
xmL-Innovative Generation for Home networking Technologies

LIGHT

(xmL-Innovative Generation for Home
networking Technologies)

Deliverable D2.2:
Requirements analysis for footprint and

power constrained devices

Editor(s): Vittorio Miori, Luca Tarrini, Rolando Bianchi Bandinelli

Document Name: Deliverable D2.2: Requirements analysis for footprint
and power constrained devices

Date: May 23, 2005

xmL-Innovative Generation for Home networking Technologies

Scope
The ubiquitous nature of XML makes it a data interchange format promising universal access to any

XML-enabled device by any XML-enabled application. XML has recently made inroads into the data-

oriented world of machine-machine interaction, most prominently in the form of SOAP and Web

services. In fact there is a greater demand to use Web services technology as a way to deliver content

to small (wireless) devices. But this opportunity has created new challenges for embedded systems. In

fact rarely these systems have enough memory and processing power to run an HTTP server, SOAP

engine, and XML parser in comparison to the normal desktop PC. In addition, the quality of wireless

networks is much lower than that of fixed networks, especially considering bandwidth and latency.

Therefore the processing and memory limitations of embedded devices may severely compromise the

usability of XML, unless several optimizations are considered.

Executive Summary
This deliverable carries out a significant number of technical studies on the applicability of Web services

in distributed embedded systems, that is investigate if resource-limited devices are capable and fast

enough to run Web services. The main purpose of this document is to summarize the results of the

evaluation of existing technologies that could be of interest to WSED (Web Services for Embedded

Devices) architecture.

Our approach isn’t to develop a new prototype implementation of a tool for Web services but to

experiment the modern solutions for testing them on our architecture. In this work we have concluded

that Web services are applicable in distributed embedded systems, but applying it introduces an

overhead, in terms of CPU, memory, and network usage.

1.0 Introduction
An embedded system [1] is a combination of computer hardware and software, and perhaps additional

mechanical or other parts, designed to perform a specific function. An embedded system is any system

consisting of one or more embedded devices, which contains software that interacts with an external

environment, such as a human user, physical objects and sensors, in order to solve a dedicated task. A

good example is the microwave oven. Almost every household has one, and tens of millions of them are

used every day, but very few people realize that a processor and software are involved in the

preparation of their launch or dinner.

The embedded systems are becoming smarter and are increasingly shipping with network connectivity.

It would be extremely useful to remotely configure or monitor an embedded device, to have an

embedded system integrated with other systems on a home network. It seems inevitable that the

number of embedded systems will continue to increase rapidly. Already there are promising new

embedded devices that have enormous potential: light switches and thermostats that can be controlled

by a central computer, intelligent air-bag systems, palm-sized electronic organizers and personal digital

assistants and so on.

At the same time a new technology, XML Web Services, is becoming a powerful mechanism for

connecting distributed and intelligent systems. In a near future, information and services should be

available everywhere and anytime and with Web services with anyone or any machine. As discussed in

xmL-Innovative Generation for Home networking Technologies

the Deliverable 2.1 [2], all of these intelligent embedded systems are capable of service description

languages that allow platform independent description of the service interfaces, service registration

mechanisms that allow services advertise themselves once deployed, service discovery mechanisms that

allow user applications to find and choose appropriate services at run time, and authorization,

authentication and accounting mechanisms to establish trusts among service providers and service

users. SOAP, WSDL, UDDI, and WS-* are initially created for hardware with relatively a lot of memory

and CPU resources. For example SUN is working on the mobile counterpart to add Web services to their

J2ME platform.

In synthesis, we can say certainly that Web Services and embedded systems are hot topics nowadays.

As both technologies are still not in their mature form and the applicability of Web Services Architecture

as middleware technology to integrate distributed embedded systems in a loosely coupled environment

arises whether both these technologies must be combined.

In the LIGHT project, the devices of interest are:

ß Embedded control systems, including consumer devices, intelligent sensors, and smart home

controls.

ß Communication oriented devices such as digital cell phones and mobile devices.

The target platforms for this use case include a broad range of devices (PDAs, handhelds, smartphones,

TV set, Set-to Box) that limit code size to 64K and heap size to 230K. For the reasons above, a scaled-

down standard for Web services catering specifically for low-powered devices are required, and it has to

be also compatible with the original architecture.

