomly selected among less-
crowded solutions from the population non-dominated solution set. The method makes use of the crowding
distance (CD), already used in the non-dominated sorted genetic algorithm (NSGA-II [18]). Nebro et al.40

[19] proposed a speed-constrained multi-objective PSO (SMPSO). It selects the cognitive attractor randomly
getting two points from the population non-dominated solution set and selecting the most isolated between
them. The social attractor is selected among less-crowded points from the population non-dominated solution
set using a binary tournament. A constriction coefficient is used to limit the particle velocity. Garcia et
al. [20] proposed a MOPSO formulation that selects the attractors based on the contribution of the non-45

dominated solutions to the hypervolume metric [21]. Cognitive/social attractors are randomly selected
among the solutions with the least/highest contribution, respectively. Zheng et al. [22] proposed a MOPSO
formulation for classification rule mining (MOPSO-CRM). This uses a single attractor for each particle,
which is defined depending on whether the particle belongs to the population non-dominated solution set
or not. Hu and Yen [23] proposed a MOPSO formulation that selects the cognitive and social attractors50

based on the solution attributes, evaluated by the parallel cell coordinate system technique introduced in
[24]. Adaptive inertia, social, and cognitive coefficients are used.

Sub-swarm approaches make use of sub swarms for exploring the design space, allowing different dy-
namics for each sub-swarm. Parsopoulos et al. [25] select the cognitive attractor as the optimizer of the
objective function explored by the current sub-swarm. The social attractor is the optimizer of a differ-55

ent objective function, explored by another sub-swarm. The algorithm, namely vector evaluated particle
swarm optimization (VEPSO), has been inspired by the concept of the vector evaluated genetic algorithm
[26]. Peng and Zhang [27] decompose the multi-objective problem into single-objective sub-problems by
the Tchebycheff decomposition method. The method selects the cognitive attractor as the optimizer of an
aggregated function. The social attractor is selected in the neighborhood of the particle.60

Comprehensive surveys on MOPSO variants have been provided in [28] and more recently in [29]. More-
over, effective applications of MOPSO can be found in several engineering fields, such as aerospace [30], civil
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[31], electronic [32], industrial [33], and naval [34].
Most PSO formulations (both single- and multi-objective) include stochastic methods and/or random co-

efficients. This implies that in order to assess the algorithm performace, statistically significant results need65

to be produced, through extensive numerical campaigns. Such an approach is often too expensive (from the
computational viewpoint) and therefore not practicable in simulation-based optimization (especially when
computationally expensive solvers are used). For this reason, efficient deterministic approaches, namely
deterministic PSO (DPSO) [1, 35] and multi-objective deterministic PSO (MODPSO) [36, 37] have been de-
veloped and successfully applied for simulation-based optimization. In deterministic algorithms (both single-70

and multi-objective), the swarm diversity depends on the swarm dynamics provided by the combination of
formulation and parameters. During the swarm evolution each particle is attracted by diverse positions,
based on the cognitive and social experience iteration by iteration. In most problems, this is generally
sufficient to maintain the swarm dynamics and provide reasonable solutions. Chen et al. [38] discussed the
effectiveness of DPSO, comparing to random PSO for a hull-form optimization problem. Recently, Serani75

and Diez [39] proposed a statistical analysis of random PSO for a set of 100 problems, with comparison to
DPSO.

A systematic study for the parameter selection of the single-objective DPSO has been presented by Serani
et al. [35], for box-constrained simulation-based problems in ship hydrodynamics. The most promising
selection of number of particles, initialization approach, coefficient set, and box constraint method has80

been investigated and discussed. Extending the study to MODPSO needs to assess and discuss: (a) the
algorithm formulation for multi-objective problems and, similarly to the single-objective DPSO, (b) the
number of particles interacting during the optimization, (c) the initialization of the particles in terms of
initial location and velocity, and (d) the set of coefficients defining the cognitive and social behavior of the
swarm dynamics. A preliminary systematic study of MODPSO has been presented in [40]. Nevertheless,85

discussions and applications of MODPSO in simulation-based problems is still limited, lacking a systematic
and a comparative analysis of (a), (b), (c), and (d).

The objective of the present work is a systematic study of the MODPSO performance conditional to
the algorithm formulation of the cognitive/social attractors and the parameter selection, with focus on
simulation-based applications. Four deterministic variants of multi-objective swarm methods are introduced90

here and included in the analysis, where a total of six formulations are assessed and compared. The present
study is an extension to multi-objective problems of the work presented by Serani et al. [35].

The analysis approach includes a preliminary systematic study on 66 analytical test problems from the
literature [41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51], with a number of variables ranging from two to eight
and a number of objectives from two to three. The problems are characterized by convex and non-convex,95

continuous and discontinuous Pareto fronts. A full-factorial combination is investigated of: (a) algorithm
formulation, (b) number of particles, (c) particles initialization, and (d) coefficient set. Six MODPSO
formulations are addressed, where:

1. the cognitive attractor is the closest point to the particle of the individual Pareto solutions; the social
attractor is the closest point to the particle of the population Pareto solutions; distances are evaluated100

in the variable space (domain)

2. the cognitive attractor is the closest point to the particle of the individual Pareto solutions; the social
attractor is the closest point to the particle of the population Pareto solutions; distances are evaluated
in the objective space (codomain)

3. the cognitive attractor is the individual best position, based on an aggregate objective function; the105

social attractor is the closest point to the particle of the population Pareto solutions; the distance is
evaluated in the variable space (domain)

4. the cognitive attractor is the individual best position, based on an aggregate objective function; the
social attractor is the closest point to the particle of the population Pareto solutions; the distance is
evaluated in the objective space (codomain)110

3



Page 4 of 31

Acc
ep

te
d 

M
an

us
cr

ip
t

5. the cognitive attractor is selected as the particle oldest-found non-dominated solution; the social
attractor is the closest point to the particle of a subset of the population Pareto solutions with largest
crowding distance; the distance is evaluated in the variable space (domain)

