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Abstract: The estimate of precipitation from satellite measurements is an indirect estimate if compared
to rain gauges or disdrometer measurements, but it has the advantage of complete coverage over
oceans, mountainous regions, and sparsely populated areas where other sources of precipitation data
(e.g., weather radar) are unavailable or unreliable. Among the satellite-based precipitation estimates,
geostationary (GEO) data ensure the highest spatial and temporal resolution. At the same time, the
IR/VIS channels deployed on GEO satellites have lower capabilities than microwave (MW) channels
in characterizing the cloud structure. Machine learning (ML) techniques can be considered a powerful
tool to overcome the limitations related to the physical relationship between IR/VIS channels and
precipitation estimation. This study describes the development of a convolutional neural network
(U-Net) to retrieve the precipitation rate using IR measurements only from the Meteosat Second
Generation (MSG) satellite. Its performances are evaluated through a comparison with H SAF and
NASA operational products (e.g., H60B or H03B and IMERG-E, respectively), of which the algorithms
are based on different principles. The results highlight a lower error in precipitation rate estimates
for the U-Net with respect to the other products but also some issues in correctly estimating the more
intense precipitation (>5 mmh−1). On the other hand, the precipitation detection capabilities of the
U-Net outperform the H SAF products for lower precipitation rate, while IMERG-E shows the best
performance regardless of the precipitation regime. Furthermore, the U-Net is able to account for and
correct the parallax displacement that affects the measurement as the satellite viewing angle increases.

Keywords: GEO VIS/IR; precipitation rate; machine learning; parallax displacement

1. Introduction

Precipitation is a crucial component of global hydrological and energy cycles and its
measurement is a key feature in a many research topics, such as the management of water
resources, hydrology, climate studies, weather forecasts, and natural hazards.

Despite its fundamental role in many contexts of economic and social life on Earth,
precipitation estimation still has many problems to overcome in order to meet the needs
of operational monitoring applications and the ones of hydrological and climate research.
The large spatial and temporal variability of precipitation makes it one of the most difficult
atmospheric parameters to accurately retrieve (from satellites and from the ground) since
many factors have to be considered in the estimation process: its composition in terms of
hydrometeor phase (liquid, solid, and mixed phase), densities and sizes, and problems in
the conversion of radiometric measurements into quantitative precipitation estimates [1–5].
In addition, the validation of the precipitation estimates has issues because independent
reference data are affected by relatively large errors due to different sources [6].

Rain gauge measurements are the only available direct measurements of precipitation.
However, they are punctual measurements affected by errors (e.g., effects of wind and
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evaporation, dependence on precipitation rate values, etc.) and suffer from their spatial
distribution, often being too sparse over land (especially in polar areas and in mountainous
and sparsely populated regions) to resolve rainfall intensity variability and almost non-
existent over the oceans [7,8]. On the other hand, ground-based weather radars provide
indirect measurements of precipitation covering a larger area than rain gauge networks
but are affected by uncertainties related to the conversion of reflectivity to precipitation
intensity (e.g., calibration, range effects, beam-blocking, clutter, etc.). Both instrument types
are inadequate for precipitation monitoring globally and highlight the need to rely on
satellite-based observations, which represent the most promising approach for obtaining
estimates of global precipitation.

In this perspective, the key role of satellite-borne sensors in estimating precipitation
is evident, being the only instruments able to provide global observations. Although
important advances have been since the first measurements in the 1970s, quantitative
precipitation estimations still pose several problems since the relation between the surface
precipitation rate and satellite-based observations is very complex and strongly dependent
on the type of precipitation. Remote sensing of precipitation from satellites is largely
based on the observation of some cloud top properties (e.g., cloud cover and cloud-top
temperatures) in visible (VIS) or infrared (IR) images, or by analyzing the effects (absorption
and scattering) of rain drops or large ice particles on microwave (MW) radiation. The
two techniques are different in several aspects. Spaceborne passive microwave (PMW)
observations from Low Earth Orbit (LEO) satellite systems have great capabilities in
estimating precipitation and are very effective for retrieving instantaneous precipitation
with greater precision than the VIS/IR technique because precipitating clouds are semi-
transparent for MW radiation. However, precipitation retrieval based on PMW has to
overcome some limitations, for example the inability to resolve the extreme variability of
precipitation both temporally (the re-visiting time of a LEO is not high) and spatially (the
PMW spatial resolution is low if compared to VIS/IR). Retrieval techniques based on IR
measurements from geostationary (GEO) satellites are suitable for retrieving continuous
precipitation due to the higher temporal sampling frequency coupled to the higher spatial
resolution than PMW. Many previous uses of IR measurements for precipitation retrieval
(e.g., [9–14]) have been based on the relationship between the cloud top temperature,
estimated from the brightness temperature (TB) of the IR thermal channel around 10.8 µm
and the surface precipitation rate following the idea that the cloud that generates the
precipitation has a colder top [15,16]. However, this method is not always adequate for
rainfall retrieval [17,18] and the use of retrieval techniques based on only IR cloud-top
temperature was therefore considered not highly reliable, leading to the development of
techniques combining IR and PMW measurements [19–21].

