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Infectious diseases that spread silently through asymptomatic or pre-symptomatic infections
represent a challenge for policy makers. A traditional way of achieving isolation of silent infectors
from the community is through forward contact tracing, aiming at identifying individuals that
might have been infected by a known infected person. In this work we investigate how efficient this
measure is in preventing a disease from becoming endemic. We introduce an SIS-based compartmental
model where symptomatic individuals may self-isolate and trigger a contact tracing process aimed
at quarantining asymptomatic infected individuals. Imperfect adherence and delays affect both
measures. We derive the epidemic threshold analytically and find that contact tracing alone can only
lead to a very limited increase of the threshold. We quantify the effect of imperfect adherence and
the impact of incentivizing asymptomatic and symptomatic populations to adhere to isolation. Our
analytical results are confirmed by simulations on complex networks and by the numerical analysis
of a much more complex model incorporating more realistic in-host disease progression.

INTRODUCTION

Containing the propagation of infectious diseases that
are able to spread silently through asymptomatic or pre-
symptomatic infections is particularly challenging [1–5].
A traditional way of achieving isolation of silent infectors
without applying restrictive policies to entire populations
(such as lockdowns) is through the so-called contact trac-
ing (CT) measure, considered in the past to cope with
outbreaks of SARS [6, 7], Foot and Mouth disease [8],
smallpox [9, 10], tubercolosis [11], HIV [12], Ebola [13, 14],
SARS-CoV-2 [15]. Being at higher risk of infection, the
contacts of a known infected person are retrieved and
recommended to quarantine. However this measure still
constitutes a considerable social burden, as it may isolate
also healthy individuals from the community and requires
intense logistical efforts for tracing contacts - a particu-
larly difficult task for airborne-diseases like COVID-19. As
fatigue sets in and adherence to isolation mandates and
to pharmaceutical interventions fades [16], it is not clear
under what conditions it is convenient to simplify the
policies and rely only on case-isolation and vaccination
strategies or when, instead, implementing CT is crucial
for epidemic control. This is the question we tackle in this
work.
The success of contact tracing in the past has not been
universal. While some outbreaks could be controlled [17],
others required more intense interventions to achieve epi-
demic control [18, 19]. The efficacy of the contact tracing
measure has been studied in a number of works, with
various approaches ranging from stochastic simulations
([5, 20–25]) to analytical investigations ([26–33]).
The utility of contact tracing has often been considered
in opposition to or in combination with other containment
strategies. Hasegawa et al. [24] found that quarantine mea-
sures outperform the random and acquaintance preventive
vaccination schemes for what concerns transmission re-
duction. The work of Horstmeyer et al. [25] suggested
instead that a combination of self-distancing and isolation

is particularly effective to contain a disease. Through a de-
lay differential equation model, Heidecke et al. [27] found
that the efficacy of the test-trace-isolate-quarantine is
limited and requires to be combined with other enhanced
hygienic measures to achieve disease control. They also
warned upon the self-acceleration of disease spread that
can be caused by limited capacities of tracing.

Some works focused specifically on the contact tracing
measure, investigating the role played by different param-
eters on its efficacy for the containment of the spread of
infectious pathogens. Kerr et al. [21] and Burdinski et al.
[22] found that the efficacy of contact tracing improves
with incidence. In the specific context of the early COVID-
19 pandemic in Seattle, an agent-based model calibrated
to demographic, mobility and epidemiological data pre-
dicted that the contact tracing measure would allow the
reopening of society in the absence of massive vaccination
coverage while maintaining epidemic control, if performed
strongly, i.e. with high testing and tracing rates, high
quarantine compliance, short testing and tracing delays
and moderate mask use [21]. Similarly, Reyna-Lana et
al. [29] concluded, by means of a markovian treatment
of a SIR model for the simultaneous contagion processes
of infection and contact tracing, that the combination of
case-isolation and contact tracing is beneficial to the out-
break containment but requires high adoption of digital
contact tracing apps to identify superspreaders. Optimal
app coverage was also studied by Bianconi et al. [30]
through a message-passing model. High app adoption, in
particular by high-degree nodes, appeared to be crucial.
However, adoption of digital contact tracing apps seems
unlikely to be achieved by high degree nodes. Crucially,
this was found by Mancastroppa et al. [20] to undermine
the performance of digital contact tracing compared to
manual one, as a consequence of a quenched sampling
from the population in contrast with an annealed one.
Through numerical simulations, Hellewell et al. [23] and
Burdinski et al. [22] concluded that efficacy of the forward
contact tracing measure is limited.
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According to the simulation work of Kojaku et al. [31]
on synthetic and empirical contact networks, tracing the
potential infector of a known case instead of its potential
infectees (backward instead of forward contact tracing)
was exceptionally efficient at detecting superspreading
events, since it leverages two statistical biases. Homophily
in adoption of digital contact tracing apps leads to im-
proved performance of contact tracing when coverage is
low [32, 33]. Also the clustering of networks, appears to
favor CT performance in many settings [22, 28, 34].
Despite intense recent activity, an analytical under-
standing of the impact of imperfect adherence and im-
plementation delays on the efficacy of contact tracing is
still missing. In this work we fill this gap, by considering
an SIS-based compartmental model for the self-isolation
of symptomatic individuals and the quarantine of their
asymptomatic contacts. More specifically, we study the
influence of three kinds of imperfect adherence to self-
isolation and to quarantine – delay to isolation, imperfect
compliance and anticipated exit from isolation – on the
value of the epidemic threshold. Within a mean-field ap-
proach, we derive an analytical expression for the epidemic
threshold, defined as the critical virus transmissibility
that separates a healthy absorbing phase from an en-
demic phase. This allows to evaluate the performance
of contact tracing and compare it to the efficacy of self-
isolation alone as a function of the parameters describing
behavioral and physiological features of the population.
We further determine analytically the role of the contact
tracing measure on the stationary fractions of infected in-
dividuals. Finally, we show that heterogeneities in contact
patterns and more complex in-host disease progression
do not qualitatively alter the findings of the mean-field
approach.

