ISTITUTG oy

ELABORAZ IONE DELL'INFORMAZTONE - C.N.R,

svolto

N

MAGMA-LISP: A "MACHINE LANGUAGE" FOR
ARTIFICIAL INTELLIGENCE

+
Carlo Montangero
Giuliano Pacinit
Franco Turinit

Nota Interna

B75-3

di Scienza dell'Informazione dell'Universitd di pPiea

i sy

Stampato in

roprio

- P T 8 A

nellambito della collaborazione con 1'Istituto

PAGE 2
Abstract
The paper describes MAGHA-Lisp, an extended Lisp system
proposed as an implementation tool for A.I. languages
exploiting nondeterministic technigues. The main idea

informing HAGHA~Lisp is that a tree structure of

conceptually indipendent computation environments
{context Ltree) is the supportinag structure of any

nondeterministic system. MAGMA-Lisp proposes this structure
in a guite virginal form, so that the user can state his owun
techniques to prune, select and explore the available
alternatives. In this sense, MAGMA-Lisp is to be viewed as a
"machine language".

The ideas of MAGMA-Lisp are contrasted with the systeams
that most influenced its design. The technigue used in
context implementation is described, showing how a very
flexible ccntext mechanism can be realized with a tolerable
loss of efficiency. In particular, in spite of the
complexity of the system, garbage collection does not result

ruch more time consuming than in standard Lisp systens.

PAGE 3

Yo Introduction

Hany original features, embedded in the languages
developed for A-.T. so far, involve nondeterminisnm
€3,8,6,12>. 1In fact, features like "nattern directed
procedure invocation® and "associative data-base Tetrieval®
give rise to situations in which many possibilities are open
for the computation to proceed. Such a feature is typical of
nondeterministic procedures, which are characterized by the

presence of choice points, where the subsequent actions are

not univocally determined.

The nondeterministic behaviour of A.I. systems has been
first realized by automatic backtracking. Different
alternatives are attempted one by one. Whenever one faiis,
the state of the computation is automatically restored as
it was before the last choice was done, and a new one is
attempted. As a matter of terminology, we say that each
alternative is attempted in a newly created context, while
the context in which the choice point has been encountered
is "frozen" to maintain the state of the computation as when
the attempt begins.

Automatic backtracking, although superficially
attractive, turns out to be pnot adegquate to face the main
problem with A.I. programming: that is, the ability to prune
the open alternatives, hopefully by exploiting informations
gathered during the eXecution of the progranm itself. In
fact, pure backtracking forbids the prograsper’s
intervention in the choice policy, limiting the system to an
exhaustive search of all the possibilities and leading to

ipefficient computations. A few features, like failure

PAGE &
messages, have Dbeen proposed since PLANWER design <7>, to
override this handicap. Anywvay, a really satisfactory
solution seems to reside in the design of langmages in which
the programmer can state his own rules to prune, select and
explore the alternatives. Prom this viewpoint, the ability
of tramsferring informations from the context of an
alternative to another one turns - out to be particularly
important. It is this ability, indeed, that allows to state
rules not based uponm a-priori knowledge only, but also upon
informations gathered at run-time.

Systess allowing the user to defime his own choice
policy have been already proposed and realized. It is
convenient to discuss briefly some characteristics of the
systems that most influenced the design of MAGMA-Lisp, in
order to contrast it with thesm.

Bobrow and Weghreit <2> proposed a very "fluid" control
structure that surely allows the user to define his own
aeuristics and policies. There is no notion of context, in
the sense of a built-in ability to save the state of
computations. The syster provides instead a mechanism to
save the continuation point and the anonymous partial
results of procedure activations, while the user is in
charge of restoring the state of the data base.

CORNIVER <14> provides a built-in mechanism (context
Franme) to save and restore the data base incrementally,
supported by a control structure similar to that of Bobrow
and Wegbreit. The generation and the deletion of context
frames are associated with procedure invocations and
returns. The restoring mechanism appears, therefore, on the

same level of the control structure, while, more generally,

it should be able to save and restore the control
itself.

