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A B S T R A C T

The availability of accurate information on the water consumed for crop irrigation is of vital importance to
support compatible and sustainable environmental policies in arid and semi-arid regions. This has promoted
several studies about the use of remote sensing data to monitor irrigated croplands, which are mostly based on
statistical classification and/or regression techniques. The current paper proposes a new semi-empirical ap-
proach that relies on a water balance logic and does not require local tuning. The method stems from recent
investigations which demonstrated the possibility of combining standard meteorological data and Sentinel-2 (S-
2) Multi Spectral Instrument (MSI) NDVI images to estimate the actual evapotranspiration (ETa) of irrigated
Mediterranean croplands. This ETa estimation method is adapted to drive a simplified site water balance which,
for each 10-m S-2 MSI pixel, predicts the irrigation water (IW), i.e. the water which is consumed in addition to
that naturally supplied by rainfall. The new method, fed with ground and satellite data from two years
(2018–2019), is tested in a Mediterranean area around the town of Grosseto (Central Italy), that is covered by a
particularly complex mosaic of rainfed and irrigated crops. The results obtained are first assessed qualitatively
for some fields grown with known winter, spring and summer crops. Next, the IW estimates are evaluated
quantitatively versus ground measurements taken over two irrigated fields, the first grown with processing
tomato in 2018 and the second with early corn in 2019. Finally, the IW estimates are statistically analyzed
against various datasets informative on local agricultural practices in the two years. All these analyses indicate
that the proposed method is capable of predicting both the intensity and timing of the IW supply in the study
area. The method, in fact, correctly identifies rainfed and irrigated crops and, in the latter case, accurately
predicts the IW actually supplied. The results of the quantitative tests performed on tomato and corn show that
over 50 % and 70 % of the measured IW variance is explained on daily and weekly bases, respectively, with
corresponding mean bias errors below 0.3 mm/day and 2.0 mm/week. Similar indications are produced by the
qualitative tests; reasonable IW estimates are obtained for all winter, springs and summer crops grown in the
study area during 2018 and 2019.

1. Introduction

Water is a major environmental resource whose availability is in-
creasingly limited in arid and semi-arid areas due to both the rising
requirements for human activities and the effects of climate change
(Famiglietti and Rodell, 2013; Jalilvand et al., 2019). This is particu-
larly the case in Mediterranean regions, where there is a con-
temporaneous increase in water needs for several competing uses (civil,
agricultural, industrial) and a decrease of water availability because of
negative rainfall trends (Giorgi et al., 2004; Hartmann et al., 2013). The
assessment of actual water uses is therefore becoming of primary im-
portance for public authorities in most Mediterranean areas, such as
Central and Southern Italy.

In these regions agricultural activities are the main consumer of
water resources, mainly due to irrigation requirements for extensive
summer croplands (corn, tomato, sunflower, etc.). Because of the great
variety of agricultural practices applied to these crops, such require-
ments are extremely variable both in space and in time (Guzinski and
Nieto, 2019). Consequently, estimating crop irrigation on wide land
areas is a non trivial issue, for which conventional, ground based
methods can provide only a partial solution. Such methods, in fact, are
labor and time intensive, and are therefore usually applied only for
assessing crop irrigation over relatively small land areas and brief time
periods (Giannini and Bagnoni, 2000).

Remote sensing techniques offer an alternative, cost-effective op-
portunity to obtain information related to crop water consume (e.g.

https://doi.org/10.1016/j.jag.2020.102216
Received 16 March 2020; Received in revised form 29 July 2020; Accepted 5 August 2020

⁎ Corresponding author.
E-mail address: fabio.maselli@cnr.it (F. Maselli).

Int J Appl  Earth Obs Geoinformation 93 (2020) 102216

0303-2434/ © 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/BY/4.0/).

T

http://www.sciencedirect.com/science/journal/03032434
https://www.elsevier.com/locate/jag
https://doi.org/10.1016/j.jag.2020.102216
https://doi.org/10.1016/j.jag.2020.102216
mailto:fabio.maselli@cnr.it
https://doi.org/10.1016/j.jag.2020.102216
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jag.2020.102216&domain=pdf


crop type, extent and condition) on various spatial and temporal scales.
In particular, optical and thermal datasets have been widely utilized to
estimate the distribution of irrigated crops in different regions of the
globe (Ozdogan et al., 2010; Ambika et al., 2016; Zhang et al., 2016).
Ozdogan and Gutman (2008), for example, applied a four-step proce-
dure to ancillary and MODIS data to map irrigated areas at continental
level in the USA; these authors used nonparametric classification and
regression algorithms in order to address the complex spatio-temporal
patterns of irrigated lands. Peña-Arancibia et al. (2014) utilized a
nonparametric statistical approach based on ground and satellite pro-
ducts (both at medium and high spatial resolution) to identify summer
cropped irrigated areas in Australia; the nonparametric Random Forest
model was trained with local data and then applied to obtain a regional-
scale identification of irrigated crops. The same classifier preceded by
the segmentation of Spot 6 imagery was successfully applied by Vogels
et al. (2019), to map irrigated agriculture in the Central Rift Valley,
Ethiopia. A similar approach based on fused MODIS and Landsat da-
tasets was applied by Chen et al. (2018); these authors, however, de-
tected water supplement events by means of a threshold-based model
which is hardly applicable in different environmental conditions.

In general, statistical approaches have obtained promising results,
but present relevant shortcomings due to the need for proper training
over representative ground samples and to the usually limited gen-
eralization capacity. A different, more deterministic strategy could
therefore be based on the identification of water deficit conditions
which are presumably associated to irrigation, i.e. of cases where crop
actual evapotranspiration (ETa) significantly exceeds water availability
from natural sources. This strategy implicitly assumes that the water
used for irrigation approximately corresponds to the not-rain water
consumed by crops (Steduto et al., 2012). This assumption can be
considered to be reasonable in all cases when the cost of extracting and
distributing irrigation water (IW) discourages misuses of this resource,
as is common in many Mediterranean regions.