I. THE MODEL AND ITS MEAN-FIELD
SOLUTION

The model we consider is a variation of the SIS-based
epidemic model with self-isolation, delay and fatigue de-
veloped in Ref. [35]. We shall hereafter refer to it as ”IDF”
(isolation-delay-fatigue).
According to the IDF dynamics (see Fig. 1(a)), the
contact of a susceptible (S) individual with an infectious
one (state U , I, or F , see below) leads to the infection
of the former with rate β. Newly infected individuals are
assumed to be immediately infectious but not yet settled
on whether to enter isolation or not (undecided, U). After
a time interval distributed with Poissonian rate µU they
decide (with probability pQ) whether to fully interrupt
contacts with the rest of the population by entering the
isolated compartment Q or (with probability 1− pQ) to
disregard their infectious state and keep the same rate of
interactions with the community, by transitioning to the
I compartment. The delay between infection and isolation
(of mean duration TU = 1/µU ) models logistical delays as
well as behavioral ones. In order to account for isolated

individuals exiting isolation before being fully recovered,
as a consequence of fatigue, a transition from Q to another
infectious compartment (fatigued, F ) occurs at rate µQ.

In the present work, infected individuals are assumed
to either stay asymptomatic through the whole infectious
period (with probability qA) or to develop symptoms
(with the complementary probability 1 − qA). For this
reason the original U compartment is split here into three
compartments. Individuals developing symptoms enter
compartment US upon infection. Being aware of their
infected status, symptomatic individuals all go through
the decision process (still with rate µU ) on whether to
isolate (going to state Q, with probability pSQ) or not
(going to state I, with complementary probability 1−pSQ).
Asymptomatic individuals can instead only initiate the
decision process if they are infected by a symptomatic
individual (who traces them). We therefore distinguish
between the asymptomatic individuals who are infected by
a symptomatic individual US and are thereby traced (U+A )
and those who are not (U−A ). Imperfect tracing capacity
is taken into account with only a fraction pCT of the
contacts of symptomatic individuals being successfully
traced.

Symptoms are assumed to appear immediately upon
infection and thus to lead to immediate tracing of the
contacts of US individuals. Traced asymptomatic indi-
viduals (U+A ) decide with rate µU whether to enter the
quarantined Q state or not (thus transitioning to the I
state). As symptoms likely play a major role in deter-
mining compliance to containment measures, we consider
the probability pAQ that a traced asymptomatic decides to
self-isolate distinct from (and in particular smaller than
or at most equal to) the analogous probability pSQ for
a symptomatic individual. Again, individuals in Q may
exit isolation before being fully recovered by transition-
ing through compartment F , as a consequence of fatigue.
We assume the same transmissibility across all infectious
compartments U−A , U

+
A , US , I and F and perfect isolation

of individuals while residing in compartment Q. As the
progression of the disease does not depend on the isolation
status, spontaneous recovery transitions may occur from
states U−A , U

+
A , US , I, Q and F to the susceptible state

S, at the same recovery rate µ.

For a complete summary of all the transitions and their
respective rates see Appendix VII. The parameters of
the model are summarized in TableI. Fig. 1(b) presents a
complete description of the epidemic compartments and
the transition rates at the homogeneous mean-field level,
where each individual has ⟨k⟩ contacts.

In this setting the dynamics of the fractions of individ-
uals in states U−A , U

+
A , US , Q, I and F is governed by the

following set of differential equations
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Figure 1. Schematic description of the transitions between compartments in (a) the model with self-isolation, delay, fatigue and
(b) the same model with the addition of contact tracing. The quantity Itot is the fraction of individuals that are infectious:
Itot = U + I + F in (a) and Itot = US + U+A + U

−
A + I + F in (b).

