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Abstract
We analyze a case study in the field of smart agriculture exploiting Explainable AI (XAI)
approach, a field of study that aims to provide interpretations and explanations to the
behaviour of AI systems. The study regards a multiclass classification problem on the Crop
Recommendation dataset. The original task is the prediction of the most adequate crop,
according to seven features. In addition to the predictions, two of the most well-known XAI
approaches have been used in order to obtain explanations and interpretations of the behaviour
of the models: SHAP (SHapley Additive ExPlanations), and LIME (Local Interpretable
Model-Agnostic Explanations). Both packages provide easy-to-understand visualizations
that allow common users to understand explanations of single predictions even without going
into the mathematical details of the algorithms. Within the scientific community criticisms
have been raised against these approaches, and recently some papers brought to light some
weaknesses. However, the two algorithms are among the most popular in XAI and are still
considered points of reference for this field of study.
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1 Introduction

Smart agriculture is an ideal field of application for the key concepts of industry 4.0 [1–
4]. Global warming and climate change have been threatening the agricultural and food
production processes, impacting both contexts that are becoming more and more important
to manage to avoid potentially huge losses for what concerns the cultivation of the crop.
Lack of water put the chain of food production at risk, especially in some world regions. A
new approach, known as Smart Agriculture, combining traditional agriculture with artificial
intelligence (AI) and autonomous systems, is then needed to tackle the challenges represented
by climate change [5].

In this paper, we tackle the problem of smart agriculture. We focus on Explainable AI
(XAI), a field of study that aims to obtain interpretations and explanations to model outputs
by making the logic and behaviour of machine learning models comprehensible for humans.
After the first papers that have been published on the theme at the turn of the Eighties and
the Nineties, in the following decades, the largest part of research focused on new high-
performance but very complex algorithms. However, since the predictions of these machine
learning models cannot be interpreted, it is also difficult to trust them, and this can lead to
dangerous consequences, particularly in certain sectors such as healthcare and self-driving
cars, in which wrong predictions could potentially cost human lives. As a result, new needs
for interpretability arose, and nowadays, with the field of XAI that has been experiencing a
revival, it is preferable to have an interpretable yet slightly less accurate model than a more
accurate black box model, within a certain extent [6]. In this paper, we decided to propose an
XAI approach for a smart agriculture task, since we consider it crucial for the reasons stated
above.

Classification tasks are part of machine learning (ML) techniques, whose goal is to predict
unordered, and discrete values. When proper labels are provided, we are facing a supervised
learning problem, otherwise, if labels are not given, we have to train our models for an
unsupervised learning task. Classification can be binary, and in this case we have only two
classes, or multiclass, and it is the case in our study where we have more than two classes to
predict [7].

Many classification tasks associated with smart agriculture have been proposed in the
literature. However, among the different approaches, an interpretable methodology is needed
since the audience is represented in the first place by farmers and agronomists. The kind
of audience involved is crucial in XAI [8]: farmers and agronomists, generally speaking,
are pretty skeptical in trusting AI and machine learning model predictions, especially in
the presence of non-interpretable black-box models, as reported in [9]. Furthermore, the
visualization of the results plays a crucial role in this field since the final users of this
methodology are usually not experts in machine learning and visual output is therefore
desirable (e.g., [10–12]).

XAI allows us to investigate the knowledge learned by machine learning models trained
to recognize an adequate crop to cultivate. More in detail, we show that through some XAI
charts, even non-machine learning experts can understand why a model predicts a particular
crop for a specific observation and, overall, which are the best combinations of features that
lead the models to the prediction of one class. In particular, we show how different ML
models can obtain high accuracy scores, and how visualization XAI charts transform our
black box models into interpretable, transparent models.

SHapley Additive ExPlanations (SHAP) [13] and Local Interpretable Model-Agnostic
Explanations (LIME) [14] libraries have been used to get explanations and interpretations
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of the model. We show how both XAI packages can be advantageous in showing the behav-
ior of models about the recommendation of the best crop to select among 22 possible
classes. Through the functions and the different kinds of plots that both libraries provide, we
can collect interpretations on single predictions of the model and, particularly with SHAP
summary_plot, even the patterns behind the recommendation of a single class.