The application of this strategy requires the daily estimation of both
rainfall and crop ETa over wide land areas. The production of rainfall
maps from ground measurements is by now a consolidated practice
(e.g. Thornton et al., 1997; Mair and Fares, 2011), while the prediction
of ETa can be performed through remote sensing techniques based on
two approaches, i.e. the energy balance and the water balance (e.g.
Glenn et al., 2007; Pereira et al., 2015). Both approaches have ad-
vantages and limitations, but energy balance methods are problematic
to apply operationally in areas with complex irrigation patterns due to
the insufficient spatio-temporal resolutions of existing satellite thermal
imagery (Calera et al., 2017). Most operational applications are there-
fore performed through water balance methods, which usually rely on
the same principle of the classical FAO crop coefficient (Kc) strategy
(Allen et al., 1998). This strategy combines estimates of potential or
reference evapotranspiration (ET0) with multitemporal Kc derived from
remotely sensed vegetation indices, among which the normalized dif-
ference vegetation index (NDVI) is the most popular and commonly
used (Senay, 2008; Glenn et al., 2010).

The original Kc-NDVI approach does not account for the impact of
water stress and is therefore applicable only to well-watered crops,
while overestimates ETa in the other cases (Gonzalez-Dugo et al.,
2009). A similar issue partially affects the evapotranspiration products
routinely obtained at several spatial and temporal resolutions by the
MOD16 algorithm, which is based on the well-known Penman-Monteith
(P-M) equation (Mu et al., 2011; He et al., 2019). These problems are
fundamentally due the non consideration of soil water shortage, which
exerts the most immediate and effective limitation on ETa. This issue
was addressed by Maselli et al. (2014), who proposed a method capable
of predicting ETa in water limited Mediterranean environments. That
method, named NDVI-Cws, accounts for the short-term effect of soil
water shortage by a scalar derived from standard meteorological data,
and is therefore intrinsically suitable for rainfed ecosystems.

The operational application of this and similar methods can

obviously benefit from the recent availability of Sentinel-2 (S-2) Multi
Spectral Instrument (MSI) images, which have high spatial resolution
(10m) and frequent revisiting time (around 3–4 days at our latitudes)
(Drusch et al., 2012). The use of these images allows the clear identi-
fication of most cropped fields, and consequently the accurate estima-
tion of relevant NDVI evolutions (Belgiu and Csillik, 2018; Maselli
et al., 2020a). This has supported an improvement of the NDVI-Cws
method which addresses the cases where water additional to rainfall
can be provided to summer crops, which usually correspond to irrigated
conditions (Maselli et al., 2020b). As fully explained in the same article,
the methodological improvement was obtained by modifying the water
stress scalar based on the crop NDVI evolution during the dry season.

The combination of conventional meteorological data and S-2 MSI
images is therefore potentially suited to produce information for iden-
tifying and characterizing irrigated fields. This subject has been re-
cently explored by Vanino et al. (2018), who investigated the use of
albedo and leaf area index estimates obtained from S-2 images to
characterize a tomato field in Central Italy. In particular, their study
concerned the incorporation of the S-2 estimates in a P-M approach for
assessing crop evapotranspiration and water requirement in standard
conditions. This method is therefore suited to predict the maximum
water requirement of irrigated crops having known spatio-temporal
distribution; conversely, it is not appropriate to identify and quantify
actual crop irrigation in areas where such distribution is complex, ir-
regular and anyway unknown.

The current paper postulates that this objective can be pursued by a
proper application of the modified NDVI-Cws method (Maselli et al.,
2020b). This possibility is investigated concerning an agricultural plain
around the town of Grosseto (Central Italy), where fields of variable size
are grown with rainfed winter and spring crops (wheat, barley, alfalfa,
sorghum, etc.) intermingled with irrigated summer crops (corn, tomato,
sunflower, vegetables, etc.). Most of these crops show diversified
growing cycles depending on the application of different agricultural
practices, which increases the environmental heterogeneity of the study
area and, consequently, the difficulty of identifying and characterizing
irrigated fields. The experiment has concerned two growing seasons,
2018 and 2019, during which the availability of data from both twin S-
2 satellites has allowed a full characterization of crop NDVI evolutions.

The paper is organized as follows. First, the IW prediction method is
fully illustrated, including the parts presented in previous publications
and the innovation currently developed for completing the prediction of
crop irrigation. The study area and data are then described, followed by
the data processing and results. The two final sections present a dis-
cussion of the experimental findings obtained and the conclusions on
their implications and consequences.

2. IW prediction method

The methodology developed for identifying and characterizing crop
irrigation stems from previous studies dealing with ETa estimation in
Mediterranean areas and is completed relying on a conceptual frame-
work derived from the knowledge of local agricultural practices. In
particular, an assumption is used which is valid in the study area and,
more generally, in all cases when water resources are limited and
anyway expensive. In these situations, farmers tend to estimate the
water which is consumed by the crop during each stage of the growing
cycle and consequently regulate irrigation supply. This implies that the
IW actually used roughly corresponds to the water needed by plants
minus the contribution of the rainfalls occurred.

The methodology can be applied on a daily basis at different spatial
scales (from single pixel to field or plot) and is divided into two se-
quential steps. The first, already presented in previous publications,
identifies vegetated areas where water supply additional to rainfall can
be presumed and predicts the respective actual transpiration (TrA). The
non consideration of evaporation is due to the prevalent form of irri-
gation which is used in the study area, i.e. drip irrigation, which
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concentrates water on vegetated surfaces and minimizes the loss from
bare soil. The supposed irrigation requirement is then predicted in a
second, innovative step, which is based on a simplified site water bal-
ance taking into account both most recent rainfalls and the rain water
stored in the soil. These two steps are described in the following sub-
sections.