The problem of hosting Web services in an embedded system entails the high requirements of

resources in terms of processing power, memory availability, disk usage, and network bandwidth. This

is due to the overheads associated with execution of applications, data processing and marshalling

techniques, and communication protocols. For example, the XML-based messaging is at the heart of the

current Web services technology. But these messages are very verbose and require more processing

than other protocols, and they are therefore not well suited for a domain having small resources. An

aspect in contrast with the wired network, is that the main difficulties in wireless communication are

lower bandwidth, which limits the amount of data that can be sent, and higher latency, which limits the

number of round trips that a protocol can effectively make within a communication.

In the LIGHT project, the requirements of WSED architecture must be able to run on top of limited-

resources devices. It will be essential to distinguish between controller devices and services devices

because the capabilities could change. For this last, the component software footprint is in the range of

Kbytes while the typical hardware resources of controllers are 32 bits microprocessor (16 and even 8

bits microprocessor are possible), with 128 Kbytes of Flash memory and 64 Kbytes of RAM memory.

2.0 Design Issues
Each new technology seems to bring with it a whole new set of design trade-offs and issues. Web

services are no different and the combination with embedded systems increase the problem. Limited

resources, severe cost constraints, and operational considerations combine to create a complex set of

engineering trade-off. To make devices useful as services to big machines and web services accessible

from the small devices it seems logical to speak the common language, that is XML. As if specialized

protocols are more efficient, in many situation they mandate complicated and costly proxy or gateway.

A discussion of some of the purported issues surrounding Web services follows.

xmL-Innovative Generation for Home networking Technologies

Verbosity: One of Web services main drawback concluded from the studies is the use of non efficient

XML messages. Character based XML data takes more space in comparison to binary encoded message

and parsing complex XML data is processor intensive. In recent years, there has been much work in

measuring the performance of SOAP as a messaging protocol. For example, some experiments [3]

proved that the bottleneck for a high-performance SOAP toolkit is the marshaling and unmarshaling

overhead of converting floating point data to text and vice versa. Implementing the networking, XML

parsing, and SOAP encapsulation can be a bit intimidating but there are tools designed to abstract away

much of the complexity. We have analysed a number of alternative serializations developed to deliver

XML content to small devices and in the next section we discuss on some of these tools and however

many of these are not interoperable.

The verbosity of the text-oriented HTTP solution has multiple system impacts, affecting RAM usage,

bandwidth requirements, and operating costs. Because XML is a text based language, providing the

significant advantage of making platform independence, the downside is that text-based systems are

inherently less efficient than a binary system. This leads to more data being transmitted and larger

buffers required to both prepare outbound messages and receive inbound messages.

Resource Constrained: One of the main features that defines an embedded systems is that you don’t

have enough memory, processing power, or some other resource to do what you want. The thought of

adding an XML parser and SOAP encoding engine to a system seems problematic at best. In many

cases that might be true – a full-blown XML parser can easily add over 180Kb of code. The table

describes the technologies and the features used to build Web services on Windows CE.NET.

Component Size

XML/HTTP 15 KB – this is pulled in by the SOAP Server component

COM (inprocess) 111 KB

SOAP Server 270 KB – This include HTTPD server and XML/HTTP

ATL 44 KB

HTTPD Server 61 KB – this is pulled in by the SOAP Server component

Table 1. Web Services Components on Windows CE.NET

A feature about Windows CE is the support of SOAP Toolkit functionality that consists of a client-side

component that allows an application to invoke Web service operations and a server-side component

that maps invoked Web service operations to COM object method calls as described by the WSDL and

WSML (Web Services Meta Language) files. The WSML file provides information that maps the

operations of a service to specific methods in the COM object.

Fortunately, many of the features of the XML standard are not required for SOAP encoding. A well-

pared XML parser that fully supports SOAP can be under 20 Kbytes in size. For those truly constrained

devices that can’t handle even that small amount of code, Web services can also be invoked without

using SOAP at all. The WSDL specification also allows a port to be bound to an HTTP POST or GET verb

targeted at a specific address. This allows the invocation of a Web service to be a simple as sending an

HTTP POST or GET URL-encoded request to a specific URL. Web service frameworks targeted towards

embedded systems exist that provide an HTTP client and server and support URL encoding while

consuming under 5Kb of code space.

