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Abstract. Modern Unmanned Aerial Vehicles (UAV) equipped with
cameras can play an essential role in speeding up the identification and
rescue of people who have fallen overboard, i.e., man overboard (MOB).
To this end, Artificial Intelligence techniques can be leveraged for the
automatic understanding of visual data acquired from drones. However,
detecting people at sea in aerial imagery is challenging primarily due to
the lack of specialized annotated datasets for training and testing de-
tectors for this task. To fill this gap, we introduce and publicly release
the MOBDrone benchmark, a collection of more than 125K drone-view
images in a marine environment under several conditions, such as dif-
ferent altitudes, camera shooting angles, and illumination. We manually
annotated more than 180K objects, of which about 113K man overboard,
precisely localizing them with bounding boxes. Moreover, we conduct a
thorough performance analysis of several state-of-the-art object detec-
tors on the MOBDrone data, serving as baselines for further research.

Keywords: Man Overboard · Object Detection· Unmanned Aerial Ve-
hicles · Drone · Benchmark

1 Introduction

The 2021 Annual Overview of Marine Casualties and Incidents [9] reported that
22, 532 marine casualties and incidents were occurred between 2014 and 2020 in
the waters of EU Member States or involving EU ships. 7, 051 of these events
involved people, with 550 lives lost and 6, 921 injured. The main events that
resulted in fatalities were ship collisions and people slipping/falling into the wa-
ter. Of the falls, 9.8% were falling overboard, resulting in 84 lives lost. Survival
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chances in a Man Overboard (MOB) incident depend on many variables, in-
cluding the height of the fall, the water temperature, the sea state, and the
weather conditions, along with the rescue operation time, the person’s state of
consciousness and ability to swim, to name but a few. Unfortunately, in most
cases (estimated between 85-90%), it ends in death [12]. Indeed, the rescue oper-
ations are usually long and complicated. If the person falls overboard while the
boat is navigating (e.g., at a speed of 18 knots), the time that elapses from when
the alarm is given to when the boat can slow down and turn 180° to return to the
MOB point is several minutes. Not to mention that, for safety reasons, the boat
cannot turn back rapidly as it would risk running over the victim. Moreover,
since the exact rescue point is not always detectable due to sea currents and
alarm delays, it is clear that the MOB scenario is very critical and dangerous.

Quick and effective search and rescue operations (SAR) are crucial to increas-
ing the victim’s chances of survival. To this end, it is essential to determine a
limited search area and plan paths for rescue boats [20]. Unmanned Aerial Vehi-
cles (UAVs) equipped with thermal and/or video cameras can be profitably used
to localize and track people overboard, thus expediting rescue operations and
increasing their probability of success. In this regard, the “NAUtical Safety by
means of Integrated Computer-Assistance Appliances 4.0” (NAUSICAA) project
aims at creating a system for medium and large boats in which the conventional
control, propulsion, and thrust systems are integrated with a series of latest gen-
eration sensors (including lidar systems, cameras, radar, drones) for assistance
during the navigation and mooring phases. Specifically, within the project, we
will use commercial aerial drones (equipped with a video camera) and Artificial
Intelligence (AI) techniques to search for people overboard automatically.

Many AI techniques have achieved outstanding results in localizing and rec-
ognizing people and objects in images and video frames in recent years [22,26,21].
However, evaluating these approaches (or developing new ones) in a MOB sce-
nario is difficult due to the lack of labeled data. Although many annotated
datasets containing people and objects in everyday scenarios are publicly avail-
able, to the best of our knowledge, the same cannot be said for the case of
aerial footage of people and objects in marine environments. To fill this gap,
we collected and publicly released [3] a large-scale dataset of aerial footage of
people who, being in the water, simulated the need to be rescued. Our dataset,
named MOBDrone, contains 66 video clips with 126, 170 frames manually anno-
tated with more than 180K bounding boxes (of which more than 113K belonging
to the person category). The videos were gathered from one UAV flying at an
altitude of 10 to 60 meters above the mean sea level.