Table I. Model parameters

Parameters Description
β rate of infection
qA share of asymptomatic
µ rate of recovery
µU rate of decision
µQ rate of exit from isolation
pCT probability of being traced
pSQ compliance probability if symptomatic
pAQ compliance probability if asymptomatic
⟨k⟩ mean node degree



U̇−A = βqA⟨k⟩S(U−A + U
+
A + I + F + US(1− pCT ))+

−µU−A
U̇+A = βqA⟨k⟩SUSpCT − (µ+ µU )U+A
U̇S = β(1− qA)⟨k⟩S(U−A + U

+
A + I + F + US)+

−(µ+ µU )US
Q̇ = µUpAQU

+
A + µUp

S
QUS − (µ+ µQ)Q

İ = µU (1− pAQ)U
+
A + µU (1− pSQ)US − µI

Ḟ = µQQ− µF,
(1)

where the notation Ẋ = dXdt indicates the time derivatives
of the fractions of individuals in each compartment and
S = 1− U−A − U

+
A − US −Q− I − F .

The Jacobian matrix obtained by linearization around
the disease-free equilibrium (S,U−A , U

+
A , US , I, Q, F ) =

(1, 0, 0, 0, 0, 0, 0) has 4 real eigenvalues that are always
negative and 2 other real eigenvalues which become pos-
itive as λ = β/µ is increased. The largest one becomes
positive (thus making the disease-free equilibrium unsta-

ble) above the epidemic threshold

λc =
1−
√
1− 2χ
χ

· λIDFc (qA), (2)

where

λIDFc (qA) = 1
⟨k⟩

1

1−
pS
Q
(1−qA)

(1+
TU
T
)(1+ T

TQ
)

T = 1/µ
TU = 1/µU
TQ = 1/µQ

χ(qA, pSQ, p
A
Q) =

2qA(1−qA)(pCT pAQ)
(1+ T

TU
)(1+TUT )(1+

T
TQ
)
×

× 1(
1−

pS
Q
(1−qA)

(1+
TU
T
)(1+ T

TQ
)

)2 .
(3)

We observe that the epidemic threshold is given by
the expression for the IDF case (i.e. in the absence of
contact tracing, taking into account that a fraction 1−
qA of the individuals is symptomatic and self-isolates)
multiplied by a factor depending on the various timescales
and behavioral parameters of the model, combined in the
single quantity χ. As shown in Appendix VIII, χ lies in the
range between 0 and 1/2, for all values of the parameters,
thus ensuring that the epidemic threshold is always real.
The factor 1−

√
1−2χ
χ in Eq. (2) is an increasing function

of χ growing from 1 (for χ = 0) to 2 (for χ = 1/2). This
leads to the remarkable conclusion that the quarantine of
asymptomatic individuals, possible because of the contact
tracing procedure, leads to an increase of the epidemic
threshold that cannot be larger than a factor 2. As a
consequence, if β/µ for a given pathogen is larger than
twice the critical value λc, contact tracing, even if perfectly
implemented, cannot prevent the epidemic, i.e., take the
system below the epidemic threshold.
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When asymptomatic individuals do not quarantine (be-
cause their compliance probability pAQ = 0 vanishes or
because the share of traced contacts pCT = 0 vanishes),
Eq. (2) gives back the IDF result, λIDFc (qA). Similarly,
the IDF result is recovered when all individuals are either
symptomatic (qA = 0) or asymptomatic (qA = 1), triv-
ially because contact tracing is deactivated by the absence
of individuals to be traced or individuals triggering the
tracing, respectively. In the latter case, when all individu-
als are asymptomatic, we recover λIDFc (qA = 1) = 1/⟨k⟩,
the standard SIS result. Moreover, we notice that in the
expression for the epidemic threshold an imperfect trac-
ing capacity pCT < 1 simply acts as a rescaling of the
probability pAQ that traced asymptomatic individuals will
quarantine.
Eq. (2) points out that the epidemic threshold can di-
verge for perfect contact tracing and perfect compliance
to isolation (pSQ → 1, TU/T → 0 and TQ/T →∞) if only
symptomatic infections are present (qA = 0). A diverging
threshold means that no pathogen, no matter its transmis-
sibility β, can become endemic. Instead, in a population
where a share of individuals develops asymptomatic forms
of the infection (qA > 0), λc is necessarily finite and there
is no way (even with perfect contact tracing and perfect
compliance to isolation) to eradicate extremely infective
pathogens.

II. EFFICACY OF CONTACT TRACING

A quantitative measurement of the effect of CT is pro-
vided by the ratio between the epidemic threshold in
the case of full compliance of asymptomatic individu-
als to isolation and in the case where they do not iso-
late at all (similarly to Ref. [27]). It is highly unlikely
that asymptomatic individuals are more compliant to the
self-isolation prescription than symptomatic individuals;
hence max(pAQ) = p

S
Q. Indeed, mild symptoms or lack of

symptoms may ruin the motivation to respect isolation,
as physical conditions are not an impediment to carry out
the daily routine. The efficacy of contact tracing can then
be defined as

ϵCT =
λc(pAQ = p

S
Q)

λc(pAQ = 0)

=
1−

√
1− 2χ(pAQ = pSQ)

χ(pAQ = p
S
Q)

. (4)