The measurement of optical and microphysical cloud parameters, such as the cloud
optical thickness, the cloud effective particle radius, and the cloud liquid water content,
obtained from multispectral data of new generation satellite systems, has made it possible
to overcome these limitations [22–24] and to reconsider the potential of IR retrieval. The
improvement of the resolution of the spectral data obtained with the Spinning Enhanced
Visible and Infrared Instrument (SEVIRI) of the second generation Meteosat geostationary
system (MSG), enabling the retrieval of optical and microphysical properties of the clouds,
has allowed the improvement of the performance of the IR algorithms [23]. The combination
of the brightness temperatures and brightness temperature differences was introduced
to provide enhanced information on the clouds’ characteristics [17,25–27]. However, it
should be noted that most of these techniques rely on the relationship between cloud
parameters and precipitation processes. This procedure is highly complex, and there is an
indirect (and nonlinear) relationship between the surface precipitation intensity and the
physical characteristics of cloud-tops, depending on the rain systems and the climatological
regimes [28–31]. Moreover, the conceptual physical models generate a limited number of
parametric relationships between cloud optical parameters and precipitation [17,32], which
does not allow any further development of this kind of approach.
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In this context, the use of machine learning (ML) techniques has proven to be effective
in overcoming these limitations. These approaches are widely adopted in Earth observation
because of their ability to approximate, with optimal accuracy, imperfectly known functions,
such as the relationships between satellite observations and atmospheric geophysical
variables [17,29,32–39]. A fundamental characteristic of these techniques is that the training
process eliminates the need for a well-defined physical or numerical model that describes
the relationships between the input and the output parameters, allowing the identification
of these relationships during the learning phase. It should be also added that the ML
approaches, unlike the parametric ones, do not have limitations on the number of predictor
variables as they can manage all available information.

An important aspect, linked to the great increase in the available data, is the possibility
of using large observational datasets in the training and testing phases of ML systems.
These datasets, built matching coincident IR (or MW) satellite observations, rainfall refer-
ence measurements, and other ancillary data, allow us to reduce the limitations present
in previous approaches, based uniquely on simulations (e.g., a cloud-resolving model
coupled with a radiative transfer model) affected by some physical assumptions (e.g., the
microphysical scheme of the cloud model, the emissivity of the background surface, the
scattering properties of the ice hydrometeors, etc.).

Several studies have highlighted the potential of various ML techniques in exploiting
satellite IR data for surface precipitation retrieval. For example, the PERSIANN-CNN
model [40], based on a convolutional neural network (CNN), estimates the precipitation
rate using infrared and water vapor channels from geostationary satellites. Wang et al.
(2020) [39] proposed a satellite rainfall estimation algorithm based on a CNN technique,
using satellite IR imageries from the Geostationary Operational Environmental Satellite. On
the other hand, Gorooh et al. (2022) [29] developed a CNN algorithm using satellite passive
microwave TBs (from the GPM Microwave Imager (GMI) of the GPM Core Observatory
(GPM-CO)) combined with IR TBs from geostationary satellites (from NOAA Climate
Prediction Center) to instantaneously map surface precipitation intensities. The random
forest (RF) approach was used in several other studies. Kühnlein et al. (2014) [17] presented
a rainfall retrieval algorithm based on satellite-derived information on cloud-top height,
cloud-top temperature, cloud phase, and cloud water path retrieved from MSG SEVIRI
data using the RF technique. More recently, Zhang et al. (2021) [32] proposed a new
rainfall retrieval technique based on RF using the Advanced Himawari Imager-8 infrared
spectrum data and the NCEP operational Global Forecast System forecast information. Li
et al. (2021) [41] presented a ML-based regression model using the RF method to derive
quantitative precipitation estimations from Fengyun-4 Advanced Geostationary Radiation
Imager observations, in conjunction with cloud and physical parameters (from ERA5),
and taking three rainstorm events over South China to discuss the proposed model. A
performance analysis of different ML approaches was presented by [42], who compared
four ML algorithms (random forests (RF), neural networks (NNET), averaged neural
networks (AVNNET), and support vector machines) for the prediction of rainfall areas and
rainfall rates over Germany, using MSG SEVIRI data, and highlighted the considerable
importance of determining suitable predictors for rainfall. Kingsley et al. (2021) [43]
proposed a rain area detection scheme, over southwestern Kenya, using a gradient-based
adaptive technique applied to IR brightness temperature data of the MSG satellite. It has to
be highlighted that the algorithms described above have been developed over small regions
around the globe (ranging from 5◦ × 5◦ to 30◦ × 50◦ at most). This can be considered a
crucial point to improve the performances of a neural network since the smaller the area
the easier for a ML-based algorithm to be representative of the seasonal and climatological
variability of the precipitation.

This paper presents the results of a preliminary study carried out within the EUMET-
SAT Satellite Application Facility for Operational Hydrology and Water Management (H
SAF) towards the development of a new GEO-LEO multispectral precipitation retrieval
algorithm based on a ML approach, providing instantaneous precipitation rate maps in
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Near Real-Time (NRT) from Meteosat Third Generation (MTG) Flexible Combined Imager
(FCI) IR/VIS measurements [44]. The study was based on SEVIRI data instead of MTG FCI
data due to the unavailability of a large dataset of MTG FCI simulated radiances required
for the development of a ML approach. The ML algorithm has been trained using as refer-
ence the precipitation rates as observed by the GPM-CO’s Dual-Frequency Precipitation
Radar (DPR) and GMI combined product 2B-CMB [45,46]. This study represents a first step
for the development of the MTG day-2 algorithm, which will include, in its final version,
the integration of MW measurements. Furthermore, the ML-based approach marks a clear
change in development of the H SAF GEO/LEO precipitation products, which are currently
based on the rapid update blending technique [20], used for both MSG SEVIRI products
(P-IN-SEVIRI (H03B) and P-IN-SEVIRI-PMW (H60B)) and for the upcoming day-1 product
for MTG FCI. The main aim of this study is to evaluate the performances of the algorithm
(based on ML approach) with respect to both H SAF (i.e., H60B and H03B) and NASA
(IMERG Early Run) MW/IR precipitation rate operational products.

This paper is structured as follows: Section 2 presents an overview of instruments,
data, and products used in the study, as well as the description of the methodology used
to develop the algorithm; Section 3 shows the results obtained by applying the algorithm
to an independent dataset, while the discussion of the performances together with the
conclusions are depicted in Section 4.

2. Materials and Methods

In the first part of this Section, the data and the products considered are illustrated
together with a short description of the instruments from which they are derived. The
second part of Section describes the methodology adopted.

2.1. Data and Products Used

In the following, an overview of data and products used in the study is outlined: in
particular, the MSG SEVIRI and the GPM-CO measurements are utilized to train and test
the neural network architecture, and the operational MW/IR precipitation rate products
(i.e., H SAF products H03B and H60B and the NASA GPM product IMERG Early Run) are
used in a comparative analysis to evaluate the performances of the developed network.