2.1. Estimation of TrA for irrigated crops

This step is based on an operational method, NDVI-Cws, which was
proposed to estimate daily ETa in water limited Mediterranean eco-
systems through the combination of ground meteorological data and
remotely sensed NDVI imagery (Maselli et al., 2014). This method uses
the fractional vegetation cover to account for the contribution of site
transpiration and evaporation; the actual crop evapotranspiration of
day i (ETai) can therefore be predicted as the sum of the two terms:

ETai = ET0i • 1.2 • FVCi • (0.5+ 0.5 • AWi) + ET0i • 0.2 • (1- FVCi) • AWi

(1)

where ET0 is potential evapotranspiration, FVC is the fractional vege-
tation cover and AW is a short term water stress scalar, all referred to
day i; 1.2 and 0.2 correspond to the maximum crop coefficient for
herbaceous vegetation and soil, respectively.

FVC is linearly derived from NDVI (Gutman and Ignatov, 1998)
while the water stress scalar is computed as:
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where the summation of precipitation (Prec) is bounded by that of ET0,
so that the scalar can range from 0 (full meteorological water stress) to
1 (no stress). Being the water stress scalar computed from the observed
precipitation, the NDVI-Cws method is suitable for rainfed ecosystems,
while it must be adapted in cases when water is supplied additional to
rainfall (Maselli et al., 2014). The modification put forward by Maselli
et al. (2020b) addresses these cases, which, for summer crops, usually
corresponds to irrigated conditions. The same publication reports a full
description of the modified algorithm and its implications, which are
summarized in the following paragraphs.

The modification deactivates the water stress scalar (i.e. increases it
up to 1) when a divergence is detected in the temporal evolutions of
meteorological water stress and NDVI (or FVC). In particular, a full or
partial deactivation is performed when FVC is increasing or close to the
seasonal maximum during the summer water stress period.
Mathematically, the modified water stress scalar of day i, AWFVCi, is
obtained by keeping the maximum of the original AWi and of a nor-
malized FVCi, (FVCNORMi), computed as:

=FVC (FVCi – FVCmin)
(FVCmax – FVCmin)NORMi (3)

where FVCmin and FVCmax are found progressively since the start of
the dry season (i.e. when AWi becomes lower than 1).

Consequently, the transpiration of irrigated crops for day i, Tai can
be predicted as:

Tai = ET0i • 1.2 • FVCi • (0.5+ 0.5 • AWFVCi) (4)

As can be easily understood, Ta corresponds to the transpiration of a
rainfed crop when the NDVI approaches the progressive minimum
during the dry season (i.e. AWFVC=AW), while it corresponds to the
transpiration of a fully or partially irrigated crop when the NDVI is
equal or close to the dry season maximum, respectively (i.e.
AWFVC>AW). Thus, the algorithm is more sensitive to NDVI variations
during the dry season than to absolute NDVI values. This accounts for
both the diversified NDVI values at the beginning of the water stress
period and the variable NDVI responses to the seasonal meteorological
evolution. In all cases, however, the NDVI of annual grasses and crops is

expected to increase or be close to the dry period maximum only if
water is supplied additional to rainfall.

The algorithm therefore combines indicators of meteorological
water stress and temporal NDVI variation for the dynamic identification
of a disequilibrium between water supplied by rainfall and required by
the plants, which can provide the basis for the subsequent prediction of
crop irrigation.

2.2. Estimation of irrigation water

The daily water requirement of irrigated crops is assumed to be
estimable from the actual transpiration averaged over a short time
period, i.e. the current and the previous two days. In order to predict
the actual IW, however, this amount must be reduced by the rainfall
which may be fallen in the same period or is accumulated in the soil
during the previous weeks.

Such correction is therefore performed in two phases. First, the
predicted IW is set to 0 when the effective rainfall (i.e. rain minus ET0)
of the last three days is positive, based on the obvious consideration
that no irrigation is applied during rainy periods. Second, the con-
tribution of less recent rainfalls to soil water storage is estimated using
the logical framework exposed in Maselli et al. (2020b), i.e. assuming
that AWFVC and AW are proportional to the total and the rain water
transpired by the crop, respectively. Thus, the normalized difference
between the two terms can be taken as indicative of the water amount
presumably provided by irrigation and can be used to correct transpired
water. Based on this reasoning, irrigation water for non-rainy day i
(IWi) can be predicted as:

=
∑ −
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The IW computed by this algorithm tends to recent crop Ta when
AWFVC>AW and AW approaches 0, while it tends to 0 just after a
rainfall or when AWFVC coincides with AW. The latter case occurs when
AW is 1, which implies that precipitation exceeds ET0 in the last month,
or when FVCNORM is lower than AW, which implies that the crop NDVI
is close to the dry season minimum due to the effect of water stress or
senescence.

3. Study area and data

3.1. Study area

The study area has a size of 20×20 km2 and is situated in Southern
Tuscany (Italy, 42.70–42.89 °N, 10.95–11.20 °E, Fig. 1). The climate of
this plain is Mediterranean sub-arid, with hot, dry summers and mild,
relatively wet winters. The mean annual temperature is 15.9 °C and the
annual rainfall is about 650mm, concentrated in fall and spring. The
area is mostly covered by agricultural fields interspersed with forest,
rural and urban lands; winter (e.g. wheat, barley), spring (e.g. alfalfa,
chickpea) and summer (e.g. sunflower, tomato, corn) crops are all
widely grown. Winter crops are always rainfed, while supplemental
irrigation is provided to many spring crops depending on seasonal
meteorology; summer crops are usually irrigated during the dry season.

Some fields cultivated with the crops most widespread in the area
during the 2018 and 2019 growing seasons were selected for illus-
trating the general functioning of the IW estimation method described.
Additionally, the study focused on two experimental fields grown with
the most important irrigated summer crops, i.e. tomato and corn, in
2018 and 2019, respectively.