The remainder of this paper is organized as follows. In Section 2, we investigate and report
on related work for our research. Section 3 discusses general guidelines andmain assumption
of applying XAI to the emerging field of smart agriculture, and we also introduce the two
main tools used in our research, i.e. SHAP and LIME. In Section 4, we describe how we
trained the reference five classification models of our experiments, along with their accuracy
analysis. Section 5 reports our experimental campaign where we show methods and related
graphical tools of SHAP and LIME used to produce suitable XAI charts, alongwith a detailed
discussion. In Section 6, we discuss limitations and strengths of SHAP and LIME. Finally,
Section 7 contains conclusions and future work of our research.

This paper significantly extends the conference paper [15], where we introduced our
general framework.

2 Related work

As already mentioned in the Introduction, the field of smart agriculture is an ideal application
domain for the fundamental concepts of Industry 4.0. As a consequence, there have been
several projects that have been studied and pursued in recent years that have includedmultiple
objectives: a) managing greenhouse gas emissions through sensors; b) improving energy
efficiency; c) observing phenological stages; d) detecting the presence of insects or diseases
in crops [16].

In previous projects, in many cases, these plans have been implemented through decision
support systems (Decision Support Tools). Still, this approach is not without its limitations.
Although they have proved to be effective tools in decision-making and easier to use than
in the past, these systems return data that are difficult to analyze and interpret. For these
reasons, farmers and agronomists have shown several reluctance to use them [1].

To tackle these problems, a system named Solarfertigation has been implemented, which
deals with integrating and unifying both the decision-making process and the process related
to the automation of irrigation and fertilization processes. Another peculiarity of the system
just mentioned is that it manages the entire crop cultivation cycle. It is capable of changing
the amounts and types of fertilizers, as well as the amount of water to be used in the irrigation
process, based on the detection ofmeteorological data and others related to the characteristics
of the cultivated soil. Solarfertigation is also equipped with an independent weather station
in addition to sensors that can extract data from weather stations located throughout the
territory [1].

In the few projects that have combined precision agriculture with XAI, the use of models
that can generate explanations for predictions has achieved numerous benefits, including
incentivizing farmers to use artificial intelligence systems. For example, a Fuzzy Rule-Based
System (FRBS) model, called Vital, has been developed in one such project. It can automat-
ically manage sensors scattered over fields and decide the appropriate amount of water for
irrigation through interpretable outputs. There are essentially three reasonswhy this approach
was followed in that study: 1) expert knowledge is not, in most cases, absolute and well-
defined, but it has degrees of fuzziness and approximation; a model that is based on fuzzy
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logic can therefore more easily integrate it; 2) real-world data, even in the agricultural field,
and even those collected by sensors, always carry noise and are therefore reported with some
degree of approximation; a model capable of obtaining predictions based on these data can
therefore return indications that are reasonably closer to real-world ones 3) such logic allows
for outputs that are simpler to interpret than others, more complex models. In addition, FRBS
models have been shown to be superior to similar crisp-type systems in different applications
and for various tasks (classification, regression, big data analysis) [9, 17].

However, another study presented a Case-Based Reasoning (CBR) model. The approach
aims, on the one hand, to determine the ideal growth rate for farming according to sustainabil-
ity and affordability criteria; and, on the other hand, to make this model easily interpretable
and understandable for agricultural workers. The objectives of this study are twofold: 1) the
accuracy of the predictions, which translates into obtaining a sufficiently low mean square
error (less than or equal to 10 kilograms per hectare per day) of the dry grass growth rate; 2)
explanatory success, defined as the percentage of nearest adjacent cases, or within the same
farm or county. Interpretations of the model are then obtained through customized post-hoc
explanations with examples, with the aim of excluding outliers as much as possible, reducing
noise, and thus providing clear guidelines for farmers [18].

Another interesting study comes from a UK Natural Environment Research Council
(NERC) project. It aims, through joint techniques of probabilistic inference, machine learn-
ing and XAI, to develop a framework that can identify the key factors that have led to
land-use changes in the two pilot regions selected for project development (i.e., Oxfordshire
and Lincolnshire) and build a model that can predict changes that will occur in the coming
years [19].

3 Applying explainable AI to smart agriculture

The selection of the adequate crop to cultivate in relation to the soil characteristics and climate
conditions is extremely important in smart agriculture, because it allows implementing ML
models that can classify and predict which agricultural products are more likely to grow
in the presence of specific input data. The problem can be seen as a classification task.
There are many classification approaches in the literature. However, we need an explainable
methodology for many reasons. First of all, there are some fields of application in which is
extremely dangerous to be confident in predictions without an explanation, for instance in
medical science where it has been proven that not interpretable models could potentially cost
human lives [20]. The accuracy score is not enough to gain trust in the algorithms because
a model can learn pieces of knowledge not included in the training set, and we may have
data leakage [21]. Also, we may have models that, when used on real-world data, could
obtain worse performances than expected, resulting in negative economic consequences. In
the second place, XAI can encourage farmers and agronomists to use ML models or AI
systems, allowing them to investigate the knowledge learned by the models, on the one hand,
it is also possible to compare human expertise with ML knowledge.