6. sub-population deterministic formulation following the VEPSO approach

The first formulation (MODPSO1) has been presented in [37] and applied to the robust optimization of115

a bulk carrier. This is extended herein by embedding the formulation in the codomain (MODPSO2). The
third formulation (MODPSO3) is taken from [52] and extended to the codomain in MODPSO4. The fifth
formulation (MODPSO5) is a current deterministic implementation of the original MOPSO-CD, presented
in [17] and considered by Garćıa et al. [20] a state-of-the-art algorithm for Pareto-dominance approaches.
Finally, MODPSO6 is a current deterministic implementation of the original VEPSO formulation, presented120

in [25] and used here as a representative of sub-swarm methods.
The parameter selection includes the number of particles, parametrized as proportional to the number

of design variables and objective functions. The initialization of the particle position and velocity is defined
by a deterministic distribution (Hammersley sequence sampling, HSS, [53]). The coefficient sets are chosen
from literature [6, 7, 52, 9, 37]. The box constraints are handled by a semi-elastic wall type approach [35].125

The full-factorial combination of MODPSO formulation, parameters, and analytical test problems results in
more than 60,000 optimization runs, performed on an Intel Xeon E5-1620 v2 3.70GHz.

The algorithm performances are assessed by three general criteria, based on the number of non-dominated
solutions (capacity), the evolution of the Pareto solution (convergence), and the variety of the solution
(diversity). These criteria are quantitatively evaluated by the following three metrics [54]:130

i) ratio of reference points, C1R [55] (capacity),

ii) hypervolume, HV [21] (convergence and diversity),

iii) combination of C1R and HV (capacity, convergence, and diversity).

Based on these metrics, the most promising MODPSO formulation and parameter setup are identified and
applied to a hull-form optimization of a high-speed catamaran in realistic ocean environment, sailing in head135

waves in the North Pacific Ocean, including stochastic sea state and speed [34]. The problem is formulated as
a multi-objective optimization aimed at (1) the reduction of the expected value of the mean total resistance
in irregular waves, at variable speed and (2) the increase of the ship operability, with respect to a set of
motion-related constraints. The design space is a four-dimensional representation of shape modifications,
based on the Karhunen-Loève expansion (KLE) of free-form deformations of the original hull [56]. For140

the sake of the current study, the optimization is performed on a metamodel, based on stochastic radial
basis function [57] and trained by an unsteady Reynolds averaged Navier-Stokes (URANS) equations solver.
Finally, the results are compared with a stochastic version of the most promising MODPSO, MOPSO-CRM,
MOPSO-CD, and NSGA-II.

The paper is organized as follows. Section 2 presents the multi-objective problem formulation and145

associated definitions. Section 3 briefly recalls the single-objective particle swarm optimization algorithm,
whereas Section 4 presents the multi-objective extensions of the formulation. Section 5 describes the setting
parameters used for MODPSO. The performance metrics are presented in Section 6, whereas the optimization
problems are described in Section 7. The discussion of the results and the final conclusions are included in
Sections 8 and 9, respectively.150

2. Optimization problem formulation

The multi-objective minimization problem is formulated as

minimize f(x) = {f1(x), . . . , fm(x)}T , m = 1, ..., Nof , x ∈ RNdv (1)

4
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where Nof is the number of objective functions fm(x), and x is the vector collecting the Ndv variables.
Geometric and/or functional constraints, if required, may be applied and included in the problem of Eq. 1
as155

zi(x) ≤ 0, with i = 1, . . . , I

hj(x) = 0, with j = 1, . . . , J
(2)

where zi(x) are the inequality constraints and hj(x) are the equality constraints, defining the feasible solution
set as

X = {x ∈ RNdv | [∩Ii zi(x) ≤ 0] ∧ [∩Jj hj(x) = 0]} (3)

The solution of Eq. 1 is the locus of non-dominated feasible solutions, represented in the variable domain
by the Pareto solution set

PS = {x ∈ X | f(x) ≺ f(y),∀y ∈ X} (4)

In the objective function space, the locus is represented by the Pareto front160

PF = {f(x) : x ∈ PS} (5)

In the following, the approximate solution set (set of non-dominated solutions represented either in the
variable or function space) achieved by the optimizer at a specific iteration is indicated by S

S = {(x, s) : s = f(x) ≺ f(y),∀y ∈ X} (6)

Similarly, the approximate reference solution used for the performance evaluation and assessed by nu-
merical experiments is indicated by R.

3. Particle swarm optimization165

PSO algorithm was originally introduced in [4] and is based on the social-behaviour metaphor of a flock
of birds or a swarm of bees searching for food. PSO belongs to the class of metaheuristic algorithms for
single-objective derivative-free global optimization. PSO has been formulated in [5] as{

vk+1
i = χ

[
vk
i + c1r

k
1,i

(
pi − xk

i

)
+ c2r

k
2,i

(
g − xk

i

)]
xk+1
i = xk

i + vk+1
i

(7)

where vk
i and xk

i are the velocity and the position, respectively, of the i-th particle at the k-th iteration. The
parameter χ, namely the constriction factor, has been introduced in [5] to improve the convergence of PSO;170

c1 and c2 are the cognitive and social learning rate, respectively; rk1,i and rk2,i are two random numbers in
[0, 1]. Finally pi is the personal best position ever visited by the i-th particle and g the global best position
ever visited among all particles. PSO formulation in Eq. 7 makes use of random coefficients, in order to
enhance the variety of the swarm dynamics. This property implies that statistically significant results can
be obtained only through extensive numerical campaigns. Such an approach might be too expensive in175

simulation-based optimization for real industrial applications, therefore a deterministic formulation of PSO
(DPSO) has been introduced in [1]. Setting rk1,i = rk2,i = 1 yields{

vk+1
i = χ

[
vk
i + c1

(
pi − xk

i

)
+ c2

(
g − xk

i

)]
xk+1
i = xk

i + vk+1
i

(8)
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4. Multi-objective deterministic PSO (MODPSO)