The first field has a size of about 350×300 m2 and in 2018 was
grown with processing tomato (Solanum lycopersicum L.). Small tomato
plants (H1015 e Delfo F1 varieties) were transplanted at the end of
April (28th April) and fruits were picked at the end of July (31st July);
drip irrigation was applied from mid-June to crop harvesting. The corn
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(Zea mays L.) field is close to the former and has a size of 600×450 m2;
it was sowed in the second half of April (18th April) and harvested on
20 August 2019; drip irrigation was applied from 12nd June to crop
harvesting. In both cases, the water used for irrigation (IW) was ex-
tracted from deep wells (20−30m) and provided to the crops following
a schedule decided by the farmers on the basis of their practical ex-
perience.

3.2. Study data

Information on the crop type, agricultural practices and crop ca-
lendars used in some fields during 2018 was obtained from personal
contacts with local farmers (Table 1).

The two experimental fields were instead continuously monitored
during the respective crop growing cycles through a fully equipped
station collecting standard agrometeorological measurements (i.e. daily
minimum and maximum air temperature, precipitation, solar radiation
and wind speed and direction) and a water meter measuring daily IW.
Additionally, phenological observations were taken for both the tomato
field in 2018 and the corn field in 2019.

Interpolated meteorological data were derived for the two study
years from a regional database which provides daily air temperature
and precipitation at 250-m spatial resolution; the interpolation was
based on about 100 weather stations for temperature and 160 for
precipitation. These data were checked for consistency against those
collected by the ground stations at the tomato and corn fields during the
respective growing seasons.

A 1:10000 scale map describing the area covered by annual crops
was obtained from the same regional database. This map was not in-
formative on the crop types actually grown during the two study years;
for part of the investigated area (30–40 % of that covered by annual
crops) this information was derived from the regional ARTEA database
of cultivated fields (http://dati.toscana.it/dataset/artea-piani-colturali-
grafici-annualita-2019).

Imagery taken by the twin S-2 A and B satellites by means of the MSI
sensor was used for both 2018 and 2019. All available S-2 MSI images
of these two years covering the study area were downloaded in an
ortho-rectified, pre-processed L-2A format from the ESA website

Fig. 1. Digital elevation model of Italy showing the geographical position of Tuscany (bottom left box), and, enlarged, the same region with the location of the study
area (upper right box).

Table 1
Main features of the exemplary rainfed and irrigated cropped fields selected for
describing the model functioning in the 2018 growing season (Figs. 5 and 6).

Crop type Sowing Transplanting Harvesting Irrigation

Set-aside – – – No
Winter wheat November (2017) Mid-June No
Chickpea February Early July No
Late tomato Late May Early September Yes
Early corn Mid-April Late August Yes
Late corn Mid-June Mid-October Yes
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(https://sentinel.esa.int/web/sentinel/sentinel-data-access).

4. Data processing

The same data processing chain was applied for both study years,
consisting of the following main steps.

4.1. Preprocessing of meteorological data

Daily solar radiation was estimated from the interpolated tem-
perature and rainfall through the MT-Clim algorithm (Thornton et al.,
2000). Next, daily ET0 was computed from temperature and solar ra-
diation by the algorithm of Jensen and Heise (1963), and was combined
with precipitation to predict the meteorological water stress scalar AW.

4.2. Preprocessing of S-2 MSI NDVI images

10-m spatial resolution NDVI images were computed from the
available S-2 MSI dataset and subjected to a maximum value composite
(MVC) operation over half-month periods. A further temporal filtering
was applied to the MVC images in order to reduce residual atmospheric
disturbances (see Maselli et al., 2014, for details). NDVI was then
converted into FVC and interpolated on a daily basis as fully described
in the same paper.

4.3. Prediction of IW

The daily Ta of all annual crops in the study area was predicted at S-
2 MSI pixel resolution by combining the interpolated meteorological
and FVC data through Eqs. (3) and (4). Eq. (5) was then applied to
predict IW with the same spatial and temporal resolutions. The entire
operation was performed only for the seasons during which irrigation
can be supposed to be active, i.e. from mid-May to mid-October 2018
and 2019.

4.4. Evaluation of IW estimates

The predicted IW was assessed through: i) a qualitative evaluation
conducted on the exemplary fields grown with known rainfed and ir-
rigated crops in 2018; ii) a quantitative assessment performed through
comparison with the daily ground measurements taken in the two ex-
perimental fields (tomato in 2018 and corn in 2019), summarizing the
results by means of common accuracy statistics (r2, RMSE and MBE); iii)
a statistical analysis of the agro-meteorological information available
about several other fields grown with known crops in the two study
years.

5. Results

5.1. Meteorological, NDVI and IW patterns in 2018 and 2019

The diagrams of Fig. 2A-B summarize the meteorology of the study
area in 2018 and 2019. Spring rainfalls are relatively abundant till mid-
June in 2018 and slightly earlier in 2019. Summer rainfalls are simi-
larly low in the two years (80−100mm), while ET0 is lower in 2018
than in 2019 (around 530 versus 560mm, respectively); the ET0 dif-
ference between the two years is mainly due to an extremely hot period
from mid-June to mid-July 2019. These weather patterns induce a clear
water stress period from June to September, but the start of the dry
season is around mid-June in 2018 and at the beginning of the same
month in 2019.

Two MSI NDVI MVC images corresponding to the peak of the dry
period (second half of July) in the two years are shown in Fig. 3A-B.
These images clearly display the fragmented nature of the agricultural
area, where a variety of crops with different phenological cycles are
intermingled. Most cropped fields show low NDVI values, which

indicates their rainfed condition; conversely, the few cropped fields
with high NDVI can be presumed to be irrigated.