For the best crop to be predicted, accurate, and structured data must be obtained. It is vital
to know the nitrogen (N), phosphorus (P) and potassium (K) concentration values contained
in the fertilizer used for the crop. Every crop needs the right concentration of these three
elements, which are responsible for indispensable steps in the plant’s growing process: in
particular, nitrogen (N) goes to affect leaf growth in the plant; phosphorus (P) focuses on
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root, flower, and fruit development; and potassium (K) enables the plant to absorb water
more easily and to resist frost or harmful actions by pests more effectively 1.

The issue that has been tackled is amulti-classification problem: themodels have to predict
an adequate crop for the field condition based on seven numeric features, respectively N, P,
and K (showing the concentration values of nitrogen, phosphorus, and potassium within the
fertilizer), temperature (in Celsius), rate of humidity (percentage), ph (acidity of the soil),
and rainfall. We have used the Crop Recommendation dataset 2 experimentally to investigate
explanations and common patterns among different models.

In particular, the dataset consists of 2200 observations and 8 columns. There are nomissing
values or duplicates. The seven features are all numerical and are as follows:N, concentration
of the nitrogen value used in the fertilizer; P, concentration of phosphorus value used in the
fertilizer; K, concentration of potassium value used in the fertilizer; ph, value representing
the measure of soil acidity; rainfall, rainfall expressed in mm; temperature, temperature
expressed in degrees Celsius; humidity, relative humidity in percentage values.

The first three attributes contain integer numeric values, while the remaining four are of
float type. Added to these attributes is the target categorical variable, label, of string type
that contains the names of agricultural products grown. There are 22 classes, each of which
has 100 instances. The agricultural products that make up the classes are: apples, bananas,
black Indian bean, chickpeas, coconut, coffee, cotton, grapes, jute, red beans, lentils, maize,
mango, aconitifolia vine, green Indian bean,melon, orange, papaya, cayenne, pomegranate,
rice, and watermelon.

This dataset has been selected because of its completeness and simplicity. This charac-
teristic is essential, since one of the targets that should be taken into consideration is the
comparison between the knowledge learned by the algorithm and the knowledge of farmers
and agronomists.

For every model, the dataset has been divided into a training set (80% of observations) to
train the models and a test set (20%) to obtain the predictions. In the next subsections, the
two interpretable algorithms will be described, by focusing on the main characteristics.

Furthermore, while our paper effectively delineates the utility of XAI in smart agricultural
practices, it is imperative to scrutinize and acknowledge the inherent constraints that may
impede its implementation and efficacy in practical settings.

• Implementation Challenges in Real-World Agricultural Settings: The integration of XAI
techniques into actual agricultural operations faces practical challenges. The complexity
of agricultural environments, variations in soil types, climate conditions, and crop vari-
eties can pose hurdles in deployingXAImodels effectively. Furthermore, the requirement
for specialized sensors, infrastructure, and the need for high-quality data acquisition sys-
tems may be financially burdensome for smaller or resource-constrained agricultural
setups. Addressing these challenges demands not only technological advancements but
also infrastructural support and financial investments, which might not be feasible for all
stakeholders.

• Limitations of the Dataset and Generalizability of Results: The quality, diversity, and
representativeness of the dataset used in training XAI models significantly impact their
performance and generalizability. Issues such as biased or incomplete data, limited data
samples, or data collected from specific geographical regions or timeframesmight restrict
the applicability and generalizability of the developed models. Consequently, the predic-

1 For a more thorough description of what N, P and K are actually responsible for, see: https://www.
gardenersworld.com/how-to/grow-plants/understanding-npk-fertiliser/
2 https://www.kaggle.com/datasets/atharvaingle/crop-recommendation-dataset
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tive capability of these models may suffer when applied to different agricultural contexts
or unforeseen scenarios.

• Interpretability and Complexity: While XAI models aim to provide interpretability, the
complex nature of somemachine learning algorithms might result in black-box scenarios
where the decision-making process becomes challenging to comprehend. This lack of
interpretability could hinder the acceptance and trustworthiness of these models among
agricultural stakeholders who require transparent and understandable decision-making
processes.