The single-objective DPSO algorithm is extended to multi-objective problems [36] as{
vk+1
i = χ

[
vk
i + c1

(
pi − xk

i

)
+ c2

(
gi − xk

i

)]
xk+1
i = xk

i + vk+1
i

(9)

where the global (social) best position for the single-objective DPSO g is redefined as gi. The subscript “i”180

implies that each particle has its own social attractor.
It is possible to prove that the necessary (but possibly not sufficient) conditions which ensure that the

trajectory of each particle does not diverge [58], are{
0 < |χ| < 1

0 < ω < 2(χ+ 1)
(10)

where ω = χ(c1 + c2). Introducing

β =
ω

2(χ+ 1)
(11)

and assuming χ > 0 as usually in literature, the conditions of Eq. 10 reduce to185 {
0 < χ < 1

0 < β < 1
(12)

In the following, six formulations of MODPSO are presented and compared. Four of them have been
selected from literature, whereas two variants are proposed herein. The formulations differ for the approach
used to define the cognitive and social attractors (pi and gi), as presented in the following.

4.1. Pareto solution formulations

Diez and Peri [37] have presented a Pareto solution formulation, where the cognitive and social attractors190

are defined as follows:

• pi is the closest point to the i-th particle of the personal solution set Sp,i;

• gi is the closest point to the i-th particle of the solution set S;

where Sp,i is the set of all non-dominated solutions ever visited by the i-th particle. This formulation is
referred to as MODPSO1 and presented in Alg. 1.195

Algorithm 1 MODPSO1

1: Initialize a swarm of Np particles
2: while (k < Max number of iterations) do
3: for i = 1, Np do
4: Evaluate f(xk

i )
5: Evaluate Sp,i

6: end for
7: Evaluate S
8: for i = 1, Np do
9: Evaluate cognitive attractor, pi = argmin||xk

i − x||,x ∈ Sp,i

10: Evaluate social attractor, gi = argmin||xk
i − x||,x ∈ S

11: end for
12: Update particle velocities vk+1

i

13: Update particle positions xk+1
i

14: end while
15: Output solution set

6
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A further variant of MODPSO1 is presented in this work, namely MODPSO2. Differently from MODPSO1,
the distance of the i-th particle to the solution set is evaluated in the objective function space (see Alg. 2).

Algorithm 2 MODPSO2

1: Initialize a swarm of Np particles
2: while (k < Max number of iterations) do
3: for i = 1, Np do
4: Evaluate f(xk

i )
5: Evaluate Sp,i

6: end for
7: Evaluate S
8: for i = 1, Np do
9: Evaluate cognitive attractor, pi = argmin||f(xk

i )− f(x)||,x ∈ Sp,i

10: Evaluate social attractor, gi = argmin||f(xk
i )− f(x)||,x ∈ S

11: end for
12: Update particle velocities vk+1

i

13: Update particle positions xk+1
i

14: end while
15: Output solution set

4.2. Combined Pareto solution/aggregate objective formulations

Campana and Pinto [52] have presented a formulation variant, combining the Pareto solution with an
aggregate objective function. The cognitive and social attractors are defined as follows:200

• pi is the personal minimizer of the aggregated function F (xi);

• gi is the closest point to the i-th particle of the solution set S.

The aggregated function F (xi) is defined as:

F (xi) =

Nof∑
m=1

wmfm(xi) (13)

where wm is the weight associated to the m-th objective function. Herein, the objective function weights
wm are set equal to one and the distance of the i-th particle to the solution set is computed in the variable205

space. This implementation is referred to as MODPSO3 (see Alg. 3).

Algorithm 3 MODPSO3

1: Initialize a swarm of Np particles
2: while (k < Max number of iterations) do
3: for i = 1, Np do
4: Evaluate f(xk

i )
5: Evaluate Sp,i

6: end for
7: Evaluate S
8: for i = 1, Np do
9: Evaluate cognitive attractor, pi = argmin[F (xi)]

10: Evaluate social attractor, gi = argmin||xk
i − x||,x ∈ S

11: end for
12: Update particle velocities vk+1

i

13: Update particle positions xk+1
i

14: end while
15: Output solution set

7
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A further variant of MODPSO3 is presented in this work, namely MODPSO4. Differently from MODPSO3,
the distance of the i-th particle to the solution set is computed in the objective function space (see Alg. 4).

Algorithm 4 MODPSO4

1: Initialize a swarm of Np particles
2: while (k < Max number of iterations) do
3: for i = 1, Np do
4: Evaluate f(xk

i )
5: Evaluate Sp,i

6: end for
7: Evaluate Sg

8: for i = 1, Np do
9: Evaluate cognitive attractor, pi = argmin[F (xi)]

10: Evaluate social attractor, gi = argmin||f(xk
i )− f(x)||,x ∈ S

11: end for
12: Update particle velocities vk+1

i

13: Update particle positions xk+1
i

14: end while
15: Output solution set

4.3. Combined Pareto solution/crowding distance formulation

Raquel e Naval [17] have presented a variant of MOPSO, which enhances the diversity of the swarm210

including the crowding distance as a criterion to select the social attractor. A deterministic version of the
algorithm is herein used, obtained eliminating the random coefficients of the attractors, the mutation of
the particles, and introducing a deterministic criterion for the initialization and the selection of the social
attractor. The cognitive and social attractors are defined as follows:

• pi is the best position of the i-th particle;215

• gi is the closest point to the i-th particle of the best 10% of solution set S, ordered in descending
crowding distance values of the points of S.

This implementation is referred to as MODPSO5 (see Alg. 5).