This hypothesis is confirmed by the maps of total IW obtained by the
described procedure for 2018 and 2019, that are shown in Fig. 4A-B.
Most areas, which are likely covered by winter crops or semi-natural
meadows, have very low or null estimated IW (below 25mm). Rela-
tively high levels of IW are instead predicted for a few fields of various
size, mostly ranging from 100 to about 400mm.

The inter-comparison between the IW maps of the two years in-
dicates a greater spread and intensity of irrigation in 2019. The total IW
predicted over the study area equals 10,128,594m3 in 2018 and
12,697,793 m3 in 2019, which corresponds to a relative increase of 25
%. About half of this difference can be attributed to the different me-
teorological evolutions of the two years. As previously noted, in fact, in
2019 ET0 was higher and spring rainfall stopped earlier than in 2018;
the difference between ET0 and precipitation (i.e. the water deficit) in
the months June-August equals 457mm in 2018 and 514mm in 2019,
corresponding to a relative increase of 12.5 %. This different meteor-
ology presumably led to more stressed conditions for summer crops and
to a consequent pressure to increase irrigation in 2019. This adds to the
presumably increased extent of irrigated areas in 2019, which is in
agreement with the agricultural statistics reported in the aforemen-
tioned regional database of ARTEA. Even though, as previously noted,
such statistics do not cover all cropped fields, they indicate that in the
province of Grosseto the area grown with irrigated tomato and corn
increased by more than 50 % from 2018 to 2019.

5.2. Examples of estimated NDVI, Ta and IW evolutions

Fig. 5A–C shows some typical NDVI evolutions of rainfed annual
crops in 2018, together with the respective estimates of Ta and IW;

Fig. 2. Annual time series of precipitation (PREC) and potential evapo-
transpiration (ET0) during 2018 (A) and 2019 (B).
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information on the type and main features of these crops is provided in
Table 1. The first case, which corresponds to set-aside management,
shows moderate NDVI and Ta variations, with a primary peak at the
end of April followed by a slow decrease in the dry summer period and
a slight recovery in autumn. The NDVI decrease from spring to summer
is typical of Mediterranean semi-natural grasslands and leads to a
nearly null IW estimate. Wheat, which is the main winter crop in the
area, has a clearer NDVI peak at the end of April, followed by a rapid
drop; as a consequence of this trend, Ta is high until May, but IW is
nearly null for the whole growing season. The case is similar for
chickpea, a drought resistant spring crop which is only occasionally
irrigated. This crop shows a later growing cycle and an NDVI peak in
May, followed by a drop after the start of the dry season which still
produces an almost null IW estimate.

The three NDVI evolutions of Fig. 6A–C are representative of two
summer crops, tomato and corn, which are grown in irrigated condition
(see Table 1). The first crop corresponds to a late variety of tomato, that
is transplanted in May and reaches an NDVI maximum in August, before
harvesting at the beginning of September. Tomato Ta follows a similar
pattern which mostly corresponds to IW; the latter, however, is lower
than Ta at the beginning and end of the growing cycle, when rainfall
contributes to soil water recharge and, consequently, crop transpiration
(see Fig. 2A). Total IW is estimated around 290mm. The second crop,
early corn, is planted in April, reaches an NDVI maximum at the end of
June, followed by a long plateau before harvesting at the end of August.
Corn Ta and IW follow this temporal evolution with the same patterns
observed above, i.e. reduced IW at the beginning and end of the
growing cycle due to rainfall. The longer growing cycle with respect to

tomato yields a higher IW estimated total (400mm). The second corn
variety, late, is preceded by a spring crop (ryegrass), that is grown in
rainfed condition. Corn is planted in June, reaches a maximum in Au-
gust and is harvested at the beginning of October. Accordingly, NDVI
and Ta show two peaks, the first, of ryegrass, in April and the second, of
corn, in late July-beginning of August. The first NDVI peak precedes the
start of the dry season and is followed by a decrease which inhibits the
estimation of IW; only the second NDVI is therefore correctly identified
as corresponding to irrigated condition. Again, estimated IW is lower
than Ta after mid-August, when part of soil water is provided by
rainfall, and reaches a seasonal total of about 330mm.

The NDVI, Ta and IW evolutions found in 2019 for winter, spring
and summer crops are similar to those of 2018, with only slight dif-
ferences in intensity and timing due to the different meteorology of the
year and the consequent agricultural calendar; these evolutions are
therefore not currently shown.

5.3. Validation of estimated IW in the two experimental fields

Table 2 reports the ground information for the two experimental
fields, whose geographical position is shown in Fig. 3A-B. The NDVI
evolution of the tomato field in 2018 is shown in Fig. 7. This is typical
for a summer crop planted in April, fully irrigated from mid-June and
harvested at the end of July. The same figure shows the daily irrigation
really applied to the field, which can be compared to the respective
estimated IW. When evaluating these results, however, it must be kept
in mind that the exact irrigation days cannot be predicted, since they
are partly due to random events (i.e. technical and practical issues re-
lated to water extraction and distribution). This obviously decreases the

Fig. 3. Examples of Sentinel-2 MVC NDVI images of the second half of July
2018 (A) and 2019 (B); the position of the experimental tomato and corn fields
is indicated by 1 and 2 in the respective images.

Fig. 4. Maps of total IW predicted by the described procedure for 2018 (A) and
2019 (B).
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agreement between daily IW measurements and estimates, affecting in
particular the observed r2 and RMSE. MBE is instead less influenced by
this issue, and is actually very low (-0.13mm/day), indicating that the
total amount of estimated IW is close to the respective measurement
(202 versus 222mm). The good accuracy of the estimates is confirmed
by aggregating the data on a weekly basis, which obviously mitigates
the aforementioned problem due to the exact identification of irrigation
days; this operation notably increases the determination coefficient and
reduces the RMSE in relative terms (i.e. referred to the same time
period).