• Regulatory and Ethical Concerns: Implementing AI in agriculture also raises regulatory
and ethical concerns. Privacy issues related to data collection from farms, ownership and
sharing of data, as well as potential biases encoded in algorithms, need to be thoroughly
addressed. Compliance with existing agricultural regulations and ethical considerations
related to AI adoption in farming practices necessitate careful attention and adherence.

In conclusion, acknowledging these limitations is crucial for a holistic understanding of
the practical applicability and challenges associatedwith employingXAI in smart agriculture.
Addressing these limitations requires collaborative efforts among researchers, policymakers,
technologists, and agricultural practitioners to devise innovative solutions and frameworks
that mitigate these constraints and facilitate the successful integration of XAI into real-world
agricultural settings.

3.1 SHAP

SHAP [13] is an additive feature attribution method that has its roots in Shapley values and
Game Theory. Starting from the base value, the predicted value from the null model (i.e.,
the model without any features), SHAP calculates the average marginal contribution of each
player, a portion, or a group of features. For each observation, the sum of SHAP values of
each feature is equal to the difference between themodel’s predicted value and the base value.

Explanation models use simplified inputs x ′ rather than the original ones through the
following mapping function: x = hx (x ′). The explanation function of such methods is a
linear function of binary variables. SHAP calculates the contribution φi to each feature, and
by summing, it is able to approximate the prediction function of the original model, where
z′ can be equal to 0 or 1 and M is the number of simplified input features.

g(z′) = φ0 +
M∑

i=1

φi + z′i (1)

SHAP values have three different desirable properties. Local accuracy is the first one and
prescribes that the explanation model must be able to approximate the output of the original
model either when x = hx (x ′) or φ0 = f (hx (0)).

f (x) = g(z′) = φ0 +
M∑

i=1

φi x
′
i (2)

The second property, missingness, requires the missing features to have no impact on the
model’s output.

x ′
i = 0 �⇒ φi = 0 (3)
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The third property, consistency, states that if the contribution of a simplified input, regardless
of the other ones, does not also decrease, the original input should do the same.

f ′
x (z

′) − f ′
x (z

′ \ i) ≥ fx (z
′) − fx (z

′ \ i) (4)

for all inputs z′ ∈ {0, 1}M , then φi ( f ′, x) ≥ φi ( f , x), where fx (z′) = f (hx (z′)) and z′ \ i
equates to set zi = 0.

In order to compute Shapley values, the model has to be trained for each possible subset
S of the entire set of features F . In this way, it is possible to attribute to each feature an
importance value that corresponds to the contribution of each feature to the model prediction.
To compute this value, a model fS∪{i} is both trained with a particular feature and without
the same one fS . By doing so, predictions from the two different models are compared:
fS∪{i}(xS∪{i}) − fS(xS), where xS represents the input features in the subset S. By replying
to this procedure for each feature, it is possible to obtain a feature attribution φi for each
observation.

φi =
∑

S⊆F\{i}

|S|!(|F | − |S| − 1)

|F |! [ fS∪{i}(xS∪{i}) − fS(xS)] (5)

While model-agnostic SHAP KernelExplainer calculates the average marginal contri-
bution of each feature, the model-specific TreeExplainer calculates the contributions
conditioned on the subset S of features [22], where S corresponds to the non-zero indexes of
z′ and N is the set of all input features. The expected value is E[ f (x) | xS].

φi =
∑

S⊆N\i

|S|!(M − S − 1)!
|M |! [ fx (S ∪ {i}) − fx (S)] (6)

DeepExplainer, for neural networks, assumes feature independence and the linearity of
deep model and is based on the Deep Learning Important FeaTures (DeepLIFT) [23]. It
assigns each input xi a C�xi�x j value, correspondent to the effect of an input xi set to a
reference value in contrast to the original one. Through the mapping function x = hx (x ′),
DeepLIFT converts original values into binary values, where 0 represents the input xi taking
the reference value, and 1 the original value.DeepExplainer combines small components
of neural network in those of the entire model by recursively passing DeepLIFT’s multipliers,
defined as:

m�xi�xt = C�x�t

�t
(7)

where �x is the difference between the input value and the reference value, �t describes the
difference between the target neuron t and the reference value, and C�x�t is the contribution
of the two inputs.