8
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Algorithm 5 MODPSO5

1: Initialize a swarm of Np particles
2: Initialize cognitive attractor, pi = x0

i

3: while (k < Max number of iterations) do
4: for i = 1, Np do
5: Evaluate f(xk

i )
6: Evaluate Sp,i

7: end for
8: Evaluate S
9: Order S in descending crowding distance values

10: According to the crowding distance values, select the best 10% of S (S10)
11: for i = 1, Np do
12: Evaluate cognitive attractor pi

13: if xk
i dominate pi then

14: pi = xk
i

15: end if
16: Evaluate social attractor, gi = argmin||xk

i − x||,x ∈ S10

17: end for
18: Update particle velocities vk+1

i

19: Update particle positions xk+1
i

20: end while
21: Output solution set

It should be noted that the maximum value of the crowding distance is always assigned to the solution
set extrema in order to include them among the feasible attractors.220

4.4. Sub-population formulation

Parsopulos et al. [25] have presented a MOPSO variant based on a sub-population formulation, known
as vector evaluated PSO (VEPSO). The particle swarm is divided into Nof sub-swarm. Here, a deterministic
variant of the formulation is used (namely MODPSO6), with sub-swarms exchanging information in a ring
connection (see Fig. 1 and Alg. 6 from line 10 to 17). Cognitive and social attractors of the m-th sub-swarm225

are defined as follows:

• pi,m is the personal minimizer of the objective function fm(xi,m),

• gi,m is the global minimizer of the objective function fm−1(xi,m−1), provided by the (m − 1)-th sub
swarm.

The method is presented in Alg. 6.230

9
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…
Sub-swarm 1

Sub-swarm 2

Sub-swarm 3

Sub-swarm 4

Sub-swarm m

Figure 1: Ring connection scheme for MODPSO6

Algorithm 6 MODPSO6

1: Initialize M = Nof sub-swarms
2: while (k < Max number of iterations) do
3: for m = 1,M do
4: for i = 1, Np/M do
5: Evaluate fm(xk

i,m)
6: Evaluate cognitive attractor, pi,m = argmin[fm(xi,m)]
7: end for
8: Evaluate auxiliary social attractor, am = argmin[fm(pi,m)], i = 1, ..., Np/M
9: end for

10: for i = 1, Np/M do
11: Define social attractor, gi,1 = aM
12: end for
13: for m = 2,M do
14: for i = 1, Np/M do
15: Define social attractor, gi,m = am−1

16: end for
17: end for
18: for m = 1,M do
19: Update particle velocities vk+1

i,m

20: Update particle positions xk+1
i,m

21: end for
22: Evaluate S
23: end while
24: Output solution set

5. MODPSO parameters and setup

The MODPSO parameters used in the current analysis are described and discussed in the following
subsections. Their full-factorial combination is considered, resulting in a total of 180 MODPSO setups for
each algorithm formulation.
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5.1. Number of particles235

The number of particles (Np) is selected as

Np = 2nNofNdv, with n ∈ N[1, 6] (14)

therefore ranging from 2NofNdv to 64NofNdv.

5.2. Particles initialization
The initialization of particles location and velocity is set using a deterministic and homogeneous distri-

bution, following HSS [53]. Specifically, three different sub-domains are investigated [35]: (a) the variable240

domain, (b) the boundary domain, (c) the variable domain and the boundary domain using particles in
even amount. Both null and non-null [38] initial velocities are considered for the particles, resulting in six
different initializations. Table 1 summarizes the initialization used in this work.

Table 1: Swarm initialization

HSS, over v = 0 v 6= 0

Domain A.0 A.1
Domain boundaries B.0 B.1
Domain and boundaries C.0 C.1

5.3. Coefficient set
Five coefficient sets, summarized in Tab. 2, are selected from literature and used for the current analysis.245

The associated values of β are included, and they all satisfy Eq. 12.

Table 2: Coefficient sets

Set ID Reference χ c1 c2 β

1 Shi and Eberhart [6] 0.729 2.050 2.050 0.864
2 Trelea [7] 0.600 1.700 1.700 0.638
3 Campana and Pinto [52] 1.000 0.400 1.300 0.425
4 Clerc [9] 0.721 1.655 1.655 0.694
5 Diez and Peri [37] 0.990 0.330 0.660 0.246

5.4. Box constraints
A semi-elastic wall-type approach [35] is used to keep the particles inside the feasible domain. In case

the i-th particle position violates a bound constraint, then the particle position is modified in order to make
that constraint active (i.e. the particle is moved on the boundary of that constraint), whereas the associated250

j-th velocity component is defined as follows

vk+1
i,j = −

vk+1
i,j

χ (c1 + c2)
(15)

5.5. Number of problem evaluations
One problem evaluation involves one evaluation of each objective function. This parameter directly

affects the number of iterations available to perform the optimization. The number of problem evaluation
(Npeval) is defined as255

Npeval = νNofNdv, where ν = 125 · 2c with c ∈ N[0, 4] (16)

therefore Npeval ranges between 125NofNdv and 2000NofNdv. Consequently, the number of MODPSO
iterations, from Eq. 14, is set as

Niter =
Npeval

Np
=

125 · 2cNdvNof

2nNdvNof
= 125 · 2c−n (17)
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6. Performance metrics

In the present work, the performance metrics are defined following the classification presented in [54]:

• capacity metrics are used to tally the number of non-dominated solution S that satisfied given prede-260

fined requirements;

• converge-diversity metrics are used to include convergence and diversity information on a single scale.

Herein, the reference solution set R, for a problem p ∈ P, is defined as

R = {(x, r) ∈ ∪Ns
i=1Si : r = f(x) ≺ s,∀s} (18)

where Ns is the number of algorithm formulations/setups.

6.1. Capacity metric265

Herein, the Ratio of Reference Point Found (C1R, [55]) is used as capacity metric. It is evaluated by

C1R =
|S ∩ R|
|R|

(19)

This metric quantifies the contribution of a solution set S to the reference solution set R (see Fig. 2a). High
values of C1R correspond to better performance.