Finally, both systems appear +to lack a mechanism to
allow straightforward saving of comnplete “snpapshots”™ of
computations, to be resumed afterwards, if needed. In this
sense, they wmay lead the user towards an attitude of wind
that imperfectly matches the nonderministic programaming
style. Such design choices are rainly motivated by the sake

of efficiency. Undoubtedly, this is not a trifling poiat,

&4

but it is our feeling that to much has been sacrificed %o
efficiency, with respect to the clarity and intuitiveness of
the basic concepts of the language. MAGMA-Lisp has been
designed in order to realize a good comprorise betuyeen
clarity and intuitivemess on one hand and efficiency on the

ot her one.

To summarize, the main idea of our proposal is the

notion of context, to be thought of as a copmplete
environment capable of a "deterministic® computation,
inclusive of the control structure. Nondeterminism is

attained by exploring different alternatives in different
contexts. Generation, deletion, switching and communication
among contexts are in charge of the programmer, so that the
choice-policy is under user’'s centrol. Tn other words, the
user has the uneat and intuitive notion of context as a bhasic
programming concept: he «can +think ot having as many
indipendent computation environments as he needs to abieasnpt
all the alternative paths to his goal. On the other hand,
the system enables him to break the Yapartheid®” among
contexts, in order to transfer useful informations ¥ron one

te another.

PAGE 6

2. BAGHA-Lisp: a_user view.

MAGMA-Lisp has been designed as an implementation
support for the realization of sophisticated programeing
systems alloving nondeterminism and complex control regises.
This section sketches the main features of HAGHMA-Lisp,
describing its basic characterizing concepts: contexts and

applications.

2.1 The context tree

Intuitively speaking, the simplest viewpoint for the
user of a nondeterministic language is the following one:z at
each choice-point crossing, as many unew computation
environments are created as the alternatives to be explored

are. So, a tree of computation envircnments {(context tree)

grows and contracts according to choice-point crossings and
failures. The initial state of newly created contexts 1is
identical to the one in which the choice point is
encounteraed.

MAGMA-Lisp considers Lthe context tree to b

Perd

HO)

the

structure underlving anyv nondeterministic system, hrings it

to the light and commits its comtrol to the user.

L small set of primitives allows adding and dropping
nodes to the context tree ; this way, computation
environments can be created and destroyed. The function

nevcrt {oxt)

creates a new computation environment, whose initial state

]

PAGE 7

4

is that of the context identified by cxt (*). The aewuwly
created context is added to the control tree as a son of
cxt. newcxt returns the identifier of the created context:
context identifiers are regarded as a special data type,
allowing the explicit management of contexts.

The size of the c¢ontext tree can be reduced by the
function

contract{cztl,cxt?)

vhose effect 1is the substitution of the subtree rooted in
>$$§

2Ll { -

cxtl by the subtree rooted in gxitZ
The format of this function reflects the
nondeterministic trend of MAGHMA-Lisp. In fact, if c¢xt2 is

missing, 1tract allows to drop contevts associatad to

i1

e

b

failed computations, while, 1f cyt2 is not aissing and it is

g

a leaf, contract allows to draw the final consequence of a
successful computation, reducing the whole tree to the
single node cxt2. Any intermediate strategy can be
programmped as well.
The context tree can be inspected from inside any

context, usinyg the functions

s0n {cxt)
and

getcxt {n,cxt)
that return the 1ist of the context identifiers of the sons
(¥} If cxt is missing, the context Iia which peuczt is
executed 1s assumed.
{(¥%*} cxt? must be a descendant of ¢xtl: if ¢xt?2 is missing,

the whole subtree rooted in ¢xt 1l is dropped.

PAGE 8
of ¢xt and the p-th ancestor of ¢xt in the context tree,

respectively (¥*).

2.2 Applications and tree control structures

Pach node of the context tree represents a computation
environment, which is essentially that of a standard LISP
system. That is, adding a nevw node to +the context tree
tesults in creatinmg a new computation environment, whose
state is initially a copy of its father (*#%). Computation
environments provided by HAGHA~Lisp differ from that of
standard LISP systems in what their pature has been extended
to allow growing a tree control structure. In other words,
inside each context it is possible to depart from the normal
last-in~-first-out discipline of LISP in order to define more
complex control regimes, like coroutines etc.