The same general trend can be observed in Fig. 8, which shows the
evolutions of NDVI and of measured and estimated IW for the experi-
mental corn field in 2019. This crop was planted in mid- April, irrigated
after mid-June and harvested after mid-August (Table 2). Consequently,
the total water amount provided by irrigation is higher than for tomato
(around 300mm), and is slightly overestimated by the described
method (338mm), mostly due to an IW overestimation around the end
of the corn growing cycle (late August). This corresponds to a low MBE
(0.24 mm/day), while the other two accuracy statistics are still only
moderate, being affected by the above mentioned problem in

identifying irrigation days. Such problem is still mitigated by ag-
gregating the data on a weekly basis, which significantly improves the
accordance between measurements and estimates.

Overall, the accuracy obtained in the two case studies can be con-
sidered satisfactory, indicating the capacity of the applied procedure to
simulate both intensity and timing of the irrigation events applied to
the tomato and corn fields.

Fig. 5. Seasonal evolutions of NDVI, Ta and IW predicted for some typical
rainfed crops in 2018: semi-natural grassland (A), winter wheat (B) and
chickpea (C).

Fig. 6. Seasonal evolutions of NDVI, Ta and IW predicted for some typical ir-
rigated crops in 2018: late tomato (A), early corn (B) and late corn (C).

Table 2
Main features of the experimental tomato and corn fields used for assessing the
model functioning in the 2018 and 2019 growing seasons, respectively (Figs. 7
and 8).

Crop type Position Sowing Transplanting Harvesting Measured
IW (mm)

Early tomato 42.833 °N,
11.111 °E

28/04/2018 31/07/2018 221

Early corn 42.862 °N,
11.050 °E

18/04/
2019

19/08/2019 299
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5.4. Analysis of estimated IW in other controlled fields

Table 3 reports the ground information obtained from personal
contacts with local farmers for some fields grown with early and late
varieties of tomato and corn in 2018 and of tomato in 2019. This in-
formation is useful to interpret Fig. 9A-C, which shows the mean IW
estimated for these fields during all half-month periods of the two ir-
rigation seasons (from 16th May to 15th October). In the first study
year early tomato, which is transplanted in April, is irrigated from the
beginning of the dry season (mid-June, Fig. 2A) to crop harvesting
(beginning of August), with a peak in late July and a total of 226mm.
Late tomato, which is transplanted in June, is less irrigated at the be-
ginning of the dry period, when plants are small, but irrigation lasts
until early September, reaching a total of 308mm. In 2019 early to-
mato, still transplanted in April, is irrigated from the beginning of the

dry season (early June, Fig. 2B) to crop harvesting (mid-August); the
longer and dryer growing season, joined to a higher ET0 from mid-June
to mid-July, produce an IW total much higher than in 2018 (314mm).
Late tomato, which is transplanted in May, is still less irrigated than the
early variety at the beginning of the dry period, but irrigation lasts until
September, for an IW slightly lower than that of 2018 (289mm).

Both early and late corn varieties show IW totals higher than tomato
in 2018, partly due to a longer growing cycle. The early variety, which
is sowed in April, is irrigated already in June and has a high IW peak in
July (200mm), due to the co-occurrence of high NDVI (around 0.9) and
ET0 and nearly null rainfall (see Fig. 2A). Late corn, which is planted in
June, is smaller and therefore less irrigated in July, but is irrigated also

Fig. 7. Seasonal evolutions of NDVI and of measured and estimated IW ob-
tained for the experimental tomato field in 2018; the accuracy statistics are
computed on both daily and weekly time steps (** = highly significant cor-
relation, P<0.01).

Fig. 8. Seasonal evolutions of NDVI and of measured and estimated IW ob-
tained for the experimental corn field in 2019; the accuracy statistics are
computed on both daily and weekly time steps (** = highly significant cor-
relation, P<0.01).

Table 3
Main features of the tomato and corn fields characterized by personal contact with local farmers in the 2018 and 2019 growing seasons (Fig. 9A–C), with respective
estimated IW.

Crop type Year N. fields Sowing Transplanting Harvesting Estimated IW (mm)

Early tomato 2018 3 End of April Beginning of August 226
Late tomato 2018 6 Beginning of June Beginning of September 308
Early tomato 2019 5 End of April Mid-August 314
Late tomato 2019 5 End of May Beginning of September 289
Early corn 2018 4 Mid-April End of August 397
Late corn 2018 6 Mid-June Beginning of October 339

Fig. 9. Half-month period IW estimated for some fields grown with early and
late varieties of tomato in 2018 and 2019 (A and B) and of corn in 2018 (C); the
x axis indicate the half-month periods.
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in September, when ET0 is lower. Consequent on these seasonal pat-
terns, the IW total is higher for the early than for the late corn variety
(397 versus 339mm, respectively).

Overall, the estimated trends of IW are in accordance with the ex-
pected water requirements during the tomato and corn growing cycles;
nearly all IW is predicted following the crop development stages and
the seasonal meteorological evolutions, with only residual values after
harvesting.

Fig. 10 shows the mean IW estimated for the eight main crop types
reported by the regional ARTEA database, which are grown in more
than 2000 fields covering over 8000 ha. In both study years the esti-
mated IW approaches 0 for set-aside fields and for the two winter crops,
wheat and barley, which are always grown in rainfed condition. Esti-
mated IW is quite low (30−50mm) for alfalfa and variable for chickpea
(around 30mm in 2018 and 80mm in 2019). Both these crops are only
occasionally watered, but are grown in different periods and under
diversified agricultural practices. Alfalfa is a perennial species which is
usually rainfed, with the exception of extremely dry periods when
watering is supplied to avoid complete biomass loss. Chickpea is instead
a spring crop to which, as mentioned previously, supplemental irriga-
tion may be applied at the end of the growing cycle (end of June –
beginning of July) depending on seasonal meteorology. This can ex-
plain the IW difference found in the two years, since June was relatively
humid in 2018 and very hot and dry in 2019, determining different
water requirements in the period preceding chickpea harvesting.