6.2. Convergence-diversity metrics

The widely-used HyperVolume (HV), introduced in [21], is defined as270

HV(S,R) = volume

 |S|⋃
i=1

vi

 (20)

This metric gives the hypervolume (in the codomain) dominated by the solution set S. An example is
given in Fig. 2b, where the HV is the area bounded by S1S2S3RpS1. Rp is the anti-ideal point of R [54].

A Normalized Hypervolume (NHV) is introduced herein as

NHV =
HV(S,R)

HV(R,R)
(21)

where HV(R,R) is the hypervolume of the reference solution set. High values of NHV correspond to better
performance.275
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Figure 2: Graphical interpretation of C1R and NHV

6.3. Relative variability

The relative variability σ2
r,k [59] is used to assess the impact of formulation and parameters on each per-

formance metric. Defining the algorithm formulation/parameter vector as t = {t1, . . . , t4}T ∈ T (collecting
respectively formulation, number of particles, initialization, and coefficient set), the relative performance
variability associated to its k-th component is280

σ2
r,k =

σ2
k∑|T |

k=1 σ
2
k

(22)

where

σ2
k =

1

|Ω|
∑
ω∈Ω

[µ̂k(ω)]
2 −

[
1

|Ω|
∑
ω∈Ω

µ̂k(ω)

]2

(23)

with Ω containing the positions ω assumed by the parameter tk

µ̂k(ω) =
1

|B|
∑
s∈B

µ̄(t), B = {t : tk = ω} (24)

and

µ̄(t) =
1

|P|
∑
p∈P

[µ(t)]p (25)

where [µ(t)]p is the value of any metric (C1R or NHV) given by the formulation/parameters t, for the
problem p.285

6.4. Performance profiles

The performance profile is the cumulative distribution function for a specific performance metric µ and
is defined as [60]

ρt(τ) =
1

|P|
size {p ∈ P : [r(t)]p ≤ τ} (26)

where [r(t)]p is the performance ratio

[r(t)]p =
[µ(t)]p

min{[µ(t)]p : t ∈ T }
(27)
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and τ ≥ 1.290

The metrics summarized in Tab. 5 are used to compute the performance ratio and the performance
profile, namely C1R and NHV.

It is worth noting that ρt(1) gives the number of problems that the formulation/parameters t solves better
than others [60]. Formulation/parameters with a high probability of success within a certain tolerance are
identified by high values of ρt(τ) with τ > 1.295

6.5. Data profiles

The data profile is a cumulative distribution function for a specific performance metric µ [61, 62], defined
as

dt(ν) =
1

|P|
size

{
p ∈ P : [q(t)]p ≤ ν

}
(28)

where [q(t)]p is the number of problem evaluations required for formulation/parameters t to solve problem
p, with a certain accuracy (tolerance) ε.300

7. Optimization problems

7.1. Analytical test problems

Sixty six analytical test problems (see Tab. 3), selected from literature [41, 42, 43, 44, 45, 46, 47, 48, 49,
50, 51] in order to provide a heterogeneous collection of problems with convex and non-convex, continuous
and discontinuous Parent fronts have been used to determine the best performing MODPSO formulation305

and setup. Test problems with Nof = 2 and 3 have been considered, with Ndv ranging from 2 to 8. The
corresponding occurrences are summarized in Tab. 4.
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Table 3: Analytical test problems

p Name Ndv Nof Front Reference p Name Ndv Nof Front Reference

1 ex005 2 2 Cont convex/concave [41] 34 LE1 2 2 Cont concave
2 Kursawe 3 2 Discont convex/concave [42] 35 LRS1 2 2 Cont convex
3 Fonseca 2 2 Cont concave [43] 36 MHHM2 2 3 Cont convex
4 CL1 4 2 Cont convex [44] 37 MLF2 2 2 Discont concave

5 Deb41 2 2 Cont convex 38 MOP2 4 2 Cont concave
6 Deb512a 2 2 Cont convex 39 MOP3 2 2 Discont convex
7 Deb512b 2 2 Cont concave 40 MOP4 3 2 Discont convex/concave
8 Deb512c 2 2 Cont convex [45] 41 MOP5 2 3 Cont convex/concave
9 Deb513 2 2 Discont convex/concave 42 MOP6 2 2 Discont convex/concave
10 Deb521a 2 2 Cont concave 43 MOP7 2 3 Cont convex/concave
11 Deb521b 2 2 Cont concave 44 SK2 4 2 Discont convex/concave

12 Jin1 2 2 Cont convex

[46]

45 SP1 2 2 Cont convex
13 Jin2 2 2 Cont convex 46 SSFYY1 2 2 Cont convex [50]
14 Jin3 2 2 Cont concave 47 TKLY1 4 2 Cont convex
15 Jin4 2 2 Cont convex/concave 48 VFM1 2 3 Cont convex

16 DTLZ1 7 3 Cont convex 49 VU1 2 2 Cont convex
17 DTLZ1n2 2 2 Cont convex 50 VU2 2 2 Cont convex
18 DTLZ2n2 2 2 Cont concave 51 WFG2 8 3 Cont concave
19 DTLZ3n2 2 2 Cont convex [47] 52 WFG3 8 3 Cont concave
20 DTLZ4n2 2 2 Cont concave 53 WFG3bis 8 3 Cont convex
21 DTLZ5n2 2 2 Cont concave 54 WFG4 8 3 Cont concave
22 DTLZ6n2 2 2 Discont convex/concave 55 WFG5 8 3 Cont concave

23 OKA1 2 2 Cont convex
[48]

56 WFG6 8 3 Cont concave
24 OKA2 3 2 Cont concave 57 WFG7 8 3 Cont concave

25 BK1 2 2 Cont convex 58 WFG8 8 3 Cont concave
26 Far1 2 2 Cont convex/concave 59 WFG9 8 3 Cont concave

27 I1 8 3 Cont concave 60 lovison1 2 2 Cont convex

[51]