This paper introduces our dataset and describes the data collection and an-
notation processes. Moreover, it presents an in-depth experimental analysis of
the performance of several state-of-the-art object detectors on this newly estab-
lished MOB scenario, serving as baselines. We hope that this benchmark and the
preliminary results may become a reference point for the scientific community
concerning the localization of MOBs from UAV imagery.
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Evaluation code and all other resources for reproducing the results are avail-
able at http://aimh.isti.cnr.it/dataset/MOBDrone

2 Related work

In the last years, many annotated datasets have been released for supporting the
supervised learning of modern detectors based on deep neural networks [6,2,17,7].
However, only a few include images or videos taken from UAVs, and most are
not focused on the marine environment. This section briefly reviews some of
these drone-view datasets suitable for object detection.

VisDrone [27] is the largest object detection and tracking dataset in this
category. It consists of 179,264 frames extracted from 263 video clips captured
by various drone-mounted cameras covering different urban and suburban areas
under various weather and lighting condition. Frames are manually annotated
with more than 2.6 million bounding boxes localizing targets such as pedestrians,
vehicles, and bicycles. Another remarkable dataset is UAVTD [8], suitable for
vehicle detection. It consists of 80K images gathered from a UAV platform in
different urban scenarios and contains 2,700 vehicles annotated with bounding
boxes. Another annotated dataset for car detection is the MOR-UAV [19], which
comprises more than 10K drone-view images. Finally, CAPRK [15] is a view
drone dataset exploited for detecting and counting parked vehicles [1].

Few works have been done to date on creating datasets of images taken by
drones of people in marine environments. Lygouras et al. [18] addressed the prob-
lem of open water human detection by conducting real-time recognition onboard
a rescue hexacopter. They gathered a swimmers dataset composed of images col-
lected from the internet and frames recorded from a drone. In total, the dataset
consists of just 4,500 full HD images. Recently, Varga et al. [24] released the
SeaDroneDataset that contains over 54K annotated frames captured from vari-
ous altitudes and viewing angles. The dataset mainly contains people swimming
in open water, and the frames are annotated using six classes: swimmer, floater
(swimmer with life jacket), swimmer† (a person on a boat not wearing a life
jacket), floater† (a person on a boat wearing a life jacket), life jacket, and boat.
The main difference with our dataset is that we focus on people at sea without
a life jacket (since in the fall into the water from a large ship it is unlikely that
the person was previously wearing a life jacket), and we also consider different
scenarios of the person’s state of consciousness. Nevertheless, the SeaDronesSee
dataset is an excellent reference for the task of human detection and tracking
in the marine environment that we plan to use in the future, at least for some
classes, in conjunction with our MOBDrone for training and testing deep neural
networks. Finally, Ferau et al. in [11] faced the problem of assisting SAR op-
erations in MOB incidents using autonomous UAV-based systems. Unlike our
work, they aim to locate people in the water by analyzing images recorded with
thermal instead of video cameras. The automatic detection and classification of
objects in water from thermal images acquired using UAVs was also explored in
[16].

http://aimh.isti.cnr.it/dataset/MOBDrone
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3 The MOBDrone Dataset

Our MOBDrone Dataset, which we publicly released at [3], aims to overcome the
lack of large public datasets of drone-based imagery for overboard human detec-
tion. Its realization required nearly 80 hours of work between data acquisition,
post-processing, and annotation, involving, among others, a certified pilot of the
Fly&Sense Service of the CNR of Pisa for UAV flight operations and two pro-
fessional divers for in-water activities. In the following, we detail the processes
of data collection and curation.

Data Collection. We carried out the drone shooting activities in the Gombo
beach of the Migliarino, San Rossore, and Massaciuccoli Park (Pisa, Italy). This
choice was dictated for privacy reasons and to ensure compliance with the safety
protocols of UAV flight operations. Indeed, the Gombo beach is a segregated
area that can be accessed only after obtaining the appropriate authorization
from the Park Authority.

To guarantee variability of data, we identified several dimensions of interest,
including (i) subjects/objects to be filmed (people, lifebuoys, boats, rocks, pieces
of wood, parts of the land, and whatever else there is naturally), (ii) person’s state
of consciousness (conscious, semiconscious or unconscious), (iii) person’s visual
appearance (man, woman, persons in light, dark or colored clothing, persons in
a bathing suit, etc.), (iv) light changes (different shooting times), (v) altitude
and camera directions (e.g., try to fly at high altitudes to see a more significant
portion of the sea, and at lower altitudes better to see the objects and a possible
man overboard, also changing the camera shooting angle).