This quantity is bounded in ϵCT ∈ [1, 2]: as already
discussed above the contact tracing measure may only
bring about a limited increase of the epidemic threshold.
More dramatic effects on the threshold value may be
due to the λIDFc (qA) factor, i.e., to the self-isolation of
symptomatic individuals.
From Eq. (4) it is possible to get insight on how virus
characteristics (qA, µ) and behavioral parameters (pSQ,
µU , µQ) influence the performance of the contact tracing

Figure 2. (a) Plot of the efficacy of CT ϵCT as a function of qA
for various values of pSQ. (b) Plot of the threshold λc against
qA for the same parameters of panel (a). Parameter values:
µ = µQ = 1, µU = 4, pAQ = p

S
Q, pCT = 1, ⟨k⟩ = 6.3.

measure. For instance, as a function of the share of fully
asymptomatic infections, the efficacy of contact tracing
attains a maximum (see Fig. 2(a)) for a value

q∗A =
(1 + TU/T )(1 + T/TQ)− pSQ
2(1 + TU/T )(1 + T/TQ)− pSQ

=
1

1 + λIDFc (qA = 0)
. (5)

Interestingly, this value always falls in the range q∗A ∈
[0, 1/2]; it is a decreasing function of pSQ and of the mean
isolation period TQ, while it grows with the delay to iso-
lation TU . Note however that, while a positive share of
asymptomatic individuals q∗A > 0 may maximize the effi-
cacy of contact tracing, it does not maximize the threshold
(Eq. (2)), which reflects the combined efficacy of self-
isolation of symptomatic individuals and quarantine of
their asymptomatic contacts. Indeed, under the realistic
assumption pAQ ¬ pSQ, the epidemic threshold is always
maximized by the complete absence of asymptomatic
infections, qA = 0 (see Fig. 2(b)).
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Plotting ϵmax = ϵCT (q∗A) as a function of p
S
Q for various

values of TU and TQ (Fig. 3) we find that, despite ϵCT
assuming in principle values up to 2, the CT performance
is much more limited: the contribution to the value of the
epidemic threshold due to CT is in practice always of the
order of a few percent.
Moreover, while λc is maximised by TU → 0, from
Eq. (4) we find that the efficacy of CT is maximized by a
delay that can be positive, depending on the value of the
other parameters

T ∗U = T

(
1−
(1− qA)pSQ
1 + T/TQ

)
, (6)

but is nevertheless always shorter than the recovery time
T (see Fig. 4).
This is a consequence of a nontrivial tradeoff between
two competing effects. On the one hand, a short TU implies
that essentially no asymptomatic is traced. On the other
hand, for very long delays to isolation, many individuals
are traced, but since they take a lot of time to quarantine
they may infect many other individuals, thus reducing
the effect of CT. Assuming that it is possible to act on
all parameters, improvement of the efficacy of contact
tracing is achieved when TU , qA → 0, pAQ, pSQ, pCT → 1,
TQ →∞.
In Appendix IX we present an analysis of the minimal
values of the compliance pSQ or p

A
Q needed to eradicate an

epidemic characterized by a given supercritical transmis-
sibility λ.

III. PREVALENCE IN THE ENDEMIC PHASE

This simple model for self-isolation and quarantine
allows us also to analytically compute the stationary
fractions of individuals in each compartment:

(U+A )
∗ =

qA(1− qA)
(1 + T/TU )2

pCTλc⟨k⟩ ·
λ− λc
λ

(7)

U∗S =
(1− qA)
1 + T/TU

· λ− λc
λ

Q∗ =
1
λ⟨k⟩
(1− λc⟨k⟩+ λ⟨k⟩×

×
1 + apSQ −

√
(1− apSQ)2 − 4

a
1+T/TU

pCT pAQqA

2
)

F ∗ =
T

TQ
Q∗

I∗ =
T

TU
(1− pSQ)(US)∗ +

T

TU
(1− pAQ)(U+A )

∗

(U−A )
∗ = (1 + T/TU )[

qA
1− qA

U∗S − (U+A )
∗],

where a = (1−qA)
(1+TUT )(1+

T
TQ
)
.

In the limit where qA → 0, we recover the prevalences of
the IDF model [35], where the fractions (U+A )

∗ and (U−A )
∗

vanish, while U∗S → 1
1+T/TU

λ−λc
λ . In the same limit, the

fraction of isolated and quarantined individuals reduces

to Q∗ =
pSQ

(1+T/TQ)(1+TU/T )
λ−λc
λ .

Considering a virus transmissibility standing at a fixed
distance λ−λcλ from the epidemic threshold we are able
to compare the dependence on pAQ of these stationary
fractions of individuals above λc. At a fixed distance from
the epidemic threshold, the stationary fraction of symp-
tomatic individuals U∗S remains unaffected by changes in
the compliance pAQ of asymptomatic individuals. However,
since the epidemic threshold is an increasing function
of pAQ, (U

+
A )
∗ increases with pAQ while (U

−
A )
∗ decreases.