The different meteorological patterns of the two years can also ex-
plain the slightly higher IW predicted in 2019 for the three summer
crops, which are variably irrigated. Estimated IW is intermediate for
sunflower (about 180mm), a drought resistant crop to which supple-
mental irrigation can be applied, and rises to around 250 and 300mm
for tomato and corn, respectively, which are always fully irrigated.
These last IW averages are close to the IW measured in the experimental
tomato and corn fields in 2018 and 2019 (around 220 and 300mm,
respectively). The same values are similar to the irrigation ranges
suggested by local agricultural practices, which are around
50−100mm for sunflower, 200−250mm for tomato and
300−400mm for corn (Giannini and Bagnoni, 2000).

6. Discussion

The methodology currently proposed relies on the basic assumption
that the IW actually used approximately corresponds to the crop water
requirements not satisfied by rainfall, which implies that local farmers
are experienced and incentivized in the appropriate management of
water resources. This assumption is realistic in the study area, where
most farmers tend to irrigate parsimoniously due to the cost of drawing
water from the most common sources, i.e. deep wells or distant artifi-
cial channels (see http://www.regione.toscana.it/

censimentoagricoltura2010). Such expectation is supported by the
current experimental findings, which consistently indicate that the IW
utilized by local farmers is close to that actually required by the grown
crops. Saving water is also the main reason for the local common use of
drip irrigation, which justifies the current choice of considering Ta in
place of ETa for IW prediction. This choice can be obviously changed
when other, more water consuming irrigation systems (e.g. surface or
sprinkler irrigation) are prevalently used in the examined area.

These considerations provide a plausible explanation for the dis-
agreement of the current results with those obtained by Vanino et al.
(2018), for a tomato field in an adjacent Italian region (Latium). These
authors, in fact, found generalized over-irrigation and misuses of water
resources, which can be likely ascribed to the prevalent, much cheaper
water drawing from rivers and artificial channels in their study area. As
noted in the introduction, another fundamental difference with respect
to that study concerns the water quantity which is actually predicted.
The method of Vanino et al. (2018), in fact, estimates the water re-
quirements of crops in standard conditions, i.e. fully watered. Our
method instead predicts the IW required for sustaining plants in the
observed greenness conditions, which not necessarily correspond to full
water satisfaction. This is due to both the possible incomplete FVC of
the examined crops and the partial deactivation of the water stress
scalar, which can limit the predicted TA in the presence of not fully
dense or green plants (Maselli et al., 2020b). Owing to all these reasons,
our method provides a lower-limit estimate of IW, which can be ex-
ceeded unintentionally or intentionally in the common practice.

From a functional viewpoint, the method utilizes a previously pro-
posed Ta estimation algorithm relying on the assumption that crop
transpiration can be limited by both short- and long-term water stress,
the first accounted for by a meteorological scalar and the latter by
possible NDVI decrease (Maselli et al., 2014). Being the computation of
the meteorological scalar originally based on rainfall estimates, it must
be corrected in cases of additional water supply, i.e. in irrigation con-
ditions. The correction, which is fully presented and tested in Maselli
et al. (2020b), is based on the identification of divergences in the
temporal evolutions of meteorological water stress and NDVI, i.e. of
cases in which NDVI is increasing or close to the seasonal maximum
during intense water stress periods. This concept was introduced by
Ozdogan and Gutman (2008), who showed that the combination of
meteorological water stress indicators and NDVI data is particularly
effective for identifying irrigated croplands in regions characterized by
clear summer water limitation. In this environmental situation, long
lasting meteorological water stress usually progresses into persistent
soil water shortage for rainfed ecosystems (West et al., 2019), while this
is obviously not the case if irrigation is applied. The two cases are
manifested into diverging green biomass and NDVI evolutions, i.e. de-
creasing or increasing trends, which provides the basis for the possible
deactivation of the meteorological water stress scalar (Maselli et al.,
2020b).

The deactivation of the water stress scalar in irrigated conditions
permits not only the correct prediction of crop Ta, but also the re-
partition of this quantity into water supplied by rainfall and by irriga-
tion. While, in fact, the original meteorological scalar is representative
of the rain water stored in the soil and usable for transpiration, the
modified scalar represents this quantity supplemented by IW. Thus, the
two scalars can be used to reduce the estimated Ta for the contribution
of rain water stored in the soil. More precisely, IW is obtained from Ta
considering both the immediate and the medium-term effects of rain-
fall. The former simply leads to a three-day irrigation block, while the
latter is accounted for through a normalized difference of the modified
and original water stress scalars.

The application of this method requires ground and satellite data
which are affected by relevant uncertainty. The meteorological data, in
particular, are currently derived from a regional database which con-
tains daily estimates of temperature, rainfall and solar radiation with
250m spatial resolution. The accuracy of these estimates is dependent

Fig. 10. Mean IW estimated for the main crop types grown in the study area in
2018 and 2019; the spatial distribution of these crops was taken from the re-
gional database (see text for details).
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on both the number of ground stations utilized and the efficiency of the
interpolation algorithm applied (spatially weighted regression, see
Thornton et al., 1997; Maselli, 2002). An analysis of both these factors
is provided in Chiesi et al. (2007).

The NDVI data are obtained from the processing of S-2 MSI imagery,
which contemporaneously offers high spatial resolution (10m), fre-
quent revisiting time (every 3–4 days) and a standard preprocessed
format (Drusch et al., 2012). This allows the production of MVC images
which are only marginally affected by atmospheric disturbances and
have been further improved by a multitemporal filtering operation
(Maselli et al., 2014). In general, the current study confirms the high
quality of the radiometrically and atmospherically corrected S-2 MSI
L2A product, which, however, implies an NDVI overestimation during
periods with low solar irradiation, i.e. from November to February. As
already noted by Maselli et al., (2020a), this issue has marginal impact
on the current IW estimation method, which is almost completely based
on NDVI data taken in spring and summer.