2.1.1. MSG SEVIRI Measurements

The SEVIRI radiometer [47] is the main instrument on-board MSG operating at about
36,000 km altitude. The geostationary satellite considered in this study (Meteosat-10) is
located at 0◦N, 0◦E, providing data over the full disc area (−80◦E/+80◦E, −80◦N/+80◦N).
SEVIRI is a passive instrument that focuses on detecting the radiation emitted and reflected
by the ground and atmospheric components (i.e., gases, cloud particles, precipitation, etc.).
The detectors are sensitive to twelve bands distributed among the VIS (channels VIS 0.6 µm
and VIS 0.8 µm), near-infrared (channel NIR 1.6 µm), IR (channels IR 3.9 to IR 13.4 µm—for
a total of eight channels), and High Resolution Visible (channel HRV 0.75 µm) channels.
Table 1 shows the twelve SEVIRI channel properties. The data are provided every 15 min
with spatial resolutions ranging from 1 km for the HRV channel to 3 km for the VIS-NIR-IR
channels at the sub-satellite point (i.e., at 0◦N, 0◦E) and decreasing moving away from the
sub-satellite point.

In the presence of clouds, the radiation measured by SEVIRI is representative of
different cloud characteristics. In this study, we used three IR SEVIRI channels, namely
channel 5 (6.25 µm in an absorption band of water vapor), channel 9 (10.8 µm in the thermal
window), and channel 11 (13.4 µm in a CO2 absorption band).
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Table 1. SEVIRI MSG channels properties.

Channel Number Central Wavelength
(µm) Spectral Domain Main Gas Absorber or

Window

1 0.653 VIS Window
2 0.81 VIS Window
3 1.64 NIR Window
4 3.90 IR Window
5 6.25 WV Water Vapor
6 7.35 WV Water Vapor
7 8.70 IR Window
8 9.66 IR Ozone
9 10.80 IR Window

10 12.0 IR Window
11 13.4 IR Carbon Dioxide
12 (0.4–1.1) HRV Window/WV

2.1.2. The GPM-CO DPR and GMI

The GPM-CO Dual-frequency Precipitation Radar (DPR) and the GPM Microwave
Imager (GMI) are the most advanced instruments for the retrieval of precipitation from
satellite [48]. The DPR operating at both the Ka- (35 GHz) and Ku-band (13.6 GHz) is the
first dual-frequency spaceborne precipitation radar. The dataset used for this study was
created when the DPR data were provided through three scanning modes: matched scan,
normal scan, and high-sensitivity scan. Currently (i.e., from December 2021), the data are
provided in one scanning mode: the full scan. The swath of Ka- and Ku-band radars are
120 and 245 km wide, respectively, while a spatial sampling of 5 km is provided both at the
Ka- and at Ku-band. The Ku-band radar normal scan (used for this study) covers the full
swath, with 49 angle bins with a vertical resolution of 125 m.

The GMI is a total power conically scanning MW radiometer, measuring radiation
in 13 channels, with 10 channels in dual-polarization (V and H) at five central frequencies
(10.65, 18.70, 36.5, 89.0, and 166.0 GHz) and 3 channels in single-polarization (V), at 23.8,
183 ± 3, and 183 ± 7 GHz. The GMI swath is 904 km wide, and the spatial resolution ranges
from about 4 km × 7 km at the high frequency (>89 GHz), 8 km × 14 km at 36.5 GHz,
to 19 km × 32 km at 10 GHz (see [49] for further details). The DPR swath overlaps the
central region of the GMI swath. The GMI frequencies have been selected for optimally
detecting the wide spectrum of precipitation type and intensities. In particular, the high-
frequency channels at 166 GHz and 183.31 GHz are well suited for the detection of light
liquid precipitation and snowfall [50,51].

The NASA GPM combined DPR-GMI product (i.e., 2B-CMB) [45,46] combines reflec-
tivity measured by the DPR and brightness temperatures by the GMI, provided only for the
matched and normal scan. In this study, the 2B-CMB product (V06A) surface precipitation
rate (surfPrecipTotRate variable over the normal scan (i.e., the full DPR swath) has been used
as a reference.

2.1.3. H SAF GEO/LEO MW/IR Products

The H SAF P-IN-SEVIRI (H03B) product [20] (operational until 31 January 2023)
provides an instantaneous precipitation rate at SEVIRI spatial and temporal resolution over
the MSG full disc area. It exploits a collection of time and space overlapping overpasses
from SEVIRI IR images and surface precipitation rate estimates derived from LEO PMW
radiometers. The precipitation rate products used are the H SAF Level 2 products H01
(precipitation rate from the Special Sensor Microwave Imager/Sounder—SSMIS; [52,53])
and H02B (precipitation rate from the Advanced Microwave Sounding Unit/Microwave
Humidity Sounder—AMSU/MHS; [54]). The matching between the IR TBs at 10.8 µm
and the precipitation rates builds a look-up table of geo-located relationships between
the two quantities, updated as new input datasets (matched PMW precipitation rate and
SEVIRI IR measurements) are available in the processing chain. This method is called the
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“Rapid Update” (RU) blending technique [55]. In particular, the PMW-derived precipitation
rate pixels are coupled with time and space-coincident TB data, using a 10 min maximum
allowed time offset between the pixel acquisition times and a maximum space offset of
10 km between the pixels coordinates. The data within a box 2.5◦ wide, as well as the
eight surrounding boxes (to provide a fairly smooth transition between neighboring boxes),
are used to update the relationship curve between the IR TBs and the precipitation rates.
In order to build an ensemble of coincident IR-TBs and precipitation intensities that is
statistically significant, the RU can look up to 24 h before the current observation to reach
a minimum (75%) box coverage and a minimum number of coincident observations in
each box. Thus, the RU technique requires an initial start-up time (~24 h) to allow for
establishing meaningful initial relationships all over the considered area.