8- and 16-Bit Support: Many platforms that claim to support embedded systems really mean they

support 32-bit systems that run a real-time operating system (RTOS). In other words, they support only

xmL-Innovative Generation for Home networking Technologies

about 15% of the processors out in the field. What about the other 85% of the processors out there,

are they doomed to proprietary networking systems at best or standalone operation at worst? Certain

proprietary networking software companies that say an 8-bit processor simply can’t handle a full-blown

TCP/IP stack have been proven wrong (there are at least a half-dozen 8-bit TCP/IP solutions available

today). If the view of Web services as a distributed computing model is subscribed to, many new

applications and features become possible. For example, addressing the slowly deteriorating

performance of an industrial compressor can be a complex statistical calculation based on historical data

and current environmental factors. If a more capable application server has access to this information it

can handle the calculations, generate a service request for a field technician, and also provide feedback

to the device, such as going into a lower rpm mode to minimize vibrations in order to extend the life of

the asset until help arrives. This gives the end customer continued use of that asset but perhaps at a

lower capacity. Eight-bit applications that can invoke two different Web services over a TCP/IP stack

(with full gateway routing support) have been demonstrated in under 20Kb of code on an 8051 type

architecture. Consider the impact of even the most mundane devices, such as a compressor or smart

sensor, being able to participate in the community of a business enterprise.

3.0 Evaluation
In this section we illustrate the main features of gSOAP, kSOAP, cSOAP tools and MMLite system

architecture. MMLite is not only a simple tool for the development of Web services on embedded

systems but it is also a complex architecture system on which we are going to experiment WSED.

Because of limited amount of memory, the traditional packages such as Xerces [4] or Axis [5] are far

too large and resource-intensive to work on microdevice. For example, Xerces.jar file is over one

megabyte in size. It is impossible for our target devices. To transport Web services on small (wireless)

devices, Sun is currently in the stage of finalizing JSR172 [6], a specification that address the use of

XML, SOAP, and Web services on these devices.

3.1 gSOAP
Within the context of LIGHT, we agree our interest on gSOAP [7] project. In this section, we gives a

brief overview of this tool. The first stage illustrates the gSOAP design characteristics while the second

stage introduces the runtime optimizations [8] for developing light-weight Web services for embedded

devices. The optimizations in gSOAP are included in the IBM alphaWorks Web Services Tools Kit Mobile

Devices (WSTKMD) [9]. The gSOAP Web services is an open source development environment for Web

Services and provides a SOAP/XML to C/C++ language binding to ease the development of SOAP/XML

Web services and client application in C and or C++. Nowadays the specification is the 2.7.2 and it

include an interesting feature such as SOAP-over-UDP. This SOAP binding will result interesting when

we will develop the Discovery process in WSED architecture. GSOAP is portable to most platforms, Unix,

Linux, Windows, Mac OS X, Pocket PC, Palm, Symbian, and cell phones. Then it could be imported on

PC or embedded system.

The main design characteristic include:

ß RPC compiler generates code for XML serialization of an application’s native C/C++ application

data types, including graph-based data structures.

ß Compiler generates compact code and SOAP/XML engine has a small memory footprint.

xmL-Innovative Generation for Home networking Technologies

ß It is important the support for pure C because many embedded systems kernels and systems

applications are developed in C.

ß The efficiency of the parsing is enhanced by using XML pull parsing.

ß A service can be defined in WSDL file or gSOAP header file.

Figure shows the development and deployment of gSOAP services.

Figure 1. Development and deployment of a Service

It is tedious task to write a stub routine in C or C++ especially in the situation in which the input or

output parameters of a remote method contain elaborate data structures. GSOAP provides ‘wsld2h’

WSDL parser and ‘soapcpp2’ stub and skeleton compiler to automate the development of Web services

and server applications. The gSOAP WSDL importer and gSOAP compiler are used to parse the WSDL

service definitions to create the RPC stub code and XML serialization routines for parameter

(de)marhaling by the stub. Optionally, the client stub can be created from the gSOAP header file service

definitions. The client application is compiled and linked with the RPC stub and gSOAP communications

module to invoke SOAP/xml service functions over the Internet or local network.