3.2 LIME

LIME [14] aims to explain the prediction function of the original complex model through a
simpler linear model. An explanation is a local linear approximation of the original model.
LIME is model-agnostic, which means that, regardless of the complexity of the original
model, this algorithm will interpret it as a non-transparent model. The authors of LIME tried
to find solutions to two common problems in machine learning: the gain of trust in the single
predictions, on the one hand, and the gain of trust in the behavior of the model as a whole,
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on the other hand. Indeed, if users cannot understand why a model behaves as it does, they
will tend not to use it. An explanation should also be locally faithful, which means that in
the proximity area around the instance explained, the explanation model g should reply to
the behavior of the original model f .

To explain a local prediction that is locally faithful, the algorithm will minimize the loss
function L , which includes the original model f , the simpler linearmodel g andπx (z), that is,
the proximity measure between the instance x and the instance z, and �(g), that represents
the complexity of the explanation model (e.g., depth of the trees in a decision tree). The
simpler the model, the better for the interpretability of the explanation.

ξ(x) = argmin
g∈G

L( f , g, πx) + �(x) (8)

To gain trust in the behavior of the entire model, the authors of LIME developed another
algorithm, the Submodular Pick (SP). SP aims to select instances characterized by a non-
redundant coverage of the area of the model, where non-redundant means that it is made up
of instances with different explanations. Within a set B of instances that a human being is
willing to inspect, through the SP, it is possible to obtain a n×d ′ explanation matrix, where n
is the number of explanations selected by the SP and d ′ represents the interpretable features,
while I is the total importance of interpretable features that are contained in at least one
selected instance. Non-redundant coverage is obtained by the function c that for W and I ,
computes the total importance of features contained in the set V of explanations.

c(V ,W , I ) =
d ′∑

j=1

1[∃i∈V :Wi j>0] I j (9)

The SP maximizes the mentioned coverage function by adding, for each iteration, the
instances with the highest impact on coverage inside the set V .

Pick(W , I ) = argmax
V ,|V |≤B

c(V ,W , I ) (10)

4 Trainedmodels

Five different models have been implemented on top of a Python environment running on a
machine characterized by: (i)MicrosoftWindows10 operating system; (ii) Intel(R)Core(TM)
i7-10700 CPU @ 2.90GHz processor; (iii) 16.0GB of main memory; (iv) 512 GB of SSD
storage. Three of these algorithms have been used to get explanations: an Extreme Gradient
Boosting (XGB), aMulti Layer Perceptron neural network (MLP), and three different Support
Vector Machines (SVM), the first one with linear kernel, the second one with a polynomial
kernel, and the third one with a radial basis function kernel: only the linear SVM has been
selected since it obtains a higher accuracy score compared to the other two. The reason behind
the choice of these particular models was due to the different kinds of explainers that the
SHAP package provides: in addition to the model-agnostic KernelExplainer (used for
the linear SVM), the DeepExplainer has been used for MLP, and the TreeExplainer
is specific for tree-based algorithms, for XGB. As Fig. 1 shows, each model achieves a very
high accuracy score.
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Fig. 1 Accuracy scores for each model

5 XAI charts

The functions of both SHAP andLIMEpackages allow us to investigate on single predictions.
With the method shap_values() a list of 22 arrays is obtained, one for each class. In
every model, we have noted the tendency to misclassify the class rice in favor of the class
jute. The Fig. 2 shows the output of the XGB model for an observation in which jute has
been predicted on behalf of rice.

The LIME class TabularExplainer has the explain_instance() method
shown in Fig. 3, by which it is possible to obtain an easily interpretable HTML visual-
ization for the same observation of Fig. 2, where prediction probabilities are displayed in
addition to the coefficients of the features that seem to impact both positively and negatively
on the prediction of one particular class.

SHAP summary_plot allows us to display both features with the mean biggest effect
on model output and how they impact single classes. For instance, humidity and P are the
most important features for the prediction of the class apples.

Fig. 2 XGB - force_plot
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Fig. 3 XGB - explain_instance

It is also possible to investigate a single class with the same plot. It is clearly visible what
has been observed in the previous one: XGB tends to predict apples just with the contribution
ofP and humidity, andmore precisely in the presence of high values for both of these features,
as shown in Fig. 4. Rainfall seems to have a slight impact, whereas the other features have
no impact at all on the cultivation of this crop, according to what has been learned by the
XGB. Figure 5 shows the XGB outcome for the class apple.

Fig. 4 XGB - summary_plot
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Fig. 5 XGB - summary_plot for class apple

With LIME SubmodularPick, as it has been mentioned in the LIME section, it is
possible to obtain a matrix W made up of n instances and d ′ interpretable features. In Fig. 6,
it has been displayed the mean effect of the interpretable attributes selected by SP within
a set B of 50 instances for which we wanted to obtain 10 explanations. We can note that
the interpretable attribute with the biggest mean effect is humidity > 89.94, and that the
attributes with poor or negative impact are related to ph and temperature, which is consistent
with what SHAP summary_plot has shown.