The quarantine of asymptomatic individuals therefore
enhances the system’s tracing capacity. Having U+A in-
dividuals transitioning to Q instead of I indeed reduces
the chances of having infectors I that do not trace their
asymptomatic contacts. The total fraction of undecided
individuals (U+A )

∗ + (U−A )
∗ + U∗S is expected overall to

decrease, while the fractions of individuals in Q and F
increase when asymptomatic compliance pAQ increases.
This is supported by Fig. 5 where we see, for a given
choice of the parameter values, the increasing or decreas-
ing effect of pAQ on the quasistationary values, at a given
distance from the epidemic threshold. We consider the sta-
tionary fractions of individuals in a generic compartment
X when pAQ = p

S
Q (contact tracing is maximally opera-

tive) and when pAQ = 0 (contact tracing is not active), as
functions of (λ−λc(pAQ = pSQ))/λ and (λ−λc(pAQ = 0))/λ,
respectively. We then plot the difference between the sta-
tionary fractions of individuals in these limit cases, so
that positive values indicate that the activation of contact
tracing populates the corresponding compartment. We
find that the amount by which (U+A )

∗ and I∗ decrease is
perfectly balanced by the amount by which Q∗, F ∗ and
(U−A )

∗ increase, overall resulting in a fraction of infected
individuals Q∗ + I∗tot = 1− S∗ invariant under changes in
adherence of asymptomatic individuals, at a fixed distance
from the epidemic threshold.
At a fixed spreading rate, the shift of the epidemic
threshold induced by the implementation of the contact
tracing measure, reduces the distance of the system from
the critical point, in the supercritical regime. This has the
effect of making the system reach a lower stationary state
(and also more slowly) than in the absence of contact
tracing.

IV. NUMERICAL SIMULATIONS

In order to check whether the results obtained in the
mean-field setting also hold for the fully stochastic dy-
namics, we perform numerical simulations using a Gille-
spie optimized algorithm [36] to implement the SIS-like
dynamics on networks built according to the uncorre-
lated configuration model [37]. We consider power-law
degree-distributed networks with exponent γ and network
size N = 104. The node degrees are constrained in the
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Figure 3. (a) Maximum value of ϵCT against pSQ for (a) various values of TU (TQ = 1/2, T = 1); (b) various values of TQ
(TU = 1/2, T = 1). We consider the case where pCT = 1.

Figure 4. Plot of the maximum value of ϵCT against TU/T
for various values of pSQ, showing the presence of a maximum.
Parameter values: TQ = 1, pCT = 1.

range k ∈ [kmin = 3, kmax =
√
N ] – in order to have an

uncorrelated network without multiple and self connec-
tions. In this setting, we estimate the epidemic threshold
by finding the value of λ at which the susceptibility of
the system reaches a maximum [38]. We implement the
Quasistationary State method (QS) [38], for which the
dynamics never allows the system to reach the healthy
absorbing state. We consider both homogeneous (γ = 10)
and strongly heterogeneous (γ = 2.5) networks and com-
pare the results with the mean-field theory.
In Fig. 6 we show that there is a good agreement be-
tween numerical simulations and analytical results.
To perform numerical simulations one needs to spec-
ify how the symptomatic/asymptomatic status and the
compliance to isolation/quarantine are chosen for each in-
dividual. To obtain the results presented in Fig. 6 we have
assumed that the choice is annealed, in the sense that, for

Figure 5. Plot of the difference between the stationary fractions
of individuals with (pAQ = p

S
Q = 0.9) and without (p

A
Q = 0) CT,

as a function of the distance (λ − λc)/λ from the threshold.
Parameter values: µ = 1, µU = 4, µQ = 1, qA = 0.5, pCT = 1,
⟨k⟩ = 6.3.

a given individual at each infection event, the development
of an asymptomatic form of infection and the decision
to isolate are drawn randomly with the corresponding
probabilities. A possibly more realistic alternative is that
the probability of developing an asymptomatic form of in-
fection and the probability of self-isolating are individual-
based. This corresponds to the quenched case, where a
given individual always develops the same form of infec-
tion (whether symptomatic or asymptomatic) and always
takes the same decision concerning isolation (whether it
is to isolate or not to isolate). The immune history of in-
dividuals is indeed known to play a role in the probability
of developing asymptomatic forms of infection [39] while
personal conditions and beliefs concerning self-isolation
from the community likely determine compliance at an
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Figure 6. Efficacy of contact tracing in a homogeneous network
(γ = 10) and in a strongly heterogeneous network (γ = 2.5)
(analytical prediction, numerical estimates for both γ = 2.5
and γ = 10). (a) ϵCT as a function of qA, with pSQ = 0.9. (b)
ϵCT as a function of pSQ, with qA = 0.5. Parameter values:
µ = µQ = 1, µU = 4, pCT = 1.

individual level [40].
In Fig. 7 we compare the results we obtain in all pos-
sible scenarios of quenched or annealed treatment of the
development of an asymptomatic form of infection and of
the decision of isolating or not. The figures show minimal
differences between the various cases, even for a strongly
heterogeneous degree distribution.

V. A MORE REALISTIC MODEL FOR IN-HOST
DISEASE PROGRESSION

The stylized model we considered analytically does
not only oversimplify the contact network, it also makes
unrealistic assumptions concerning the way the disease
progresses within infected individuals. In particular, the
assumption that infection and recovery transitions are
Poissonian and the constant infectiousness over the course
of infection are unrealistic for the modelling of COVID-19.