The H SAF P-IN-SEVIRI-PMW (H60B) product can be considered as an evolution of
P-IN-SEVIRI (H03B) (it became operational after the discontinuation of H03B occurred on
31 January 2023). As for H03B, the H60B outputs are provided at the SEVIRI spatial and
temporal resolution and always over the full disc area. It is based on the RU techniques
but, unlike H03B, the precipitation rates used in the H60B algorithm are obtained from all
the available PMW radiometers of the GPM constellation (currently SSMIS, AMSU/MHS,
Advanced Microwave Scanning Radiometer 2—AMSR2, Advanced Technology Microwave
Sounder—ATMS, and GPM Microwave Imager—GMI). In addition, a dedicated module
for the precipitation estimate of convective clouds is present in the operational chain:
NEFODINA [56]. NEFODINA uses multispectral information from SEVIRI channels at 10.8,
6.2, and 7.3 µm in order to detect and monitor convective processes and relies on the high
temporal repeat cycle of the MSG satellite. Information coming from the IR window channel
at 10.8 µm and WV absorption bands (at 6.2 µm and 7.3 µm) are statistically combined to
create an accurate detection-and-tracking procedure for Convective Objects. Indeed, the
H60B production chain identifies convective areas and computes different relationships
between IR TBs and precipitation rates for convective and for stratiform clouds.

2.1.4. The NASA GPM IMERG Product

The Integrated Multi-satellitE Retrievals for GPM (IMERG) is the main official GPM
MW/IR product delivered by NASA [19], providing the surface precipitation rate on
a 0.1◦ × 0.1◦ regular grid every 30 min combining geostationary IR and PMW data of
the GPM constellation satellites. The IMERG processing steps include (1) the CMORPH
Kalman Filter for quality-weighted time interpolation (“morphing”) of PMW estimates
following cloud motion vectors, (2) the PERSIANN-CCS for retrieving PMW-calibrated
IR estimates, and (3) the TRMM Multi-satellite Precipitation Analysis products (TMPA)
for inter-satellite calibration and monthly gauge adjustment [57]. The IMERG system is
processed in three different runs (Early (E), Late (L), and Final (F)) depending on user
requirements (in terms of data latency and accuracy) and on the rain gauge networks used
for calibration [58]. IMERG-E data are provided about 4 h after the nominal observation
time and are mostly directed to users needing quick information related to potential flood
or landslide warnings; on the other hand, IMERG-L data are distributed with roughly
14 h latency for agricultural forecasting or drought monitoring purposes. Approximately
3 months after the observation, the final cycle is run to create the IMERG-F data, after the
reception of the monthly gauge analysis of the Global Precipitation Climatology Centre
(GPCC) [59]. Note that both IMERG-E and IMERG-L runs, considering climatological gauge
data for bias adjustment, use only some of the IMERG processing steps, while monthly
GPCC gauge analyses feed the IMERG-F run; therefore, the estimates of IMERG-F run are
supposed to be the most reliable and accurate [19].

For this study, IMERG-E (V06B) data are used. This choice is justified by the re-
quirement of NRT timeliness (<4 h) of the H SAF products, fulfilled only by IMERG-E.
Nevertheless, deep differences remain between the two approaches since the IMERG-E
and H SAF products considered here use both GEO IR observations and PMW-based
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precipitation rate estimates as inputs, while the ML-based algorithm presented in this study
uses only GEO IR observations as inputs.

2.1.5. Ancillary Data

Some ancillary data are used during the training phase. Namely, latitude and longitude
(provided within the MSG SEVIRI data), from which the surface type is derived (from
ESA CCI map). In addition, the cloud top height (CTH, GEO v2021) as estimated by the
Nowcasting SAF (NWC SAF) software is also used [60].

2.2. Deep Learning Applied to Satellite Data

This sub-Section is dedicated to the description of the ML approach used to develop
the algorithm and of the dataset used to train the neural network. Namely, the ML approach
used is the U-Net [61], a convolutional neural network (CNN) architecture chosen because
of its capacity to preserve the spatial relationships among the objects.

2.2.1. Building Datasets for Learning and Test Phase

The first step in developing a ML approach is to build a reliable dataset to be used for
the learning process. The development of a ML-based algorithm involves two main phases:
the training phase and the test phase. Within the training phase, a validation process is
applied in order to provide a first guess about the reliability of the training network. Once
the training phase is completed and the optimal network configuration is set, the test phase
can take place. Consequently, in order to complete the whole process, three datasets are
needed: the training (TRD), the validation (VD), and the test (TD) dataset.

Both TRD and VD have been built matching the SEVIRI TBs and the DPR-GMI surface
precipitation rate coupling each SEVIRI pixel to the closest, in space and time, DPR footprint,
i.e., within a maximum distance of 5 km (approximately equal to the DPR footprint size)
and a maximum time difference of 7.5 min (half the SEVIRI 15 min temporal resolution).
Both TRD and VD are provided at the SEVIRI IR spatial resolution. In particular, nine
parameters (i.e., the input parameters) have been coupled with the surfPrecipTotRate variable
of the DPR-GMI 2B-CMB product (i.e., the target parameter). The nine input parameters
are the following: the three SEVIRI channels mentioned in Section 2.1.1, their difference
(i.e., TB ch5-TB ch9 and TB ch9-TB ch11), and the four ancillary parameters described in
Section 2.1.5 (i.e., latitude, longitude, surface type, and CTH).