Greater impact is expected from the temporal resolution of the used
NDVI MVC images. The 15-day MVC and temporal filtering operations
currently applied, in fact, inevitably introduce an approximation in the
NDVI estimates, which can be particularly relevant in cases of abrupt
green biomass changes, such as those caused by crop harvesting. In
these cases the time filters applied can induce an overestimation of the
crop greenness, especially when harvesting is performed close to the
beginning of each 15-day MVC period. This was actually experimented
for the corn field in 2019, when the NDVI drop due to crop harvesting
on 19th of August was detected with a 10–15 day delay, causing an
overestimation of crop Ta and IW in the last part of the growing cycle.

The conversion of NDVI into FVC is another critical issue which has
been currently addressed by applying a generalized linear equation
whose local validity has been ascertained in Maselli et al. (2020a). Si-
milar estimates could be obtained from the Sentinel Application Plat-
form (SNAP) biophysical processor, which simulates FVC through the
application of an artificial neural network to multispectral S-2 MSI
observations (Vuolo et al., 2016; Weiss and Baret, 2016). While, how-
ever, the general validity of this approach has been assessed by Wang
et al. (2018), its local accuracy should be evaluated by a specific vali-
dation effort based on ground observations.

The current method also assumes a unique maximum Kc for all
herbaceous species (1.2), which implies that FVC accounts for the entire
Kc variability of all annual crops, independently of the type. This is in
accordance with previous studies of our research group, which found
that such an assumption brings only to a minor approximation in the
estimation of ETa for both semi-natural and agricultural herbaceous
vegetation types (Maselli et al., 2014, 2020a; Pieri et al., 2019).

The proposed IW estimation method has been tested in various ways
during two study years, obtaining generally good results. While nearly
null IW is predicted for rainfed winter and spring crops, accurate or
reasonable seasonal patterns of IW are predicted for all irrigated
summer crops examined. In particular, the estimated IW reproduces
both the intensity and timing of the irrigation measured in two ex-
perimental fields grown with tomato in 2018 and corn in 2019. The
same good estimation capacity is demonstrated for several other fields
grown with known annual crops during the two years. In this last case,
the estimated IW is in agreement with both the previous experimental
observations and the information available about local agricultural
practices.

Similarly to previous methods, the current procedure can be
adapted for mapping irrigated areas by simply thresholding the esti-
mated IW images. This is not, however, the most efficient utilization of
the method, since it implies a notable loss of information in all cases
where irrigation is supplemental or limited to specific growing phases.
In the study area, for example, some spring crops which are harvested
at the beginning of summer (vegetables, chickpea, etc.) are irrigated
only occasionally at the end of their growing cycle depending on sea-
sonal meteorology. In these cases, irrigation is partial and limited in

time, which explains the low IW estimates found for several fields.
While these situations could be addressed by the use of multiple
thresholds, the conservation of all information produced on IW is
clearly the most preferable option.

The low IW values found for some fields in the study area could be
obviously ascribed also to the inherent uncertainty of the method, i.e. to
cases when crop NDVI tends to increase during the dry season also in
absence of irrigation. These cases could be theoretically due to the
presence of alternative water sources which increase soil water avail-
ability during the dry season. As can be easily understood, such cases
are relatively rare in areas grown with annual crops, where irrigation is
usually the prevalent, if not exclusive, water source supplemental to
rainfall. An exception to this rule can be represented by areas adjacent
to canals, rivers, lakes, swamps, etc., where the presence of a shallow
water table can guarantee vigorous plant growth also during prolonged
dry periods. In general, however, the geographical position of these
areas is stable and known, which allows a simple identification and
characterization of such cases.

7. Conclusions

Numerous studies have been conducted in the last decades on the
use of remote sensing and ancillary data for identifying and quantifying
irrigation patterns (Ozdogan and Gutman, 2008; Ozdogan et al., 2010;
Chen et al., 2018; Vogels et al., 2019; Zaussinger et al., 2019). Most of
these investigations concern parametric and nonparametric statistical
methods, which require complex and tedious training phases and may
suffer from poor generalization capacity. Moreover, only most recent
works can fully exploit the enhanced spatio-temporal properties of S-2
MSI data, whilst previous studies were mandatorily working at lower
spatial resolutions (Chen et al., 2018).

The current research effort is therefore original for both the basic
theory and the spatial and temporal scales of investigation. The IW
estimation method proposed is, in fact, based on a water balance
strategy which was investigated in previous studies and does not re-
quire a specific training phase. This method can provide daily IW es-
timates also in areas characterized by high land cover fragmentation
and is generally robust against negative and positive errors, i.e. is
capable of identifying both not irrigated and irrigated cropped fields, as
well as of predicting the intensity and timing of irrigation events.

From a theoretical point of view, the method relies on the identi-
fication of divergent evolutions in meteorological water stress and
NDVI, which are obviously more marked in regions where a clear dry
season occurs, as is typical of the Mediterranean climate. Consequently,
the performance of the method is expected to partly degrade in other,
more humid eco-climatic conditions, where the dry season is not so well
defined. These situations, in fact, increase the difficulty in distin-
guishing the NDVI evolutions of rainfed and irrigated crops, creating a
general challenge for all methods that identify and characterize irri-
gated areas (Ozdogan and Gutman, 2008).

It can therefore be concluded that the IW prediction method cur-
rently proposed is capable of providing detailed and accurate in-
formation on the spatial and temporal distributions of crop irrigation, at
least in the examined environmental and agricultural realities. This
information can be utilized by public or private environmental stake-
holders for planning and regulating the correct uses of water resources,
whose demand is notably increasing due to both the ongoing climate
change and the rising consume for human activities.
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