Figure 7. Role of quenchedness (numerical predictions and Het-
erogeneous mean-field estimates achieved by substituting the
homogeneous mean-field topological factor 1/⟨k⟩ by ⟨k⟩/⟨k2⟩.
(a) λc vs qA for all quenched-annealed combinations, with
pSQ = 0.9. (b) λc vs p

S
Q for all quenched-annealed combina-

tions, with qA = 0.5. Parameter values: µ = µQ = 1, µU = 4,
pCT = 1.

Moreover, the latent period during which newly infected
individuals are not infectious yet and the pre-symptomatic
period are not considered at all. These assumptions might
strongly affect the efficacy of the contact tracing and case
isolation measures. The model also neglects the fact that
the contact tracing measure is able to isolate not only
asymptomatic contacts but also symptomatic contacts in
their pre-symptomatic phase.
In this section we check whether our conclusions on the
efficacy of the contact tracing measure also hold in a much
more complex and realistic model of disease progression.
We consider the propagation of the Omicron variant of
SARS-CoV-2 on the branching process model for disease
propagation introduced in [41]. Such a model takes into
account different transmissibilities for symptomatic and
asymptomatic individuals, an evolution of infectiousness
over the course of the infection (through a distribution
of generation intervals) with a latent period, and a pre-
symptomatic period (through a distribution of incubation
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periods). It also models different levels of immunity across
the population (different numbers of doses of vaccine ad-
ministered to each individual with a waning of protection
against infection and symptomatic infection informed by
available estimates for the Omicron variant), time vary-
ing test sensitivity (sensitivity of antigenic tests varying
over the course of infection) and imperfect adherence to
the measures (delay to isolation, partial contact reduction
during the isolation period, imperfect share of successfully
traced contacts, imperfect compliance to testing and to
isolation, anticipated exit from isolation as a consequence
of fatigue).

For a better comparison with our analytical results,
we cancel the effects of heterogeneous immunity across
the population (all individuals are equally susceptible
to infection, all individuals being considered as unvacci-
nated), the effect of being asymptomatic on the potential
to further transmit the disease (same transmissibility for
symptomatic and asymptomatic individuals) and the role
played by testing (perfect test sensitivity, perfect compli-
ance and vanishing delay to testing). We fix our baseline
parameters to conditions that favor the performance of
CT: vanishing delay between information of being infected
and isolation, perfect isolation from the community during
the isolation period, long isolation duration (population
mean of 11 days, i.e. 1.6 times the infectious period that
we use as a proxy of the time for recovery), perfect tracing
capacity, perfect compliance to recommendations in terms
of isolation duration.

In order to have a quantitative measurement of the
efficacy of contact tracing akin to our definition in the
mean-field model, we take ϵCT as the ratio between two
“critical” basic reproduction numbers, determined in the
case asymptomatic compliance to isolation is maximum
(pAQ = p

S
Q) and in the case where it is minimum (p

A
Q = 0).

The “critical” basic reproduction number for a given set of
parameters is the initial value of R0 that generates an ef-
fective reproduction number Reff = 1, when interventions
(self-isolation and/or CT) are implemented.

In Fig. 8 we compare the maximum efficacy (as a func-
tion of qA) of the contact tracing measure as computed
within our mean-field model and as estimated through the
branching process model. We approximate the time be-
tween infection and information of being infected with the
mean incubation period of the branching process model.
Disregarding the delay between information of being in-
fected and isolation, this implies a ratio TU/T = 0.49
between the delay from infection to isolation (approxi-
mated by the mean incubation period of 3.48 days) and
the time for recovery (approximated by the mean infec-
tious period of 7.04 days). The figure shows that even a
complex and realistic in-host disease progression model
predicts a limited efficacy of the contact tracing measure.
Even in extremely favorable conditions, the increase of
the epidemic threshold remains smaller than 25%, in line
with our SIS-based compartmental model.

Figure 8. Comparison between estimates of the maximum
efficacy (as a function of pSQ) of the contact tracing measure in
the branching process model of [41] and in our compartmental
model (recovery time T = 1 and tracing capacity pCT = 1).
“delay to iso.” in the BP model refers to the delay between
information of infection and isolation.

VI. CONCLUSIONS

In this work we developed an SIS-based epidemic model
for self-isolation and (forward and first-order) contact trac-
ing measures in the presence of imperfect compliance and
delays. We find that the quarantine of asymptomatic con-
tacts has a very limited impact on increasing the epidemic
threshold. Moreover, it only decreases the total fraction
of infected individuals through the achieved increase of
the epidemic threshold. It is however especially useful to
quarantine asymptomatic patients in case of outbreaks
caused by viruses that generate low to intermediate shares
of asymptomatic infections, and that propagate in popu-
lations where behavioral and logistical delays to isolation
are smaller but close to the time for recovery. We find that
it is always crucial to incentivate adherence to isolation,
especially for symptomatic individuals.
These conclusions are supported by analytical results in
a homogeneous mean-field setting, allowing for an explicit
characterization of the interplay between disease proper-
ties and behavioral conditions. The role of more realistic
contact network characteristics and more complex in-host
disease progression, involving for instance delayed onset
of symptoms is investigated too, with overall conclusions
remaining unaffected.
In SIR-like models, the duration of an outbreak and the
height of the peak of the fraction of infected individuals
are very important observables and the efficacy of CT
can be measured by the reduction in their values. In the
present SIS-like model, these observables are not defined.
The effect of CT on the temporal evolution is given here by
the increase of the temporal scale τ governing the initial
exponential growth of the epidemic. Since τ ∝ 1/(λ−λc),
the effect of CT can be ascribed to the increase of the
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threshold.