The basic component of tree control structures is the
application, which is to be viewed as a function activation
frame. In fact, an application contains:

-a function definition:

~a local enviromment, i.e. bindings and locals;

-a return pointer, i.e. the identifier of the
application to which the value of the function has
to be returned;

{*) If cxt is missing, the context in which the function is
executed 1s assuned.
{*%#) It goes without saying that this is only a user's view.

Conterts are simulated as descrilbed inm sect. 3.

PAGE 9

-anp environment pointer ,i.e. the pointer to an
association list:

-a continuation point in the application itsell.
An application A is a sopn of B in a tree control structure
if its return poiopter is the identifier of B. Applications
are generated either implicitely by calling a function
defined as an EXPR, or explicitely by invocation of apply.
In the former case, both the return and the environmnent
pointer are set according to the normal LIFO rule. In the
latter case, both pointers can be defined in the invocation

of apply.
Application identifiers can be obtained by the function
getap {n, appid)

that returns the identifier of the n-~th ancestor of appid (™)

in the control tree.

2.3 The fupction apply

MAGHMA~-Lisp is supposed to be a uniprocessor system, so,
at any time, there is only one context in which the
computation is proceeding {active <context). Switching among
different contexts can be obtained by apply. In our systen
apply is generalized both to manage tree control structures
and to execute switching asong comiterts.

The format of apply is the following:

apply {fn, args, envp, retp, oxt}

It activates a nev application to apply £n to args. The new

{*) If appid is wmissing the identifier of the actual

application is assumed.

PREGE 10
application is added to the control tree of context cxt as a
son of retp, while envp defines the environment pointer. The
environment 1s built up appending bindings and locals to the
association list ©pointed by application envp. If the last
argusent is missing, the active context is assumed.

Apply is the only means to execute context switching
and to depart from the normal LIFO rule ipside any single
context. Then, it is the basic tool for the user to control
the nondetermistic features of the system, and, at the sane
time, to define procedures that exploit non-standard regimes

of control.

2.4 Compunications between contexts

Contexts, as they are provided by MAGMAR-Lisp, must be
thought of as nodes in a tree structure of indipendent
environments. The computation can proceed in the leaves as
well as in the other nodes. Actions in any context do not
affect the state of any other, unless the programmer
explicitely states the contraries.

Information can be transferred between contexts via
apply: in this case there is a control transfer toco. To make
information transmission easier, the functions put and get
have been extended in MAGMA-lLisp by an additional argument,
specifying the context in which properties are to be set or
inspected. As a rtule, changes performed by put are localized
to a single context, according to the general philosophy. In
manv cases, however, it seems useful that mnodifications be

global, 1.e. they propagate from a context to all its

fo)]

sscendants. This happens 1f the additional argument of put

is a list {of a single context identifier) 1instead of a

o
e
a3
x]
s
s

context identifier.

J-Context implementation

This section describes some techniques used in the
implementation of the system. The main problems that have
been faced have to do with the tree comtrol structure and
the context mechanism. Here special emphasis is given to the
solutions adopted to realize the context mechanisnm.

Before discussing the details, it is worth to outlige
the geperal approach used to implement Magma-lisp. The
system has been realized in two guite distinct subsequent
steps. First, a LISP system extended by a tree control
structure was implemented, then the context mechanism has
been superimposed on this basic support.

Contexts are introduced in a very simple and general

way: informations having a contextual nature are referred to

in an indirect way, through muplti defined value lists (®VL).

MVLs are 1lists providing all the wvalues in the different
contexts, with a technique that somewhat recalls that of QA
<12>. MVL's organization will be discussed in details, and
it is such to guarantee efficient search and bookkeeping.
This technigue is applied throughout the whole systen,
control information included. In other words, there is a
anique tree control structure in the system. Any element of
the tree wmay belong to more than one context. In such a
case, the corresponding memory block may contain a few
pointers to HVLs. Typically, the continmation point is =a
context depending information.