We gathered a total of 49 videos at high resolution (4K) exploiting the DJI
FC6310 camera of the Phantom 4 Pro V2 drone. The camera angle was perpen-
dicular to the water (90°), except for a small set of shots where a 45° angle was
used. Two professional divers (one male and one female) simulated various sce-
narios of a person overboard, including a conscious person (swimming, floating,
or waving their arms to attract attention) and an unconscious person (floating
body in a supine or prone position, or partially floating, i.e., part of the body
is below the water surface). Some videos incidentally captured people close to
the portion of the sea where our divers were positioned. We split these videos
into multiple video clips to remove portions where people were identifiable for
privacy concerns. The final dataset contains 66 videos that we post-processed,
as described in the following section.

Data Curation. First, we converted the 66 video clips captured in the data
acquisition campaign from 4K to 1080p resolution. Then, we extracted the frames
from the videos at a rate of 30 FPS, obtaining a total of 126,170 images (see Table
1 for summary statistics). Finally, a human expert annotator manually annotated
them. Specifically, the annotation process took approximately 60 hours, and the
Computer Vision Annotation Tool (CVAT) [23] was used. Although our work
focuses on localizing and recognizing people, we also annotated other objects



MOBDrone 5

Table 1: Dataset details. The MOBDrone benchmark contains 126,170 drone-
view images at six different heights in MOB scenarios.

Altitude # Images # Video Clips

10 m 958 1
20 m 10, 053 6
30 m 29, 404 15
40 m 33, 046 13
50 m 29, 183 16
60 m 23, 526 15

tot 126,170 66

Fig. 1: Samples of the MOBDrone Dataset. Examples of images captured
at different altitudes, light conditions, and camera directions. The bounding box
annotations localizing the labeled objects are also shown. Objects belonging to
the person category, which is the one of paramount interest in MOB scenarios,
are outlined with red bounding boxes and zoomed. Note that 27.72% of the
images do not contain objects (i.e., images of clear water) and that interfering
objects in the background, such as rocks, often trigger false positive detections.
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Table 2: Annotation statistics. We labeled with bounding boxes 181,689 ob-
jects belonging to 5 categories.

Class #Annotations #Images Samples

person 113, 408 77, 365

boat 39, 967 31, 238

wood 15, 980 9, 040

life buoy 10, 401 10, 386

surfboard 1, 933 1, 933

no object 34, 976

total 181,689

present in the scenes. In particular, we considered a total of 5 classes (person,
boat, surfboard, wood, life buoy). We provide a bounding box precisely localizing
each instance of the objects of interest. The total number of annotations is
181, 689, of which the ones related to the person class, which is of primary
interest in the MOB scenario, is 113, 408. However, note that about 27.72% of the
images do not contain any objects (i.e., images of clear water). We report some
statistics concerning the annotations in Table 2, while we show some samples of
our dataset in Figure 1.

4 Detection Performance Analysis

In this section, we evaluate several state-of-the-art object detectors on our MOB-
Drone dataset4, focusing on the detection of the overboard people, i.e., on the
localization of the object instances belonging to the class person. In the first part
of our performance analysis, we compare 9 of the most popular and performing
object detectors present in the literature. Then, we look upon the best three
ones, performing a more in-depth analysis of the obtained results.

The detection methods considered in our analysis can be roughly grouped
into three categories, i.e., anchor-based Convolutional Neural Network (CNN)
methods, anchor-free CNNmethods, and Transformer-based methods. We briefly
summarize them below. We refer the reader to the papers describing the specific
detectors for more details.

4 Although in this work we exploited the whole dataset as a test benchmark, in [3] we
provide training and test splits.
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Table 3: Comparison of the considered detectors. mAP@[0.50:0.95] is the
AP averaged over 10 IoU thresholds in the range [0.50 : 0.95] with a step size of
0.05, while AP50 is the AP computed at the single IoU threshold value of 0.50.