In this study we have only considered the effect of for-
ward contact tracing, as the tracing process allows the
quarantine of asymptomatic individuals who have been in
contact with a symptomatic infector. Backward contact
tracing, i.e. the search for the asymptomatic infector of
the symptomatic index case, with the goal of quarantin-
ing him/her and thus preventing further spreading, is
known to be highly effective, in particular in heteroge-
neous networks [31]. It would be interesting to check how
the results presented here are modified if also backward
contact tracing is in place. A different model where both
types of CT are at work indicates that in such a case
contact tracing may lead to a stronger increase of the
epidemic threshold [20]. Our model also does not study
the tracing of susceptible contacts of index cases (which
would represent an interesting quantity to measure the
social weight of the intervention) nor the tracing of in-
fected contacts that were not infected by the index case.
A model by Lee et al. [26] focuses on these two aspects
of CT, which however do not change the value of the
epidemic threshold. Indeed, the former does not isolate
infected individuals and the latter necessitates the contact
between two infected individuals that becomes irrelevant
near the disease-free equilibrium.

The present study focuses on a population with homo-
geneous infection rates, thus neglecting heterogeneities
in immune history (whether provided by previous infec-
tions or vaccination) and in age-related immune response.
Moreover, the possibility of correlations among individu-
als with respect to biological and/or behavioral features
is disregarded. The existence of clustering in the contact
network has been neglected as well. While containment
measures such as vaccination and CT are expected to
suffer from assortativity in adherence [33, 42], at least
in some regimes [32], the contact tracing measure is pre-
dicted to benefit from clustering [22, 28, 34]. Finally, we
make a set of assumptions that might lead to overesti-
mates of the efficacy of the contact tracing measure. Our
model neglects the role of diagnostic tests, massively used
during the COVID-19 pandemic. It does not distinguish
between the intrinsic transmissibilities of asymptomatic
and symptomatic individuals. Even symptomatic individ-
uals who do not comply with isolation trace their contacts,
which is not realistic. We moreover assume immediate
tracing of contacts upon infection.

The analysis of modifications of the current framework,
where one or more of these simplyfing assumptions are
lifted, constitutes an interesting avenue for further re-
search.

VII. LIST OF TRANSITIONS

• Spontaneous decays to S

Transition Rate
I → S µ

US → S µ

U+A → S µ

U−A → S µ

Q→ S µ

F → S µ

• Spontaneous decays to F

Transition Rate
Q→ F µQ

• Transitions from Undecided states

Transition Rate
US → Q µUp

S
Q

US → I µU (1− pSQ)
U+A → Q µUp

A
Q

U+A → I µU (1− pAQ)

• Infections by US nodes

Transition Rate
S + US → U+A + US βqApCT

S + US → U−A + US βqA(1− pCT )
S + US → US + US β(1− qA)

• Infections by X = (U+A , U
−
A , I, F ) nodes

Transition Rate
S +X → U−A +X βqA

S +X → US +X β(1− qA)

VIII. DEMONSTRATION THAT THE
THRESHOLD λc IS ALWAYS REAL

We want to show that χ ¬ 1/2. Let us start from the
more restrictive condition χ ¬ pCT pAQ/2, which can be
written as a second order inequality for qA:

q2A

[
(pSQ)

2 + 4
TU
TTQ
(T + TQ)

]
+

qA

[
2pSQ

(
T

TQ
+
TU
T
+
TU
TQ

)
− 4 TU
TTQ
(T + TQ)

]
+(

T

TQ
+
TU
T
+
TU
TQ

)2
 0. (8)
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We now show that this condition holds for any qA ∈ [0, 1].
The minimum of the left hand side of Eq. (8) (L.H.S.)
is always located at values of qA < 1. Indeed,

argminqAL.H.S. < 1

−2 TU
TTQ
(T + TQ)− (pSQ)2 − pSQ(

T

TQ
+
TU
T
+
TU
TQ
) < 0,

(9)

which is always true.
The condition for the minimum of the L.H.S. to be
located at qA > 0 is

argminqAL.H.S. > 0

pSQ <
2TU (T + TQ)
T 2 + TU (T + TQ)

. (10)

Hence it depends on pSQ whether the minimum is for qA
smaller or larger than zero.
In the first case, Eq. (8) is always satisfied between
qA = 0 and qA = 1, because it is already true for qA = 0
and the L.H.S. is a growing function of qA.
In the other case, Eq. (8) is always satisfied because
it is satisfied in the minimum. Indeed, the minimum of
the L.H.S. is positive if the following condition on the
parameters holds:(