No sophisticated technigques have been studied in order

to implement the tree control structure, using instead a

PAGE 12
straightforward list organization. ¥Whenever a function is
invoked (either implicitely or explicitely via apply) an
application block is allocated to store basic information
{i-e. the function definition, the return and environment
pointers and the continuation point) together with a
suitable amount of memory for bindings and locals. Finally,
auxiliary memory may be allocated during the computation for
intermediate results.

Memory is obtained from areas organized in free lists.
meturning from a function application, the corresponding
memory is given back to the free lists, in the simplest
situations: otherwise, 1its recovery is deferred to garbage
collection.

The technigue of retention is quite simple: 1if an
application & has undergone a getap (see sct. 2.2), A and
all the applications on the path from A to the root are
retained; recovery, if that will be the case, ¥ill occur at

garbage collection time.

3.1 Summary of MVL techniques

@henever a piece of information ({e.g. the property of
an atom) has differvrent values depending on the context, the
cell which should point to the value points instead to an
YL

An MVL is a list of dotted pairs {c.v) where ¢ is a
context identifier and v the value of the information in c.
when a new context is created, no memory is allocated at
all. Memory will be allocated, by growing or generating
MyLs, only when wupdating is actunally performed 1in that

context. Moreover, the size of an HYL depends on the number

of contexts in
does not depend on the
the size of the context

It is fundamental
they are really needed,

and memory space. There

which updating occurred;

PAGE 13

in other words, it

number of existing contexts, i.e. oun

tree.

that MVLs are generated only when

both with respect to execution tinme

are two cases: the global data base

and the local environments. MVLs are generated to record

properties in property-lists {(the global data base) when the

context tree is not trivial, i.e. there are more +than one

context. MVLs are generated to record items of information

in locals environments, only if ¢the involved application is

to be retained even 1if it 1is exited. By this simple

technique, MVLs are generated almost only when they are

really needed.

To find the value corresponding to a context ¢ in a

MVL, a pair {c.v) 1is looked for firstly:; if it does not

exists, then, accordingly to the definition of context tree,

it is enough to loock for the pair corresponding to ‘the

nearest ancestor of ¢. Thus, the crucial point with regard

to efficiency is to find a MVL organization capable to speed
or its

up searching an slement

nearest ancestor actually

present in the MVL.

The following subsections describe an organization that

allows to search and update HVLs with a satisfactory
afficiency.
3.2 The context table

Magma~lisp wmemorizes the coantext tree 1n an array
{context table) indexed by context identifiers. Each row

stores pointers in order to memorize the context tree as a

PAGE 18
bipary tree. Moreover, ro¥ ¢ associates context ¢ with a
pair of integers, that will be denoted by r{c) and s{c):

- ri{c) is the number of nodes preceeding ¢ in the
preorder traversal <8> of the context tree;

- s{c) is the r-number of the last descendant of ¢ in
the preorder traversal, 1.e. s{c) is the largest
r-number among ¢'s descendants; s{c) is set to t{c)
if ¢ has mno descendants.

r-numbers apd s-numbers are characterized by the
following preperty: given two contexts ¢’ and ¢c"®, c' is a
descendant of c¢® if and only if

r{ic" < ric') £ s{c").

3.3 Searchipng WVLs

EYL's components are listed by decreasing values of

r-nupbers.

The follcwing algorithm searches a MVL for the value in
context C.
Algorithm 1

1) scan the MVL until a pair fct.v") is found, such

that
r{c') £ r{c)
2} restarting from (c'.¥'), sScan the MVL until a pair
{cm.v") such that
s{c*) > ric)
is found.

Thi

iy

way, <" is either ¢ or the ancestor of ¢ with the
greatest r-number, i.e. the nearest ancestor of ¢, actually

present in the MVL, is found.

