
MoSL: A Stochastic Logic for StoKlaim ∗

Rocco De Nicola
Università degli Studi di Firenze

Diego Latella
C.N.R. - I.S.T.I.

Joost-Pieter Katoen
RWTH Aachen

Michele Loreti
Università degli Studi di Firenze

Mieke Massink
C.N.R. - I.S.T.I.

ISTI Report version 3.0 of Sep. 14, 2006

Abstract

The programming and modeling language Klaim has been designed to address key func-
tional aspects of global computing such as distribution awareness, (code and agent) mobility,
and privacy aspects. This paper concentrates on their integration with performance and
dependability aspects, the logical characterization of performance and dependability require-
ments, and the automatic validation of system models against integrated formal functional
and performance/dependability requirements. To that purpose the temporal logic MoSL is
introduced for formulating properties of models specified in StoKlaim, a Markovian extension
of Klaim introduced in previous work of the authors. MoSL is inspired by (an action-based
version of) CSL, an extension of CTL with ample means to refer to performance and depend-
ability aspects. It is shown that a substantial fragment of the logic can be mapped onto the
input language of existing probabilistic model checkers, thus allowing for the automated veri-
fication of qualitative and quantitative properties of network-aware programs. The approach
is illustrated by modeling and verifying the spreading of a virus through a network.

1 Introduction

This paper attempts to make a considerable step into the direction of the development of systematic
methods, techniques and tools—all based on solid logic and mathematical foundations i.e., formal
methods—needed for extablishing performance and dependability requirements and attributes of
dependable global computers. In particular, we develop an extension of a widely used temporal
logic, CTL, as property specification language for distribution, performance and dependability
guarantees. The temporal logic formalism builds upon an action-based variant of CSL (Continuous
Stochastic Logic [2, 6]).

1.1 Modeling Dependable Global Computers

Global computers [11] are modern, complex distributed systems which are highly dynamic and have
to deal with frequent changes of the network environment. Features such as distribution awareness
and code mobility which were absent or deliberately invisible in previous computer generations
play a prominent rôle in global computing.

∗The work presented in this report has been partially supported by EU Project Software Engineering for Service-
Oriented Overlay Computers (SENSORIA, contract IST-3-016004-IP-09).

1

To facilitate the incorporation of random phenomena in models for network-aware computing,
we proposed StoKlaim [16], a simple, yet powerful extension of Klaim [14, 8]. Klaim is an
experimental language for distributed systems that is aimed at modeling and programming mobile
code applications, i.e., applications for which exploiting code mobility is the prime distinctive
feature. Its distinguishing feature is the explicit use of localities for modeling data or computational
resources distribution. It is heavily based on the process algebras CCS and π-calculus as well as
on the coordination paradigm of Linda. Klaim models networks as finite collections of sites, each
equipped with a (physical) address, where processes can execute and data can reside. Processes
and actions—like in traditional process algebras—are key elements in Klaim and possess the
possibility to explicitly refer and control the spatial structure of the global network at any point
of their evolution. Processes are the active computational entities and may run concurrently,
either at the same site or at distinct ones. They interact in an asynchronous fashion via multiple
distributed tuple spaces, a generalization of the well-known single shared tuple space in Linda [25].
Actions in Klaim explicitly indicate the (possibly remote) site at which they will have effect.
Klaim supports core aspects for global computing such as process distribution, remote evaluation
(a process sends another process for execution to another site), code on demand (a process may
download code from a remote site to execute it locally), and site creation.

In StoKlaim, these actions have a random duration governed by a negative exponential
distribution. The resulting operational model is therefore a continuous-time Markov chain (CTMC,
for short), one of the most popular models for the evaluation of performance and dependability of
information processing systems.

1.2 Specifying properties of dependable global computing

Models specified in StoKlaim thus yield a Markov chain as operational model. To assess de-
pendability aspects, typically long-run or transient probabilities of such chains are determined.
We propose to adopt a more recent technique that determines performance and dependability
guarantees in a fully automated manner using model checking. Guarantees are formulated in
proper temporal logics. For CTMCs, the logic CSL (Continuous Stochastic Logic) [2, 6] is of par-
ticular interest for which efficient model-checking algorithms exist. Several software tools support
the verification of CSL; this ranges from tailored probabilistic model checkers such as PRISM [31]
to tools for stochastic Petri nets [13]. CSL is a stochastic extension of CTL, and allows for—
besides the qualitative properties such as safety and liveness—the specification of (time-bounded)
probabilistic reachability properties, such as “the likelihood to reach a goal state within t time
units while visiting only legal states is at least 0.92”.

This paper proposes a stochastic logic that permits to refer to the spatial structure of the
network for the specification of properties for StoKlaim models. We take as starting-point an
action-based variant of CSL (as first proposed in [28]); this fits well with the action-based nature
of Klaim. (The relation between action-based CSL and CSL is similar to that between CTL and
action-based CTL [21].) The novel features of this stochastic logic, which we call Mobile Stochastic
Logic (MoSL), are: atomic propositions may refer to the sites where data and processes reside,
actions are generalized to action specifiers that act as patterns to characterize sets of actions, and
logical variables are incorporated to refer to dynamically created sites. Interestingly enough, a
substantial fragment of this logic can directly and efficiently be mapped onto action-based CSL,
as shown in this paper. This allows for the use of existing model checkers such as ETMCC [29] for
action-based CSL to assess dependability constraints of StoKlaim processes in a fully automated
manner. Our approach is exemplified by modeling the spreading of a virus through a network,
and by verifying properties such as “the probability that the virus is spread to a specific site
within a certain time interval is at most 10−4”. A preliminary version of the logic MoSL has been
presented in [17].

2

1.3 Related Work

Several (temporal) logics have been proposed which aim at describing properties of systems related
either to mobility ([9, 19, 10, 12, 24, 32] among others) or to probabilistic/stochastic behaviour
(e.g. [26, 27, 2, 6, 28]). To the best of our knowledge, the present paper is the first approach
towards a probabilistic logic for mobility, except for [17], where a preliminary version of the logic
has been proposed which is closely related to the language presented in [18] and suffers of similar
restrictions.

1.4 Organization of the paper

Section 2 recalls the formal definition of the modeling language StoKlaim. The property speci-
fication language MoSL is introduced in Section 3 together with its formal semantics. Section 4
presents the translation of a major fragment of the logic onto action-based CSL. The correctness
proof of this translation is provided in the Appendix. Section 5 recalls the virus spreading ex-
ample described in [16] and presents a formal analysis of a number of relevant properties using
probabilistic model checking. In Section 6 some concluding remarks are drawn.

2 StoKlaim

This section recalls StoKlaim syntax and semantics. A revised version of the formal definition
of the language is given which slightely improves that proposed in [16].

2.1 Syntax of StoKlaim

Let V, ranged over by v, v′, v1, . . ., be a set of (basic data) values; I, ranged over by i, i′, i1, . . .,
be a set of (physical) addresses; L, ranged over by l, l′, l1, . . ., be a set of logical addresses, also
called localities; the locality self ∈ L; R, ranged over by r, r′, r1, . . ., be a set of rate names; V-var,
ranged over by x, x′, x1, . . ., be a a set of value variables; L-var, ranged over by u, u′, u1, . . ., be a
set of locality variables; and P-var, ranged over by X, X ′, X1, . . ., Q,Q′, Q1, . . . be a set of process
variables. We will conventionally use Q,Q′, Q1, . . . for those process variables for which there is a
proper definition in the StoKlaim specification at hand, as described below.

All these sets are countable and are mutually disjoint. R is assumed equipped with a decidable
equivalence relation ' such that R/ ' is countable and each element of R/ ' is countable as well.
Furthermore, let `, `′, `1 range over L ∪ L-var. Finally, we assume a standard way for building
value expressions from values, value variables and operators; in the following, we let e denote any
generic value expression and we do not discuss these expressions in any further detail here.

We adopt the (~·)-notation for sequences; e.g., ~l = l1, l2, . . . , ln denotes a sequence over L and
~x = x1, x2, . . . , xm is a sequence over V-var. For sequence ~s = s1, . . . , sn, let {~s} denote the set of
elements in ~s, i.e., {~s} = {s1, . . . , sn}. One-element sequences and singleton sets are denoted as
the element they contain, i.e., {s} is denoted as s and ~s = s′ as s′. The empty sequence is denoted
by ε.

The syntax of StoKlaim nets is given in Table 1.

2.1.1 Nets and processes

Specifications in StoKlaim consist of nets and processes. The most elementary net is the null
net, denoted 0. A net consisting of a single node with address i is denoted i ::ρ E where ρ is an
allocation environment and E is a node element. Allocation environment ρ maps localities occur-
ring in the processes running at i to addresses. Node elements are either processes executing at a
node—process nodes in the sequel—or data (represented as a tuple ~f , see later on) that is stored
at a node: Processes are built up from the terminated process nil, a set of randomly delayed ac-
tions, and standard process algebraic constructors such as prefix, choice, parallel composition and
process instantiation Q, with optional parameters (~Q′, ~̀, ~e), where each process variable Q,Q′, . . .

3

N ::= Nets
0

| i ::ρ E
| N || N

E ::= Element
P

| 〈~f〉

P ::= Processes
nil

| (A, r).P
| P + P
| P | P

| Q(~Q′, ~̀, ~e)

A ::= Actions

out(~f)@`

| in(~F)@`

| read(~F)@`

| eval(Q(~Q′, ~̀, ~e))@`
| newloc(!u)

f ::= Fields

Q(~Q′, ~̀, ~e)
| X
| `
| e

F ::= Templates
f

| !X
| !u
| !x

Table 1: Syntax of StoKlaim.

is assumed to be defined, in the sequence of process definitions ~D in the StoKlaim specification
at hand, by a process defining equation of the form:

Q(~!X, ~!u, ~!x) ∆= P .

In the sequel, by process constant we mean a process variable for which there is a proper defining
equation in the context at hand. For the sake of simplicity, actual process parameters in process
instantiations are restricted to be process constants only. Note that, for syntactical uniformity, all
binding occurrences of variables are prefixed with ’!’. This includes occurrences in node creation
and read actions (see below), and formal parameters of process definitions.

The process (A, r).P executes action A with a duration that is distributed exponentially with a
rate specified by rate-name r. Rate-names are mapped to rate values by means of rate-mappings.
A rate-mapping β is a total function1 from R to R>0 such that β r = β r′ whenever r ' r′.

Thus, the duration of the execution of action A is exponentially distributed with rate (β r).
It is convenient to introduce the following notions. Let N be a net. The site (with address)

i is the collection of nodes in N with address i. Nodes are syntactical objects whereas sites are
conceptual entities. The set of processes running at site i is the set of processes P such that
i ::ρ P ′ occurs in N and P = P ′, or is a proper sub-process of P ′. The set of processes (localities,
or basic values, respectively) stored at site i is the set of processes (localities, or basic values resp.)
occurring as fields of tuples ~f such that i ::ρ 〈~f〉 is in N .

2.1.2 Actions

A process can write the tuple f1, . . . , fn in repository l—that is, the repository with address i,
where i is the address which is bound to l by the allocation environment of the node where the pro-
cess is running—by the output action out(f1, . . . , fn)@l. With an input action in(F1, . . . , Fn)@l a
process can withdraw a datum that matches pattern, or template (F1, . . . , Fn), from repository l.
Processes can be written to/withdrawn from a repository as well. In particular, when a process is
written to a remote repository, it looses the links of its localities to the addresses they are bound
to by the local allocation environment; if and when the process will be (downloaded and) put into
execution in a node, the allocation environment of that node will be used for resolving locality
references occurring in the process. In other words a dynamic scoping rule is used for the out
operation. A static scoping discipline can be enforced, by prefixing processes by an asterisk in the
tuple-fields of the out operation (not shown in Table 1 for the sake of notational simplicity).