T

TQ
+
TU
T
+
TU
TQ

)2
 TU
TTQ
(T + TQ)− pSQ

(
T

TQ
+
TU
T
+
TU
TQ

)
. (11)

Under the assumption of argminqAL.H.S. > 0 (using
Eq. (10)), we find that it is always true because:(
T

TQ
+
TU
T
+
TU
TQ

)2


>
TU
TTQ
(T + TQ)−

2TU (T + TQ)
T 2 + TU (T + TQ)

(
T

TQ
+
TU
T
+
TU
TQ

)
(12)

=
TU
TTQ
(T + TQ)− 2

TU
TTQ
(T + TQ) (13)

= − TU
TTQ
(T + TQ).

We conclude that the condition χ ¬ pCT pAQ/2 is always
met in the interval qA ∈ [0, 1]. When argminqAL.H.S. < 0,
the L.H.S. is positive in the interval qA ∈ [0, 1] and when
argminqAL.H.S. > 0, we have min(L.H.S.) > 0 implying
too that χ ¬ pCT pAQ/2. Since pAQ, pCT ∈ [0, 1], χ ¬ 1/2
and the epidemic threshold is real.

IX. CRITICAL COMPLIANCE

In this appendix we study the role of the compliance of
symptomatic and asymptomatic individuals in containing

the spread of the epidemic. Given a pathogen with a
specific value of λ, what are the values of pSQ that are
sufficient to make λ < λc so that the epidemic becomes
subcritical and disappears?
Setting λ = λc and inverting Eq. (2), the expression of
pSQ that allows the system to reach the epidemic threshold
is easily derived

(pSQ)c =
[
1− χ(λ/λ

IDF
c (qA))2 + 2
2(λ⟨k⟩)

]
(1 + TU/T )(1 + T/TQ)

1− qA
.

(14)
This expression for (pSQ)c is not a priori limited to the
[0, 1] interval. Values of (pSQ)c < 0 imply that the system
does not require isolation of symptomatic individuals
to reach the epidemic threshold. In practice this means
that λ is already subcritical in the absence of isolation of
symptomatic individuals. Values (pSQ)c > 1 mean instead
that even the isolation of all symptomatic individuals is
not sufficient to drive the system to the disease-free state.
These results can be translated into ranges of values
of the virus transmissibility λ⟨k⟩ that the isolation of
symptomatic individuals is able to contain. Isolation of
symptomatic individuals is not necessary when

λ⟨k⟩ ¬ λIDF+CTc (qA)|pS
Q
=0⟨k⟩ (15)

=
1−
√
1− 2χ
χ

, (16)

as the outbreak would be contained regardless of their
isolation. On the other hand, thanks to the isolation of
symptomatic individuals, the outbreak can be contained
for values of the transmissibility rate λ⟨k⟩ larger than the
SIS result but as long as

λ⟨k⟩ ¬ λIDF+CTc (qA)|pS
Q
=1⟨k⟩ (17)

=
1
1− a

· 1−
√
1− 2χ
χ

, (18)

where a = (1−qA)
(1+TUT )(1+

T
TQ
)
.

In Fig. 9(a) we plot the dependence of (pSQ)c on λ⟨k⟩ for
various values of the probability qA of being asymptomatic.
We see that the isolation of symptomatic individuals is the
more useful to contain the spread of more transmissible
infectious pathogens the lower the share of asymptomatic
individuals in the infected population.
We repeat the above reasoning with the compliance
pAQ of asymptomatic individuals with isolation mandates.
The critical value of pAQ that allows to reach the epidemic
threshold is

(pAQ)c =
1
δ

1
λ⟨k⟩

[
1

λIDF (qA)⟨k⟩
− 1
λ⟨k⟩

]
, (19)

where δ = qA(1−qA)pCT
(1+ T

TU
)(1+TUT )(1+

T
TQ
)
.

The outbreak can be contained by quarantining traced
asymptomatics if
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Figure 9. (a) Critical value of the compliance probability of symptomatic individuals against λ⟨k⟩ for various values of
asymptomatic probability qA ∈ [0, 1] (pAQ = 0.6). (b) Critical value of the compliance probability of asymptomatic individuals
against λ⟨k⟩ for various values of asymptomatic probability qA ∈ [0, 1] (pSQ = 0.6). Parameter values: µ = 1, µU = µQ = 2.

λIDF+CTc (qA)|pA
Q
=0 ¬ λ ¬ λIDF+CTc (qA)|pA

Q
=1 (20)

1
1− apSQ

¬ λ ¬ 1
1− apSQ

1−
√
1− 2χ(pAQ = 1)

χ(pAQ = 1)
. (21)

In Fig. 9(b) we show the dependence of the critical

value of pAQ on λ⟨k⟩ for various values of qA ∈ [0, 1].
A comparison with panel (a) of the same figure shows
that for the chosen values of the parameters, the role
played by the isolation of symptomatic individuals is
significantly larger than the one played by the quarantine
of asymptomatic individuals.
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