Fig. 6 XGB - LIME submodular_pick
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Fig. 7 SVM - multioutput_decision_plot

SVM also tends to misclassify rice in favor of jute. In Fig. 7, the SHAP
multioutput_decision_plot shows the model output for the 22 classes on a single
observation, but just two of them are highlighted with the dashed lines. Rice is the expected,
class but despite its positive contributions, the predicted class from the model is jute. The two
classes have very similar performances until the feature humidity, when a small gap starts to
divide the two classes.

Fig. 8 SVM - heatmap_plot for jute
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Fig. 9 SVM - heatmap_plot for rice

Another interesting visualization is given by the SHAP heatmap_plot where it is
visible how much each feature impacts the instances of the test set, in addition to the global
importance of each feature for the prediction of a single class. In Fig. 8, we reported the
heatmap for class jute, while in Fig. 9 the same experimental pattern for class rice.

If we compare the previous heatmap with the class rice heatmap, we will also have an
idea of the reason why the two classes are not always correctly classified by our model. Both
rice and jute are classified with the contribution of the same features: for these classes, the
behaviour of the model seems quite similar. However, if we look more closely, we can see

Fig. 10 SVM - summary_plot
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Fig. 11 SVM - submodular_pick

that the rainfall attribute has a positive impact on more instances of jute than rice. Because
of this, it is likely that jute is more easily classified than rice in presence of similar input data.

Unlike XGB, in SVM, the feature with the biggest impact is rainfall, followed by N ;
temperature and ph are still the least important attributes on model output. Also, the single
classes are selected differently: apple, for instance, is selected mainly for K, rainfall, P and
humidity , as shown in Fig. 10.

In Fig. 11, we report the mean values. As shown in Fig. 11, the visualization of the mean
effect of the interpretable attributes selected by LIME SubmodularPick is somehow sim-
ilar to what summary_plot shows. The interpretable attributes related to rainfall have the
biggest mean effect, in particular, rain f all > 124.70, whereas those related to temperature
and ph have a poor or negative effect.

Figure 12 shows the prediction output withMLP. Here, MLP also tends to misclassify rice
in favor of jute, but if we look more closely at the misclassified instances, we will note that

Fig. 12 MLP - multioutput_decision_plot
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Fig. 13 MLP - explain_instance

with this model, papaya is selected more times than jute. Indeed, papaya is a kind of crop that
benefits from different values of rainfall, even lower than rice and jute, A clear representation
of this pattern learned by MLP is given by the multioutput_decision_plot, in
which for an observation that has rain f all = 150.6, the model output for papaya improves
dramatically, unlike the expected class (jute).

By analyzing the same observation, we can see how the explanation linear model approx-
imates the behaviour of the neural network. All the interpretable attributes impact positively
on the prediction of papaya, but the attribute rain f all > 124.70 is only the third most
important, whereas 32.00 < k ≤ 49.00 and 51.00 < P ≤ 68.00 have the biggest impact on
the prediction of the class. Figure 13 reports the visual explanation for this experiment.

Fig. 14 MLP - summary_plot
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In Fig. 14, we again show the feature analysis forMLP. As shown in Fig. 14, rainfall is still
the feature with the most important mean impact on the model, but, unlike SVM, humidity is
only the fifth attribute in order of importance. The three chemical elements N, P, K are more
important, with the latter that has the second biggest impact.

After that, inFig. 15,we report themeanvalues forMLP.Here,LIMESubmodularPick
seems to confirm the importance of the chemical elements: 7 out of the first 8 interpretable
attributes are related to the values of N, P and K. The only one that is related to a different
feature is rain f all > 124.70, an attribute that we had already found in SVM.

Finally, we explore the practical implications and challenges associated with our proposed
approach in the context of agriculture as it is crucial for its successful implementation and
adoption.We, address these aspects in order to elucidate the integration of the approachwithin
existing agricultural frameworks, infrastructure requirements, and the training necessary for
stakeholders to effectively utilize the system.

• Integration with Existing Agricultural Practices: An in-depth discussion regarding the
seamless integration of the proposed approach within established agricultural practices
is imperative. Highlighting how the proposed system complements or enhances existing
methodologies, such as precision agriculture techniques, crop management practices,
or decision-making frameworks, would elucidate its practical relevance. Emphasizing
the compatibility and adaptability of the approach with diverse farming systems, crop
varieties, and regional agricultural practices is essential to showcase its versatility and
applicability across different contexts.