Action read(F1, . . . , Fn)@l is similar to in(F1, . . . , Fn)@l except that the datum at l is not
deleted from the repository at l. The action eval(P)@l spawns process P at site l. Again, the

1In this paper we will often use a functional programming like notation where currying will be used in function
application, i.e. f a1 a2 . . . an will be used instead of f(a1, a2, . . . , an) and function application will be considered
left-associative. We let dom f (rng f , respectively) denote the domain (range respectively) of function f .

4

dynamic scoping rule is used by default, while the static one can be enforced by the asterisk prefix
(i.e. eval(∗P)@l). A locality variable u can be used in place of l in all above actions. Action
newloc(!u) creates a new node. The newly created locality (bound to the address of the newly
created node) is referred to by variable u. Finally, we will use the notation busy(r).P as an
abbreviation for (eval(nil)@self, r).P , for any process P , whenever we want to model a delay with
rate r, e.g. due to internal computation.

2.1.3 Tuples and templates

Tuple fields can be processes, localities, locality variables and value expressions. For the sake of
simplicity, process fields are restricted to process instantiations only, as in the case of process actual
parameters of process instantiations. We assume a standard way for building value expressions
from values, value variables and operators and do not discuss these in any further detail here.
Template fields can be tuple fields, or binders, which are variables prefixed with an exclamation
mark. Binders indicate the binding occurrences of related variables; their scope will be defined in
Section 2.2.

2.1.4 StoKlaim specifications

A StoKlaim specification S is a triple (β0, N0, ~D) where β0 : R → R>0 is a rate-mapping, N0

and ~D are, respectively, a net modeling the behaviour of a system and the process definitions for
the processes used in N0.

2.2 Semantics of StoKlaim

In this section the operational semantics of StoKlaim is recalled. Some (straightforward) static
semantics constraints are given below.

2.2.1 Well-formed specifications

StoKlaim is a typed language; type-checking StoKlaim is out of the scope of the present paper,
where type-correctness of StoKlaim specifications is assumed. Free and bound variables are
defined in the usual way: in processes of the form (newloc(!u), r).P , binder !u binds all free
occurrences of variable u in P . Similarly, in process (in(~F)@`, r).P or (read(~F)@`, r).P a binder
occurring in ~F binds all free occurrences of the variable with the same name in P . In a process
definition like Q(~!Q′, ~!u, ~!x) ∆= P , a binder occurring in the formal parameter list ~!Q′, ~!u, ~!x binds
all free occurrences of the variable with the same name in P . In these cases, P is called the scope
of the binder at hand.

In the following, for StoKlaim specification S = (β0, N0, ~D), we let (RatS), (LocS), and
(AdrS) denote the set of rate names, localities, and addresses, respectively, occurring in N0 or
~D. Notice that the above sets do not depend on β0. With a little overloading, we use (Rat N),
(Loc N), and (Adr N), for network N as an abbreviation for (Rat (β, N, ε)), (Loc (β, N, ε)), and
(Adr (β, N, ε)), for any rate mapping β.

Definition 2.1 A StoKlaim specification (β0, N0, ~D) is well-formed if and only if it is type-
correct and:

• all rate-names occurring in N0 or ~D are distinct.

• each allocation environment ρ in N0 satisfies:

(i) self ∈ (dom ρ);

(ii) (dom ρ) \ {self} ⊆ (Loc N0)

(iii) (rng ρ) ⊆ (Adr N0)

5

(iv) for all nodes i1 ::ρ1 E1 and i2 ::ρ2 E2, if i1 = i2 then ρ1 and ρ2 are compatible, i.e., for
all l in (dom ρ1) ∩ (dom ρ2) we have ρ1 l = ρ2 l.

• The only free variables occurring in N0 are process variables defined in ~D.

• All process variables used in the left-hand-side of defining equations in ~D are distinct. In
every defining equation Q(~!Q′, ~!u, ~!x) ∆= P in ~D all binders occurring in the formal parameter
list ~!Q′, ~!u, ~!x are distinct and all free (process) variables occurring in P , which are not bound
by the binders in ~!Q′, ~!u, ~!x, are defined in some defining equation in ~D. Finally, for each
process formal parameter !Q′ there is at most one free occurrence of Q′ in P .

• All processes instantiations Q(~Q′, ~̀, ~e) are guarded, i.e. they occur in the context of an action
prefix (A, r).Q(~Q′, ~̀, ~e), for some A and r.

• In processes of the form (in(~F)@`, r).P or (read(~F)@`, r).P , all binders occurring in ~F

are distinct; moreover for each process binder !X occurring in ~F there is at most one free
occurrence of X in P .

3

In the remainder of this paper we assume specifications to be well-formed.

2.2.2 Structural congruence

StoKlaim specifications will be mapped by the operational semantics definition onto labeled
transition systems, in our case action-labeled Markov chains. The states of these structures are
called configurations, i.e., tuples (R, I, L, N), often denoted as R, I, L ` N , where R ⊆ R, I ⊆
I, and L ⊆ L are the set of rate names, addresses and localities, respectively, in the net N .
Configurations are considered modulo the structural congruence defined as the least congruence
induced by the laws in Table 2. (For the sake of simplicity we have omitted the components R, I,
and L when they are unaffected.) Compared to the structural congruence laws of Klaim, the laws
(CO+), (AS+), and (NE+), and (REN) have been added. Law (REN) states that any rate name
r occurring in N can be replaced by an equivalent rate name, not occurring already in N . The
rate name set R must be manipulated accordingly. We adopt the usual notation for syntactical
substitution, namely N [r′/r]; furthermore, in the rest of this paper, we use the notation R[r′/r]
as a shorthand for (R ∪ {r′}) \ {r}. Finally, in law (CLO) the allocation environments must be
taken care of; in particular, ρ1 and ρ2 must be compatible (see Def. 2.1), in which case, allocation
environment ρ1 ��ρ2 is defined as follows:

(ρ1 ��ρ2) l
def=

{
ρ1 l, if l ∈ (dom ρ1)
ρ2 l, if l ∈ (dom ρ2)

2.2.3 Tuple evaluation

Function [[·]]· (cf. Table 3) evaluates tuples and templates. Notice that [[u]]ρ yields u. In practice,
the static semantics constraints together with the semantics of the in and newloc actions as well
as process instantiation guarantee that variables are properly replaced by their values whenever
necessary2. In Table 3 function E [[·]] is used for evaluating value expressions e. The definition of
E [[·]] is outside the scope of the present paper.

P{ρ} denotes a process closure, i.e., a pair consisting of a process and an allocation environ-
ment. P{ρ} behaves like process P except that any locality l in P denotes the physical address
(ρ l) if l ∈ (dom ρ), and is resolved with the current allocation environment otherwise. Closures
are not part of the language, but are only used in the operational semantics (definition); they may
occur at any place where a process is allowed.

2Thus, there is no need for explicitly evaluating variables by [[·]]·.

6

(NE||) N ≡ N || 0

(CO||) N1 || N2 ≡ N2 || N1

(AS||) N1 || (N2 || N3) ≡ (N1 || N2) || N3

(NE+) i ::ρ P ≡ i ::ρ P + nil

(CO+) i ::ρ P1 + P2 ≡ i ::ρ P2 + P1

(AS+) i ::ρ P1 + (P2 + P3) ≡ i ::ρ (P1 + P2) + P3

(NE|) i ::ρ P ≡ i ::ρ P | nil

(CLO) i ::ρ1��ρ2 P1 | P2 ≡ i ::ρ1 P1 || i ::ρ2 P2

if ρ1 and ρ2 are compatible

(REN) R ` N ≡ (R ∪ {r′}) \ {r} ` N [r′/r]
for any r′ 6∈ (Rat N) with r′ ' r

Table 2: Structural congruence laws

[[P]]ρ
def= P [[!X]]ρ

def= !X
[[∗P]]ρ

def= P{ρ} [[!u]]ρ
def= !u

[[`]]ρ
def= ` [[!x]]ρ

def= !x
[[e]]ρ

def= E [[e]]

[[(F1, . . . , Fn)]]ρ
def= ([[F1]]ρ, . . . , [[Fn]]ρ)

Table 3: Tuple evaluation

7

ren(nil, R) def= (nil, R)

ren((A, r).P, R) def= ((A, r′).P ′, R′) where
r′ ∈ R \R and
(P ′, R′) = ren(P,R ∪ {r′})

ren(P1 op P2, R) def= (P ′
1 op P ′

2, R
′), op ∈ {+, |} where

(P ′
1, R

′′) = ren(P1, R) and
(P ′

2, R
′) = ren(P2, R

′′)

ren(Q(~Q′, ~̀, ~e), R) def= (Q(~Q′, ~̀, ~e), R)

ren(P{ρ}, R) def= (P ′{ρ}, R′) where
(P ′, R′) = ren(P,R)

ren(`, R) def= (`, R)

ren(e,R) def= (e,R)

ren((f1, . . . , fn), R) def= ((f ′1, . . . , f
′
n), R′) where

(f ′1, R
′) = ren(f1, R) and

(f ′j , R
′
j) = ren(fj , R

′
j−1)

for 1 < j ≤ n with R′ = R′
n

Table 4: Rate name renaming

2.2.4 Rate name renaming

Function ren (cf. Table 4) takes as argument a process P and a rate name set R. It renames all
rate-names occurring in P into fresh names and adapts R accordingly. Function ren will be used
in defining the semantics of the actions out and eval and in process instantiation to guarantee
unique rate-names. It is not difficult to establish that ren indeed generates unique rate names.
Notice also that, strictly speaking, Table 4 characterizes a set of functions, each specific one being
defined by the particular choices performed in the second equation.

2.2.5 Substitutions and Matching

In the inference rules defined below we exploit substitutions and combinations thereof. They
have the usual meaning, i.e., for d1, . . . , dn ranging over L ∪ V ∪ P , and w1, . . . , wn ranging over
L-var ∪ V-var ∪ P-var, we let [d1/w1 . . . dn/wn], with wi 6= wj for i 6= j, denote the substitution
which replaces wj by dj for 0 < j ≤ n. Let [] denote the empty substitution and, w.l.o.g, for
substitution Θ1:

[d1/w1, . . . , dn/wn, d′1/w′
1, . . . , d

′
m/w′

m]

and substitution Θ2:

[d′′1/w′
1, .., d

′′
m/w′

m, d′′m+1/w′
m+1, .., d

′′
m+h/w′

m+h]

with {w′
m+1, . . . , w

′
m+h} ∩ {w1, . . . , wn} = ∅, let Θ1 / Θ2 be the substitution:

[d1/w1, . . . , dn/wn, d′′1/w′
1, . . . , d

′′
m/w′

m, d′′m+1/w′
m+1, . . . , d

′′
m+h/w′

m+h] .

The pattern matching function match (cf. Table 5) yields a substitution if a matching is suc-
cessful. Here, it is assumed that β is the rate mapping for which the matching is considered.
(Strictly speaking, β is a parameter of match, but as it is unchanged in all cases, this is left im-
plicit for the sake of readability.) In the definition of match, processes are considered the same as
closures with an empty allocation environment.