28 I2 8 3 Cont concave 61 lovison2 2 2 Cont concave
29 I3 8 3 Cont concave [50] 62 lovison3 2 2 Cont convex
30 I4 8 3 Cont concave 63 lovison4 2 2 Cont convex
31 I5 8 3 Discont concave 64 lovison5 3 3 Discont convex
32 IKK1 2 3 Cont convex 65 lovison6 3 3 Cont convex

33 IM1 2 2 Cont concave 66 mop vicente 2 2 Cont convex -

Table 4: Occurrence of number of variables Ndv and objective functions Nof

Nof Ndv

Value 2 3 2 3 4 7 8
Occurrence 44 22 42 5 4 1 14

7.2. Catamaran hull-form optimization

The industrial application presented pertains to the reliability-based robust optimization of the hull form
of a 100 m high-speed catamaran [34], sailing in head waves in the North Pacific Ocean. Figure 3 shows the310

model used at CNR-INSEAN for the experiments and an example of the wave pattern obtained by URANS
simulation [63].

The problem is formulated as

minimize {ϕ1(x), −ϕ2(x)}T

subject to l ≤ x ≤ u

and to ϕ1 ≤ 0; ϕ2 ≥ 0

(29)
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(a) (b)

Figure 3: High-speed catamaran: (a) CNR-INSEAN model and (b) URANS wave pattern [63]

where φ1 and φ2 are the expected value of the mean total resistance and the ship operability evaluated in
irregular wave for variable sea state and speed, respectively defined as315

ϕ1(x) =

∫∫
S,U

R̄T (x, S, U) p (S,U) dUdS (30)

ϕ2(x) =

∫∫
S,U

J⋂
j=1

[hj (x, S) ≤ 0]p (S,U) dUdS (31)

where R̄T is the mean value of the total resistance in irregular waves, x is the design variable vector
(Ndv = 4), S is the sea state, U is the speed, hj are the motion constraints, and p is the joint probability
density function of S and U .

The design optimization problem is taken from [34], and solved by means of stochastic radial-basis
functions interpolation (details may be found in [57]) of high-fidelity URANS simulations. Four design320

variables control global shape modifications of the catamaran hull, based on the Karhunen-Loève expansion
of the shape modification vector [56]. The inequalities in Eq. 29 are handled by a linear penalty function
method.

8. Numerical results

Analytical test problems results are used to define the most promising MODPSO formulation/parameter325

setup overall, used later for the catamaran optimization. The selection of the best performing formula-
tion/parameter setup is based on the sum of C1R and NHV. In order to provide a proper comparison
between different problems, with different codomain size, each solution set S is normalized with respect to
the function range, therefore si ∈ [0, 1] and the reference point for the computation of HV is RP = {1}. The
computation of HV is performed with the code provided by [64]. Table 5 summarizes the criteria used for330

the analysis of the results. The accuracy used for the computation of the data profiles is also provided.

Table 5: Metrics

Criteria Metric Performance profile Data profile criterion Accuracy

Capacity C1R C1R C1R ≥ (1− εC1R )/|T | εC1R = 0.5000

Convergence-diversity NHV NHV NHV≥ 1− εNHV εNHV = 0.0075

Combined C1R+NHV C1R + NHV
C1R + NHV ≥ εC1R = 0.5000

(1− εNHV) + (1− εC1R )/|T | εNHV = 0.0075
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8.1. Analytical test problems

Figure 4 shows the relative performance variability of the algorithm formulation/setup parameters. Con-
sidering C1R, the initialization and the formulation are the most significant parameters for a low and high
budget of problem evaluations, respectively. Considering NHV, the algorithm formulation is the most sig-335

nificant parameter. Considering the sum of both metrics, the initialization has a decreasing significance as
the number of problem evaluations increases, whereas the formulation shows the opposite trend. Overall,
the coefficient set is the least relevant parameter.
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Figure 4: Analytical test problems, relative performance variability of formulation/parameters

Figure 5 shows the average performance conditional to (a) the algorithm formulation, (b) the number of
particles, (c) the particle initialization, and (d) the coefficient set.340

Figure 5a shows that MODPSO1 and MODPSO3 have the most promising performances overall, whereas
MODPSO6 is found as the least performing formulation. The formulations that use the variable domain
in order to identify the cognitive and the social attractors (MODPSO1 and MODPSO3) have similar per-
formances. Similarly, the formulations that use the codomain (MODPSO2 and MODPSO4) also show very
close trends with in general a worse performance.345

Figure 5b shows how using a large number of particles provides good performances for a high budget of
problem evaluations. A large number of particles with a small budget of problem evaluations implies few
algorithm iterations, therefore a reduced exploration and exploitation of the research space.

Figure 5c shows that the use of non-null velocity initialization has better performances than null-velocity
initialization. The initialization with the particles on boundaries domain only (B) has good performances in350

terms of C1R, whereas the initializations with points inside the domain (A and C) show good performances
in terms of NHV and C1R + NHV.

Finally, the most effective coefficient sets (on average) are set 5 [37] for C1R and set 4 [9] for NHV and
C1R + NHV, as shown in Fig. 5d.
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(c) Average performances, conditional to particles initialization
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(d) Average performances, conditional to coefficient set

Figure 5: Analytical test problems
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Table 6 collects the most promising parameter setup (based on ν-averaged C1R+NHV) for each MODPSO355

formulation. Average values and standard deviations (STD) overall are also provided. The most promising
formulation/parameter setup is MODPSO3 with Np = 8NofNdv, initialized over the domain and boundary
with non-null velocity (C.1), and the coefficients proposed in [9] (χ = 0.721, c1 = c2 = 1.655). Figure 6
shows the performances of this MODPSO3 setup, compared to average values, standard deviations, and
the best performing formulation/parameters (“Best”) for each specific budget ν. The algorithm proposed is360

very close to the “Best” values, especially considering NHV and C1R + NHV.