Method AP50 ↑ mAP@[0.50:0.95] ↑

VarifocalNet [25] 0.378 0.144
TOOD [10] 0.314 0.116
Deformable DETR [28] 0.199 0.075
YOLOX [13] 0.126 0.049
Faster R-CNN [22] 0.126 0.041
CenterNet [26] 0.124 0.041
DETR [4] 0.128 0.040
Mask R-CNN [14] 0.109 0.033
YOLOv3 [21] 0.011 0.009

Anchor-based CNN methods compute bounding box locations and class labels of
object instances exploiting CNN-based architectures that rely on anchors, i.e.,
prior bounding boxes with various scales and aspect ratios. They can be divided
into two groups: i) the two-stage approach, where a first module is responsible
for generating a sparse set of object proposals and a second module is in charge
of refining these predictions and classifying the objects; and ii) the one-stage
approach that directly regresses to bounding boxes by sampling over regular
and dense locations, skipping the region proposal stage. Here, we use Faster R-
CNN [22] and Mask R-CNN [14] regarding the first group, and YOLOv3 [21],
TOOD [10] and VarifocalNet (VfNet) [25] concerning the second one.
Anchor-free CNN methods rely on the prediction of key-points, such as corner
or center points, to predict the objects, instead of using anchor boxes and their
inherent limitations. In this work, we exploit CenterNet [26] and YOLOX [13].
Transformer-based methods rely on the recently introduced Transformer atten-
tion modules in processing image feature maps, removing the need for hand-
designed components like a non-maximum suppression procedure or anchor gen-
eration. In this paper, we consider DEtection TRansformer (DETR) [4] and one
of its evolution, Deformable DETR [28].

We evaluate and compare the above-described detectors over our MOBDrone
dataset following the golden standard Average Precision (AP), i.e., the average
precision value for recall values over 0 to 1. Specifically, we consider the MS
COCO mAP@[0.50:0.95] [17], i.e., the AP averaged over 10 IoU thresholds in
the range [0.50, 0.95] with a step size of 0.05, and the AP50, i.e., the AP com-
puted at the single IoU threshold value of 0.50. We refer the reader to [17] for
more details. All the detection techniques that we employed were pre-trained5 on
the COCO dataset [17], a popular collection of images in everyday contexts com-
prising objects belonging to 80 different categories, of which is present the person
class. To evaluate the performance of the detectors, we filtered the obtained de-

5 Pre-trained models are available, e.g., in the model zoo of MMDetection project [5]
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(a) Precision vs. Recall curves (IoU=0.5).
Areas under curves correspond to AP50.

(b) F1-score vs. detection threshold curves
(IoU=0.5).

Fig. 2: Comparison of the three best detectors. We report Precision-Recall
(a), and F1-detection threshold (b) curves of the three best models (VfNet,
TOOD, and Deformable DETR). VfNet shows best performances.

Fig. 3: Detections produced by VarifocalNet. We indicate false positives

in green, false negatives in yellow, true positive in blue and gt in red.

tections considering only the ones classified as person. We report the obtained
results in Table 3. The model which turns out to be the most performing is
VarifocalNet, considering both the metrics, followed by TOOD and Deformable
DETR. However, in general, all the detectors exhibit moderate performance,
indicating the difficulties in localizing persons in this challenging scenario. We
deem that the most significant metrics in our scenario is the AP50, since i) the
dataset is manually labeled by humans and therefore is accurate in terms of clas-
sification and inaccurate in terms of boundaries, ii) it is not crucial to precisely
localize instances, i.e., it is critical to detect overboard persons but the quality
of the localization is less important. With this in mind, in the following, we show
an in-depth analysis of the three AP50 best models, i.e., VarifocalNet, TOOD,
and Deformable DETR.

In Figure 2a, we report the Precision-Recall curves, i.e., precision and recall
values for different detection confidence thresholds, of these three best detectors
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Table 4: Comparison of the three best detectors at different altitudes.
AP50 and F1 are the AP and the F1-score computed with IoU set to 0.50.

VarifocalNet [25] TOOD [10] Deformable DETR [28]
Altitude AP50 ↑ F1 ↑ AP50 ↑ F1 ↑ AP50 ↑ F1 ↑

10 m 0.973 0.444 0.989 0.363 0.959 0.636
20 m 0.771 0.318 0.681 0.308 0.514 0.279
30 m 0.400 0.199 0.407 0.223 0.240 0.210
40 m 0.540 0.226 0.406 0.203 0.314 0.209
50 m 0.241 0.161 0.187 0.140 0.107 0.08
60 m 0.205 0.223 0.171 0.196 0.063 0.131

while setting the IoU threshold at 0.50. Areas under these curves correspond to
AP50 values. As can be seen, the VarifocalNet detector exhibits the best perfor-
mance at all confidence thresholds. The same trend is confirmed in Figure 2b,
where we show F1-score values (where F1 = 2 × Precision×Recall

Precision+Recall ) at different
detection confidence thresholds, again setting the IoU threshold at 0.50. Still,
VarifocalNet shows superior performance compared to the other two detectors.
Please note that the maximum values of these curves indicate the detection
confidence score that may be used by potential users, enclosing a trade-off be-
tween the resulting Precision and Recall values. Figure 3 shows some qualitative
outputs produced by VarifocalNet using this confidence score.