8

match(l, l) def= [] match(v, v) def= [] match(nil,nil) def= []

match(!X, P{ρ}) def= [P{ρ}/X] match(!u, l) def= [l/u] match(!x, v) def= [v/x]

match(P, P ′) = [] (β r) = (β r′)
match((A, r).P, (A, r′).P ′) def= []

match(P1, P
′
1) = [] match(P2, P

′
2) = []

match(P1 + P2, P
′
1 + P ′

2)
def= []

match(~P , ~P ′) = [] match(~l, ~l′) = [] match(~v, ~v′) = []
match(X(~P ,~l, ~v), X(~P ′, ~l′, ~v′)) def= []

match(P, P ′) = []
match(P{ρ}, P ′{ρ}) def= []

match(F1, f
′
1) = Θ1 . . . match(Fn, f ′n) = Θn

match((F1, . . . , Fn), (f ′1, . . . , f
′
n)) def= Θ1 / . . . / Θn

Table 5: Pattern-matching of tuples against templates

2.2.6 Labeled transition system semantics

Let RepCnf, ranged over by c, c′, c1, . . ., be the set of all representatives of the equivalence classes
induced by the structural congruence ≡. We abstract here from the way in which such repre-
sentatives are chosen. We let rep(R, I, L, N) denote the representative of the congruence class of
configuration (R, I, L, N).

The derivatives (Der c) of configuration c ∈ RepCnf is the smallest set such that it includes c,
and is closed under the congruence laws and reduction rules defined in Tables 2 and 6.

The following definition characterizes the LTS associated to a StoKlaim specification. In the
definition set A is the set of ground actions constructed according to the grammar below:

A ::= o(~F , I) | i(~F , I) | r(~F , I) | e(P, I) | n(I)

for an output, input, read, eval, and newloc action, respectively. The tuple parameters F are
defined as follows:

F ::= P | l | v

Definition 2.2 The LTS of StoKlaim specification S = (β0, N0, ~D) is the tuple (C,Λ,−→, c0)
with:

• c0
def= rep(RatS,AdrS, LocS, N0), is the initial state;

• C
def= {rep(c) | c ∈ (Der c0)} is the set of states;

• −→, the transition relation, is the smallest relation on C × ((I × A) × R) × C induced by
the the congruence laws and reduction rules defined in Table 2 and in Table 6;

• Λ def= {(γ, r) | ∃c, c′ ∈ C. (c, (γ, r), c′) ∈ −→} ⊆ ((I × A)×R) is the label-set.

We let γ, γ′, γ1, . . . range over action-labels and denote (c, (γ, r), c′) ∈ −→ by c
γ,r−→ c′. Finally, we

let Nc (Rc, Ic, Lc, respectively) denote the network (rate names, addresses, localities, respectively)
component of c.

Given the mapping from StoKlaim specifications onto LTSs, the last step is the mapping of
such LTSs onto CTMCs: basically, rate names need to be turned into rates. This entails that
whenever c γ,r−−−→ c′ and c γ,r′

−−−→ c′, a single γ-labeled transition from configuration c to c′ should

9

(OUT)
ρ1 l = i2

R ` i1 ::ρ1 (out(~f)@l, r).P || i2 ::ρ2 E
(i1,o(~f ′′,i2)),r−−−−−−−−−−→R′ ` i1 ::ρ1 P || i2 ::ρ2 E || i2 ::ρ2 〈 ~f ′′〉

where (~f ′, R′) = ren(~f, R) and ~f ′′ = [[~f ′]]ρ1

(IN)
ρ1 l = i2

i1 ::ρ1 (in(~F)@l, r).P || i2 ::ρ2 〈~f〉
(i1,i(~f,i2)),r−−−−−−−−−→ i1 ::ρ1 PΘ || i2 ::ρ2 nil

where match([[~F]]ρ1
, ~f) = Θ

(RD)
ρ1 l = i2

i1 ::ρ1 (read(~F)@l, r).P || i2 ::ρ2 〈~f〉
(i1,r(~f,i2)),r−−−−−−−−−→ i1 ::ρ1 PΘ || i2 ::ρ2 〈~f〉

where match([[~F]]ρ1
, ~f) = Θ

(EVL)
ρ1 l = i2

R ` i1 ::ρ1 (eval(P ′)@l, r).P || i2 ::ρ2 E
(i1,e(P ′′,i2)),r−−−−−−−−−−→R′ ` i1 ::ρ1 P || i2 ::ρ2 E || i2 ::ρ2 P ′′′

where (P ′′, R′) = ren(P ′, R) and P ′′′ = [[P ′′]]ρ1

(NLC)
i2 ∈ I \ I l2 ∈ L \ L

I, L ` i1 ::ρ1 (newloc(!u), r).P (i1,n(i2)),r−−−−−−−−→ I ′, L′ ` i1 ::ρ′
1

P [l2/u] || i2 ::ρ2 nil

where I ′ = I ∪ {i2}, L′ = L ∪ {l2}, ρ′1 = ρ1 • [l2 7→ i2] and ρ2 = ρ′1 • [self 7→ i2]

(CLS)
I, L,R ` i1 ::ρ1•ρ2 P || N γ,r−−−→ I ′, L′, R′ ` i1 ::ρ′

1•ρ2 P ′ || N ′

I, L,R ` i1 ::ρ1 P{ρ2} || N γ,r−−−→ I ′, L′, R′ ` i1 ::ρ′
1

P ′{ρ2} || N ′

(PIN) Q(~!X, ~!u, ~!x) ∆= P I, L, R′ ` i ::ρ P ′ || N γ,r−−−→ I ′, L′, R′′ ` N ′

I, L,R ` i ::ρ Q(~Q′,~l, ~v) || N γ,r−−−→ I ′, L′, R′′ ` N ′

where (P ′, R′) = ren(P [~Q′/ ~X,~l/~u,~v/~x], R)

(CHO)
I, L,R ` i ::ρ P || N γ,r−−−→ I ′, L′, R′ ` N ′

I, L,R ` i ::ρ P + P ′ || N γ,r−−−→ I ′, L′, R′ ` N ′

(PAR)
I, L,R ` N1

γ,r−−−→ I ′, L′, R′ ` N ′

I, L,R ` N1 || N2
γ,r−−−→ I ′, L′, R′ ` N ′ || N2

(STC) R ` N ≡ R[r′/r] ` N1 R[r′/r], I, L ` N1
γ,r′
−−−→R2, I

′, L′ ` N2 R2 ` N2 ≡ R′ ` N ′

R, I, L ` N γ,r−−−→R′, I ′, L′ ` N ′

Table 6: Reduction rules for StoKlaim

10

be obtained with rate (β r) + (β r′). In practice we map LTSs toaction-labeled CTMCs (AMCs),
defined below:

Definition 2.3 An action-labeled CTMC (AMC) M is a triple (S, ACT, −→) where S is a set
of states, ACT is a set of actions, and −→ is the transition function, which is a total function
from S ×ACT × S to the set of non-negative real numbers R≥0.

We use the notation s γ,λ−−−→ s′ whenever the transition function yields a positive value λ on
(s, γ, s′). Transition s γ,λ−−−→ s′ intuitively means that the AMC may evolve from state s to s′

while performing action γ with an execution time determined by an exponential distribution with
rate λ.

Assume that the LTS associated to the StoKlaim specification is finite, i.e., it is finitely
branching and has a finite number of states3.The following definition characterizes the AMC
associated to a StoKlaim specification.

Definition 2.4 For StoKlaim specification (β0, N0, ~D) with finite LTS (C,Λ,−→, c0), let
AMC(β0, N0, ~D) def= (S, ACT, −→) with:

• S
def= C

• ACT
def= {γ ∈ I ×A | ∃c, c′ ∈ C, r ∈ R. c γ,r−−−→ c′}

• s γ,λ−−−→ s′ if and only if 0 < λ =
∑

s
γ,r−−−→ s′

(β0 r) .

3 MoSL

The previous section has introduced StoKlaim and its semantics that results in a Markov chain.
This section presents a logic that, basically, has the following features:

• it is a temporal logic that permits describing the dynamic evolution of the system

• it is a real-time logic that permits describing rela-time bounds in the dynamic evolution of
the system

• it is a probabilistic logic that permits expressing not only functional properties, but, in
particular, also properties related to performance and dependability aspects, and, finally

• it is a spatial logic that permits referring to the spatial structure of the network for the
specification.

We start by presenting the syntax and semantics of the logic, that we called MoSL (which abbre-
viates Mobile CSL), and then consider the more practical issue of mapping a substantial fragment
of this logic onto action-based CSL [28] for which efficient model checkers exist.

3.1 Syntax

The syntactical definition of the logic makes use of all basic syntactic categories introduced in
Sect. 2. Additionally, the set I-var of (physical) address variables, ranged over by z, z′, z1, . . ., is
used. Finally, we let ı range over I ∪ I-var.

3There are several ways for assuring finiteness of transition systems obtained from process algebras; see, e.g., [23].
We will not dwell further upon this issue here.

11

3.1.1 Atomic propositions

The most elementary formulae that can be specified are atomic propositions. They come in two
shapes. Atomic proposition Q(~Q′, ~̀, ~e)@ı holds whenever process Q(~Q′, ~̀, ~e) is running at site
ı. Atomic proposition 〈~F 〉@ı holds whenever a tuple ~f is stored at site ı and matches ~F . The
grammar for propositions is thus:

ℵ ::= P@ı | 〈~F 〉@ı .

Recall that ı is either a physical address or an address variable. These variables are assigned
values by means of action specifiers (see below). Localities are—in contrast to the modeling
language—not used for identifying sites in the logic. This stems from the fact that localities have
more a local connotation (which is resolved by allocation environments), while at the property
specification level one has a global view of the entire network.

3.1.2 Action specifiers and action sets

As in the branching-time temporal logic CTL, formulae in our logic can either refer to a state or
to a path. As we deal with an action-based model it is useful to be able to refer to these actions
in the logic, in much the same vein as in action-based CTL [21]. In fact, the actions are specified
by sets of action specifiers. For action specifier ξi, sets of action specifiers are built using the
grammar:

∆ ::= > | {} | {ξ1, . . . , ξn} .

Here, > stands for “any set” and can be used when no requirements on actions are imposed. A
set of action specifiers is satisfied by an action if the latter satisfies any of the elements of the set.
Action specifiers are a kind of templates for actions. They have the following shape:

ξ ::= g : O(~F , g) | g : I(~F , g) | g : R(~F , g) | g : E(F, g) | g : N(g)

where g is an address template, i.e., g is either of the form ι or !z. Action specifier i1 : O(v, i2),
say, is satisfied only by action (i1,o(v, i2)). The occurrence of this action models the uploading
of value v at site i2 by a process at site i1. Action specifiers may contain binders that bind their
variables to corresponding values in actions in the path; e.g., the action specifier !z1 : O(v, !z2) is
satisfied by any action, executed at some site, which uploads value v at some site. This action
specifier is, e.g., satisfied by action (i1,o(v, i2)). The meaning of the other action specifiers is
self-explanatory.

3.1.3 Path formulae

A path in an AMC (S, ACT, −→) is an alternating sequence (finite or infinite) of states and pairs
consisting of an action and a positive real number. An infinite path is a sequence s0 (γ0, t0) s1 (γ1, t1) . . .

such that, for all j ≥ 0, sj is a state, tj is a positive real number, γj is an action, and sj
γj ,λ−−−→ sj+1

for some λ > 0. Intuitively, the sequence traverses the states s0, s1, s2 and so on while staying ti
time units in state si and performing γi while moving from si to si+1.

The basic format of a path formula is the CTL-formula Φ U Ψ. In order to be able to refer to
actions executed along a path, we in fact use the variant of until as originally proposed in action-
based CTL [21]. To that end, the until-operator is parameterised with two action sets. A path
satisfies Φ ∆UΩ Ψ whenever eventually a state satisfying Ψ—in the sequel, a Ψ-state—is reached
via a Φ-path—i.e. a path composed only of Φ-states—and, in addition, while evolving between Φ
states, actions are performed satisfying ∆ and the Ψ-state is entered via an action satisfying Ω.
Finally, we add a time constraint on path formulae. This is done by adding time parameter t—in
much the same way as in timed CTL [1]—which is either a real number or may be infinite. In
addition to the requirements described just above, it is now imposed additionally that a Ψ-state
should be reached within t time units. If t = ∞, this time constraint is vacuously true, and the
until from action-based CTL is obtained. Accordingly, the syntax of path formulae is:

12

ϕ ::= Φ ∆U<t
Ω Ψ | Φ ∆U<t Ψ

Note that the only difference between the two until-operators is the absence or presence of the
right subscript, i.e., the action set specifying the constraints on the action which must be executed
for entering the Ψ-state. We emphasize that Φ ∆U<t Ψ is not equivalent to Φ ∆U<t

> Ψ. The precise
difference between the two until-formulae will become apparent when defining the semantics (cf.
next subsection).