The full disc image has been divided into boxes of 48 × 48 pixel size. The boxes are
oversampled, with an 8 pixel step both latitude and longitude in order to avoid the padding
issue (see Section 2.2.2), while their size is related to the U-Net depth. In addition, all the
pixels within a box have to satisfy the following condition:√

lat2 + lon2 ≤ 65◦ (1)

This choice is related to the progressive worsening of the SEVIRI spatial resolution
moving away from the sub-satellite point (see also Figure 1). A further check is carried out
on the quality of both input and target parameters by excluding SEVIRI images where at
least one pixel corresponds to an outlier or a fill value. The matching between the input
and the target parameters has been made for the whole year (2017). The TRD consists
of boxes where at least one pixel reported a precipitation rate exceeding 5 mmh−1; only
20% of the boxes with no significant precipitation (with no pixels exceeding 5 mmh−1)
were included in the TRD. The same method was applied to build the VD; to ensure the
independence of the two datasets, they have been populated with different DPR orbits and
the boxes included on one dataset were automatically excluded from the other. This led to
having two 4D matrices (or tensors) with a size of 48x48xNVARxNIMAGE where NVAR and
NIMAGE indicate the number of variables (nine input and one target) and the number of
images considered, respectively. The value of NIMAGE is 713,302 for the TRD and 767,259
for the VD.
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Figure 1. Spatial distribution of the images included in the TRD.

Figure 1 reproduces the distribution over the MSG full disc of the images included
in the TRD. The distribution shows a peak of occurrence on the Equatorial area, while a
uniform distribution can be noted in the remaining part of the full disc. The desert areas
(i.e., Sahara desert and Arabian Peninsula) are the zones with the lowest occurrence, as well
as a part of the South East Atlantic ocean. It has to be highlighted that, being the condition
defined in (1) to be satisfied, the images on the edge of the full disc are not included in the
TRD and VD.

On the other hand, the TD has been built in a different way. Once the training phase is
completed, the U-Net is applied to the SEVIRI image, which has been filtered out by the
condition specified in Equation (1) and the output (i.e., the estimated precipitation rate)
is stored. This is made for all the SEVIRI acquisitions between the 10th and the 14th of
each month from July 2020 to June 2021 for a total of 60 days and 5760 acquisitions. Then,
the estimated precipitation rate is matched with the reference (i.e., the surfPrecipTotRate
of 2B-CMB product) and averaged at the IMERG resolution (i.e., 0.1◦ × 0.1◦). The same
matching is performed for H03B and H60B, as well as for IMERG-E.

2.2.2. U-Net Configuration and Setting

The U-Net [61] convolutional network architecture has been selected for this study.
This type of architecture has proven to be particularly suitable as it allows us to preserve
the spatial relationships among the objects. The U-Net belongs to the family of the convolu-
tional neural network (CNN). A CNN typically has three kinds of layers: convolutional
layers, pooling layers, and fully connected layers.

A convolutional layer is the main building block of a CNN. It contains a set of filters
(a filter is generally smaller than a given image), the parameters of which are changed
throughout the training. Each filter convolves with the image and creates an activation
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map, scanning the image in height and width. In addition, a convolutional layer includes a
ReLU (Rectified Linear Unit), an activation function used to introduce non-linearity into
the network, allowing it to learn more complex functions. The pooling layer down-samples
feature maps by indicating the presence of features in patches of the feature map. Common
pooling methods are average pooling and max pooling, which summarize the average
presence and the most activated presence of a feature, respectively. The fully connected
layer is the last layer in the CNN, taking as input the output of the convolutional and
pooling layers. The goal of a fully connected layer is to tune the weight parameters to create
a stochastic likelihood representation of each class in which the input image is classified
(see [37,39,62–64] for further details).

However, the use of a regular CNN does not preserve the information regarding the
position of an object in the image (as the U-Net does) but only detects its presence. In the
case of segmentation (i.e., when each pixel of an image is labeled with a corresponding class),
both pieces of information (classification and localization) are necessary. Consequently, the
U-Net is structured in two branches: one with a contraction path (the encoder) aimed at
capturing the objects in the image and one (the decoder) with a symmetrical expansion
path that allows their precise localization [61]. To rebuild the spatial relationships, an
up-sample of the image is required in order to convert a low-resolution image to a high-
resolution image. Transposed Convolution, the most preferred choice for this purpose,
learns parameters through back propagation to convert a low-resolution image to a high-
resolution image.

During the training process, the network hyperparameters are optimized. They can be
divided into model hyperparameters that define the U-Net structure and training algorithm
hyperparameters that influence the speed and the quality of the training process. Different
hyperparameters can be set in order to obtain the most accurate and generalizable U-Net.
During this study, the hyperparameter optimization involved firstly the optimization of
the network structure, including the optimal setting of: (1) the encoder depth; (2) the
number of network filters, that represents the number of output channels for the first
encoder stage; (3) the use of max pooling layers instead of mean pooling; (4) the use of
batch normalization layers; and (5) the use of 0-padding in the convolutional layers. The
final U-Net is composed of two encoder stages, with 64 network filters in the first stage.
Moreover, it makes use of max pooling and does not include any batch normalization layer
or 0-padding. In particular, the 0-padding option consists of adding zero values at the edge
of each image in order to perform the convolution even on the edge of the image. This
corresponds to a modification of the input values on one hand, but, on the other hand, it
ensures that the output feature images will have the same size as the input feature images.
Not applying the “zero padding option”, a convolution layer returns an output feature
image that is smaller than the input feature image. In particular, since the size of the input
image used in this study is 48 × 48, the size of the output image, after many convolution
and transposed convolution layers, is 8 × 8. Figure 2 summarizes what is described above
highlighting the layers associated with each stage with a schematic representation of input
and output images. It is worth noting that the U-Net structure illustrated in Figure 2
(together with the hyperparameter settings described above) is not a generic representation
of the U-Net structure but is customized for the aim of this study.
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Figure 2. Representation of the U-Net structure designed within this study. In the figure, the network
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black numbers the spatial and feature dimensions, respectively.