Table 6: Most promising parameter setup for each MODPSO formulation, based on C1R + NHV

ν Form.
Np

NofNdv
Init. Coef. C1R NHV C1R + NHV

Average

1 8 C.1 4 5.7135E-4 9.2101E-1 9.2158E-1
2 8 B.1 2 9.6060E-4 9.0833E-1 9.0929E-1
3 8 C.1 4 6.2921E-4 9.2334E-1 9.2397E-1
4 8 B.1 2 1.2029E-3 9.1104E-1 9.1225E-1
5 64 A.1 2 2.8450E-5 8.2530E-1 8.2533E-1
6 8 A.0 5 7.6128E-5 9.0520E-1 9.0527E-1

Average 2.4321E-4 8.4464E-1 8.4488E-1
STD 4.2039E-4 7.4424E-2 7.4579E-2
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Figure 6: Analytical test problems, most promising formulation/setup (MODPSO3) performances compared to average values,
standard deviation, and “Best” implementations

The best performing setup for each MODPSO formulation (Tab. 6) has been assessed in terms of perfor-
mance profiles, conditional to the shape of the Pareto front (convex/concave and continuous/discontinuous,
see Fig. 7) and its dimension (2D and 3D, see Fig. 8), for an average budget of problem evaluations equal
to 500NofNdv. It is worth noting that, for C1R, the unity of the performance profile is never achieved, since365

none of the algorithms considered is able to provide reference solutions for all the test problems. Perfor-
mance and data profiles confirm that MODPSO3 is the most promising algorithm in terms of NHV and
C1R + NHV (see Figs. 7-9). Data profiles (Fig. 9b) show that MODPSO3 is the best performing algorithm
for all the evaluation budgets, on average.
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(c) Discontinuous convex/concave Pareto front

Figure 7: Performance profiles of the most promising setup of each formulation for 500NofNdv problem evaluations, conditional
to the shape of the Pareto front

20



Page 21 of 31

Acc
ep

te
d 

M
an

us
cr

ip
t

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5

ρ t
 [-

]

τ [-]

 µ[t] = C1R

MODPSO:  1 2 3 4 5 6

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5

ρ t
 [-

]

τ [-]

 µ[t] = NHV

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5

ρ t
 [-

]

τ [-]

 µ[t] = C1R+NHV

(a) 2D Pareto front

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5

ρ t
 [-

]

τ [-]

 µ[t] = C1R

MODPSO:  1 2 3 4 5 6

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5

ρ t
 [-

]

τ [-]

 µ[t] = NHV

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5

ρ t
 [-

]

τ [-]

 µ[t] = C1R+NHV

(b) 3D Pareto front

Figure 8: Performance profiles of the most promising setup of each formulation for 500NofNdv functions evaluations, conditional
to the dimension of the Pareto front
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Figure 9: Performance and data profiles of the most promising setup of each formulation for 500NofNdv, conditional to the
whole set of problems

8.2. Catamaran hull-form optimization370

The optimization is performed with MODPSO3 from Tab. 6. This algorithm is compared with its
random version, hereafter called MOPSO3 implemented following Eq. 7. In order to provide a comparison
with other swarm-intelligence and evolutionary algorithms from literature, the optimization is performed
also with MOPSO-CRM, MOPSO-CD, and NSGA-II with the parameters suggested in [22], [17], and [18],
respectively. A budget of problem evaluations equal to 2000NofNdv is used for all algorithms.375

Figure 10 shows the algorithms performance versus the number of problem evaluations. The results of
the stochastic algorithms are based on 100 optimizations: the solid line represent the median performance,
whereas the color band represent the 95%-confidence interval. Considering C1R, MOPSO-CD shows the
best results for low budgets of problem evaluations, without achieving any significant improvement as the
available budget increases. This is reasonable if one considers the finite-size archive of non-dominated380

solutions used by the method. MODPSO3 shows comparable performances with NSGA-II, outperforming
its random version (MOPSO3) for medium/high budgets, and achieving close results to MOPSO-CD for
NHV and C1R + NHV for high budgets. Finally, MODPSO-CRM shows a quite slow convergence compared
to MODPSO3 and the other algorithms and is not able to provide any reference points. Nevertheless, its
trend is monotonically convergent to high values of NHV achieving a significant reduction of its confidence385

band.
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Figure 10: Algorithms performance convergence for the catamaran problem
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(a) MODPSO3

(b) MOPSO3 (c) MOPSO-CRM

(d) MOPSO-CD (e) NSGA-II

Figure 11: Reference and solution sets for the catamaran hull-form optimization for 2000NdvNof problem evaluations

Figure 11 compares the algorithms solutions to the reference set. The solution associated to the median
performance is shown for the stochastic algorithms. MODPSO3 shows a better solution set compared to its
random version (MOPSO3), although is unable to cover the upper right part of the front. MOPSO-CRM
provides a solution set with fewer and less accurate points than the other algorithms. Nevertheless, it is390

able to explore the upper right part of the reference set more effectively than MODPSO3 and MOPSO3.
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MOPSO-CD and NSGA-II cover the whole reference set, with a good distribution of their solutions. NSGA-
II is not able to reach the reference set completely in upper right part of the front. Comparing MODPSO3
and MOPSO-CD it can be said that, for this specific problem, MOPSO-CD covers the whole reference set,
whereas MODPSO3 finds a larger number of solutions in the middle region of the front, representing the395

most interesting zone from an engineering viewpoint. Figure 12 shows the design variable values in S versus
the first objective function. It is worth noting that, consistently to Fig. 11, MOPSO-CD is the most effective
in reaching the reference solution characterized by a discontinuity in the design variable space.
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(a) MODPSO3