Action specifiers and their matching to actions generate substitutions in a natural way. Con-
sequently, variables may occur in formulae and are replaced by the associated values via substi-
tutions. For example, tt >Ui1:N(!z) nil@z states that when a new node (referred as) z is created
from site i1, the nil process will be “running” on z.

3.1.4 State formulae

Properties about states are formulated as state formulae. Basically, there are three categories
of state formulae. The first category includes formulae in propositional logic, where the atomic
propositions are the ones introduced before. The second category includes statements about the
likelihood of paths satisfying a property. Finally there are the so-called long-run properties. Of
course, in general, a formula can be composed of sub-formulae of different categories. Let us be a
bit more precise about the probabilistic path properties. Let ϕ be a property imposed on a path.
State s satisfies the property P./p(ϕ) whenever the total probability mass for all paths starting
in s that satisfy ϕ meets the bound ./ p. Here, ./ is a binary comparison operator from the set
{<,>,≤,≥} and p a probability in [0, 1]. For instance, the property P>0.99(legal >U<31.2

> goal)
states that the probability to reach a goal state within 31.2 time units, via a path of legal states
only, exceeds 0.99. Here, both the actions to take to move between legal states and the one for
entering the goal state are irrelevant, as indicated by the action set >. Long-run properties refer
to the system when it has reached an equilibrium. Under the assumption that the CTMC is finite,
such equilibrium will always exist [30]. A state s satisfies S./p(Φ) if the probability of reaching
from s, in the long run, a state which satisfies Φ is ./ p. Thus, state-formulae are built according
to the grammar:

Φ ::= ℵ (atomic proposition)
| ¬Φ (negation)
| Φ ∨ Φ (disjunction)
| P./p(ϕ) (probabilistic path operator)
| S./p(Φ) (long-run operator)

3.2 Semantics

Paths play a central role in the formal definition of the semantics of MoSL. LetM = (S, ACT, −→)
be an action-labelled CTMC. A path π of M is a sequence

s0 (γ0, t0) s1 (γ1, t1) . . .

such that the following two conditions hold:

• sj ∈ S, γj ∈ ACT , tj ∈ R>0 and sj
γ,λ−−−→ sj+1, for some λ > 0 for all j ≥ 0;

• π is maximal, i.e. either it infinite or there exists natural number l such that sl is absorbing
(i.e. there are no s, r, and λ such that sl

γ,λ−−−→ s).

Path operators which will be used in the sequel are defined in Table 7. For any state s of an
AMC M, let Paths(s) denote the set of all paths s0(γ0, t0)s1(γ1, t1) . . . over M with s0 = s.
A Borel space can be defined over Paths(s), together with its associated probability measure P,
which is a slight extension of that defined in [6] in order to take both states and actions into
consideration [15].

13

For path π = s0 (γ0, t0) s1 (γ1, t1) . . ., natural number j and t ∈ R≥0:

len(π) def=
{
∞ if π is infinite
l otherwise , where sl is the absorbing state of π

st(π, j) def=
{

sj if 0 ≤ j ≤ len(π)
undefined otherwise

ac(π, j) def=
{

γj if 0 ≤ j < len(π)
undefined otherwise

dl(π, j) def=

 tj if 0 ≤ j < len(π)
∞ if j = len(π)
undefined otherwise

π(t) def=

{
st(π, len(π)) if t >

∑len(π)−1
j=0 tj

st(π,m) otherwise, where m = min{j | t ≤
∑j

k=0 tk}

Table 7: Operators on paths

3.2.1 Well-formed formulae

We will require top-level (state) formulae to be well-formed with respect to the net specification
(β0, N0, ~D), according to the definition below. The notion of free and bound variable in a logical
formula is used in the following sense. Since an action set may consist of more than one action
specifier and as different action specifiers may introduce different binders, we define the binding
set of an action set ∆ as the smallest set (BS∆) of binders involved in the action set; cf. Table 8.
In all path formulae of the form Φ ∆U<t

Ω Ψ a binder in (BSΩ) binds all free occurrences of the
variable with the same name in Ψ, which is the scope of the binder at hand. Notice that the
binders in ∆ have an empty scope. The reason for that is that any path π such that (st(π, 0)
satisfies Φ and) ac(π, 0) satisfies Ω and brings (within a time less than t) to a Ψ-state st(π, 1)
does satisfy Φ ∆U<t

Ω Ψ; notice that, in this case, no action specifier in ∆ is used, so that variables
potentially bound by any such specifier would actually not be bound if used in Φ or Ψ. Similar
arguments justify the definition of BS and of the scope of binders in Ω. In conclusion, the only
way for binding a variable is by means of Ω and the variable can be used only in Ψ. As we shall
see later, the aCTL-like next operator XΩ Ψ can be expressed as tt >UΩ Ψ. So, one can think of
MoSL binding operators as those which take effect at the transition matching the action specifiers
of the next operator and, consequently, whose substitutions are available in the argument formula
of such operator.

MoSL is a many-sorted logic and in particular it contains variables (and related values) of dif-
ferent types; type-checking MoSL is out of the scope of the present paper, where type-correctness
is assumed.

Definition 3.1 A top-level MoSL state formula Φ for StoKlaim net specification (β0, N0, ~D) is
well-formed if it is type-correct and all the following conditions hold:

• No variable occurs free in Φ, except process variables for which proper defining equations
are given in ~D (i.e. process constants).

• In any subformula of Φ, of the form 〈~F 〉@ı, all binders occurring in template ~F are distinct.

• In all action specifiers of the form g1 : O(~F , g2), or g1 : I(~F , g2), or g1 : R(~F , g2), or g1 :
E(F, g2), or g1 : N(g2), occurring in any sub-formula of Φ, all binders in g1, ~F , and g2 are

14

BS > def= ∅
BS {ξ1, . . . , ξn}

def=
⋂n

j=1 (BS ξj)

BS g1 : O(~F , g2)
def= (BS g1) ∪ (BS ~F) ∪ (BS g2)

BS g1 : I(~F , g2)
def= (BS g1) ∪ (BS ~F) ∪ (BS g2)

BS g1 : R(~F , g2)
def= (BS g1) ∪ (BS ~F) ∪ (BS g2)

BS g1 : E(F, g2)
def= (BS g1) ∪ (BS F) ∪ (BS g2)

BS g1 : N(g2)
def= (BS g1) ∪ (BS g2)

BS (F1, . . . Fn) def=
⋃n

j=1 (BS Fj)
BS F

def= {u | F =!u} ∪ {x | F =!x} ∪ {X | F =!X}
BS g

def= {z | g =!z}

Table 8: The binding set of an action set

distinct.

3

Example. A formula like tt i1:N(!z)U
<35
i1:O(!x,i2)

〈x〉@i2 is well-formed; on the other hand, the
formula tt i1:N(!z)U

<35
i1:O(!x,i2)

〈x〉@z is not, due to the last (free!) occurrence of z.

3.2.2 Satisfaction Relation

In this section the formal definition of the satisfaction relation of MoSL is given with reference
to StoKlaim specifications.

Definition 3.2 A StoKlaim specification (β0, N0, ~D) satisfies a state-formula Φ, written
(β0, N0, ~D) |=SK Φ if and only if s0 |= Φ, where s0 is the state of AMC(β0, N0, ~D) corresponding to
the initial state c0 of the LTS of (β0, N0, ~D), as defined in Def. 2.4, and |= is defined in Table 10.

State formulae
The satisfaction relation for state-formulae exploits pattern-matching. To that end, the definition
of function match given in Table 5 is extended as in Table 9, in order to cover addresses, address
variables, and action specifiers (with related actions).

Table 10 gives the definition of the satisfaction relation for MoSL formulae. For deciding if
a state s satisfies formula S./p(Φ) the limit, for t → ∞, of the probability mass of the set of all
those paths π starting from s and satisfying Φ at time t (i.e. π(t) |= Φ) must be computed and
it must be checked whether it is ./ p. State s satisfies P./p(ϕ) if the probability mass of the set
of paths which satisfy ϕ is ./ p. The definition of the satisfaction relation for the other kinds of
state formulae is straightforward.

Sets of action specifiers
The concept behind the definition of the satisfaction relation for action specifiers is that an action γ
satisfies an action specifier ξ if and only if the action matches the specifier. The matching function

15

match(i, i) def= [] match(!z, i) def= [i/z]

match(g1, i1) = Θ1 match(~F , ~f) = Θ2 match(g2, i2) = Θ3

match(g1 : O(~F , g2), (i1,o(~f, i2)))
def= Θ1 / Θ2 / Θ3

match(g1, i1) = Θ1 match(~F , ~f) = Θ2 match(g2, i2) = Θ3

match(g1 : I(~F , g2), (i1, i(~f, i2)))
def= Θ1 / Θ2 / Θ3

match(g1, i1) = Θ1 match(~F , ~f) = Θ2 match(g2, i2) = Θ3

match(g1 : R(~F , g2), (i1, r(~f, i2)))
def= Θ1 / Θ2 / Θ3

match(g1, i1) = Θ1 match(F, P) = Θ2 match(g2, i2) = Θ3

match(g1 : E(F, g2), (i1, e(P, i2)))
def= Θ1 / Θ2 / Θ3

match(g1, i1) = Θ1 match(g2, i2) = Θ2

match(g1 : N(g2), (i1,n(i2)))
def= Θ1 / Θ2

Table 9: Matching of address (variables) and action specifiers

requires the rate-binding β0 and generates a substitution; moreover, specifier sets are used in the
formulae. Consequently, the satisfiability relation is defined over (action, substitution)-pairs and
specifier sets; such a set is satisfied if one of its elements is satisfied.

Path formulae
The definition of the satisfiability relation for path formulae formalizes the meaning of the until
operators, as discussed in Sect. 3.1. Notice that, in the definition of Φ ∆U<t

Ω Ψ, the only substitution
which is used for replacing variables with values is the one generated by the matching of the
action of the last transition before the Ψ-state, and (an action specifier in) Ω; namely Θk−1. The
bindings of all the previous, intermediate, substitutions are discarded. This way, no counting
or stack capability is included in the logic. Similar considerations apply to the simplified form
of until, where all substitutions are discarded, indeed. Notice that, also in this case, the use of
binders does make sense since they can be used as don’t care placeholders.

Derived operators
Some frequently used operators can be derived from those of MoSL. The first set of derived
operators, given on the left-hand-side of Table 11, shows how the standard until-operators from
both action-based CTL and plain CTL are obtained, the next operator, and the modalities from
Hennessy-Milner logic. The second set, given on the right-hand-side of the table, includes the
eventually (3) and always (2) operators.