3. Results

The evaluation of the performances of the U-Net is obtained by applying it to the TD
(independent from the training dataset) and calculating the error statistics with respect to
the DPR-GMI precipitation rates, used as reference. The same procedure has been applied
and the same error statistics have been calculated for the other products (i.e., the two H
SAF products H03B and H60B and the NASA official product IMERG) in order to perform
a comparison between the results obtained for the U-Net and these operational products.
The performances are evaluated at six different spatial grid sizes (from 0.1◦ × 0.1◦, the
IMERG grid size, up to 1◦ × 1◦) and both in terms of continuous and categorical statistical
scores. Namely, the continuous statistical scores considered are the mean error (ME),
the mean absolute error (MAE), the root mean square error (RMSE), and the Pearson
correlation coefficient (CC). On the other hand, the categorical scores are the probability
of detection (POD), the false alarm ratio (FAR), and the critical success index (CSI). For a
detailed description of both continuous and categorical scores, refer to [65]. In addition,
the capability of the U-Net in estimating and taking into account the parallax displacement
is also evaluated.

3.1. Precipitation Rate Quantitative Analysis

Figure 3 shows the CC at the six grid sizes considered, for the U-Net and the three
products considered. The correlation increases as the grid size increases for all products. In
addition, the U-Net shows higher CC values than both H03B and H60B at all the grid sizes
reaching 0.60 at 1◦ × 1◦. The best performances in terms of CC are obtained by IMERG-E.

The MAE provides an indication about the average magnitude of estimation errors in a
given dataset and therefore is a scalar measure of its accuracy, with values ranging between
0 (perfect score) and infinity. It is calculated by eliminating the pixel pairs (i.e., the reference
and the estimation) both corresponding to no rain (i.e., 0 and 0 mmh−1, respectively).
Figure 4 shows the MAE at different grid sizes and the contribution of hits, false alarms,
and miss pixel pairs to the total MAE. The decomposition of total MAE aims to quantify
the contribution to the total error for the cases where each satellite product wrongly detects
or not the precipitation, as well as for the cases where both satellite products and reference
detect precipitation. All the products show a decrease in MAE from fine to coarse grid size,
with the U-Net reporting the lowest values regardless of the grid size. The contribution
of hits, false alarm, and miss components does not show a univocal behavior among the
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different products, and their relative contribution changes at the different grid size. The
contribution of miss cases to the MAE is null or extremely low for the U-Net, highlighting
that the precipitation fraction lost because of missed precipitation is negligible. This is
true also for IMERG-E, which shows decreasing miss contribution values as the grid size
increases. Furthermore, for all products except H03B, the miss contribution is always lower
than hits and false alarms contributions. H03B shows a higher contribution of misses with
respect to the false alarms at grid sizes greater than 0.4◦ × 0.4◦.
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Figure 4. Mean absolute error (MAE) at different spatial grid sizes (i.e., from 0.1◦ × 0.1◦ to 1◦ × 1◦)
for the four different products considered. Each bar shows, for each product, the total MAE, as well
as the hits, false alarm, and miss contribution to the total, respectively. Panel (a) shows the results for
0.1◦ × 0.1◦, panel (b) for 0.2◦ × 0.2◦, panel (c) for 0.4◦ × 0.4◦, panel (d) for 0.6◦ × 0.6◦, panel (e) for
0.8◦ × 0.8◦ and panel (f) for 1◦ × 1◦ spatial grid, respectively. The subplots do not have the same
y-scale because of the difference in the MAE values depending on the grid size. This allows us to
better highlight the hits, false alarm, and miss relative contribution.
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With respect to the MAE, the root mean square error (RMSE) is much more sensitive
to large errors and could be misleading in presence of outliers, which can make the RMSE
increase dramatically. Figure 5 shows the trend of the RMSE at the six grid sizes considered.
The RMSE decreases as the grid size increases because of the smoothing of co-location
errors and of the spatial averaging of the precipitation peaks and outliers. In Figure 5, the
U-Net has the lowest RMSE at all grid sizes among the products considered. IMERG-E
shows the lower RMSE at all grid sizes excluding the U-Net, followed by H03B and H60B.
The only exception to this trend is the 0.1 × 0.1 grid, where H60B shows a lower RMSE
than H03B.
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A specific analysis on the U-Net results has been dedicated to identifying the areas
where larger errors occur. To this end, the RMSE spatial distribution over the study area
has been evaluated (Figure 6). Figure 6a shows larger RMSE values over the equatorial
zone and over the north and south Atlantic Ocean. These are the areas where higher
values of precipitation intensity are registered (Figure 6b). This could partially explain
the larger error, evidencing some difficulties in estimating high precipitation rates. At the
same time, it has to be taken into account also the degradation of the MSG SEVIRI spatial
resolution moving away from the sub-satellite point that could have an impact on the
U-Net performance, when applied to the TD, and can be an issue during the learning phase.
In addition, Figure 6b highlights that higher mean precipitation rate values occurring at
the edge of the TD area (other than on the equatorial zone), where the degradation of
spatial resolution plays a role. The combination of the two issues could result in higher
RMSE values.

Summarizing the results shown in this Section, it has to be highlighted that RMSE
and MAE are smaller for the U-Net than for IMERG-E, while IMERG-E shows a higher
correlation coefficient at all grid sizes. This is a direct consequence of the underestimation of
the intense precipitation rates from the U-Net, which will be discussed in the next Section.
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3.2. Precipitation Rate Detection Analysis