PAGE 15

3.4 YUpdating NMVYLs

In updating a H®VL with respect to ¢, care must be paid
50 that the nodification does not propagate to any
descendant of ¢, or does propagate to all its descendants,
according to the assigning modality (see sct. 2.4). In the
first case, for each son of ¢ not already in the MVL a pair
nust be added to preserve the old value in context ¢. In the
second case all the descendants of ¢ must be eliminated from
the MVL. In both cases the operation can be performed in a
single scanning of the MVL. This 1is obvious in the second
case. In the first one the operation can be performed by
algorithm 2, that needs the 1list of sons of ¢ ordered by
decreasing r-numbers. Such a list c¢an be drawn from the
context table directly.
dlgorithm 2

1) while there are sons of ¢: search ({algorithm 1) the
pair corresponding to the son of ¢ with the greatest
r-numnber; if there is no such a pair, insert it and
push the pointer to it on a stack, say S:

2) when all the sons have been considered, look for the
value in ¢ {(algorithm 1), store it in all the pairs
pointed by stack S, fimally wupdate the value in ¢
{inserting a pair, if missing).

Phenever aglgorithm 1 is needed, it can be applied restartiag

from the last considered pair, because of the ordering of

the BVL.

Assuming the number of accesses to the context table as

a nmeasure of the complexity of search and updating

PAGE 16
algorithms, it follows from the previous discussions that
the complexity has an upper bound which is 1linear with the
length of the MVL, whereas it does aot depend on the size of
the context tree. This is one of the most interesting
advantages offered by MAGMA-Iisp organization. Another
advantage, estimable in a system designed to allow
sophisticated explorations of goal trees, is that switching
among contexts is practically gratis, comsisting in changing
the active context indicator.

A& small overhead 1is imposed in creating new contexts,
since the context table must be updated. We note, however,
that this task can be accomplished by a single scanning of
the context table. 1In fact, the rule to update the context
table in order to add a node ¢' as a son of ¢ is:

13 let rc and SC denote T {C} and s {c)

respectively;

2} for each rows

if r<frc and s>sc then increment s by 1;
if sc<dr then increment r and s by 1;

3) finally set r{c') and s(c? to s{c)-.

3.5 Garbage_collection

The function contract deletes contexts only €froam the
user's viewpcint. In reality, contract simply marks the rows
of the context table corresponding to deleted contexts,
making it possible to detect attempts of further use of
references tc dropped contexts ([illegal references) .
Rearrangement of the context table is deferred to Garbage
Collection time, as well as the rearrangement of MVLs, i.e.

the actual elimination of the pairs corresponding to deleted

contexts.

The direct extension of the standard garbage collection
philosophy to a system supporting a context mechanism would
result in repeated +tracing of the whole system. The direct
extension, indeed, is the following: first, trace and mark
all itenms reachahlé Starting from the actual “position®” in
the active context;: then; trace the system again and again
until all contexts whose identifiers have been found in
previous tracings have been coasidered. Finally go through
the system once more to rearrange MVlLs.

HAGHA~Lisp garbage c¢ollector <13> takes instead
advantage of the fact that the management of the control
tree is completely committed to +the user. The system is
traced only once, since the context tree defines explicitely
the contexts to be retained.

The main input information of the garbage collector

~-the list of the contexts to he retained;
-a list of starting points (application identifiers)
in the tree control structure.

The first list is drawn from the context +table. The second
list contains the identifiers of all the applications, which
have undergone a getap operation and are still legally
referable in one context at least. This list 1is handled by
th systen according to the ioiiowing philosophy, which
defines, from the user's viewpoint, the behaviour of the

tree control structure inside each context: wyhenpever an

system has dinstead a mechanism to ugpdate the list of

PAGE 18
starting points im the onigque tree control structure
actually existing in the systen.

Pinally we note that the rearrangement of MVLs is not a
trivial business. In fact, it is not sufficient to eliminate
the pairs corresponding to deleted contexts. In many cases,
the pair corresponding to a deleted context ¢ wmust be
retained and updated with regard to the context identifier
in it, since it is possible that pairs corresponding to
surviving descendants of ¢ are not present in the HVL. The
rearranging algorithm exploits the ordering by decreasing
r~numbers of M®VLs, and the fact that the list of the
contexts to be retained is ordered in the same way: HVLs are
rearranged in a single scan and the number of accesses to
the context table is linear with the sum of the length of

t+he ®BVL and the number of contexts to be retained.