3.3 On the logical characterization of performance/dependability at-
tributes

We close this section with a brief discussion on how some relevant dependability-related proper-
ties involving resource distribution of global overlay computers can be expressed in MoSL. The

16

s |= tt
s |= ¬Φ iff s |= Φ does not hold
s |= Φ ∨ Ψ iff s |= Φ or s |= Ψ
s |= S./p(Φ) iff limt→∞ P{π ∈ Paths(s) | π(t) |= Φ} ./ p
s |= P./p(ϕ) iff P{π ∈ Paths(s) | π |= ϕ} ./ p

s |= Q(~Q′, ~̀, ~e)@i iff there exist N and ρ s.t. Ns ≡ N || i ::ρ Q(~Q′, ~̀, ~e)
s |= 〈~F 〉@i iff there exist N , ρ, ~f , and Θ s.t

Ns ≡ N || i ::ρ 〈~f〉 and match(~F , ~f, β0) = Θ

γ, Θ |= >
γ, Θ |= {ξ1, . . . , ξn} iff there exists j, 0 < j ≤ n, s.t. γ, Θ |= ξj

γ, Θ |= ξj iff match(ξj , γ, β0) = Θ

π |= Φ ∆U<t
Ω Ψ iff there exists k, 0 < k ≤ (len π) s.t. the following three conditions hold:

1) t >
∑k−1

j=0 dl(π, j)
2) there exists Θk−1 s.t. the following three conditions hold:

2.1) st(π, k − 1) |= Φ
2.2) ac(π, k − 1),Θk−1 |= Ω
2.3) st(π, k) |= ΨΘk−1

3) if k > 1 then there exist Θ0, . . . ,Θk−2 s.t.
for all j, 0 ≤ j ≤ k − 2 the following two conditions hold:
3.1) st(π, j) |= Φ
3.2) ac(π, j),Θj |= ∆

π |= Φ ∆U<t Ψ iff st(π, 0) |= Ψ or
there exists k, 0 < k ≤ (len π) s.t. the following three conditions hold:
1) t >

∑k−1
j=0 dl(π, j)

2) st(π, k) |= Ψ
3) there exist Θ0, . . . ,Θk−1 s.t.

for all j, 0 ≤ j ≤ k − 1 the following two conditions hold:
3.1) st(π, j) |= Φ
3.2) ac(π, j),Θj |= ∆

Table 10: Satisfaction relation

Φ ∆UΩ Ψ def= Φ ∆U<∞
Ω Ψ

Φ U Ψ def= Φ >U Ψ

X<t
∆ Φ def= tt ∅U<t

∆ Φ

〈∆〉Φ def= P>0(X∆ Φ)

[∆] Φ def= ¬〈∆〉¬Φ

P./p(∆3<t
∆′ Φ) def= P./p(tt ∆U<t

∆′ Φ)

P./p(∆2<t
∆′ Φ) def= ¬P./p(∆3<t

∆′ ¬Φ)

P./p(∆3<t Φ) def= P./p(tt ∆U<t Φ)

P./p(∆2<t Φ) def= ¬P./p(∆3<t ¬Φ)

Table 11: Derived operators

17

general issue of stochastic/reward temporal logic characterization of performance, dependability
and performability features has been addressed in, e.g. [3, 4]; we follow a similar approach here.

Steady-state measures can directly be modeled by means of the S() operator. For instance, the
formula

S>0.9(〈f〉@i)

states that in the long term the probability of finding value f stored at site i is larger than 0.9. For
example, f could be a malicious (or faulty) process Q and the formula would then characterize the
average fraction of time site i is infected (or contains a faulty component). Similarly the formula

S>0.9(Q@i)

would model the average fraction of time the infection (or faulty component) is active in site i.
Proper combinations of state properties can be used for identifying interesting state properties
involving more than one site.

Suppose now that retrieval of a specific corrupted value v from site i by a site is known to
produce an error which may result in a fault of the receiving site. It might be of interest to know
an upper bound, say 0.2, of the probability that such a retrieval is performed within a certain
amount of time t. The following transient probability formula can be used to the above purpose:

P<0.2(>3<t
!z:I(v,i) tt).

It is worth noting here that there are versions of CSL (see e.g. [3, 4]) where more general intervals
can be used for expressing time constraints in the until operator. We can use similar generalizations
for MoSL as well and express also instantaneous transient probability like in the following version
of the above formula (we remind the reader that a substantial fragment of MoSL can be translated
into aCSL, as we shall see in the next section):

P<0.2(>3
[t,t]
!z:I(v,i) tt).

which expresses the fact that the transient probability to enter at time t a state by retrieving v
from i is smaller than 0.2.

More in general, if the presence of a certain value v stored in site i is a symptom of the site
being faulty, the following formula can be used for getting information on the distribution of time
to failure:

P./p(¬(〈v〉@i) >U [t,t] 〈v〉@i).

The above formula can be enriched in order to study the distribution for those failures for which
there is an immediate activation of a recovery process Q in the affected site which has a probability
greater than 0.85 to perform complete recovery within 5 time units:

P./p(¬(〈v〉@i) >U [t,t] (〈v〉@i ∧ P≥1(X!z:E(Q,i) P>0.85(>3<5 ¬(〈v〉@i)))).

The above is an example of nested measures. Another example is the following formula which
expresses that, in equilibrium, the probability is at least 0.87 that the system will recover from a
fault at site i within 5 time units with probability at least 0.75

S≥0.87(P≥0.75(〈v〉@i >U<5 ¬(〈v〉@i))).

4 From MoSL to aCSL

In this section we present a translation from a large fragment of MoSL to aCSL and we show
its correctness. The fragment includes all MoSL ground formulae, i.e. those where no binders
or variables occur. Our conjecture is that the excluded formulae can be represented as proper
disjunctions indexed with all possible values the binders can take for a given AMC, as we shall

18

briefly discuss at the end of the present section. In the following, we let MoSL− denote the
restricted language.

Given a MoSL− formula Φ, and a StoKlaim specification (β0, N0, ~D), and assuming LTS
LTS(β0, N0, ~D) = (C,Λ,−→, c0) finite, with AMC(β0, N0, ~D) = (S, ACT, −→) being the related
AMC, the question is how to translate AMC(β, N, ~D) and Φ into an AMC and an aCSL formula
in order to perform model checking using an existing aCSL model-checker.

Since in aCSL only action atomic propositions can be expressed—which are directly related to
transition labels—the first step of our procedure is concerned with finding a way for incorporating
information related to state atomic propositions into the transition labels of the original AMC.
To that purpose, let {ℵ1, . . . ,ℵn} be the set of all the atomic propositions occurring in Φ. For
notational convenience, we associate a unique name pj to each ℵj above. Our first objective is to
associate a unique label to each state s of the AMC encoding which atomic propositions the state
satisfies; such a label is a string y1 . . . yn where yj is equal to pj if s satisfies ℵj and is equal to p̄j

otherwise. Formally, let B(p1, . . . , pn) def= ×n
j=1{pj , p̄j}; we define the characteristic function of S

as follows:

Definition 4.1 The characteristic function of set S of AMC states is the total function χ : S →
B(p1, . . . , pn) with χ s

def= y1 . . . yn such that, for j = 1, . . . , n, yj = pj if s |= ℵj and yj = p̄j if
s |= ℵj does not hold. 3

Example. If the only atomic propositions occurring in a given formula Φ̃ are ℵ1 (represented by
p1) and ℵ2 (represented by p2) and a given state s̃ satisfies ℵ2 but does not satisfy ℵ1, we have
(χ s̃) = p̄1p2 ∈ B(p1, p2) = {p̄1p̄2, p̄1p2, p1p̄2, p1p2}.

Notice that the above satisfiability check is computed by a simple analysis of (the network
component of) the states.

We transform AMC(β, N, ~D) into another AMC, FAMC(β, N, ~D), by moving the relevant state
information forward to the transitions emanating from states.

Definition 4.2 Given AMC AMC(β0, N0, ~D) = (S, ACT, −→) and bijective encoding cod of
ACT ×B(p1, . . . , pn) into finite set Υ, we define FAMC(β0, N0, ~D) as the AMC (SF , ACTF , −→F)

where SF = S, ACTF ⊆ Υ, and −→F is such that s
cod(γ,(χ s)),λ−−−−−−−−−−→F s′ if and only if s γ,λ−−−→ s′. 3

For every path π ∈ Paths(s) over AMC(β0, N0, ~D) there is a path πF over FAMC(β0, N0, ~D)
which corresponds to π in the obvious way: for all j ≥ 0, st(πF , j) = st(π, j), ac(πF , j) =
cod(ac(π, j), (χ st(π, j))), and dl(πF , j) = dl(π, j). We let PathsF (s) denote the set of all such
paths. It is worth pointing out that this AMC transformation cannot deal properly with absorbing
states. In the following we assume that AMC(β0, N0, ~D) does not contain absorbing states (they
can be eliminated by equipping them with proper self-loops [5]).

In the remainder of this section, for the sake of conciseness, we will use the convention that
M stands for AMC(β0, N0, ~D) = (S, ACT, −→); similarly, MF stands for FAMC(β0, N0, ~D) =
(SF , ACTF , −→F).

The intuition behind the design of our translation is that we take B(p1, . . . , pn) as the domain
for an interpretation function R over MoSL− in such a way that each (boolean combination of
atomic) proposition(s) Ψ is mapped into the subset of B(p1, . . . , pn) containing only the disjuncts
of the sum-product-form expression representing Ψ, in the usual way.

Example. With reference to our previous example, the sum-product-form representing p2 in
B(p1, p2) is p1p2+p̄1p2; thus, with reference to our sample formula Φ̃, we have (Rℵ2) = {p1p2, p̄1p2}
and clearly (χ s̃) ∈ (Rℵ2).

This last example gives the hint that satisfiability of a state atomic proposition can be reduced
to checking if the characteristic function of the state gives a label which is included in the set

19

R tt
def= B(p1, . . . , pn)

Rℵj
def= {y1 . . . yn | yj = pj , yi ∈ {pi, p̄i}, for j 6= i = 1, . . . , n}, for j = 1, . . . , n

R (¬Φ) def= (R tt) \ (R Φ), ifAPC (¬Φ)
def= (R tt), otherwise

R(Φ ∨ Φ′) def= (R Φ) ∪ (RΦ′), ifAPC(Φ ∨ Φ′)
def= (R tt), otherwise

R(S./p(Φ)) def= (R tt)
R(P./p(ϕ)) def= (R tt)

where
APC tt

def= tt

APCℵj
def= tt, for j = 1, . . . , n

APC(¬Φ) def= (APC Φ)

APC(Φ ∨ Φ′) def= (APC Φ) ∧ (APCΦ′)
APC(S./p(Φ)) def= ff

APC(P./p(ϕ)) def= ff

Table 12: Function R

associated to the atomic proposition by R. Thus we are moving toward the procedure the aCSL
model-checker uses for action labels. Of course, we have to integrate the information related to
state-atomic propositions, namely the value given by the state-characteristic function, with action-
related information of the original AMC and to incorporate the result in the transition labels of
the resulting AMC; this is done by means of the bijective encoding cod.

We now complete the characterization of R, defining its behaviour on formulas of MoSL−

other than state-atomic propositions, and show how the result of R is integrated, by means of
another function A, with the action specifiers occurring (in the indexes of until operators) in the
input formula Φ. The actual translation function, T, will use function A for generating the aCSL
formula associated to Φ.

Function R is defined in Table 12 and for each state atomic proposition—or boolean combina-
tions of atomic propositions—it generates the associated representation in B(p1, . . . , pn).

Example. In our running example we have Rℵ1 = {p1p̄2, p1p2}, R (¬tt) = ∅, and R tt =
{p̄1p̄2, p̄1p2, p1p̄2, p1p2}.

On formulae containing also stochastic or temporal operators R behaves the same as for tt.
Predicate APC characterizes the subset of MoSL− formulae which do not contain modal operators,
i.e. formulae which are only state-atomic propositions or boolean combinations of state-atomic
propositions. Function R enjoys the property stated by Lemma 4.3 below4.