• Infrastructure Requirements: Detailing the necessary infrastructure for implementing the
proposed approach is fundamental. This encompasses technological prerequisites such
as sensors, data collection devices, computing resources, and communication networks.
Additionally, elucidating the scalability and cost implications of the required infras-
tructure, especially for smallholder farmers or resource-limited settings, would provide
insights into the feasibility and potential barriers to adoption.

• Training for Farmers and Agronomists: A comprehensive discussion on training require-
ments is essential to empower farmers and agronomists in utilizing the proposed system
effectively. Describing the training modules, workshops, or educational programs neces-
sary to familiarize stakeholders with the technology, its functionalities, and interpretation
of results would facilitate its uptake. Additionally, addressing the need for user-friendly

Fig. 15 MLP - submodular_pick
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interfaces, manuals, or support systems to aid stakeholders in navigating and understand-
ing the system would enhance its usability and acceptance.

• Adoption Challenges and Mitigation Strategies: Recognizing the challenges associated
with the adoption of new technologies in agriculture is crucial. Discussing potential
barriers such as technological literacy, resistance to change, or financial constraints and
proposing mitigation strategies, including capacity-building initiatives, demonstration
projects, or collaborative partnerships, would pave the way for smoother implementation
and uptake.

Finally, addressing these practical implications and challenges would facilitate a clearer
roadmap for the successful implementation and adoption of the system within the dynamic
landscape of agricultural practices.

6 Limitations and strengths of both packages

The two libraries have received some criticism, and some problems have to be solved to gain
solidity and reliability within the scientific community.

As shown in [24], both packages can be deceived by adversarial attacks, leading SHAP
and LIME to generate inconsistent explanations. In particular, the authors of the paper created
a scaffolding that fundamentally hides the predictions of a biased classifier on input data, so
that the explanations generated on the perturbed data points are unable to detect potentially
discriminatory models behaviour. Another paper [25] demonstrated that it is also possible
(either accidentally or intentionally) to create models that use one particular feature to obtain
predictions, but when the explanations are generated the same feature could not be included,
leading both XAI algorithms to generate misleading explanations.

More in detail, LIME lacks stability in its explanations, which basically means that if an
explanation regarding the same observation is repeated multiple times, different explanations
can be generated; furthermore, on one hand, a linearmodelmay not be the best one to interpret
a complex model, especially if we take into consideration a large part of the area of the
model; on the other hand, the surrogate model must be as simple as possible in order to keep
its interpretability and transparency [26]. Also, LIME seems to be unable to discriminate
between relevant and non-relevant features when it comes to provide explanations for high-
dimensional data sets [27].

With regard to SHAP, KernelExplainer has two big weaknesses: it ignores possible
feature dependence by assuming that each one is independent from one another, and it is
extremely slow in the calculation of SHAP values (LIME has the advantage of being much
faster in the generation of the explanation). Suffice it to say that to calculate the SHAP values
of our small test set, it took around15minutes. This could be a very big limitation, especially in
the presence ofmany features.TreeExplainer is much faster than KernelExplainer
and allows to have global model interpretations in reasonable time, but since it changes
the value function, it could lead to obtain possible counter intuitive values [26]. From our
experience, we also found several conflicts among DeepExplainer and different versions
of PyTorch and TensorFlow; hopefully they will be fixed soon.

However, SHAP and LIME were undoubtedly the first packages that opened the way
for XAI applications and despite their limitations, they still remain valid solutions, even
considering that this discipline has been studied in particular since 2016, the year of LIME’s
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development; we must therefore bear in mind that XAI is a rather recent field of study,
research is still in progress, so it would have been almost impossible to propose flawless
algorithms at this stage. Both packages are also included in several libraries, such as the
Microsoft open-source InterpretML3 (which proposes the Explainable Boosting Machine,
a new XAI algorithm [28]), the interactive SHAPASH4 and ExplainerDashboard5, just to
name a few. An interesting description of different XAI approaches can be found at [29].

Both packages work on tabular data, images, and texts; in particular, SHAP includes
two specific charts for images and texts, the image_plot and the text_plot. LIME
is able to identify and select just a handful of features that have a significant impact on
the prediction and generate interpretable features that allow to obtain deeper insights into
the final explanations; especially in the presence of high-dimensional datasets, this can be a
great help [26]. SHAP, being derived from Shapley values and Games Theory, has a solid
theoretical foundation and is also able (with the KernelExplainer) to connect LIME
local explanations with Shapley values [26].