(b) MOPSO3 (c) MOPSO-CRM

(d) MOPSO-CD (e) NSGA-II

Figure 12: Variables values for reference solution and solution sets for the catamaran hull-form optimization for 2000NdvNof

problem evaluations

Figure 13 and Tab. 7 compare algorithms and the reference solution, showing the design variables for
three different configurations corresponding to: (a) minimum expected value of the mean total resistance,400

(b) maximum ship operability, and (c) minimum aggregate objective function (with equal weights). The
largest differences in the design variables are found for ϕ2,max (see Fig. 13b). This depends on the algorithms
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ability of identifying the upper right part of the reference solution. The corresponding optimal hulls are
finally compared to the original in Fig. 14.
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(c) Best trade-off, min(ϕ1 − ϕ2)

Figure 13: Hull-form optimization, optimal design variable values for three Pareto solutions

Table 7: Hull-form optimization problem results

Configurations Algorithm x1 x2 x3 x4 ∆ϕ1% ∆ϕ2%

ϕ1,min

Reference 0.804 0.427 0.198 0.242 -5.514 4.207
MODPSO3 0.810 0.430 0.198 0.250 -5.512 4.158
MOPSO3 0.847 0.470 0.197 0.249 -5.433 4.680
MOPSO-CRM 0.798 0.432 0.196 0.215 -5.489 4.476
MOPSO-CD 0.805 0.428 0.198 0.242 -5.514 4.207
NSGA-II 0.807 0.427 0.198 0.240 -5.514 4.232

ϕ2,max

Reference 0.703 0.716 0.418 0.341 -0.001 9.710
MODPSO3 0.706 0.617 0.480 0.268 -0.697 9.303
MOPSO3 0.730 0.592 0.458 0.235 -1.395 9.087
MOPSO-CRM 0.737 0.708 0.428 0.343 -0.143 9.467
MOPSO-CD 0.702 0.715 0.418 0.336 -0.004 9.708
NSGA-II 0.703 0.698 0.433 0.324 -0.079 9.529

min(ϕ1 − ϕ2)

Reference 0.727 0.545 0.425 0.255 -2.757 8.763
MODPSO3 0.733 0.534 0.412 0.251 -3.084 8.460
MOPSO3 0.745 0.532 0.379 0.235 -3.537 7.976
MOPSO-CRM 0.756 0.544 0.404 0.255 -3.130 8.360
MOPSO-CD 0.745 0.534 0.405 0.248 -3.205 8.339
NSGA-II 0.734 0.530 0.406 0.248 -3.216 8.318
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Figure 14: MODPSO3 optimal hull compared to the original

9. Conclusions405

A systematic assessment and selection have been presented and discussed of the most promising formula-
tion and setup parameters for multi-objective deterministic particle swarm optimization in simulation-based
problems. A comparative study of six formulations (varying the definition of cognitive and social attractors)
and three setting parameters (number of particles, initialization, and coefficient set) have been performed
using 66 analytical test problems, with a number of objective functions ranging from two to three and a410

number of variables from two to eight (as often encountered in simulation-based optimization). The prob-
lems have been presented setting apart continuous/discontinous and convex/non-convex Pareto fronts. A
full-factorial combination of formulations and parameters has been investigated through more than 60,000
optimization runs and three performance metrics (C1R, NHV, and their sum).

The algorithm formulation has a significant effect on the performance, greater than the setup parameters.415

Specifically, MODPSO3 has been found with the most promising performance, for all types of Pareto front.
The formulations that use the variable domain for the attractor identification (MODPSO1 and MODPSO3)
have similar performances. The formulations that embed the attractor identification in the codomain
(MODPSO2 and MODPSO4) also show very close trends, with worse performance than MODPSO1 and
MODPSO3.420

Using a large number of particles is shown to have good performances for a high budget of problem
evaluations, whereas a small number of particle should be preferred if the available budget of problem
evaluations is small. Non-null velocity initialization has shown good overall performances and shall be
preferred. Moreover, initializing the particles inside the domain have shown better performances than
the initialization on the domain boundary only. Finally, the coefficient sets by [7] and [9] show the best425

overall performance. The most promising setups for each formulation have been summarized in Tab. 6 and
MODPSO3 (with a number of particles equal to 8NofNdv, initialized over the domain and boundary with
non-null velocity, and the coefficients corresponding to χ = 0.721, c1 = c2 = 1.655 [9]) has been selected as
the most promising algorithm overall.

MODPSO3 have been used for the hull-form optimization of a high-speed catamaran in realistic ocean430

conditions, addressing the expected value of the mean total resistance and the ship operability in irregular
waves. A metamodel has been used, based on URANS simulations. Four stochastic optimization algorithms
(MOPSO3, MOPSO-CRM, MOPSO-CD, and NSGA-II) have been applied and compared with MODPSO3.
The latter has shown the capability of achieving comparable results to the stochastic algorithms.

It may be noted that often the best performing setting parameters provided by C1R are completely435

different from those provided by NHV. This confirms the different point of views offered by the two metrics
and that considering both C1R and NHV provides a robust analysis.

A final consideration can be made about the efficiency and effectiveness of MOPSO-CD, compared to
other MODPSOs. Particle velocities are easily found greater than for other MOPSO algorithms. This stems
from using a limited-size set of non-dominated solutions with large crowding distance. Since non-dominated440
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solution set extremes are always attractors (based on their crowding distance) the algorithm easily tends
to extend the exploration of the non-dominated solution set, with beneficial effects on the NHV. This is
particularly evident for the catamaran problem. Moreover, MODPSO3 is able to achieve the same NHV as
MOPSO-CD, for a high budget of problem evaluations, although is unable to cover the entire front.

Based on the present results, future work will include the development and assessment of hybrid exten-445

sions of MODPSO with derivative-free local multi-objective algorithms, in order to improve the exploration
and exploitation of the research space. Further deterministic formulations will be evaluated, based on the
crowding distance.
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