The U-Net approach has a great advantage in that the trained network is able to
distinguish the precipitating areas from the not precipitating areas, other than to estimate
the precipitation rate. This is related to the fact that the input data include both precipitating
and not precipitating areas. This enables the U-Net to recognize the precipitating areas and
to estimate the precipitation rate on one hand, and on the other hand, to recognize the areas
where there is no precipitation. In order to investigate the detection skills of the U-Net,
some categorical scores have been calculated, namely the POD, FAR, and CSI. All these
three scores range between 0 and 1, with 1 being the perfect score for the POD and CSI, and
0 being the perfect score for FAR. Different precipitation rate thresholds have been applied,
while these scores have been calculated only for the 0.1◦ × 0.1◦ grid size. The thresholds are
applied to both the reference and the estimate, i.e., a correct detection occurs only if both the
reference and the estimate at a given pixel have values greater than the threshold. Figure 7
shows the trend of the POD (Figure 7a), FAR (Figure 7b), and CSI (Figure 7c) with respect
to the precipitation rate thresholds. For the U-Net, H03B, and H60B, the POD decreases,
moving from lower to higher precipitation rate thresholds with higher values (more than
0.9) for the U-Net at very low precipitation rates (Figure 7a). IMERG-E instead shows
a maximum value of the POD around 1 mmh−1. Moving towards higher precipitation
rates, the U-Net shows worse performances, with IMERG-E outperforming all the other
products. It is worth noting that at very high precipitation rate thresholds, all the products
evidence a lower capacity in correctly detecting the precipitating areas. The FAR (Figure 7b)
shows a decreasing trend up to 2 mmh−1 for the U-Net, followed by increasing values at
higher precipitation rates. On the other hand, for all the other products the FAR decreases,
moving from a 0 to 0.1 mmh−1 threshold to constantly increase for higher precipitation rate
thresholds. It has to be highlighted that all products show an FAR greater than 50% for all
the thresholds, with values higher than 70% for precipitation rates higher than 10 mmh−1.
In general, this analysis reveals critical issues for all the algorithms in correctly locating
the more intense precipitation areas. IMERG-E seems to be the algorithm with less strong
issues as it generally shows the lowest FAR and highest POD. The U-Net algorithm shows
critical issues for both the very low rates of precipitation (between 0 and 0.1 mmh−1) and
for the moderate to intense rates (greater than 1 mmh−1). The CSI (Figure 7c), summarizing
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the information from the POD and FAR, highlights that IMERG-E is the best product in
detecting precipitation, while the U-Net shows a maximum at 0.4 mmh−1, outperforming
the H SAF products at mid-low precipitation rate thresholds (0.2–0.8 mmh−1). It is worth
noting that the new H SAF MW/IR product H60B, currently operational, outperforms the
previous H03B which has been superseded.
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different precipitation rate thresholds.

A very important difference between the U-Net and the other products is the lack of
MW-base estimates, which are crucial not only for the estimation of the intense precipitation
rates but also for delineating the very low precipitation patterns.

The mean error (ME) quantifies the overestimation and the underestimation with
respect to the reference. Table 2 shows the percent ME calculated as follows:

ME% =
1
N ∑N

i=1(Ei − Re f i)

Re f
(2)

where Ei is the estimate precipitation rate (i.e., the output of the U-Net, H60B, H03B, and
IMERG-E, respectively), Refi is the reference precipitation rate (i.e., the 2B-CMB precipita-
tion rate product), and Re f is the mean reference precipitation rate. Table 2 presents the
percent mean error for three different thresholds: 0, 1, and 10 mmh−1. In this computation,
the threshold acts for the selection of the areas, i.e., the mean precipitation rate and the
mean error are evaluated only in areas where both the estimates and the reference (i.e.,
the DPR-GMI) retrieved a precipitation rate higher than the threshold. It is clear from
Table 2 that all considered products overestimate the rainfall rates globally (for a 0 mmh−1

threshold); however, the U-Net shows the lowest mean error. For the highest threshold
(10 mmh−1), all products underestimate the precipitation rates. This is coherent with the
results shown in Figure 7, where the POD for the intense precipitation is relatively low
(e.g., around 50% and 0% for the IMERG-E and U-Net products, respectively). Above
the 1 mmh−1 threshold, IMERG-E shows a very low positive ME% (around 5%), while
all other products underestimate precipitation. Table 2 evidences that the U-Net severely
underestimates the mid and high precipitation rates, with respect to the other products.
This issue is particularly relevant also because the MTG day-2 product is meant to provide
support to operational hydrology and severe weather monitoring.
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Table 2. Percent mean error (ME%) calculated for each precipitation product and for different
precipitation rate thresholds.

Percent Mean Error (%)

DPR-GMI Threshold (mmh−1) U-Net H60B H03B IMERG-E

0 16.6 117.0 25.8 59.3
1 −78.2 −49.0 −47.7 5.8
10 −91.8 −69.5 −69.1 −33.1

3.3. Parallax Displacement Error

One important issue that has to be accounted for in GEO IR-based precipitation
estimates is the displacement of satellite data due to the parallax error (particularly severe
at large viewing angles and for high clouds). If one out of the two sources of parallax error is
well known (i.e., the viewing angle which is a function of latitude and longitude), the second
one (i.e., the cloud height) has to be estimated. Even if the cloud height was estimated with
high accuracy and the cloud was correctly displaced in its real location, it would not be
easy to replace the “hole” left by this correction. A very significant result obtained is that
the trained U-Net is able to correct (or at least mitigate) the parallax error without being
trained against a dataset already corrected for parallax displacement. Figure 8 shows the
cloud structure (red to blue colormap, with the blue representing the coldest and highest
clouds) and the areas with the maximum precipitation rates based on the U-Net and on the
DPR-GMI 2B-CMB product (black lines, indicating the 95th percentile of the precipitation
rate for each product). The U-Net locates the areas with the maximum precipitation rates
shifted with respect to the areas with the lowest MSG TBs (Figure 8a), but they are displaced
to the southwest. This is in excellent agreement with the maximum precipitation areas
detected by DPR-GMI (affected by a negligible cloud parallax error—Figure 8b).
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black lines (95th percentile of the precipitation rate). The dashed lines indicate the DPR swath limits.
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As a comparative test, a simple parallax correction tool has been developed. The
SEVIRI data used in the TDR have been corrected by applying a shift ∆x to each pixel and
channel proportional to the CTH as

∆x = CTH · tan(θ) (3)

where θ is the MSG satellite viewing angle. The direction of the shift was defined by the
azimuth of MSG. This correction has been used to build a new training dataset that has been
exploited for training an additional U-Net, with the same architecture and hyperparameter
of the U-Net used within this study. The precipitation rates predicted by the two U-Nets
have been compared with the reference DPR precipitation in the TD. The results showed
how the not-parallax-corrected U-Net outperformed the parallax-corrected U-Net in terms
of accuracy (RMSE, MAE) and detection of precipitation (POD, FAR, CSI). This evidences
the great potentialities and capabilities of the U-Net in correcting the parallax displacement.