To limit memory usage, processing time, and bandwidth requirements gSOAP has implemented

additional features that they include improved portability, compact compiler-based code generation

methods, and reduced memory overhead with novel streaming techniques for efficient messaging. This

tool can be supported on embedded Linux and Windows CE. This aspect is important in the choice of

tool whereby we will develop WSED. For example kSOAP is bound to a particular platform. The gSOAP

runtime library, ‘stdsoap2.c’, contains an embedded HTTP Web server and XML parser and the memory

space is about 80K.

Two are the optimized phases for the XML serialization. The first phase determines which data

components belong to the data structure and which pointers are used to reference them. The second

phase emits the XML encoded form of the entire data structure, with all sub-components of the

structure serialized recursively. XML parsing is further optimized using look-aside buffers to store XML

attribute names with their corresponding values. This permits a minimized dynamic allocation.

GSOAP utilizes a XML pull parsing techniques to achieve the streaming enhancing the performance of

XML communications. Therefore to implement efficient binary data transfers, gSOAP has integrated

DIME [10] (Direct Internet Message Encapsulation) protocol enabling the transport of attachments with

a SOAP/XML request or response. DIME results better performance compared to MIME attachments.

Tests have revealed a good performance about the strategy of gSOAP and it is preferable ahead cSOAP

approach regard to execution speed and memory consumption. CSOAP is illustrated in the next section.

In particular it performs better than cSOAP for marshalling large messages.

xmL-Innovative Generation for Home networking Technologies

3.2 MMLite
MMLite [11] is not only a tool to develop Web services on small devices. MMLite explores new ways to

create compact software systems for the next generation of computing devices. We are going to

experiment the final WSED architecture on this system. It is an object-based, modular system

architecture, suitable for a wide variety of hardware and components, that provides a menu of

components for use at compile-time, link-time, or runtime to construct a wide range of applications. A

component in MMLite consists of one or more objects. Multiple objects can reside in a single

namespace. When an object needs to send a message to an object in another namespace for the first

time, a proxy object is created in the sending object’s namespace that transparently handles the

marshalling of parameters. Componentization reduces the development time and led to a flexible and

understandable system.

Figure . A sample system configuration. Link time (LT),

and run time (RT) Loadable components.

A unique aspect of MMLite is its focus on support for transparently replacing components while these

components are in use. MMLite uses COM interfaces, which in turn support dynamic reconfigurability on

a per-object and per-component basis. The base menu of the system contains components for heap

management, dynamic on-demand loading of new components, machine initialization, namespace, file

system, and virtual memory. These components are typically very small (500 to 3,000 bytes on x86),

although the network component is much larger (84,832 bytes on x86). The resulting MMLite system

can be quite small: the base system is 26 Kbytes on x86, and 20 Kbytes on ARM. A desirable aspect of

the MMLite system architecture is that it supports real time constraints irrespective of the type of

microprocessor or network connection.

In MMLite, we have are investing the approach to realize Web services on small embedded systems. We

depict the components that make it possible for an MMLite device to communicate with Web service.

SAX Parser: [12] Parses XML data as it is being received and calls event driven handler functions

through a COM interface.

Tokenizer: It is used by the HTTP server and SAX parser. The tokenizer reads text data from a network

stream and splits it into units of text, based on context. The tokenizer is used by the HHTP server and

SAX parser. It facilitates processing of network data while it is being received, meaning that the entire

request does not have to be present at once. Footprint is therefore reduced.

BAX processor: Deals with pre-tokenized XML. This component is similar to the SAX parser but handles

binary XML thus saving significant processing that is otherwise associated with textual data. A standard

interface and format has not yet been defined.

xmL-Innovative Generation for Home networking Technologies

HTTP Server: Handles simple HTTP requests such as reading and writing files. URLs map easily to

MMLite namespaces. The HTTP server also allows sending SOAP messages embedded into HTML pages,

in which case the HTTP server delegates the work to the SOAP marshaler and SAX parser.