Lemma 4.3 For all M, states s of M, and MoSL− formulae Φ, the following holds:

i) if APC(Φ) then: M, s |= Φ iff (χ s) ∈ R(Φ)

ii) M, s |= Φ implies (χ s) ∈ R(Φ) 2

Each action specifier ξ of MoSL− uniquely corresponds to an action γ ∈ ACT in the obvious way.
For instance the direct correspondent of action specifier i1 : O((l1, l2, v), i2) is (i1,o((l1, l2, v), i2).
The correspondence is trivially lifted to sets of action specifiers. We let (Γ ∆) denote the subset
of ACT corresponding to the action set ∆. Moreover we define (Γ>) as the set of all γ ∈ ACT
occurring in transitions of M.

4In the sequel, in order to avoid confusion, we will explicitly indicate the AMC in the satisfiability relation: e.g.
M, s |= Φ indicates that s |= Φ in AMC M.

20

T tt
def= tt

Tℵ def= P≥1(XA(>,ℵ)
tt)

T(¬Φ) def= ¬(TΦ)
T(Φ ∨ Φ′) def= (TΦ) ∨ (TΦ′)

T(S./p(Φ)) def= S./p((TΦ))
T(P./p(ϕ)) def= P./p((Tϕ))
T(Φ ∆U<t Φ′) def= (TΦ) A(∆,Φ)

U<t (TΦ′)

T(Φ ∆U<t
Ω Φ′) def= (TΦ) A(∆,Φ)

U<t

A(Ω,Φ)
(TΦ′)

Table 13: Logic Translation function

Function A produces the action set A(∆,Φ), over ACTF , corresponding to formula Φ and
action specifier ∆. It is defined in the expected way; A(∆,Φ) is the set:

A(∆,Φ) def= {cod(γ, p) ∈ ACTF | γ ∈ (Γ∆), p ∈ (RΦ)}

It is easy to see that the following lemma holds:

Lemma 4.4 For all M, states s of M, γ ∈ ACT , and MoSL− formaule Φ,∆ the following
holds: cod(γ, (χ s)) ∈ A(∆,Φ) implies M, γ, [] |= ∆. 2

An immediate consequence of Lemma 4.3, and of the definitions of functions A and cod is the
following lemma:

Lemma 4.5 For all M, states s of M, γ ∈ ACT , and MoSL− formulae Φ and ∆ such that
M, γ, [] |= ∆ and M, s |= Φ, the following holds: cod(γ, (χ s)) ∈ A(∆,Φ). 2

The three lemmata above are very useful for proving the correctness of the translation function
T which is defined in Table 13.

Function T essentially moves every requirement on states ℵ which is an atomic proposition—or
a boolean combination thereof—to a requirement on all transitions emanating from such states.
Intuitively, it is required that the labels of such transitions are “marked” by the requirement.
Technically, this is achieved by requiring them to be elements of A(>,ℵ) and it is the logic coun-
terpart of the definition of −→F . Notice that we use the fact that the aCSL path operator P≥1(·)
expresses the CTL path-quantifier ∀ ·. Such correspondence is justified only under specific fair-
ness conditions [7]. On the other hand, the specific form of formulae we are dealing with (i.e.
XA(>,ℵ)

tt), together with the fact that, by construction of MF , either all transitions emanating
from a state have their labels included in A(>,ℵ) or none of them, make the fairness constraints
irrelevant for the case at hand. The only other interesting cases of the definition of T are those
for the until formulae. Notice that action requirements ∆ and Ω are enriched with those coming
from formula Φ. In particular, this holds for Ω due to the fact that state properties are moved
forward to emanating transitions. Notice finally that the complexity of the translation is linear in
the size of the input formula Φ.

The following theorem guarantees the correctness of the translation:

Theorem 4.6 For all StoKlaim specifications (β0, N0, ~D), MoSL− formulae Φ, and states s of
AMC(β0, N0, ~D) the following holds:
AMC(β0, N0, ~D), s |=MoSL− Φ iff FAMC(β0, N0, ~D), s |=aCSL (TΦ). 2

We close this section with a discussion on how the translation procedure could be extended in
order to cope with action specifiers with binding capabilities. A first observation is that, broadly
speaking, formulas with binding action specifiers can be thought of as proper disjunctions where

21

the disjuncts are obtained by different instantiations of the binders, as the following example shows.
Consider the formula P>0.7(X<t

{i:O(!x,i)} 〈x〉@i), for some i ∈ I and t ∈ R>0, and suppose that the
only actions of the form (i,o(v, i)), with v ∈ V, which label transitions of M are (i,o(v1, i)) and
(i,o(v2, i)) for distinct v1 and v2 in V. From the definition of the satisfiability relation of the until
operator it is clear that, under the above assumption, for any state s of M, the sets

{π ∈ Paths(s) | π |= X<t
{i:O(v1,i)} 〈v1〉@i}

and
{π ∈ Paths(s) | π |= X<t

{i:O(v2,i)} 〈v2〉@i}

are disjoint and their union coincides with the set

{π ∈ Paths(s) | π |= X<t
{i:O(!x,i)} 〈x〉@i}.

From Probability Theory we can thus conclude that

P{π ∈ Paths(s) | π |= X<t
{i:O(!x,i)} 〈x〉@i} =

P{π ∈ Paths(s) | π |= X<t
{i:O(v1,i)} 〈v1〉@i}+ P{π ∈ Paths(s) | π |= X<t

{i:O(v2,i)} 〈v2〉@i}

Notice that the fomulae in the above two sets belong to MoSL−. Recall moreover that most
aCSL model-checkers, like ETMCC, when applied to formulas of the form P./p(ϕ), explicitly
provide, as part of their standard result, the specific value of P{π ∈ Paths(s) | π |= ϕ} for each
state s of the model AMC. Consequently we can apply function T to each of the above two formulae
and use the resulting aCSL ones for getting the probabilities of the above two sets automatically,
by means of (two separate sessions of) stochastic model-checking. The final step for checking if
the original formula holds will be to compare the sum of the two resulting values against 0.7.

In the remainder of this section we will describe in more detail under which conditions and
how we can proceed for generic formulae of the form P./p(X<t

Ω Φ).
We say that action specifier ξ is closed if and only if every occurrence of any variable in ξ is

preceded by the exclamation mark. In other words, a closed action specifier is one whose variables
are only binders. The following proposition easily follows from the relevant definitions:

Proposition 4.7 For all states s of M, closed action specifiers ξ, state formula Φ, and substi-
tutions Θ and Θ′ such that (dom Θ) = (dom Θ′) = (BS ξ) and [] 6= Θ 6= Θ′ 6= [], the two sets
{π ∈ Paths(s) | π |= X<t

{ξΘ} ΦΘ} and {π ∈ Paths(s) | π |= X<t
{ξΘ′} ΦΘ′} are disjoint. 2

Given action specifier ξ, we let (SUB ξ) be the set of all substitutions Θ such that s γ,λ−−−→ s′ is a
transition of M and match(ξ, γ, β0) = Θ. Notice that (SUB ξ) is always finite since M is finite. It
is easy to see that the following proposition holds:

Proposition 4.8 For all states s of M, closed action specifiers ξ, state formula Φ, the set {π ∈
Paths(s) | π |= X<t

{ξ} Φ} is equal to⋃
Θ ∈ (SUB ξ),

Θ 6= []

{π ∈ Paths(s) | π |= X<t
{ξΘ} ΦΘ}

2

The above considerations can be generalized to the case X<t
Ω Φ, provided Ω satisfies certain

constraints. We say that action set Ω = {ξ1, . . . , ξn} is non-redundant if and only if for all pairs of

22

distinct elements ξj and ξk there exist no substitutions Θj and Θk such that (dom Θj) = (BS ξj),
(dom Θk) = (BS ξk), and ξjΘj = ξkΘk. The following are examples of non-redundant action sets:

{!z1 : O(!x, !z2), !z1 : I(!x, !z2)}

{!z1 : N(!z2), !z1 : O(!z2, i)}

{i1 : O(!x, i2), i1 : O(!x, i3)}with i2 6= i3.

On the other hand, set {i1 : O(!z1, !z2), i1 : O(!z2, !z1)} is clearly not non-redundant, since, for
instance, (i1 : O(!z1, !z2))[i1/z1, i1/z2] = (i1 : O(!z2, !z1))[i1/z1, i1/z2]. We say that action set
Ω = {ξ1, . . . , ξn} is closed if and only if all of its elements are closed. The following proposition
easily follows from the relevant definitions and the propositions above:

Proposition 4.9 For all states s of M, state-formulae Φ, t ∈ R, and non-redundant, closed,
action sets Ω = {ξ1, . . . , ξn}, the following holds:

i) for j 6= k, the two sets {π ∈ Paths(s) | π |= Xt
ξj

Φ} and
{π ∈ Paths(s) | π |= Xt

ξk
Φ} are disjoint; and

ii) the set {π ∈ Paths(s) | π |= Xt
Ω Φ} is equal to

n⋃
j=1

{π ∈ Paths(s) | π |= X<t
ξj

Φ}

2

Putting everything together, we get the following

Proposition 4.10 For all states s of M, state-formulae Φ, t ∈ R, and non-redundant, closed,
action sets Ω = {ξ1, . . . , ξn}, the set {π ∈ Paths(s) | π |= Xt

Ω Φ} is equal to

n⋃
j=1

⋃

Θ ∈ (SUB ξj),
Θ 6= []

{π ∈ Paths(s) | π |= X<t
ξjΘ

ΦΘ}

where all sets in the union are mutually disjoint and X<t

ξjΘ
ΦΘ ∈ MoSL−. 2

The direct consequence of the above proposition is that in order to check if s |= P./p(Xt
Ω Φ)

one can (i) generate substitutions Θ ∈ (SUB ξj) by means of automatic inspection of M; (ii) use
translation T and a model-checker for aCSL for computing P{π ∈ Paths(s) | π |= X<t

ξjΘ
ΦΘ}

separately for each of such sets of paths, (iii) and then check if the sum p′ of the results thus
obtained is ./ p. This obviously requires minor modifications to the scripts of the model-checker,
but without changing its main functionalities. The case Ω = > can be dealt with similarly, since
M is finite.

It is finally worth pointing out that the above technique cannot be easily upgraded for dealing
with generic until formulae. The reason is that for generic until formulae the intersections of
those sets of paths generated from different (instantiations of) action specifiers may be nonempty.
Consider for instance the formula Φ >U{ξ1,ξ2} Ψ where ξ1 = i1 : N(!z) and ξ2 = i2 : N(!z)
with i1 6= i2. Take any path π = s0(γ0, t0)s1(γ1, t1)s2(γ2, t2)π′ such that s0 = s, s0 |= Φ,

23

V
∆= ((out(V)@north, rn).nil) +

((out(V)@south, rs).nil) +
((out(V)@east, re).nil) +
((out(V)@west, rw).nil)

Ojk
∆= ((in(!X)@self, ujk).(eval(X)@self, rjk).Ojk) +

((in(!X)@self, djk).Ojk)

Figure 1: Specification of an infected network

match(ξ1, γ0, βs0) = [i′1/z] for some i′1 ∈ I, s1 |= Φ∧ (Ψ[i′1/z]), match(ξ2, γ1, βs1) = [i′2/z] for some
i′2 ∈ I, and s2 |= Ψ[i′2/z]. It is easy to see that such a π, among others, is an element of both set

{π ∈ Paths(s) | π |= Φ >U{ξ1} Ψ}

and set
{π ∈ Paths(s) | π |= Φ >U{ξ2} Ψ}

In the general case, simple characterizations of such intersections by means of MoSL formulae
is not easy to find and we leave it for further study. On the other hand, in the case of Xt

Ω Φ the
different, disjoint, sets are characterized by the first action of the paths, which in turn corresponds
to different (instantiations of) action specifiers of (closed and non-redundant) set Ω. In any case,
it should be pointed out that the number of substitutions to be generated, and, consequently, the
number of model-checking subsessions which is required, may grow quite fast. For this reason,
another alternative which we plan to investigate in the future is the adaptation of stochastic
model checking algorithms in order to directly cope with the action binding capabilities required
by MoSL.