Furthermore, we discuss other limitations and potential issues associated with XAI pack-
ages SHAP and LIME for a better comprehensive understanding of their applicability in
agricultural contexts.

• Interpretability Issues: While SHAP and LIME are renowned for their ability to provide
interpretability to complex machine learning models, certain limitations exist regarding
the interpretability of the explanations generated. The complexity of models or instances
with high dimensionality might pose challenges in providing easily interpretable expla-
nations. Additionally, these methods might generate explanations that are not intuitive or
are difficult for non-technical stakeholders, such as farmers or agronomists, to compre-
hend. Addressing the potential shortcomings in delivering understandable explanations
is crucial for ensuring the practical utility of these XAI packages in agricultural decision-
making.

• Computational Cost: The computational cost associated with SHAP and LIME methods
can be substantial, especially when applied to large-scale agricultural datasets or complex
machine learning models. The calculation of Shapley values in SHAP or generating local
approximations in LIME may demand significant computational resources and time,
making real-time or on-field application challenging. Discussing strategies to optimize
computational efficiency without compromising accuracy and reliability is essential for
making these XAI packages more feasible for practical agricultural settings.

• Potential Conflicts with Other Software or Libraries: Integrating SHAP and LIME into
existing software environments or utilizing them alongside other libraries may pose
compatibility issues or conflicts. Incompatibilities with specific versions of program-
ming languages, dependencies, or conflicts with other AI/ML frameworks could hinder
seamless integration and usage.A detailed exploration of these potential conflicts and rec-
ommendations for mitigating such issues would be beneficial for practitioners intending
to implement these XAI packages in agricultural applications. To prevent these con-
flicts, adherence to version compatibility is key. Ensuring consistent versions across
dependencies, including machine learning frameworks and Python libraries, mitigates
conflicts. Leveraging virtual environments or containerization aids in isolating envi-
ronments, reducing compatibility issues. Regular updates and thorough documentation
facilitate smoother integration, fostering reliable and robust XAI applications.

3 https://interpret.ml/
4 https://github.com/MAIF/shapash
5 https://explainerdashboard.readthedocs.io/en/latest/
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• Robustness and Validation: Another pertinent aspect is the robustness and validation of
the explanations generated by SHAP and LIME. Highlighting potential scenarios where
these XAI packages might provide misleading or inaccurate explanations is crucial for
ensuring trustworthiness and reliability in agricultural decision-making.

Addressing these concerns can contribute to enhancing the practical utility and reliability
of theseXAI packages in facilitating transparent and interpretable decision-making processes
in agricultural settings.

7 Conclusions and future work

In this paper, we have discussed how XAI can help people understand why a model selects
a specific class and the logic that leads it to recommend a particular crop. Through the
graphic options of both SHAP and LIME, we have been able to obtain explanations for
single predictions and intuitive representations of how a specific model predicts a class.
The visualizations that both packages provide are easy to understand and allow to have an
immediate and intuitive comprehension of the explanation. More in detail, we can make
different observations, as it follows. Common tendencies have been found among different
models: for instance, rice being misclassified in favor of jute. This is also because heavy
rainfall leads to the growth of both classes. It is possible to investigate single, misclassified
observations. We can understand how the model behaves under the hood and why it selects
a crop different from the expected one. Especially through the SHAP summary plot, we can
have an intuitive idea of which class will be predicted according to the input data. This is
possible even without knowing the mathematical rules included in the explanation model.
We can investigate single classes and the knowledge learned by the model. Last but not
least, even non-ML experts can partially understand explanations for single predictions and
which features are the most important for that particular prediction. This last element is
extremely important because it can open the way to discuss with agronomists and farmers
on what the model has learnt. Both SHAP and LIME make the original models transparent
and, regardless of their complexity, allow us to make comparisons between what a ML
model learned and what farmers and agronomists know, which should always be our first
concern if our target is a model that is not just accurate but also trustworthy. Future work
will regard the improvement of the approach by exploiting different XAI approaches and
visualization techniques, as well as using the XAI approaches in different multidisciplinary
fields like computational creativity [30, 31], and emotion detection [32, 33]. Another relevant
line of research consists in embedding flexibility in our proposed framework, for instance,
by adopting a semi-structured data representation format (e.g., [34–37]), which may turn out
useful to align data with AI explanations (e.g., [38–41]).
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