Conclusions

The main idea informing MAGHA-Lisp 1is that a tree of
conceptually indipendent <computation environments is the
supporting structure of any programming systen allowing
nondeterminism. MAGMA-Lisp provides this basic support in a
quite virginal form: in this semse it must be considered as
a "machine lanqguage". The language has neither primitives to
set up choice points in programs nor primitives to fail,
etc.. There are, instead, primitives that add and delete
nodes from the context tree and facilities to switch and
transfer informations among environments. So, the user can
tune the power of the system to match his awn regquirenents
by the definition of a suitable set of functions, expressing

5is own techniques to explore the available alternatives.

PAGE 119

Experiments in this 1line are presently in progress. A
language for nondeterministic programming, ND-Lisp <10>, has
been defined. ND-Lisp 1is much more problem-oriented than
MAGMA~Lisp, providing specific ways to set up chcicevpoiﬁﬁsg
primitives to fail and to suspend and resume alternatives.
ND~Lisp enjoys a fine structure and still allows complete
freedom in the choice-policy definition. This is obtained
filtering the wildness of MAGWA-lisp, that ¥D-Lisp users are
not encourayed to employ directly, through a few functious
realizing the primitives of ND-LisSpe. Besides, a
pattern-matching language {SNARK <9}, yhich is, wmore
generally, a formalism for the definition of syasbolic
interpreters, and a proof-checker <1>, which allows a high
degree of intervention of the user in the proof, are
presently being implemented in MAGMA-Lisp.

In the 1light of these experiments, MAGH¥A-Lisp shows
itself as a good tool for the implementation of .1
systems {*). This is mainly due to its nice balancing of
clarity and intuitiveness of its basic programming concepts,
on one hand, and a reasonable level of efficiency on the
other.

{*) At present, MAGHA-Lisp is writtenm in PORTRAN and rums on

the IBM 360,67 under CP/CHS.

oma®

PAGE 20

Beferences

Aiello, L., Aiello M., Attardi, G. and G.P. Primni. "3
basic frame for proof-checker implementations®
Scientific note, Istituto di Scienze dell'Informazione,
Pisa (to appear).

Bobrow, D.G. and D.V. Wegbreit. ™A model and stack
implementation of multiple environments®. Comm. ACH,
vol. 16,n. 10, pp. 591-603,

Coanfield Smith, D. anrnd H.J. Enea. "Backtracking in
BLISP2"™. Proc. 3rd IJCAI, Stanford 1973, pp. 671-695.
Davies, D.J.H. "POPLER: a POP2 PLANNER™. KIP-89, school
of A-T., University of Edinburgh.

Floyd, R.W. "Nondeterministic algorithms™. J. ACH 14, 4

{October 1967} pp. 636-644,

Hewitt, C. "Procedural embedding of knowledge in
PLANNER®™. Proc. IJCAI 2, 1971, pp. 167-182.

Hewitt, C. "PLANNER: a language for manipulating models
and proving theorems in a robot®. A.I. memo 168, HMIT
1970.

Konuth, D. ®"The art of computer programming®. Vol. 1,
Bddison ¥esley, 1971.

kevi, 6. and F. Sirovich. "Valutazione siambolica e
ificazione™. Proc. of ®*Convegno di Informatica
teorica”™ Mantova (italy), HNovember 74.

Montangere, C., Pacini, G. and F. Turini. ®"Tyo-level
contrel structure for nondeterministic programming®.
Iinternal HFote B74~31, IEI Pisa, October 78.

Reboh, R. and E. Sacerdoti. ™A preliminary OQLISP
manval®™. Technical %Yote 81, SBRI Project 8721, A.T.
Center, Stanford, August 73.

Rulifson, J.F., ¥Waldinger, R.J. and J.A. Derksen. ®QA4:
procedural calculus for 1intuitive reasoning®. Technical
Hote 73, R.I. Center, Stanford, HNovember 72.

Simi, M. "0On efficiente Garbage Collector per un sistema
Lisp non deterministico™. Thesis, Istituto di Scienze
dell*Informazione, Pisa, Noveaber 74.

Sussman, C.J. and D.V. Hchermott. "Prom PLANNER ¢to
CONNIVER, a genetic approach®. Proc. FJCC 41 ([November
72) ppe. 1171-1179.