5 Modeling and analysis of the spreading of a virus

In this section we give examples of interesting qualitative and quantitative properties of a virus
diffusion model which can be expressed in MoSL and we show the result of model-checking their
translations with ETMCC. The example we present has been inspired by a similar one in [22].
The model we use is described in detail in [16].

We model a network as a set of sites and the virus running on a site can move arbitrarily
from the current site to a subset of adjacent sites, infecting them. At each site, an instance of
the operating system runs, which, upon receiving the virus, can either run it or suppress it. In
this paper, for the sake of simplicity, we consider simple networks which are in fact grids of n×m
sites. Each site is connected with its four neighbors (north, south, east, west), except for border
sites, which lack some connections in the obvious way (e.g. the sites on the east border have no
east connection). Moreover, we assume that the virus can move only to one adjacent site. Finally,
we refrain from modeling aspects of the virus other than the way it replicates in the network. In
particular we do not consider the local effects of the virus and we make the virus die as soon as it
has infected one of the neighbors of its site. Similarly, we abstract from all details of the operating
system, except those directly dealing with the virus.

The process definitions for the virus V and the operating system running at each node are
given in Fig. 1. For the verification experiments, we chose n = m = 3 in order to be able to
generate the resulting LTS without using automatic tools. The network component N0 of the
initial configuration is the following:

i11 ::ρ11 〈V 〉 || (|| 1 ≤ j ≤ 3
1 ≤ k ≤ 3

ijk ::ρjk
Ojk)

24

We performed different verification sessions using different initial rate-mappings β0, as described
in the sequel. The LTS is not shown for space reasons; it consists of 28 states and 52 transitions.

There are several interesting issues of the spreading of the virus which can be addressed using
MoSL. Let us consider the property, Φ1, stating that the probability that the infection develops
(i.e. the virus is running) at site ijk, within t time-units after site i11 has been infected, is smaller
than a given upper bound p. This property becomes more interesting when we define the rates
associated to the detection (resp. lack of detection) of the virus in such a way that the operating
systems of the sites on the diagonal from bottom-left to top-right—O31, O22, and O13—have a
relatively high rate of detection and can be considered as a firewall to protect the sites i32, i33,
and i23.

The property can be expressed in MoSL for site i33 and p = 0.2 as follows:

P≤0.2(¬(V @i33) >U≤t V @i33)

We can translate it into an aCSL formula for ETMCC model checking. To that purpose, let ℵ1

stand for V @i33 and assume it be represented by q. Let also V rsAct be the set of actions of the
AMC associated to the specification, and assume the encoding be defined simply as5 cod(γ, z) def=
(γ, z). The translation T(Φ1) then yields the following aCSL formula:

P≤0.2(¬Ψ A(>,¬ℵ1)
U≤t Ψ)

where Ψ is the formula P≥1(XA(>,ℵ1)
tt), with A(>,ℵ1) being the set {(γ, q) ∈ V rsActF | γ ∈

V rsAct} and, similarly, set A(>,¬ℵ1) is the set {(γ, q̄) ∈ V rsActF | γ ∈ V rsAct}. Fig. 2 shows
the probability to reach, from the initial state, a state where the virus is running at site i33. The
measure is presented for time values ranging from 1 to 10 with β0 rn = β0 rs = β0 re = β0 rw = 2,
β0 rjk = 2 for 1 ≤ j, k ≤ 3, β0 d31 = β0 d22 = β0 d13 = 10, and β0 dij = 1 otherwise, β0 u31 =
β0 u22 = β0 u13 = 1, and β0 ujk = 10 otherwise. We performed similar analyzes for different values
of the detection (resp. lack of detection) rates of the firewall. In particular for d31, d22, d13 and
u31, u22, u13 ranging over [1, . . . , 10], with d(4−j)j + u(4−j)j constant for 1 ≤ j ≤ 3 (and equal to
11). For the sake of readability, in Fig. 2 we show the results only for d31, d22, d13 ∈ {1, 6, 10} and
u31, u22, u13 ∈ {1, 5, 10}. The results clearly indicate, as expected, that for high detection rates
the probability for site i33 to run the virus within a certain time interval is lower.

Stochastic model-checking permits also the verification of qualitative properties as a degenerate
case of quantitative ones. For instance, an interesting property is: “whenever the infection develops
at a certain a site, the virus may move to a neighbor in the next step”. For instance, in the case
of site i33 the property of interest, Φ2, is:

V @i33 ⇒ 〈i33 : O(V, i32)〉 tt

The translated formula T(Φ2) is given below, where we let ξ stand for i33 : O(V, i32), and ℵ1 as
before:

(¬P≥1(XA(>,ℵ1)
tt)) ∨ (P>0(tt ∅UA({ξ},tt) tt))

Labeling set A({ξ}, tt) is the set {(i33,o(V, i32), q), (i33,o(V, i32), q̄)}6. The model-checker shows
that Φ2 holds in every state.

6 Conclusions and Future Work

In this paper we presented MoSL, a stochastic logic for StoKlaim, which addresses both spa-
tial and temporal notions in order to reflect both the topological structure of systems and their
evolution over time in a probabilistic setting.

5In practice, due to lexical restrictions on action labels imposed by the implementation of ETMCC, the encodings
we used in actual experiments are slightly more involving.

6Since ETMCC requires that the elements of action sets be element of the label set of the AMC, the actual set
for A({ξ}, tt) is {(i33,o(V, i32), q), (i33,o(V, i32), q̄)} ∩ V rsActF .

25

Figure 2: Results for Firewalls with different detection capability

26

The starting point of our proposal is to use continuous random variables with exponential
distributions for modeling action durations in StoKlaim processes. In connection with such
duration attributes, the logic provides probabilistic operators which naturally express steady-
state probabilities as well as probability measures of paths specified with typical until formulae.
The logic integrates both the state-based paradigm and the action-based one and provides specific
atomic propositions addressing data and process distribution. It also provides specific atomic
propositions for actions in order to characterize relevant activities taking place during executions.

The formal semantics of MoSL has been presented and a mapping from a large fragment
of the logic to aCSL, the action based Continuous Stochastic Logic described in [28], has been
shown and proved correct. The availability of such mapping provides the possibility of model-
checking systems modelled by StoKlaim against requirements specified in MoSL using existing
model-checkers for aCSL, like ETMCC.

For illustrating the technique we used a small example modeling the spreading of a virus
through a network described in [16]. We analyzed some of the qualitative and quantitative aspects
of this example such as the velocity of spreading of the virus.

The results in this paper show the viability of the approach and of its practical usefulness when
addressing quantitative aspects of mobile systems.

The ideas proposed in this paper give rise to a whole range of related interesting research
questions. First of all, proper tools for supporting system modeling and verification based on
StoKlaim and MoSL should be developed.

At the logic level, we are currently investigating the inclusion in MoSL of specific operators of
MoMo, the logic for Klaim presented in [20], like the consumption and production operators. The
next research steps we intend to take, besides those necessary in order to keep the logic aligned with
future extensions of StoKlaim, (for including features like non-exponential distributions—e.g.
PH-distributions[33]—and non-determinism–e.g. moving towards Markov Decision Processes [34])
are towards implementation of the mapping to aCSL. Another approach, which we are ccurrenty
investigating and which looks very promising, is the direct use of CSL model-checkers for the
implementation of a model-checking algorithm for MoSL (actually for the extension of MoSL
with the MoMo production and consumption operators). We also plan to investigate feasibility
and convenience to develop direct model-checking algorithms.

Finally, we also plan to consider a more expressive logic that allows to reason about (sponta-
neous) sites failures and shall study paradigmatic examples to assess adequacy and expressiveness
of the proposed logics.

References

[1] R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science. Elsevier.,
126:183–235, 1994.

[2] A. Aziz, K. Sanwal, V. Singhal, and R. Brayton. Model checking Continuous Time Markov
Chains. ACM Transactions on Computational Logic, 1(1):162–170, 2000.

[3] C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen. On the Logical Characterization
of Performability Properties. In U. Montanari, J. Rolim, and E. Welzl, editors, Automata,
Languages and Programming, volume 1853 of LNCS, pages 780–792. Springer-Verlag, 2000.

[4] C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen. Automated Performance and De-
pendability Evaluation Using Model Checking. In Computer Performance Evaluation, pages
261–289. Springer-Verlag, 2002.

[5] C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen. Model-Checking Algorithms for
Continuous-Time Markov Chains. IEEE Transactions on Software Engineering. IEEE CS,
29(6):524–541, 2003.

27

[6] C. Baier, J.-P. Katoen, and H. Hermanns. Approximate Symbolic Model Checking of
Continuous-Time Markov Chains. In J. Baeten and S. Mauw, editors, Concur ’99, volume
1664 of LNCS, pages 146–162. Springer-Verlag, 1999.

[7] C. Baier and M. Kwiatkowska. On the Verification of Qualitative Properties of Probabilistic
Processes under Fairness Constraints. Information Processing Letters, 66(2):71–79, 1998.

[8] L. Bettini, V. Bono, R. De Nicola, G. Ferrari, D. Gorla, M. Loreti, E. Moggi, R. Pugliese,
E. Tuosto, and B. Venneri. The Klaim Project: Theory and Practice. In C. Priami, ed-
itor, Global Computing: Programming Environments, Languages, Security and Analysis of
Systems, volume 2874 of LNCS, pages 88–150. Springer-Verlag, 2003.

[9] L. Bettini, R. De Nicola, and M. Loreti. Formalizing Properties of Mobile Agent Systems.
In F. Arbab and C. Talcott, editors, Coordination Models and Languages, volume 2315 of
LNCS, pages 72–87. Springer-Verlag, 2002.

[10] L Caires and L. Cardelli. A spatial logic for concurrency (part I). Information and Compu-
tation. Academic Press, Inc., 186(2):194–235, 2003.

[11] L. Cardelli. Abstractions for Mobile Computations. In J. Vitek and C. Jensen, editors, Secure
Internet Programming, volume 1603 of LNCS, pages 51–94. Springer-Verlag, 1999.

[12] L. Cardelli and A. Gordon. Anytime, anywhere: modal logics for mobile ambients. In
Twentyseventh Annual ACM Symposium on Principles of Programming Languages, pages
365–377. ACM, 2000.

[13] D. D’Aprile, S. Donatelli, and J. Sproston. CSL model checking for the GreatSPN tool. In
C. Aykanat, T. Dayar, and I. Korpeoglu, editors, Int. Symp. on Computer and Information
Sciences, volume 3280 of LNCS, pages 543–552. Springer-Verlag, 2004.

[14] R. De Nicola, G. Ferrari, and R. Pugliese. KLAIM: A Kernel Language for Agents Interaction
and Mobility. IEEE Transactions on Software Engineering. IEEE CS, 24(5):315–329, 1998.

[15] R. De Nicola, J.-P. Katoen, D. Latella, and M. Massink. Towards a Logic for Performance
and Mobility. FULL VERSION. Technical Report 2005-TR-01, Consiglio Nazionale delle
Ricerche, Istituto di Scienza e Tecnologie dell’Informazione ’A. Faedo’, 2005.

[16] R. De Nicola, J.-P. Katoen, D. Latella, and M. Massink. StoKlaim: A Stochastic Exten-
sion of Klaim. Technical Report 2006-TR-01, Consiglio Nazionale delle Ricerche, Istituto
di Scienza e Tecnologie dell’Informazione ’A. Faedo’, 2006. (A revised version is currently
available at http://www1.isti.cnr.it/∼Latella/StoKlaim.pdf).

[17] R. De Nicola, J.-P. Katoen, D. Latella, and M. Massink. Towards a logic for performance
and mobility. In A. Cerone and H. Wiklicky, editors, Proceedings of the Third Workshop
on Quantitative Aspects of Programming Languages (QAPL 2005), volume 153 of Electronic
Notes in Theoretical Computer Science, pages 161–175. Elsevier Science Publishers B.V.,
2006.