4. Discussion

The algorithm performance has been evaluated through an independent DPR-GMI
dataset and compared to the performance obtained by the MW/IR operational H SAF
program products (i.e., the currently operational H60B and the previous H03B operational
until 31 January 2023) and by the IMERG Early Run (V06B) (the NASA GPM official
product). The metrics used to quantify the error in the precipitation rate estimation (i.e.,
MAE and RMSE) show lower values of the U-Net than the other products at all the grid
sizes considered (e.g., the U-Net RMSE never exceeds 1 mmh−1, while the lowest values
for the other products are obtained by IMERG-E ranging between 2.2 and 0.55 mmh−1).
On the other hand, the metrics used to verify the detection of the precipitating areas (i.e.,
POD, FAR, and CSI) show better performances of the U-Net with respect to the H SAF
products only for some precipitation rate regimes (0.2–0.6 mmh−1), with two main issues
at very low (especially in the 0–0.1 mmh−1 range) and at moderate to high precipitation
rates. The first issue is related to very high values of the POD and FAR caused by an
enlargement of the low precipitation areas (blurring effect) with respect to the DPR-GMI
reference. This problem also affects the other products considered but is more severe for the
U-Net. However, the quantitative error statistics of the U-Net are not strongly impacted by
the large number of false alarms as the MAE due to false alarms (see Figure 4) and the ME%
(for rainfall rates greater than 0 mmh−1, see Table 2) are relatively low. The second issue
is related to the difficulty of the U-Net in estimating higher precipitation rates. This issue
is particularly relevant in heavy rainfall monitoring and flood warning applications. One
reason for this difficulty could lie in the undersampling of moderate to high precipitation
rates. This was partially mitigated in the building of the TRD by putting a threshold on the
precipitation rate (i.e., only boxes with at least one pixel > 5 mmh−1 have been selected)
and selecting a small fraction (20%) of the remaining images (i.e., images with very low or
null precipitation rates). Moreover, the U-Net algorithm is based only on IR observations,
while the other products exploit PMW estimates from several PMW radiometers. It is
well known that the PMW precipitation retrieval algorithms are affected by substantially
lower errors than combining VIS/IR and MW data (e.g., IMERG-E, H60B) because MW
radiation penetrates clouds interacting with all liquid and ice cloud vertical layers, while
precipitating clouds are completely opaque to VIS/IR radiation. Despite the large use
of PMW observations, the other products show similar but less severe issues, i.e., the
IMERG-E and H SAF products show issues both in the detection of very low precipitation
(POD < 65% and FAR > 58% at 0 mmh−1) and in the estimate of intense rainfall (POD < 55%
and FAR > 75% at 10 mmh−1). It has to be also highlighted that the precipitation detection
capability of IMERG-E is better than the U-Net (and H SAF products) regardless of the
precipitation regime.



Remote Sens. 2023, 15, 5662 17 of 21

5. Conclusions

In this study, a convolutional neural network-based algorithm has been developed
by exploiting the U-Net architecture to estimate the precipitation rate from MSG SEVIRI
measurements. The precipitation rate values provided by the DPR-GMI combined product
(i.e., 2B-CMB) have been taken as references during the training phase. At the same time,
the algorithm provides its output over the full disc area. The algorithm accuracy has been
tested using an independent dataset of DPR-GMI measurements and the performances
compared with one of three algorithms: (1) the MW/IR operational H SAF program
product (H60B), (2) the previous H SAF product (H03B), and (3) the IMERG Early Run
(V06B) product from NASA GPM. The analysis of the MAE and RMSE show lower values
for the U-Net than for the other products for all the grid sizes considered. Conversely
the POD, FAR, and CSI, used to verify the detection of the precipitating areas, show that
the U-Net has better performances then the H SAF products only in the precipitation rate
regime between 0.2 mmh−1 and 0.6 mmh−1, with two main issues at very low (especially
in the 0–0.1 mmh−1 range) and at moderate to high precipitation rates. Moreover, for all
precipitation regimes, the precipitation detection capability of IMERG-E is better than the
U-Net and H SAF products.

In spite of these problems, the performances of the -Net do not appreciably differ
with respect to what is present in the literature for IR-only algorithms, even if the study
area is much larger compared to other studies. Based on our knowledge, this is the first
deep learning-based study trying: (1) to estimate the precipitation rate by using only IR
channels (and CTH variable) and, (2) to consider, as the study area, the whole full disc
observed by a geostationary satellite and, (3) to apply a single ML-based module to both
detect and estimate the precipitation rate. It is worth noting that the development of an
algorithm applicable to the full disc area entails a number of problems to be faced. Above
everything, an MSG image is a snapshot of different seasons, different times of the day, and
different precipitation regimes. Other studies on ML-based approaches using geostationary
data [32,41,66] to estimate the precipitation rate show slightly better statistical scores,
but they are applied over small regions. On the other hand, one of the more promising
results obtained from this study is that the U-Net, other than detecting and estimating the
precipitation rate, is also able to correctly locate the precipitating area accounting for the
parallax displacement. This allows us to address an issue that is generally treated with a
dedicated module.

The U-Net algorithm can be considered as a first guess module of the future H SAF
MTG day-2 product; however, further development is needed. Both the issues evidenced
by this study, the overestimation of the low rate and underestimation of the intense rates,
could be caused by the smoothing effect of convolutional neural networks. This effect has
been observed in other deep learning applications and has been addressed by some authors
by using the conditional Generative Adversarial Network approach [66] which will be
tested in the future version of the algorithm. Moreover, the use of short sequences of MSG
images could provide valuable information that can be exploited by deep learning models
using proper architectures (e.g., recurrent and Long-Short Term Memory neural networks).
Finally, this study evidences the need for synergic use of the PMW and IR data, which has
been proven to give very promising results [26,63].
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