SOAP COM Marshaler: Provides automation for accessing COM objects through SOAP. Note that SOAP

messages can be handled directly as messages as well as marshalled into COM objects.

3.3 cSOAP
CSOAP [13] is essentially a SOAP engine for resource-constrained devices which is able to deploy Web

services and manage RPCs from SOAP clients and dispatch them to services. CSOAP is divided in two

parts: cSOAP server part running into the server-side and cSOAP client part running into the client-side.

Server-side manages the deployed services, listen to the SOAP messages coming from clients.

Figure 2. CSOAP Infrastructure

Client-server, CSOAP provides a set of methods which allows a simple development of client application

that invokes services deployed on CSOAP server. CSOAP is organized into subsystems which make it

modular and extensible. CSOAP takes a different approach. Instead of generating middleware layers, it

provides SOAP specific functionality through a library and an associated API. CSOAP does not provide a

mapping of types between C and XML Schema. The marshalling and unmarshalling data types such as

structs and array must be handled by the application developer. All service specific code resides in the

client and server applications themselves.

3.4 kXML and kSOAP
kXML [14] is an open source project that provides a XML pull parser to transform XML data to all Java

platforms. kXML is suited for small devices because of small footprint size. The popularity of this parser

is its adoption on J2ME/MIDP platforms and specially designed for constrained environment. In Sosnoski

article, [15], it depicts the performances of different Java XML document and XPP (XML Pull Parser) is

the performance leader in most respect. For middleware type applications that do not require validation,

entities, processing instructions, and other, XPP looks to be an excellent choice despite its newness.

KSOAP [16] (SOAP for the kVM) is an SOAP API with a smaller footprint suitable for J2ME/MIDP, and is

based on kXML.

xmL-Innovative Generation for Home networking Technologies

There are three basic tasks involved in working with kSOAP:

ß Implement the serialization logic of data objects via Kvmserializable interface

ß Register data objects with kSOAP ClassMap

ß Integrate services with the KsoapServlet.

The minimum needs of memory space to support kXML-SOAP library is 40Kbytes.

4.0 Abbreviations
DIME Direct Internet Message Encapsulation

J2ME Java 2 Micro Edition

SOAP Simple Object Access Protocol

WSDL Web Services Description Language

WSED Web Services for Embedded Devices

WSML Web Services Meta Language

UDDI Universal Description, Discovery and Integration

XML eXtensible Markup Language

XPP XML Pull Parser

5.0 Reference
[1] Coulorius G., and others. Distributed Systems: Concepts and Design. Addison-Welsey.

[2] Miori V., Tarrini L., Bandinelli R. Requirements analysis of the WSED architecture from the SOA’s

perspective. Deliverable D21.

[3] Chiu, L. Govindaraju, M. Bramley, R. Investing the limits of SOAP performance for scientific

computing. In proceeding of the 11th IEEE International Symposium on High-Performance Distributed

Computing, 2002.

[4] Xerces. http://xml.apache.org/xerces-j/

[5] Axis. ws.apache.org/axis/

[6] J2ME Web Services Specification.

http://www.jcp.org/aboutJava/communityprocess/review/jsr172/

[7] gSOAP Project. http://www.cs.fsu.edu/~engelen/soap.html

[8] Engelen, R. Code Generation Techniques for Developing Light-Weight XML Web Services for

Embedded Devices. Proceeding of the ACM SIGAPP SAC Conference, 2004.

[9] IBM alphaWorks. Web services tool kit for mobile devices. www.alphaworks.ibm.com/tech/wstkmd

xmL-Innovative Generation for Home networking Technologies

[10] DIME. http://msdn.microsoft.com/library/en-us/dnglobspec/html/draft-nielsen-dime-02.txt

[11] Invisibile Computing. http://research.microsoft.com/invisible/

[12] SAX Parser. www.saxproject.org/

[13] CSOAP Project. http://csoap.sourceforge.net/

[14] KXML Project. http://kxml.sourceforge.net/

[15] Sosnoski, D. A look at features and performance of XML document models in Java.

[16] KSOAP Project. http://kobjects.org/auto?self=%2381d91ea1000000f5b22b3fc4