[18] R. De Nicola, D. Latella, and M. Massink. Formal modeling and quantitative analysis of
KLAIM-based mobile systems. In H. Haddad, L. Liebrock, A. Omicini, R. Wainwright,
M. Palakal, M. Wilds, and H. Clausen, editors, APPLIED COMPUTING 2005. Proceedings
of the 20th Annual ACM Symposium on Applied Computing, pages 428–435. Association for
Computing Machinery - ACM, 2005. ISBN 1-58113-964-0.

[19] R. De Nicola and M. Loreti. A modal logic for mobile agents. ACM Transactions on Com-
putational Logic. ACM Press, 5(1):79–128, 2004.

28

[20] R. De Nicola and M. Loreti. MoMo: A Modal logic for reasoning about mobility. In
Proceedings of the Third International Symposium on Formal Methods for Components and
Objects, November 2004, Leiden, The Netherlands - FMCO 2004, volume 3657 of LNCS.
Springer-Verlag, 2005.

[21] R. De Nicola and F. Vaandrager. Action versus state based logics for transition systems. In
I. Guessarian, editor, Proceedings of LITP Spring School on Theoretical Computer Science,
volume 469 of LNCS, pages 407–419. Springer-Verlag, 1990.

[22] A. Di Pierro, C. Hankin, and H. Wiklicky. Probabilistic KLAIM. In R. De Nicola, G. Fer-
rari, and G. Meredith, editors, Coordination Models and Languages, volume 2949 of LNCS.
Springer-Verlag, 2004.

[23] A. Fantechi, S. Gnesi, and G. Mazzarini. How Much Expressive Are LOTOS Expressions?
In J. Quemada, J. Manas, and M. Thomas, editors, Formal Description Techniques — III.
North-Holland Publishing Company, 1991.

[24] G. Ferrari, S. Gnesi, U. Montanari, and M. Pistore. A model-checking verification environment
for mobile processes. ACM Transactions on Software Engineering and Methodology. ACM
Press, 12(4):440–473, 2003.

[25] D. Gelernter. Generative Communication in Linda. Communications of the ACM. ACM
Press, 7(1):80–112, 1985.

[26] H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal Aspects
of Computing. The International Journal of Formal Methods. Springer-Verlag, 6(5):512–535,
1994.

[27] S. Hart and M. Sharir. Probabilistic Temporal Logics for Finite and Bounded Models. In R. De
Millo, editor, 16th annual ACM symposium on Theory of computing, pages 1–13. Association
for Computing Machinery - ACM, 1984. ISBN 0-89791-133-4.

[28] H. Hermanns, J.-P Katoen, J. Meyer-Kayser, and M. Siegle. Towards Model Checking
Stochastic Process Algebra. In W. Grieskamp, T. Santen, and B. Stoddart, editors, Inte-
grated Formal Methods - IFM 2000, volume 1945 of LNCS, pages 420–439. Springer-Verlag,
2000.

[29] H. Hermanns, J.-P. Katoen, J. Meyer-Kayser, and M. Siegle. A Tool for Model-Checking
Markov Chains. International Journal on Software Tools for Technology Transfer. Springer-
Verlag, 4(2):153–172, 2003.

[30] V. Kulkarni. Modeling and Analysis of Stochastic Systems. Chapman & Hall, 1995.

[31] M. Kwiatkowska, G. Norman, and D. Parker. Probabilistic Symbolic Model Checking us-
ing PRISM: A Hybrid Approach. International Journal on Software Tools for Technology
Transfer. Springer-Verlag, 6(2):128–142, 2004.

[32] S. Merz, M. Wirsing, and J. Zappe. A Spatio-Temporal Logic for the Specification and
Refinement of Mobile Systems. In M. Pezzé, editor, Fundamental Approaches to Software
Engineering (FASE 2003), volume 2621 of LNCS, pages 87–101. Springer-Verlag, 2003.

[33] M.F. Neuts. Matrix-geometric Solutions in Stochastic Models—An Algorithmic Approach.
The Johns Hopkins University Press, Baltimore, 1981.

[34] M.L. Puterman. Markiv Decision Processes. The Weizmann Institute of Science, 1994.

29

APPENDIX: Correctness of the MoSL to aCSL translation

For the sake of notational simplicity, proofs are given only for the case of untimed until. The time
parameter does not play any interesting role in the translation and its correctness. Moreover, the
absence of absorbing nodes in the AMCs guarantees that all paths are infinite, which simplifies
the definition of the satisfiability relation.

A.1 Proof of Lemma 4.3

Part (i): By induction on the structure of Φ
Case Φ of
tt: trivial, since M, s |= tt and (χ s) ∈ B(p1, . . . , pn)

ℵj :

M, s |= ℵj

≡ {Def of χ}

(χ s) = y1 . . . yn, with yj = pj

≡ {Def of (Rℵj)}

(χ s) ∈ (Rℵj)

¬Φ:

APC(¬Φ) ∧ M, s |= ¬Φ

≡ {Def of APC, Def of |=}

APC(Φ) ∧ ¬(M, s |= Φ)

≡ {Def of χ, I.H. }

APC(Φ) ∧ (χ s) ∈ B(p1, . . . , pn) ∧ (χ s) 6∈ (R Φ)

≡ {Def of R(tt), Properties of Boolean Algebra}

APC(Φ) ∧ (χ s) ∈ (R tt) \ (R Φ)

≡ {Def of APC, Def of R}

APC(¬Φ) ∧ (χ s) ∈ (R¬Φ)

Φ ∨ Φ′ :

APC(Φ ∨ Φ′) ∧ M, s |= Φ ∨ Φ′

≡ {Def of APC, Def of |=}

APC(Φ) ∧ APC(Φ′) ∧ (M, s |= Φ ∨ M, s |= Φ′)

≡ {I.H. }

APC(Φ) ∧ APC(Φ′) ∧

((χ s) ∈ (R Φ) ∨ (χ s) ∈ (R Φ′))

≡ {Def of APC, Set Theory, Def of R}

APC(Φ ∨ Φ′) ∧ (χ s) ∈ R(Φ ∨ Φ′)

S./p(Φ),P./p(Φ ∆U<t Φ′),P./p(Φ ∆U<t

Ω Φ′): trivial, since in all these cases APC evaluates to false.

Part (ii): trivially follows from Part (i) and from the fact that if APC(Φ) = ff then, by definition of R,

30

(R Φ) = (R tt) = B(p1, . . . , pn) and, by definition of χ, (χ s) ∈ B(p1, . . . , pn) Q.E.D.

A.2 Proof of Theorem 4.6

By induction on the structure of Φ, under the convention that M (MF , resp.) stands for AMC(β0, N0, ~D)

(FAMC(β0, N0, ~D), resp.). For simplicity we show the proof only for the untimed cases.

Case Φ of

tt: trivial.

ℵj :

M, s |=
MoSL−

ℵj

≡ {Lemma 4.3(i)}

(χ s) ∈ (Rℵj)

≡ {Def of A}

∀γ ∈ ACT. cod(γ, (χ s)) ∈ A(>,ℵj)

≡ {Def of MF }

∀πF ∈ PathsF (s). ac(πF , 0) ∈ A(>,ℵj)

≡ {Def of |=,X ,MF ; fairness (Sect. 4)}

MF , s |=aCSL P≥1(XA(>,ℵj)
tt)

≡ {Def of T}

MF , s |=aCSL (Tℵj)

¬Φ:

M, s |=
MoSL−

¬Φ

≡ {Def of |=}

¬(M, s |=
MoSL−

Φ)

≡ {I.H. }

¬(MF , s |=aCSL (T Φ))

≡ {Def of |=}

MF , s |=aCSL ¬(T Φ)

≡ {Def of T}

MF , s |=aCSL T(¬Φ)

Φ ∨ Φ′ :

M, s |=
MoSL−

Φ ∨ Φ′

≡ {Def of |=}

(M, s |=
MoSL−

Φ) ∨ (M, s |=
MoSL−

Φ′)

≡ {I.H. }

31

(MF , s |=aCSL (T Φ)) ∨ (MF , s |=aCSL (T Φ′))

≡ {Def of |=}

MF , s |=aCSL ((T Φ) ∨ (T Φ′))

≡ {Def of T}

MF , s |=aCSL T(Φ ∨ Φ′)

S./p(Φ) :

M, s |=
MoSL−

S./p(Φ)

≡ {Def of |=}

limt→∞ P{π ∈ Paths(s) |

M, π(t) |=
MoSL−

Φ} ./ p

≡ {I.H. }

limt→∞ P{πF ∈ PathsF (s) |

MF , πF (t) |=aCSL (T Φ)} ./ p

≡ {Def of |=}

MF , s |=aCSL S./p(T Φ)

≡ {Def of T}

MF , s |=aCSL T(S./p(Φ))

P./p(Φ ∆UΩ Ψ) :

M, s |=
MoSL−

P./p(Φ ∆UΩ Ψ)

≡ {Def of |=}

P{π ∈ Paths(s) |

∃k > 0.

M, st(π, k − 1) |=
MoSL−

Φ ∧
M, ac(π, k − 1), [] |=

MoSL−
Ω ∧

M, st(π, k) |=
MoSL−

Ψ ∧
∀0 ≤ j ≤ k − 2.

M, st(π, j) |=
MoSL−

Φ ∧
M, ac(π, j), [] |=

MoSL−
∆

} ./ p

⇒ {I.H., Lemma 4.5, Def of MF)}

⇐ {I.H., Lemma 4.4, Def of MF }

P{πF ∈ PathsF (s) |

∃k > 0.

MF , st(πF , k − 1) |=aCSL (T Φ) ∧
ac(πF , k − 1) ∈ A(Ω, Φ) ∧
MF , st(πF , k) |=aCSL (T Ψ) ∧
∀0 ≤ j ≤ k − 2.

MF , st(πF , j) |=aCSL (T Φ) ∧
ac(πF , j) ∈ A(∆, Φ)

32

} ./ p

≡ {Def of |=}

MF , s |=aCSL P./p(T(Φ) A(∆,Φ)
UA(Ω,Φ)

(T Ψ))

≡ {Def of T}

MF , s |=aCSL P./p(T(Φ ∆UΩ Ψ))

≡ {Def of T}

MF , s |=aCSL T(P./p(Φ ∆UΩ Ψ))

P./p(Φ ∆U Ψ) :

M, s |=
MoSL−

P./p(Φ ∆U Ψ)

≡ {Def of |=}

P{π ∈ Paths(s) | M, st(π, 0) |=
MoSL−

Ψ ∨

∃k > 0. M, st(π, k) |=
MoSL−

Ψ ∧
∀0 ≤ j ≤ k − 1.

M, st(π, j) |=
MoSL−

Φ ∧
M, ac(π, j), [] |=

MoSL−
∆

} ./ p

⇒ {I.H., Lemma 4.5, Def of MF }

⇐ {I.H., Lemma 4.4, Def of MF }

P{πF ∈ PathsF (s) | MF , st(πF , 0) |=aCSL (T Ψ) ∨

∃k > 0. MF , st(πF , k) |=aCSL (T Ψ) ∧
∀0 ≤ j ≤ k − 1.

MF , st(πF , j) |=aCSL (T Φ) ∧
ac(πF , j) ∈ A(∆, Φ)

} ./ p

≡ {Def of |=}

MF , s |=aCSL P./p((T Φ) A(∆,Φ)
U (T Ψ))

≡ {Def of T}

MF , s |=aCSL P./p(T(Φ ∆U Ψ))

≡ {Def of T}

MF , s |=aCSL T(P./p(Φ ∆U Ψ)) Q.E.D.

33