In Table 4, we show a comparison of the best three detectors at different
altitudes in terms of AP50 and F1-score. As expected, in general, performances
decrease with increasing altitude. However, it is interesting to note that TOOD
and Deformable DETR particularly struggle to detect small objects, i.e., when
the altitude is above 40 meters, while achieving comparable or even better results
than VarifocalNet at altitudes below 30 meters.

Finally, in Table 5, we report a classwise analysis of the obtained detections,
i.e., we consider the detections belonging to all the 80 classes and not only the de-
tections classified as person. Specifically, we take into account also errors due to
misclassified objects, i.e., detected objects that matched with person annotations
but that were classified as objects belonging to another category. We define the
True Positive Rate (TPR) as the ratio between the number of correctly detected
and classified person instances (TP) and the total number of person instances in

the ground-truth (P). On the other hand, we define dTPR(c) = dTP(c)
P as the de-

tection True Positive Rate for the output class c with respect to the target person
class, that is the the number dTP(c) of person instances detected correctly (i.e.,
considering only the IoU of predicted and target bounding boxes) but classified
with category c divided by the total number of person instances in the ground-
truth. In other words, dTPR(c) gives us the proportion of person instances that
were detected correctly but misclassified with category c. The sum of the TPR
and all the dTPR(c) gives the overall detection Recall (dR), i.e., the ratio of per-
son instances detected correctly without considering the output classification.
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Table 5: Classwise Analysis. We consider the detections of all 80 COCO
classes, accounting for errors due to misclassified objects, i.e., detected objects
that matched with person annotations but that were classified as objects of an-
other category. TPR is the True Positive Rate with respect to the target person
class. dTPR is the ratio of person instances correctly detected but misclassified.
The overall detection Recall (dR) is the proportion of detected person instances
considering also misclassified objets; the overall detection Miss Rate is the pro-
portion of person instances that were not detected at all. We set IoU to 0.5.

person bird airplane kite other Overall

Method TPR ↑ dTPR ↑ dTPR ↑ dTPR ↑ dTPR ↑ dR ↑ dMR ↓

VfNet [25] 0.285 0.266 0.190 0.067 0.012 0.818 0.182
TOOD [10] 0.326 0.118 0.212 0.125 0.017 0.799 0.201
Def. DETR [28] 0.206 0.311 0.072 0.041 0.026 0.657 0.343

Similarly, the overall detection Miss Rate, defined as dMR=1-dR, is the portion
of person instances that were not detected at all. For example, from Table 5, we
can observe that the pre-trained VarifocalNet correctly detected 81.8% of the
ground-truth person instances even if, in most cases, it misclassified them. This
may suggest that the same model fine-tuned on MOB data may have room for
growth in localizing person instances.

5 Conclusion and Future Directions

This paper presents the MOBDrone benchmark, a large-scale drone-view dataset
suitable for detecting persons overboard. It is part of the NAUSICAA project
aiming at creating a control system that, for the first time, uses aerial and
marine drones and augmented and virtual reality to provide increased safety
to medium and large vessels. Specifically, we collected more than 125K images,
and we manually annotated more than 180K objects in a marine environment
under several conditions, like different altitudes and camera shooting angles.
Furthermore, we report an in-depth experimental evaluation of several state-of-
the-art object detectors, serving as baselines for further research on this topic.
Our analysis shows that detectors pre-trained on standard datasets of everyday
objects exhibit moderate performance in localizing and recognizing people at sea
in aerial images acquired at mid-high altitudes. The classification stage is the
primary source of error for the best of the tested models, i.e., VarifocalNet, as
about 82% of the ground-truth persons were correctly detected but misclassified,
thus suggesting that the same model fine-tuned on MOB data may have room
for growth. To this end, as a future direction, we plan to extend our dataset with
additional annotated data for the supervised training procedure, also considering
synthetic images coming from virtual worlds.
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